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Abstract Despite the fact that the mass of the neutrinos is
so small, they are produced in such vast numbers in the early
Universe that their mass induces subtle effects on cosmolog-
ical observables, primarily the growth of structure and the
expansion history in the Universe. We consider the models
where neutrino interacts with dark energy scalar field mod-
els; phantom, quintessence, and quintom. Also, we obtained
the znr (the redshift at which a mass of neutrino mν will
become non-relativistic) and surveyed the effect of non-
relativistic neutrinos on the structure formation. The data
used in this paper are Pantheon + Analysis catalog, CMB,
and BAO data. We obtained coupling constant β for neu-
trino and three scalar fields and found that larger β values
will generally lead to larger neutrino mass in the Universe.
For combination data, we found that the total mass of neu-
trino

∑
mν < 0.1197eV (95% confidence level (C.L.) for

quintom model and
∑

mν < 0.121eV (95% confidence level
(C.L.) for phantom model and

∑
mν < 0.122eV (95% confi-

dence level (C.L.) for quintessence model. These results are
in broad agreement with the results of Planck 2018 where
the total neutrino mass is

∑
mν < 0.12eV (95% C.L., TT,

TE, EE + lowE + lensing + BAO). Using the neutrino mass
obtained from different models, we calculated znr and co-
moving wave number knr and showed that neutrinos played
a role on the structure formation in the early Universe.

1 introduction

The model space of beyond �CDM cosmologies includes a
range of scenarios featuring interactions between dark energy
and other species [5,7,18,34,45]. Models can be constructed
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in which dark energy interacts with matter-energy fields.
These are generally confined to couplings to cold dark matter
or neutrinos. There are a number of interesting models for
neutrinos acquiring a growing mass by coupling to a scalar
field. These models have a scalar fields φ playing the role
of dark energy coupled to the neutrinos in such a way that
they provide a ’trigger’ that causes the scalar field to leave a
scaling regime and enter an inflationary regime [1,4,33,36].
If we want to explain this issue by general relativity in four
dimensions, we have two ways to describe this recent cos-
mic expansion: one way is to modify the gravitational part
of Einstein’s equations [28,41], and the other being to mod-
ify the universe’s contents. The simplest candidate for dark
energy is the cosmological constant with equation of state
parameter ω = −1, which fits well with the observational
evidence. If the cosmological constant is the reason for the
recent cosmic acceleration, we must find a mechanism that
can obtain a very small amount of it which is consistent with
the observational evidence. Unfortunately, the cosmological
constant has several serious problems, such as fine-tuning
problem [13,31,38]. There are several candidates for dark
energy such as scalar fields. A canonical scalar field is called
the quintessence [35] and non-canonical scalar field is a phan-
tom field with negative kinetic energy [16], tachyon field is
derived from string theory [40], a scalar field with generalized
kinetic energy called K-Essence field [6,14] and Chaplygn
gas [10]. The quintessence and phantom fields in a combined
model are yet another candidate for dark energy, called the
quintom model [22,29,30]. As we know, in the quintessence
model of dark energy, the equation of state parameter always
remains greater than −1. Moreover, in the phantom model,
the equation of state parameter is always less than −1. An
important feature of the Quintom model is that in this model
the equation of state parameter can cross the phantom bound-
ary. Because of this, the Quintom model seems to be an inter-
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esting candidate for dark energy. While neutrinos play an
important role in the early Universe cosmology, their impact
on the late universe is relatively minor in �CDM. There are
some cosmological models, however, in which neutrinos are
given a central role in the late universe by means of a coupling
to the dark energy. Besides, the Standard Model of Particle
Physics does not explain how the neutrino masses are gen-
erated. Cosmology has helped us to come closer to explain-
ing neutrino masses. In particular, cosmological observations
are sensitive to the imprint of neutrinos on structure forma-
tion, because neutrinos suppress structure formation on small
scales and slow down the growth of structure on all scales.
Despite the fact that the mass of the neutrinos is so small, they
are produced in such vast numbers in the early Universe that
their mass induces subtle effects on cosmological observ-
ables, primarily the growth of structure and the expansion
history in the Universe. Throughout the history of the Uni-
verse, neutrinos from the early Universe have evolved from
a relativistic phase at very early times to a massive-particle
behavior at later times [24]. Initially, neutrinos kinetic energy
dominates over their rest-mass energy, and as a consequence,
neutrinos can be described as massless particles fully char-
acterized by their temperature. As the Universe cools down,
the kinetic energy decreases and neutrinos undergo a transi-
tion to a non-relativistic phase with a non-negligible mass.
We are interested in highlighting the role of neutrinos. In
this work, we implement a cosmological model proposed by
observations to put a constraint on the total neutrino mass
[12,46] and the effect of neutrinos on structure formation.
Scalar field plays the role of dark energy and is responsible
for the accelerating expansion of the Universe.

