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Abstract We investigate the effects of exact gluon kine-
matics on the parameters of the Golec-Biernat–Wüsthoff, and
Bartels–Golec-Biernat–Kowalski saturation models. The result-
ing fits show some differences, particularly, in the normal-
ization of the dipole cross section σ0. The refitted models
are used for the dijet production process in DIS to describe
HERA data and investigate the effects of the Sudakov form
factor at the future Electron Ion Collider.

1 Introduction

Factorization of scales plays central role in Quantum Chro-
modynamics (QCD). In particular, within collinear factor-
ization approach, long-distance effects can be isolated into
objects called collinear parton distribution functions (PDFs)
[1,2]. The collinear PDFs are not fully perturbatively cal-
culable but they obey perturbative evolution equations and
are process-independent [2]. That is to say that one needs to
determine initial condition by fit to data, and the obtained
PDFs can be used universally.

One of the main type of processes that is suited particularly
well to the studies of proton structure is the deep inelastic
scattering (DIS) [1,2]. The data from HERA has enabled
us to answer many questions in that domain and largely
improved our picture of interior of a proton. It is therefore
very exiting that the next generation of DIS machines, the
Election Ion Collider (EIC) [3] is making its way and will
soon allow us to uncover more details about hadron structure.

At large center of mass energy and fixed value of the pho-
ton virtuality, Q, one probes the region of small Bjorken
scaling variable, x . In that region, which is dominated by
gluons [1,2,16], the approach of High Energy Factorization,
also called kT -factorization [4–9], has proven to be suited
particularly well. In this framework, the interaction of the
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photon with gluons happens through boson-gluon fusion or
quark impact factor, as depicted in Fig. 1. An object, which is
central to the description of such process is called the dipole
gluon density, Fdipole(x, k2

T ), and it is a type of transverse
momentum dependent (TMD) [10–13] PDF. Due to its clear
picture, one often uses a position-space counterpart of the
gluon density, called dipole cross section. It appears in the
kT -factorization formula [5,11–13], which we shall discuss
in the next section, and plays a role similar to that of the
collinear parton distribution function in the collinear factor-
ization.

Much effort has been made to study this object, notably
the work of Balitsky, Fadin, Kuraev and Lipatov (BFKL)
[14,15] has predicted sharp rise of cross sections with 1/x .
However, such rise violates unitarity and the Froissart bound
[1,2,16,17]. In Ref. [18] it has been recognized that gluon
recombination can tame the growth of gluons. The inter-
play of linear and nonlinear terms leads to a phenomenon
called gluon saturation and corresponding evolution equa-
tions are known as Balitsky–Kovchegov (BK) [19,20] equa-
tion or JIMWLK [21–26] equation.

Despite the success of the aforementioned evolution equa-
tions, there exist a number of phenomenological models of
the dipole cross section, which are popular due to their sim-
plicity. A notable example is the model proposed by Golec-
Biernat and Wüsthoff (GBW) [27] and its extension by Bar-
tels, Golec-Biernat and Kowalski (BGK) [28]. We will use
these two specific models in our study. We note, however, that
other saturation models have been discussed in the literature
[29–32].

In the present study, we fit the GBW and BGK mod-
els to HERA data [33] in the kT -factorization formula for
F2, instead of the original dipole factorization [34] formula.
As discussed below, this allows us to relatively easy investi-
gate the role of the exact gluon kinematics. Since inclusive
observables do not reveal the kT dependence well, in order
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Fig. 1 Kinematic variables of the inclusive DIS

to demonstrate the effects of exact kinematics we consider a
less inclusive observable which is more sensitive to the kT
dependence of the gluon distribution. The resulting models
are used for predictions of dijet production in DIS at Elec-
tron Ion Collider (EIC) [35], including effects of the Sudakov
form factor, which resums logarithms of the small transverse
momentum. This process is known to be sensitive to another
type of gluon density, called Weizsäcker–Williams (WW)
[11,12]. For that process, we study, in particular, the angular
correlation of jets, and that of the scattered electron and the
jets. For other papers addressing dijet production at the EIC
we refer the Reader to [36–40].

The paper is organized as follows. In the next section,
we present theoretical framework which we use and outline
differences between the kT -factorization and the dipole fac-
torization. In Sect. 3, results of the new fits to HERA data
in the kT -factorization formula are presented. In Sect. 4, we
apply the results from the previous section to compute dis-
tributions for dijet production in DIS at the EIC and make
comparisons to our earlier study of Ref. [41].

2 The framework

The DIS cross section (structure function) factorises and can
be written in a form

dσ =
∑

a

φa/h ⊗ Hγ a→X , (1)

where the hard function, Hγ a→X , involving a parton a in
the initial state, is calculable perturbatively, and φa/h is the
parton distribution function of a in a hadron h. The symbol ⊗
denotes appropriate convolution. All non-perturbative effects
are absorbed in φa/h , while Hγ a→X can be computed order
by order in αs .

We will study factorization in two versions: defined in
momentum and position space, respectively. As mentioned
earlier, in the fit, we use the GBW and BGK models. The
models were originally formulated in the position-space ver-

sion of the kT -factorization formula. In the GBW model, the
dipole cross section has the form [27]

σGBW(x, r) = σ0

(
1 − e−r2/R2

0

)
where R−2

0 = Q2
0

4

( x0

x

)λ
.

(2)

The dipole cross section is related to the dipole gluon density
by the Fourier transform

αsFdipole(x, k2
T ) = Nc

4π

∫
d2r

(2π)2 e
ikT ·r∇2

r σdipole(x, r). (3)

The essence of the GBW model is encoded in the x-dependent
saturation scale Q2

s (x) = Q2
0(x0/x)−λ, which separates the

saturation region and the scaling region. An extension of
the above model was proposed by Bartels et al. [28] who
incorporated the DGLAP evolution in the GBW dipole cross
section (2) by modifying the exponent to

R−2
0 = π2α(μ2)xg(x, μ2)

3σ0
, (4)

where

μ2 = C

r2 + μ2
0 and xg(x, Q2

0) = Agx
−λg (1 − x)5.6, (5)

thus improving the description of data at higher Q2.
While these models enjoyed much success in the phe-

nomenology of DIS, including the diffractive and photo-
production processes [27,42], it is worth mentioning that
they both use certain kinematic approximation which is spe-
cific to LO dipole factorization and are not there in the kT -
factorization. This was recognized in [43]. In the following,
we will investigate effects of these approximations.

Firstly, let us outline the factorization formulas. With q ′ ≡
q + xp, one decomposes k and κ , defined in Fig. 1, as

κ = αp − βq ′ + κT and k = ap − bq ′ + kT . (6)

For the contribution depicted in Fig. 1, the structure function
F2 factorizes with a change of variableκ ′

T ≡ κT−(1−β)kT ,
to the form [44,45]

F2(x, Q
2) =

∑

f

e2
f
Q2

2π

∫
dk2

T

k2
T

∫ 1

0
dβ

∫
dκ ′

Tαs(μ
2)

×Fdipole(x/z, k2
T )
(1 − x/z)

×
[(

β2 + (1 − β)2
)(

I1
2π

− I2
2π

)

+
(
m2

f + 4Q2β2(1 − β)2
) (

I3
2π

− I4
2π

)]
,

(7)
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where

1

z
= 1 + κ ′2

T + m2
f

β(1 − β)Q2 + k2
T

Q2 . (8)

One should note that the gluons are not probed directly,
thus the argument of the gluon density is x/z rather than
x . If one, instead, uses 1/z = 1 + 4m2

f /Q
2 and assumes

that μ is independent of κ ′ and kT , the above formula can
be written in the impact parameter space [27,46] (i.e. as a
dipole factorization formula)

F2

(
x, Q2

)
=

∑

f

e2
f
Q2

4π2

∫ 1

0
dβ

∫
d2r

(2π)2

×
∣∣∣�

(
x̃, β, Q2

)∣∣∣
2
σdipole (x̃, r) , (9)

where the photon wave function,
∣∣�

(
x̃, β, Q2

)∣∣2
, describes

splitting of the incoming photon into a qq pair with light-
cone momenta fractions β and 1 − β respectively, and the
dipole cross section, σdipole (x̃, r), describes the interaction
of the colour dipole of size r with the proton. In Ref. [27],
x̃ = x(1+4m f /Q2) with nonzero value ofm f was used even
for light flavours, which is necessary to partially substitute
kT and κ ′

T in Eq. (8). In the present study, we use Eq. (7) to fit
the models, where the gluon density is obtained by evaluating
Eq. (3).