2 The models

2.1 Phantom model

In this section, we study all three scalar fields separately. We
start with the phantom dark energy. Evidence from observa-
tional data suggests that the universe is currently in a nar-
row band near parameter ω = −1 and may be well below
this value (which lies in the so-called phantom regime), an
area called the Phantom Age. Phantom model is the non-
canonical scalar field which is very similar to quintessence
model (canonical scalar fields) except for the fact that it has
negative kinetic energy. The Lagrangian of this model is:

Lσ = 1

2
∂μσ∂μσ − Vσ (1)

where V (σ ) = V0 exp−λκσ is a self-interacting potential in
which V0 is the potential at present, λ denotes a dimension-
less parameter that determines the slope of the potential, and

κ =
√

8πG
c4 . Assuming a flat space in FLRW metric filled

with baryons, radiation, dark matter, dark energy and neutri-
nos. We start with the Friedmann equations as:

3H2 = κ2
(

ρb + ρc + ρr + ρν − 1

2
σ̇ 2 + V (σ )

)

(2)

where ρb is the baryon density, ρc is the cold dark matter
density, ρr is radiation density and ρν is density of neutrino.

2Ḣ + 3H2 = κ2(−ωbρb − ωcρc + ωrρr

−ωνρν + 1

2
σ̇ 2 + V (σ )) (3)

The energy density conservation equations are:

ρ̇σ + 3Hρσ (1 + ωσ ) = −βρν(1 − 3ων)σ̇ (4)

The action of neutrino-scalar field interaction resulting from
[8] can also be considered in the context of the coupled scalar
field model [5,44,45]. By employing the Fermi-Dirac distri-
bution for neutrinos whose masses mν(σ ) are σ dependent
and also in thermal equilibrium with temperature T (ν), one
obtains

ρν = T 4
(ν)

π2

∫ ∞

0

dxx2
√
x2 + ξ2

ex + 1
(5)

pν = T 4
(ν)

3π2

∫ ∞

0

dxx4

ex + 1
√
x2 + ξ2

(6)

where ξ = mν (σ )
T(ν)

. By using above equation one finds

ρ̇ν + 3H(ρν + pν) = βσ̇ (ρν − 3pν) (7)

Also, [11] used the same way to drive Eq. 7.

ρ̇ν + 3Hρν(1 + ων) = βρν(1 − 3ων)σ̇ (8)

Note that if ων = 1
3 , the coupling vanishes making neutrinos

non-interacting particles.

ρ̇c + 3Hρc = −αρcσ̇ (9)

ρ̇b + 3Hρb = 0 (10)

ρ̇r + 4Hρr = 0 (11)

respectively. Where the coupling parameter β can, in general,
be some function of σ . The coupling plays a role only when
the neutrinos are non-relativistic, since relativistic neutrinos
have Pυ ≈ ρυ

3 ; therefore, the right-hand sides of Eqs. (3.4)
and (3.7) are both negligible such that the standard, uncou-
pled conservation equations are recovered. Since dark energy
is modeled as a scalar field σ its energy density and pressure
are given by

ρσ = −1

2
σ̇ 2 + V (σ ), pσ = −1

2
σ̇ 2 − V (σ ) (12)

where V (σ ) denotes the potential of the scalar field. In this
paper, we consider the coupling between dark energy and
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neutrino as the following evolution equation. In addition,
from the resulting equations of the scalar field:

σ̈ = −λV (σ ) − 3

2
H σ̇ (1 + ωσ ) − 3HV

σ̇
(1 + ωφ)

+βρν(1 − 3ων) (13)

where as before ȧ means differentiation with respect to the
coordinate time t. The EoS of the scalar field is now given
by:

ωσ =
1
2 σ̇ 2 + V (σ )

1
2 σ̇ 2 − V (σ )

(14)

The above equations are a nonlinear set of second-order dif-
ferential equations that can only be solved analytically for
certain cases. To simplify the equations, we can introduce a
number of new variables to turn the second-order differential
equations into a set of first-order equations. There are several
reasons for this, including:

1. Systems of the first order for the numerical solution are
very simple and convenient. On the other hand, it allows
us to study the behavior of the system in phase space.

2. In the numerical solution of first-order equations, unlike
high-order equations, which require more than one con-
dition for each equation, only one initial condition is
required.

3. Most importantly, the first-order dynamics can be
described on the phase space and it is possible to check
the stability of the system.

If we considered the standard model, the right side of
the equation would be zero, and the neutrinos effectively
uncoupled. We consider an exponential potential V (σ ) =
V0 e−λkσ , where λ is a dimensionless parameter that deter-
mines the slope of the potential. The motivation for choosing
these functions have been investigated in [45]. Furthermore,
we define ω = Pν

ρν
. In order to simplify the field equations,

we introduce the following new variables,

ξ1 = κ2ρb

3H2 ξ2 = κ2ρν

3H2 ξ3 = κ2ρr

3H2

ξ4 = κ2ρc

3H2 ξ5 = − κσ̇√
6H

ξ6 = κ2V (σ )

3H2

(15)

In term of new variable the Friedmann equations (2) puts a
constraint on new variables as

ξ6 = 1 − ξ1 − ξ2 − ξ3 − ξ4 + ξ2
5 (16)