Considering the small-r limit of the GBW model

σGBW (x, r)|r�Qs
≈ r2Q2

s/4, (10)

comparison to

σBGK (x, r)|r�Qs
≈ r2π2αs(μ

2)xg(x, μ2)

3
, (11)

from BGK, suggests that the GBW model is an approxima-
tion in which αs(μ

2) and xg(x, μ2) are independent of r
[28]. For this reason, in one version of the model discussed
below, we shall account for the running coupling in Eq. (7) by
assuming that αs in Eq. (3) is constant for the GBW model,
and thus explicitly multiply it by the running coupling

αs(μ
2)Fdipole(x, k2

T ) → αs(μ)
αsFdipole(x, k2

T )

0.2
, (12)

where

αs(μ
2) = 1

11CA−2n f
12π

log

(
μ2

�2
QCD

) , (13)

and �2
QCD = 0.09 GeV2.

The factor 0.2 is an arbitrary normalization, whose effect
is absorbed by σ0, and hence bears no importance. (For a
more detailed analysis of the dipole gluon density from the

BGK model see Ref. [47]1) While there is some ambiguity on
what the argument of αs(μ

2) should be, we follow Ref. [45]
and use

μ2 = k2
T + κ ′2

T + m2
f + μ2

0, (14)

where we add μ2
0 = 4 GeV2 in order to freeze the coupling

at low scales.

3 Fits to F2 data

We fitted the GBW and BGK models to the F2 data from
HERA [33].2 A numerical program was written with help of
CERNLIB (DPSIPG) [49], GSL [50], CUBA [51] and ROOT
[52] libraries to evaluate F2. The fitting was performed using
MnMigrad and MnSimplex of ROOT::Minuit2 [53].

The data were selected to be in the range 0.045 ≤ Q2 ≤
650 GeV2, x < 0.01. As with the previous fit [54], the c
and b flavours were taken into account with the mass 1.3 and
4.6 GeV, respectively. As discussed earlier, we take the light
quarks to be massless.

We studied the following cases

• GBW model with the fixed coupling in kT -factorization
(kT -GBW),

• GBW model with the running coupling in kT -factorization
(rc-kT -GBW),

• BGK model in kT -factorization (kT -BGK),

and, as a reference, we provide the following results from
Ref. [54]

• GBW model with massless light quarks in the dipole fac-
torization (r -GBW),

• GBW model with massive light quarks in the dipole fac-
torization (r -GBW-massive),

• BGK model in the dipole factorization (r -BGK).

The results of the fits are summarized in Table 1. The
fit quality of kT -GBW is almost unchanged w.r.t. r -GBW,
while rc-kT -GBW shows remarkable improvement, almost
halving the χ2 value. This is in line with the observation
made in Refs. [55–57] that in the BK evolution, the running
coupling corrections have considerable effect.

1 In Ref. [47], the coupling constant was treated differently and the
large kT -region was matched to the derivative of xg(x), while we have
used series transformation to accelerate the high-kT integration. Their
treatment is also different from the original BGK paper [28]. As a con-
sequence, their gluon density is positive in the large kT -region and the
overall large-kT behaviour is significantly different.
2 For description of F2 at NLO accuracy within dipole factorisation see
Ref. [48].
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Table 1 Fit parameters of respective models. The parameters of the dipole factorization cases are from Ref. [54]

– σ0 [mb] x0
(
10−4

)
λ χ2/dof

r -GBW 1.907e+01 2.582e+00 3.219e−01 4.438e+00

r -GBW-massive 2.384e+01 1.117e+00 3.082e−01 5.274e+00

kT -GBW 3.344e+01 1.333e+00 3.258e−01 4.396e+00

rc-kT -GBW 1.520e+01 2.648e+00 3.211e−01 2.447e+00

– σ0 [mb] Ag λg C μ2
0

[
GeV2

]
χ2/dof

r -BGK 2.326e+01 1.181e+00 8.317e−02 3.294e−01 1.873e+00 1.556e+00

kT -BGK 3.470e+01 1.048e+00 2.205e−01 2.391e−01 9.954e−01 1.527e+00

Another notable point is that, except for the normaliza-
tion σ0, the parameters are very similar, particularly those of
rc-kT -GBW are almost identical to those of r -GBW. While
the GBW model remains almost unaffected, the BGK model
seems to show slightly more change. The difference in σ0 is
similar to that of GBW and other parameters changed mod-
erately.

In Fig. 2, the plots of the dipole cross section, the dipole
gluon density and the saturation scale for the GBW and BGK
models are shown. The dipole cross section and the gluon
density are both normalized by σ0 in order to show the effects
of other parameters better, and the saturation scale is defined
as a ridge of the dipole gluon density in the (x, k2

T ) plane.
In the plots on the left hand side, one can see the effects of

changes in the parameters of the GBW model. The difference
between the rc-kT -GBW and r -GBW is negligible, while
the kT -GBW is slightly shifted, compared to others, by the
change in x0.

On th right hand side of Fig. 2, the same plots are shown
for the BGK model. Unlike in the GBW case, the connection
between the differences shown in the plots and the differences
in the parameters is less clear. Nevertheless, the differences
are more prominent in the small-x region.

Comparisons of the results with the F2 data are shown
in Figs. 3 and 4. In Fig. 3, the differences between r -GBW
and kT -GBW are not visible, while rc-kT -GBW shows siz-
able difference from the others, particularly in the large-Q2

region. Recalling that the parameters of rc-kT -GBW and r -
GBW are very similar, the difference in F2 is almost entirely
due to the coupling constant. The improvement in the fit
quality is depicted as a histogram of the χ2-vale per number
of points at the bottom of Fig. 3. Here, the improvement in
the large-Q2 region is very clear. In Fig. 4, the differences
between r -BGK and kT -BGK are hardly visible. In the his-
togram at the bottom, one can see some differences, but they
cancel out mostly, making little improvement overall.

Let us now take a closer look at the parameter σ0. Recall
that the difference between the kT -factorization formula and
the dipole factorization formula is in x/z, and this enters in

the GBW formalism as x̃ . It is easy to see that, as x grows,
the dipole cross section gets suppressed. (Keeping in mind
the suppression by the photon wave function in the large-r
region.) Such effect was discussed previously in Ref. [58] in
the context of the BK equation. In fact, this suppression is
the motivation given in Ref. [27] for such modification of x ,
so that, in the small-Q2 limit, the total cross section remains
finite. Since
(

1 + 4m2
f

Q2

)
≤

(
1 + k2

T

Q2 + κ ′2
T + m2

f

β(1 − β)Q2

)
, (15)

the kT -factorization case receives more suppression. Conse-
quently, the normalization factor σ0 rises to compensate the
suppression. Therefore, one can understand the change in σ0

as a direct consequence of the key difference between the
kT -factorization and the dipole factorization.

4 Dijet production at EIC

The F2 structure function is an inclusive object and it is
weakly sensitive to the shape of the gluon density. To probe
that shape better, we shall now apply the dipole cross sections
obtained in the previous section to the jet correlations at the
EIC, following closely the method of Ref. [41].

We consider dijet production in DIS

e + p → e + J1 + J2 + X. (16)

At the leading order, in the small-x limit, this process is
dominated by qq jets [12]. It is therefore closely related to
the dipole picture we discussed earlier. In the Breit frame,
where the photon momentum is given by q = (0, 0, 0, Q),
at the leading order, the jets momentum imbalance pT ≡
|p1T + p2T | equals the gluon transverse momentum kT ,
where p1T and p2T are transverse momenta of the jets. This
makes dijets an interesting process. For the region where
pT � PT ∼ p1T , p2T , one may use power counting to
take leading order in pT /PT , which leads to the transverse-
momentum-dependent (TMD) factorization.
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Fig. 2 The dipole cross section, the dipole gluon density at x = 10−2, 10−6, and the saturation scale for the GBW (left) and the BGK (right)
models. Note that the dipole cross section and the gluon density are normalized with σ−1

0

In the large-Nc limit of the TMD factorization, there are
two types of gluon densities, namely the dipole gluon density
and the Weizsäcker–Williams (WW) gluon density [11,12,
60,61]. It was shown in Ref. [12], that the dijet process in
DIS can directly probe the WW gluon, FWW(x, k2), where
the differential cross section factorizes as

dσγ ∗ p→qqX

dP.S.
= FWW(x, k2

T )Hγ ∗g∗→qq , (17)

with the hard function Hγ ∗g∗→qq describing interactions of
an off-shell photon with an off-shell gluon producing a qq
pair. FWW(x, k2), has an interpretation as a number density
of gluons inside a proton, while Fdipole(x, k2

T ) does not have
such an interpretation [11,12,61].