Therefore, the equations are simplified as follows:

dξ1

dN
= −3ξ1 − 2ξ1

Ḣ

H2 (17)

dξ2

dN
= −ξ2

(
3(1 + ων) + √

6ξ5β(1 − 3ων)
)

− 2ξ2
Ḣ

H2

(18)

dξ3

dN
= −4ξ3 − 2ξ3

Ḣ

H2 (19)

dξ4

dN
= −ξ4

(

3 − √
6ξ5α + 2

Ḣ

H2

)

(20)

dξ5

dN
= 3λξ6√

6
− 3βξ2(1 − 3ων)√

6
+ 9α√

6
ξ4 + 3ξ5 − ξ5

Ḣ

H2

(21)

Where, N = ln a. In term of the new dynamical variable, we
also have,

Ḣ

H2 = 1

2

(
−3 − ξ3 − 3ωνξ2 + 3ξ2

5 + 3ξ6

)
(22)

The above parameter is very important, since essential cos-
mological parameters such as deceleration parameters q and
effective equation of state (EoS) weff can be expressed in
terms of this parameter as q = −1 − Ḣ

H2 and weff =
−1 − 2

3
Ḣ
H2 . It is also used in calculating the luminosity dis-

tance. The equation related to the luminosity distance is cou-
pled by these parameters with the equations of the system.
We used the same approach with [39].

When neutrinos are non-relativistic, one needs to limit
the value of Neff accordingly. Also, the matter density must
contain the neutrino contribution.

�m = �ν + �b + �c (23)

where �ν is related to the sum of neutrino masses as

�ν =
∑

mν

94h2 (24)

In addition to photons, neutrinos and other relativistic degrees
of freedom make up the total relativistic energy density in the
early universe. Neff parameter is used to show the effective
number of relativistic species. Its standard value of 3.046
corresponds to the case of three generations of Neff neutri-
nos with no additional dark radiation. Therefore, the total
radiation energy density in the Universe is calculated by

ρr = ργ

(

1 + 7

8

(
4

11

) 4
3

Neff

)

(25)

where ργ is the energy density of photons. This value of
Neff indicates that if it is higher than 3.046, there is a dark
radiation that is other than three generations of neutrinos.

The expected linear correlation between �mh2 and Neff

given by

Neff = 3.04 + 7.44

(
�mh2

0.1308

3139

1 + zeq
− 1

)

. (26)
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2.2 Quintessence model

Quintessence is described as a canonical scalar field that is
minimally coupled to gravity. Compared to other models of
scalar fields such as phantoms, the simplest scenario is the
scalar field. A variable slow field along with a potential can
accelerate the universe. This mechanism is similar to slow
inflation in the early universe; the difference is that non-
relative matter (dark matter and baryon) cannot be ignored
to properly discuss dark energy dynamics. The action which
will then represent our physical system is:

S =
∫

d4x
√−g

(
R

2κ2 + Lm + Lφ

)

(27)

where Lφ is the canonical Lagrangian of a scalar field φ

uniquely given by

Lφ = −1

2
∂μφ∂μφ − V (φ) (28)

Now, we analyze the quintessence model. We start with
Friedmann and acceleration equation [32,35,45,48]:

3H2 = κ2
(

ρb + ρc + ρr + ρν + 1

2
φ̇2 + V (φ)

)

(29)

2Ḣ + 3H2 = −κ2(ωbρb + ωcρc + ωrρr + ωνρν

+1

2
φ̇2 − V (φ)). (30)

The evolution equations for their energy densities are:

ρ̇φ + 3Hρφ(1 + ωφ) = −βρν(1 − 3ων)φ̇ (31)

ρ̇ν + 3Hρν(1 + ων) = βρν(1 − 3ων)φ̇ (32)

while the Klein–Gordon equation is:

φ̈ = λV (φ) − 3

2
H φ̇(1 + ωφ)

− 3HV

φ̇
(1 + ωφ) − βρν(1 − 3ων) (33)

We can define the energy density and pressure of the scalar
field as follows:

ρφ = 1

2
φ̇2 + V (φ) (34)

pφ = 1

2
φ̇2 − V (φ). (35)

The resulting equation of state is as follows:

ωφ =
1
2 φ̇2 − V (φ)

1
2 φ̇2 + V (φ)

(36)

where ωφ is a dynamically evolving parameter which can
take values in the range [−1, 1]. We rewrite the cosmolog-
ical equations (3.24), (3.25) and (3.26) into an autonomous

system of equations.

χ1 = κ2ρb

3H2 χ2 = κ2ρν

3H2 χ3 = κ2ρr

3H2

χ4 = κ2ρc

3H2 χ5 = − κσ̇√
6H

χ6 = κ2V (φ)

3H2 (37)

we can derive the following dynamical system:

χ6 = 1 − χ1 − χ2 − χ3 − χ4 + χ2
5 (38)

Therefore, the equations are simplified as follows:

dχ1

dN
= −3χ1 − 2χ1

Ḣ

H2 (39)

dχ2

dN
= −χ2

(
3(1 + ων)−

√
6χ5β(1−3ων)

)
−2χ2

Ḣ

H2

(40)

dχ3

dN
= −4χ3 − 2χ3

Ḣ

H2 (41)

dχ4

dN
= −χ4

(

3 + √
6χ5α + 2

Ḣ

H2

)

(42)

dχ5

dN
= 3λχ6√

6
−3βχ2(1 − 3ων)√

6
+ 9α√

6
χ4 − 3χ5−χ5

Ḣ

H2

(43)

where, N = ln a. In terms of the new dynamical variables,
we also have,

Ḣ

H2 = 1

2

(
−3 − χ3 − 3ωνχ2 − 3χ2

5 + 3χ6

)
(44)

Using the relationships mentioned to estimate the mass of
neutrinos and Neff in the previous section, we have:

2.3 Quintom model

In the previous section we found that the equation of state in
the quintessence model must satisfy ωde ≥ −1, we also saw
that in the phantom scalar field, EoS is limited to ωde < −1.
There seems to be no way to cross the phantom barrier (i.e.
the cosmological constant ωde = −1) using a scalar field. To
cross this barrier, the Quintom model is used, which allows
such a passage. This dark energy scenario causes the EoS to
be larger than −1 and less than −1, which satisfies current
observations. The simplest model is represented by a quan-
tum Lagrangian consisting of two scalar fields, a canonical
field φ (quintessence) and a phantom field σ :

123



Eur. Phys. J. C (2023) 83 :910 Page 5 of 16 910

Lquintom = −1

2
∂μφ∂μφ + 1

2
∂μσ∂μσ − V (σ, φ) (45)

where V (φ, σ ) is

V (σ, φ) = V0 exp−λφκφ−λσ κσ (46)

a general potential for both scalar fields and φ and σ repre-
sents the quintessence and phantom fields, respectively. In
above equation λφ and λσ are constant values. The kinetic
energy sign is positive for the quintessence model and nega-
tive for the phantom model. The cosmological equations are
given by the Friedmann and acceleration equations [22,47]:

3H2 = κ2
(

ρb + ρc + ρr+ρν+1

2
φ̇2 + V (σ, φ) − 1

2
σ̇ 2

)

(47)

2Ḣ + 3H2 = −κ2(ωbρb + ωcρc + ωrρr + ωνρν

+1

2
φ̇2 + V (σ, φ) − 1

2
σ̇ 2) (48)

The energy density conservation equations are:

ρ̇(σ, φ) + 3Hρ(σ,φ)(1 + ω(σ,φ)) = −βρν(1 − 3ων)(σ̇ + φ̇)

(49)

ρ̇ν + 3Hρν(1 + ων) = βρν(1 − 3ων)(σ̇ + φ̇) (50)

and by the Klein–Gordon equations we have

φ̈ = λφV − 3

2
H φ̇(1 + ωφ) − 3HV

φ̇
(1 + ωφ)

−βρν(1 − 3ων) (51)

σ̈ = −λσV − 3

2
H σ̇ (1 + ωσ ) + 3HV

σ̇
(1 + ωσ )

+βρν(1 − 3ων). (52)

To recreate them in a dynamic system, we define the EN
variables

η1 = κ2ρb

3H2 η2 = κ2ρc

3H2 η3 = κ2ρr

3H2 η4 = κ2ρν

3H2

η5 = κφ̇√
6H

η6 = − κσ̇√
6H

η7 = κ2V (σ, φ)

3H2 .

(53)

To find the dynamics of the system governing cosmic evo-
lution, we follow the same method we used for the previous
two models.

dη1

dN
= −3η1 − 2η1

Ḣ

H2 (54)

dη3

dN
= −4η3 − 2η3

Ḣ

H2 (55)

dη4

dN
= −3η4(1 + ων) − β

√
6(1 − 3ων)η4η6

+β
√

6(1 − 3ων)η4η5 − 2η4
Ḣ

H2 (56)

dη5

dN
= 3λφ√

6
η7 − 3

2
(1 + ωφ)η5 − 3

2
(1 + ωφ)

η7

η5

− 3β√
6
(1 − 3ων)η4 − η5

Ḣ

H2 (57)

dη6

dN
= 3λσ√

6
η7 − 3

2
(1 + ωσ )η6 − 3

2
(1 + ωφ)

η7

η6

− 3β√
6
(1 − 3ων)η4 + η6

Ḣ

H2 (58)

dη7

dN
= η7

(√
6λσ η6 − √

6λφη5 − 2
Ḣ

H2

)

(59)

and the Friedmann constraint is

η2 = 1 − η1 − η3 − η4 − η2
5 + η2

6 − η7 (60)

holds.

3 Numerical analysis

Connecting theory to data is an integral part of the scien-
tific process. Generally a cosmological observable refers to
a specific phenomenon or class of objects which can be used
to measure some key properties of cosmology, most com-
monly the clustering of matter at some particular epoch and
within some set of length scales. These observations allow
us to compare theoretical predictions to data, and thereby
constraint properties of the cosmological model. All obser-
vational data used in this paper are:

• Pantheon catalog: [42] compiled the Pantheon sam-
ple consisting 1701 SNe Ia covering the redshift range
0.001 < z < 2.3.