We carry out our study in the framework of the Improved
Transverse-Momentum-Dependent (ITMD) factorization [60,

123
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Fig. 3 Comparison of F2 from GBW with HERA data. The histogram shows the χ2 value per data point in each frame. Improvement by the
running coupling (rc-kT ) is clearly visible in the high-Q2region, while the new fit (kT ) shows only marginal improvement

62].3 This is implemented in the program KaTie [63],
which we use to compute the cross sections. The ITMD
factorization is a generalization of the TMD factorization,
where the momentum imbalance in TMD is restricted to be
small [60,62]. That is to say, ITMD resums (Qs/kT )n and
(kT /PT )n [60,62], thus extends the region of applicability
up to kT ∼ PT . The difference of Eq. (17) from the regu-

3 We limit ourselves to unpolarized contribution as it is the lading one.
For the polarized one, see Ref. [38].

lar TMD is that the hard function has an off-shell gluon, g∗,
thus rendering the kT dependence in the hard function as well
[62].

Under the Gaussian approximation and assuming θ -like
profile of the proton, one can write [11,12,60,61]

FWW(x, k2) = CF

2π3αs

∫ ∞

0

dr

r
J0(rk)σdipole Adj.(x, r), (18)
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Fig. 4 Comparison of F2 from BGK with HERA data. The histogram shows the χ2 value per data point in each frame. The overall fit quality
remain similar but the quality in each frame changes noticeably. In particularly, the kT -formula (kT ) shows better quality at small Q2

with the adjoint dipole cross section

σdipole Adj.(x, r) = σ0

(
1 −

(
1 − σdipole(x, r)

σ0

)CA/CF
)

.

(19)

For the region where the TMD factorization is applica-
ble, Qs ∼ kT � PT ∼ Q, one needs to resum the large
Sudakov logarithms log(kT /Q), as well as log(1/x) [12]. It
was shown in Refs. [13,64,65] that consistent resummation

of such logarithms is possible owing to the separation of cor-
responding regions (see also Ref. [66]). Resummation of the
Sudakov logarithms is achieved by the formula

FWW(x, k2, μ2)

= CF

2π3αs

∫ ∞

0

dr

r
J0(rk)e

−S(r,μ2)σdipole Adj.(x, r), (20)
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Fig. 5 Weizsäcker–Williams gluon density at x = 10−3. Top row:
Comparison of the dipole factorization fit and kT -factorization fit
results. Bottom row: Comparison of the respective models with and

without the Sudakov factor, at μ = 17, 67 GeV.The green dotted line
is the KS gluon [41], and the green dashed line is the rcBK gluon [59]

where, we use the Sudakov form factor [13,65],

S(r, μ2) = αs Nc

4π
ln2

(
μ2r2

4e−2γE

)
, (21)

in which γE is the Euler-Mascheroni constant, and we set
αs = 0.2. The obtained gluon densities are shown in Fig. 5.

4.1 Comparison to HERA data

Before discussing dijet production at the EIC, we compare
our model with inclusive dijet data from HERA [67]. The
kinematical cuts chosen for this study read

Ep = 27.6 GeV, Ee = 920 GeV,

p2T > 4 GeV, 5.0 < 〈pT 〉2 < 50 GeV,

0.2 < y < 0.6, −1.0 < η
jet
1Lab, η

jet
2Lab < 2.5,

5.5 < Q2 < 80 GeV2,

R =
√(

�η
jet
Lab

)2 +
(
�φ

jet
Lab

)2
< 1, (22)

where the average transverse momentum of jets in the Breit
frame is given by

〈pT 〉2 ≡ 1

2
(p1T + p2T ) , (23)

and η and φ denote pseudo-rapidity and azimuthal angle,
respectively. The processes under consideration are of the
type

g → qq, (24)

where we take five massless quark flavours [67].
The renormalization and factorization scales are given by4

μ = 1

2

(
Q + 〈pT 〉2

)
. (25)

The comparison of the new and the old fits of the GBW
and BGK models is shown in Fig. 6, in which we plot differ-
ential dijet cross sections in bins of 〈pT 〉2 and Q2. In both
cases of the GBW and BGK models, we observe that in the
low- and moderate-Q2 region, the new fits agree better with

4 Cf. Ref. [67], μ2 = 1
2

(
Q2 + 〈pT 〉2

2

)
.
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Fig. 6 Comparison of calculation with the GBW and BGK models, fitted in the dipole (r) and kT factorization formulae to the HERA dijet data
[67]

the data, except for large 〈pT 〉2. At large Q2 and large jet-
transverse momenta, our predictions overshoot the data but
this is expected, as this kinematic configurations lay beyond
the validity region of the saturation models.

Figure 7 shows the effects of the Sudakov form factor in
the case of the BGK model. Here, we plot the BGK model pre-
dictions with an uncertainty estimated by varying the renor-
malization scale by the factors 0.5 and 2. We see that the
Sudakov form factor has a sizeable effect by making the
〈pT 〉2-spectra steeper. This leads to lowering the high-〈pT 〉2
region, which improves agreement with the data. Hence, we
can conclude that the BGK model with exact kinematics and
Sudakov resummation provides a good description of dijet
production at HERA energies.

4.2 Dijet processes at EIC

Following Ref. [41], we study the azimuthal correlations of
jets and the final state electron in DIS , where it was argued

that this observable is sensitive to the soft emissions and the
saturation effects. In this study we focus only on the proton
case. The kinematical cuts suggested in Ref. [41] are

Ee = 15GeV, Ep = 135GeV, Q2 > 1GeV2,

0.1 < ν < 0.85, �RBreit < 1, pBreit
1,2 T > 3GeV,

− 4 < y1,2 lab < −1.

Grids of the Weizsäcker–Williams gluon density were
produced by evaluating Eqs. (18) and (20). The gluon den-
sity at x = 10−3 is plotted in Fig. 5 with the hard-scale-
independent Kutak–Sapeta (KS) gluon [41,68,69] and the
running-coupling BK (rcBK) gluon density [57,59,70]. Both
of these gluon densities are solutions of evolution equations
and treat better perturbative tail at large kT . Furthermore, the
KS gluon takes into account resummed corrections of higher
orders, i.e. kinematical constraint and nonsingular (at low z)
elements of DGLAP splitting functions [45].
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Fig. 7 Effects of Sudakov factor in the BGK model, fitted in the kT factorization formula to the HERA dijet data [67]. Uncertainty was estimated
by varying renormalization scale by multiplying by 0.5 and 2

Clearly, as shown in Fig. 5, the GBW and BGK models
fall much more quickly than the KS and rcBK gluon densi-
ties. In general, expected behaviour in the large-kT region is
∼ k−2

T [11,12], while σGBW behaves like ∼ e−k2
T . As in Ref.

[41], the Sudakov factor enhances in the small-kT region and
suppresses in the large-kT region. In other words, it broadens
the distribution. In comparison to the result of Ref. [41], the
effect of broadening by the Sudakov factor is significantly
more pronounced in the case of the GBW and BGK mod-
els. The hard-scale-dependent GBW and BGK models, as a
consequence, become closer to the KS and rcBK gluons, cf.
Fig. 2 of Ref. [41].

Figures 8 and 9 show electron-jets azimuthal correlation
in the Breit and in the Lab frame, respectively. In the top
row of Fig. 8, we see, for both the GBW and BGK models,
better agreements of results with the KS and rcBK for the
new kT -factorization fits. However the overall normalization
of the gluon density depends on the coupling αs , which we
assumed to be 0.2. Nevertheless, it shows clearly the effect of

the parameter σ0. In the middle and the bottom row, it shows
the effects of the Sudakov form factor, which qualitatively
agrees with that of Ref. [41], by lowering the cross section.

Figure 9 shows the electron-jets correlation in the Lab
frame. Here, the difference between KS and GBW and BGK
is more prominent, while rcBK shows similar pattern to
the GBW and BGK models and therefore we can attribute
the effects to importance of higher order corrections, as are
accounted for in KS gluon. The effects of the Sudakov fac-
tor are similar to those in Ref. [41] at relatively high �φ,
while at smaller �φ, the effect is reversed (i.e. the cross sec-
tions were slightly lowered in Ref. [41], while here, they are
significantly increased).