• CMB data: We used the latest large-scale cosmic
microwave background (CMB) temperature and polar-
ization angular power spectra from the final release of
Planck 2018 plikTTTEEE + lowl + lowE [2].

• BAO data: We also used the various measurements of
the Baryon Acoustic Oscillations (BAO) from different
galaxy surveys [2], i.e. 6dFGS.(2011) [9], SDSS-MGS
[37], and BOSS DR12 (2017) [4].

To analyze the data and extract the constraints on these
cosmological parameters, we used our modified version of
the publicly available Monte Carlo Markov Chain package
CosmoMC [25]. This is equipped with a convergence diag-
nostic based on the Gelman and Rubin statistic [21], assum-
ing R − 1 < 0.02, and implements an efficient sampling
of the pos- terior distribution using the fast/slow parameter
decorrelations [26]. CosmoMC includes support for the 2018
Planck data release [2]. We also used the Akaike Information
Criteria (AIC)

AIC = χ2
min + 2k (61)
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In these equations χ2
min is the minimum value of χ2, k is

the number of parameters of the given model. AIC provides
means to compare models with different numbers of param-
eters; they penalize models with a higher k in favor of those
with a lower k, in effect enforcing Occam’s Razor in the
model selection process.

We put constraints on the following cosmological param-
eters: the baryon energy density �bh2, the cold dark matter
energy density �ch2, (

∑
mν total mass of neutrino, Neff

effective number of relativistic species, H0 Hubble constant,
λ a dimensionless parameter that determines the slope of the
potential.

Phantom Model:
In what follows, we put constraint on the total mass of

neutrino by analyzing of Pantheon and CMB and BAO data.
We first survey the results of the CMB + Pantheon data and
then investigate the results of CMB + BAO, and finally sur-
vey the total results of these two parts. The results for the
cosmological parameters are shown in Table 1. Figure 1 also
shows the parametric space at 68% CL and 95% CL for some
selected parameters for the different observational data sets.

From the analysis of the CMB + BAO data and, for phan-
tom we find that

∑
mν < 0.168eV (95% CL.) and using

CMB+Pantheon+ we find
∑

mν < 0.22eV (95% CL.)
and for combination of full data(CMB+BAO+Pantheon+) we
find

∑
mν < 0.121eV (95% CL.) (Fig. 2). For results from

combined data (Pantheon + CMB + BAO), we consider mul-
tivariate joint Gaussian likelihood given by

LJoint ∝ exp

(
−χ2

Joint

2

)

, (62)

where the joint chi-squared function of all the datasets reads

χ2
Joint = χ2

BAO + χ2
CMB + χ2

Pantheon. (63)

Quintessence Model:
From the analysis of the CMB + BAO data, for

quintessence we find that
∑

mν < 0.162eV (95% CL.)
and using CMB + Pantheon+ we find

∑
mν < 0.224eV

(95% CL.) and for combination of full data (CMB + BAO +
Pantheon+) we find

∑
mν < 0.122eV (95% CL.) (Figs. 3,

4, Table 2).

Quintom Model:
For CMB + BAO data, we find that

∑
mν < 0.128eV

(95%CL.) and using CMB + Pantheon+ we find
∑

mν <

0.2eV (95% CL.) and for combination of full data (CMB +
BAO + Pantheon+) we find

∑
mν < 0.1197eV (95% CL.)

(Figs. 5, 6).
This result is close to results of [2] TT,TE,EE + lowE +

lensing + BAO with
∑

mν < 0.12eV at 95% CL and case
TT,TE,EE + lowE + BAO with

∑
mν < 0.13 eV at 95% CL Ta
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Fig. 1 The constraints at the (95% CL.) two-dimensional contours for∑
mν for phantom model

Fig. 2 The constraints at the (68% CL.) two-dimensional contours for
Neff in phantom model

in three models. Other parameters are shown in Tables 3, 4,
5.

Moreover, we obtain the �(AIC) between �CDM and
each model (Figs. 7, 8, 9, 10).

• The value of �(AIC) between the phantom model and
�CDM is 0.299.

• The value of �(AIC) between the Quintessence model
and �CDM is 1.406.

• The value of �(AIC) between the Quintom model and
�CDM is 6.021.

Fig. 3 The constraints at the (95% CL.) two-dimensional contours for∑
mν in quintessence model

Fig. 4 The constraints at the (68% CL.) two-dimensional contours for
Neff in quintessence model

In the following, we estimate the Neutrinos transition
from relativistic to non-relativistic at redshift znr for all three
models. Neutrinos decouple from the primordial plasma in a
Fermi-Dirac distribution:

f (pν, Tν) =
[

exp

(
pν

Tν

)

+ 1

]−1

(64)

with temperature Tν . The average momentum is related to the
temperature by 〈pν〉 = 3.15Tν . Massive neutrinos become
non-relativistic when pν falls below their rest mass. The tem-
perature of the CNB is related to the temperature of the CMB
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Fig. 5 The constraints at the (95% CL.) two-dimensional contours for∑
mν in quintom model

Fig. 6 The constraints at the (68% CL.) two-dimensional contours for
Neff in quintom model

by:

Tν
0 =

(
4

11

) 1
3

T 0
CMB . (65)

Using a CMB temperature of 2.725 K and given that in
general T (z) = T0(1 + z), we can then estimate the redshift
at which a neutrino of mass mν will become non-relativistic
as:

znr =
(

mν

5.28 × 10−4ev

)

− 1. (66)

According to the above equation and the values obtained
for the neutrino mass in all three models, we will calculate
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the the redshift at which a neutrino of mass mν will become
non-relativistic (znr ):

• For the phantom model (combination data) we obtained
znr = 228.166.s

• For the quintessence model (combination data) we
obtained znr = 230.060.