Finally, Fig. 10 shows the jet–jet correlations in the Breit
frame. Again, the GBW and BGK models exhibit consider-
able deviation from the KS gluon. The difference from the
previous plot is the disagreement of the GBW/BGK mod-
els and the rcBK in the small-�φ region. Similarly to the
previous plots, the Sudakov factor affects the models some-
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Fig. 8 Azimuthal correlation of the jets and the scattered electron in
the Breit frame. Top: Comparison of dipole factorization fit and kT -
factorization fit. Middle and bottom: Effect of the Sudakov form factor.

The green dotted line is the KS gluon [41], and the green dashed line is
the rcBK gluon [59]

what differently from the KS gluon in Ref. [41]. The effect
enhances the cross section considerably in the small-�φ

region, making it closer to KS gluon result.
The results shown in Figs. 9 and 10 are natural, as back-to-

back configuration in the respective observable corresponds
to the small-kT region of gluon densities and, as it can be seen
clearly in Fig. 5, the GBW and BGK gluons do not fare well in
the large-kT region. That is to say that the enhancement in the

small-�φ region is a direct consequence of the broadening
by the Sudakov factor.

5 Summary

We have fitted the GBW and BGK saturation models to
HERA data [33] using the kT -factorization for the structure

123



957 Page 12 of 15 Eur. Phys. J. C (2023) 83 :957

Fig. 9 Azimuthal correlation of the jets and the scattered electron in
the lab frame. Top: Comparison of dipole factorization fit and kT -
factorization fit. Middle and bottom: Effect of the Sudakov form factor.

The green dotted line is the KS gluon [41], and the green dashed line is
the rcBK gluon [59]

function F2. The main difference between the kT -and the
dipole factorizations is an argument of the gluon, x/z, appear-
ing in the former and being replaced by x (1 + 4m2

f /Q
2) in

the latter. In fact, the massive light quarks used in Ref. [27]
partially simulate the factor 1/z, and our fit result indicates
such effect, as expected.

We found that the dipole factorization can reproduce
the result of the kT -factorization formula quite well. The

only major difference is in the normalization parameter σ0,
which increases significantly for the kT -factorization case.
We argued that this change is a direct consequences of the
kinematic approximation used in the dipole factorization for-
mula. We have also observed that the explicit inclusion of the
running coupling in the GBW model has a significant effect
on fit quality, particularly in the large-Q2 region, where the
GBW model performs poorly.
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Fig. 10 Azimuthal correlation of the jets in the Breit frame. Top: Comparison of dipole factorization fit and kT -factorization fit. Middle and
bottom: Effect of the Sudakov form factor. The green dotted line is the KS gluon [41], and the green dashed line is the rcBK gluon [59]

We have applied the new results from our fits to description
of the transverse momentum spectra of the dijet processes in
DIS at HERA. The description of the data is fairly good with
all used models. However, the best results are obtained within
the kT -BGK model with the Sudakov form factor, indicating
the relevance of exact kinematics, DGLAP corrections, and
resummation.

Furthermore, we provided predictions for dijet produc-
tion at the EIC. Results of the electron-jets correlation in
the Breit frame agrees qualitatively with those of Ref. [41].
Other results, namely the electron-jets in the Lab frame and
the jet-jet correlation in the Breit frame, shows considerable
effects of the Sudakov form factor, which broadens the gluon
density.
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Appendix: Ii in Eq. (7)

The functions I1, I2, I3, I4 used in Eq. (7) are defined as
[44]

I1
2π

= N1N2 + N 2
3(

N 2
1 + 2N1N2 + N 2

3

)3/2 ,

I2
2π

= N3 − (1 − 2β)N1

(N1 + N4)

√
N 2

1 + 2N1N2 + N 2
3

,

I3
2π

= N1 + N2
(
N 2

1 + 2N1N2 + N 2
3

)3/2 ,

I4
2π

= 2(1 − β)

(N1 + N4)

√
N 2

1 + 2N1N2 + N 2
3

, (26)

for

N1 ≡ β(1 − β)Q2 + m2
f ,

N2 ≡ κ ′2
T + (1 − β)2k2

T ,

N3 ≡ κ ′2
T − (1 − β)2k2

T ,

N4 ≡ κ ′2
T + β(1 − β)k2

T . (27)
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