• For the quintom model (combination data) we obtained
znr = 225.704.

Now we can discuss the effect of neutrinos in the structures
formation in the early universe. An important quantity in the
context of structure formation is the Jeans length, which tra-
ditionally refers to the length scale below which gravitational
collapse is counteracted by pressure forces:

kJ (t) =
(

4πGρ̄(t)a2(t)

c2
s (t)

) 1
2

. (67)

Here G is Newton’s gravitational constant, ρ̄(t) is the
mean density of the fluid, and c2

s (t) is the squared speed
of sound in the fluid. Although massive neutrinos are effec-
tively collisionless particles, replacing c2

s (t) with the thermal
velocity, vth

2(t) defines a free-streaming scale, below which
massive neutrinos do not cluster. Using the Friedman equa-
tion, we can then write this as

kFS(t) =
√

3

2

vth(t)

H(t)
. (68)

For relativistic neutrinos, wherev = c, this scale is simply the
Hubble radius. For non-relativistic neutrinos, their thermal
velocity evolves as

vth = 〈pν〉
mν

≈ 3Tν

mν

= 3T 0
ν

mν

(1 + z)

≈ 150(1 + z)

(
1ev

mν

)

kms−1. (69)

We can then write an instantaneous free-streaming scale
as a function of neutrino mass:

kFS(z) = 0.82

√
�� + �m(1 + z)3

(1 + z)2

( mν

1ev

)
h Mpc−1 (70)

This scale reaches a minimum wavenumber at znr, so we
can define a minimum free- streaming wavenumber:

knr ≈ 0.018�m
1
2

( mν

1ev

) 1
2
h Mpc−1. (71)

On scales larger than this, neutrinos effectively evolve like an
additional component of the dark matter. On smaller scales,
neutrino free-streaming means the neutrinos do not cluster,
suppressing the matter power spectrum on these scales. In
linear theory, this suppression can be analytically calculated

to be (1 − 8 fν) with respect to the massless neutrino case
on scales k 	 knr, where fν = �ν

�m
. In turn, free-streaming

(non-clustering) neutrinos slow down the growth of gravita-
tional potential wells on scales λ 
 λFS or wave numbers
k 	 kFS. What is more, massive neutrinos make up a fraction
of the dark matter, however, due to their large thermal veloci-
ties, cluster significantly less than cold dark matter (CDM) on
small scales. According to the values obtained for the mass
of neutrinos in these three models(quintessence, phantom,
and quintom), we will estimate the co-moving wave number.

• For the phantom model(combination data) we obtained
the non-relativistic neutrino wavenumber knr =
0.0.000243Mpc−1.

• For the quintessence model(combination data) we
obtained the non-relativistic neutrino wavenumber knr =
0.000248Mpc−1.

• For the quintom model(combination data) we obtained
the non-relativistic neutrino wavenumber knr =
0.000245Mpc−1.
These results are in general agreement with [15,27].

In addition to the above scenario, we consider the scenario
when

∑
mν equals to the minimum value in each hierarchy

and the lightest neutrino is massless (Fig. 11).
The results of oscillation experiments [3,17,20,23] lead

to two possible orderings of the neutrino mass eigenstates. In
Fig. 10: on the left, the normal hierarchy hasm1 < m2 < m3,
and on the right the inverted hierarchy has m3 > m1 >

m2. The three colors represent the probability of each mass
eigenstate producing a neutrino of each flavor.

The normal hierarchy has a minimum mass of 0.06 eV,
whilst the inverted has a minimum mass of 0.1 eV, meaning
a measurement of the neutrino mass scale, Mν = �imi of
0.1 eV to a high precision would eliminate the possibility
of the inverted hierarchy. We thus have two neutrinos of the
same mass m1 = m2 and the third one of a different mass m3.
We parameterize the masses in terms of the sum of neutrino
masses

∑
mν and the fraction θ of the total mass in the third

neutrino mass eigenstate, so that

m3 = θ�mi . (72)

We consider a case where all of the mass is in the third neu-
trino (θ = 1) or that third neutrino is massless (θ = 0).
In the case (θ = 1), we consider

∑
mν = m3 and another

flavors are zero. The result obtained from analysis of this
case is the same of results in above scenario and is close to
inverted hierarchy (minimum mass of 0.1 eV). If we consider
the case (θ = 0),

∑
mν is split to the two equal masses and

for each model then, we calculate the minimum mass which
is very close to the minimum mass of the normal hierarchy
and investigate the effect of non-relativistic neutrino on the
structure formation in early universe.
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Table 5 χ2s comparison
between �CDM and
Phantom,Quintessence, and
Quintom for the different
dataset combinations explored
in this work

CMB + Pantheon+ CMB + BAO CMB + BAO + Pantheon+

�CDM

χ2
tot 3584.778 2776.072 3593.172

χ2
CMB 2770.254 2769.860 2771.442

χ2
BAO – 6.212 6.754

χ2
Pantheon 814.524 – 814.976

Phantom

χ2
tot 3582.5 2768.279 3588.873

χ2
CMB 2769.237 2762.864 2770.013

χ2
BAO – 5.415 5.752

χ2
Pantheon 813.263 – 813.108

Quintessence

χ2
tot 3580.152 2766.577 3587.766

χ2
CMB 2766.146 2761.479 2768.365

χ2
BAO – 5.098 5.176

χ2
Pantheon 814.006 – 814.225

Quintom

χ2
tot 3580.991 2767.467 3583.151

χ2
CMB 2767.821 2762.113 2769.754

χ2
BAO – 5.354 5.288

χ2
Pantheon 813.991 – 813.406

The results obtained for the normal hierarchy are:

• For the phantom model (combination data) we obtained
znr = 113.583.

• For the quintessence model(combination data) we
obtained znr = 114.530.

• For the quintom model (combination data) we obtained
znr = 112.352 which is in the matter dominate era. For
non-relativistic neutrino wave number.

• For the phantom model (combination data) we obtained
the non-relativistic neutrino wave number knr =
0.000174Mpc−1.

• For the quintessence model(combination data) we
obtained the non-relativistic neutrino wave number knr =
0.000175Mpc−1.

• For the quintom model (combination data) we obtained
the non-relativistic neutrino wave number knr =
0.000173Mpc−1.

Therefore, before and during the radiation era neutri-
nos are relativistic and behave as radiation, while during
and after the matter era neutrinos become non-relativistic
and ων becomes 0. Thus, a complete and detailed investi-
gation of the thermal history of the universe requires the
exact behavior of ων(z), that is its specific form interpo-
lating between these two regimes. Expressing the universe
evolution through the redshift z, for convenience, one can

have several ων(z) parameterizations with the above required
properties, namely, the interpolation of the equation of state
parameter between 1

3 to 0. In this work we consider a semi-
relativistic phase (around znr ). Following the reference [43],
we shall use the following ansatz for ων(z)

ων(z) = pν

ρν

=
(

1 + tanh

(
ln(1 + z) − zeq

zdur

))

(73)

where zeq determines the transition redshift where matter and
radiation energy densities become equal and zdur determines
how fast this transition is realized. In summary, using the
dimensionless variable ων , we can transform Eq. (70) into
its autonomous form:

dων

dN
= 2ων

zdur
(3ων − 1). (74)

In order to put observational constrain on parameter ων0 and
reconstruct the evolution of ων , the above equation should
be coupled to the autonomous equations of the three models.
By doing this, we have reconstructed the evolution of ων

using observational constraint. In Fig. 12, we depicted the
evolution of ων for three models. As can be seen, neutrino
equation of state parameter (ων(z)) evolve from radiation
dominated with value of ων = 1

3 .
Moreover, we desire to have a better control on the fea-

tures of this transition, namely, the epoch around which the
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Fig. 7 Comparison of �bh2, �ch2, H0, �m obtained values in phantom model

transition is realized and the duration of realization. We con-
sider a semi-relativistic phase (around znr) between relativis-
tic to non-relativistic transition, where the neutrino equation
of state parameter (ων(z)) varies from 0 to 1

3 . To avoid rewrit-
ing the equations of each scalar field, we only show the results
of our analysis in Fig. 12. By doing this we obtained that dur-
ing the radiation dominated era ων = 1

3 and in the recent uni-
verse (ων = 0.012, zdur = 3.61), (ων = 0.014, zdur = 3.63)

and ων = 0.026, zdur = 3.88 for quintessence model, Phan-
tom and Quintom model respectively (Fig. 13). The results
are in good agreement with the results of [43].

4 Conclusion

The addition of massive neutrinos to the cosmological model
alters both the redshift evolution of H(z), and the clustering
of matter on small scales. By combining different cosmolog-

ical observables sensitive to these effects, it is forecasted that
data from upcoming surveys have the potential to reach the
precision required to make the first observational detection
of neutrino mass [19].

In this paper, we used phantom, quintessence and quin-
tom as dark energy and put a constraint on neutrino mass
by coupling dark energy with neutrino. We first found that
the total mass of neutrino is

∑
mν < 0.1197eV (95%

confidence level (C.L.) for quintom model and
∑

mν <

0.121eV(95% confidence level (C.L.) for phantom model
and

∑
mν < 0.122eV (95% confidence level (C.L.) for

quintessence model. These results are in broad agreement
with the results of Planck 2018 where the limit of the total
neutrino mass is

∑
mν < 0.12eV (95% C.L., TT, TE,

EE+lowE+lensing+BAO). Also, the interaction constant, β,
for these three models are investigated.

As we know, larger β will generally lead to larger mν in
the universe.
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Fig. 8 Comparison of �bh2, �ch2, H0, �m obtained values in quintessence model

• In phantom model, the value of β for combination data
(Pantheon + CMB + BAO) is 0.229. This value indicate
that the coupling between neutrino and dark energy is
small.

• In quintessence model, β is 0.63 which indicates that
the dark energy neutrino interaction is grater than that of
phantom model.

• β value in the quintum model is about 0.236, which shows
that in the world of quintom, the coupling between neu-
trino and dark energy almost is the same as what phantom
model has predicted. What is more, the results obtained
in this paper indicate that the value of the equation of
state in the quintom model is ωσ = −1.04 ωφ = −1.
By comparing the results obtained for the equation of
state of these three models, it can be concluded that for
the equation of state with a value of -1 or less (Quintom
and Phantom models), the value of dark energy neutrino
interaction is less than a situation when the equation of

state value is greater than -1 (Quintessence model). In
what follows, we surveyed znr for all three models and
we obtained:

• For the phantom model(combination data) we
obtained znr = 228.166

• For the quintessence model(combination data) we
obtained znr = 230.060

• For the quintom model(combination data) we obtained
znr = 225.704

these results shows that the neutrinos become non-
relativistic at distance almost 4282Mpc or 13.7Gly Although
this amount is much less than zeq.

Also, we indicated that the non-relativistic neutrino plays
an important role in structure formation at the early universe.
The results obtained in this paper for co-moving wavenumber

(knr ≈ 0.018�m
1
2 ( mν

1ev )
1
2 hMpc−1) are:
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Fig. 9 Comparison of �bh2, �ch2, H0, �m obtained values in quintom model

• For the phantom model(combination data) we obtained
the non-relativistic neutrino wavenumber knr =
0.0.000243Mpc−1.

• For the quintessence model(combination data) we
obtained the non-relativistic neutrino wavenumber knr =
0.000248Mpc−1.

• For the quintom model(combination data) we obtained
the non-relativistic neutrino wavenumber knr =
0.000245Mpc−1. These results are in general agree-
ment with [15,27]. these results are in good agreement
[15,27]. Furthermore, we consider the scenario when∑

mν equals to the minimum value in each hierarchy
and the lightest neutrino is massless. We work on the case
that all of the mass is in the third neutrino (θ = 1) or that
third neutrino is massless (θ = 0). In the case (θ = 1),
we consider

∑
mν = m3 and another flavors are zero.

Results were obtained from analysis of this case is the
same of results in above scenario and is close to inverted

hierarchy (minimum mass of 0.1 eV). If we consider the
case (θ = 0),

∑
mν split to the two equal mass and for

each model we calculate the minimum mass which is
very close to the minimum mass of the normal hierarchy.
The results obtained for the normal hierarchy are:

• For the phantom model(combination data) we obtained
znr = 113.583.

• For the quintessence model(combination data) we
obtained znr = 114.530.

• For the quintom model(combination data) we obtained
znr = 112.352 which is in the matter dominate era. For
non-relativistic neutrino wave number.

• For the phantom model(combination data) we obtained
the non-relativistic neutrino wave number knr =
0.000174Mpc−1.

• For the quintessence model(combination data) we
obtained the non-relativistic neutrino wave number knr =
0.000175Mpc−1.
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Fig. 10 Comparison of β value obtained for combined data (CMB +
BAO + Pantheon) in three models

Fig. 11 The results of oscillation experiments lead to two possible
orderings of the neutrino mass eigenstates

Fig. 12 The plots show the evolution of of deceleration parameter q
as a function of the redshift for the best-fitted values of the parameters
in all three model

• For the quintom model(combination data) we obtained
the non-relativistic neutrino wave number knr =
0.000173Mpc−1.

Fig. 13 Figure shows the evolutions of equation of state parameters
ων for all three models

Also, we consider a semi-relativistic phase (around znr)
between relativistic to non-relativistic transition and we
find that during the radiation dominated era ων = 1

3 and
in the recent Universe (ων = 0.012, zdur = 3.61) for
the quintessense model; (ων = 0.014, zdur = 3.63) for
the phantom model; ων = 0.026, zdur = 3.88 for the
quintom model which is consistent with results of the
study carried out by [43].

Moreover, we obtain the �(AIC) Between �CDM
and each model.

• The value of �(AIC) between the phantom model and
�CDM is 0.299.

• The value of �(AIC) between the Quintessence model
and �CDM is 1.406.

• The value of �(AIC) between the Quintom model and
�CDM is 6.021.

As we can see in Table 4, the analyses based on the
AIC indicated that there is more support for the interact-
ing scalar fields with the neutrinos when compared to the
�CDM model, and fit better than �CDM for the full dataset
combination, and improving the χ2.

Data availability This manuscript has no associated data or the data
will not be deposited. [Authors’ comment: Data is available upon
request from Authors.]
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