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Abstract The Fayet–Iliopoulos D-term is a common fea-
ture in N = 1 string vacua that contain an anomalous U (1)

gauge symmetry, and arises from a one-loop diagram in string
perturbation theory. The same diagram is generated in string
vacua in which supersymmetry is broken directly at the string
scale, either via spontaneous Scherk–Schwarz breaking, in
which case the gravitino mass is determined by the radius
of the circle used in the Scherk–Schwarz mechanism, or via
explicit supersymmetry breaking by the GSO projections.
We analyse the resulting would-be Fayet–Illiopoulos D-term
in the non-supersymmetric string vacua and its contribution
to the vacuum energy. A numerical estimate in an explicit
tachyon-free string-derived model suggests that the would-
be D-term contribution may uplift the vacuum energy to a
positive value.

1 Introduction

String theory provides the most advanced framework to
explore how the Standard Model parameters may arise from
a fundamental theory of the gauge and gravitational inter-
actions. Toward this end, string models that reproduce the
spectrum of the Minimal Supersymmetric Standard Model
were constructed [1–6]. Amongst them, the free fermionic
Standard-Like Models (SLMs) [1–4] are some of the most
studied examples. The heterotic string in particular provides
a compelling framework to study the gauge-gravity unifica-
tion as it reproduces the embedding of the Standard Model
chiral spectrum in spinorial SO(10) multiplets. Three gener-
ation heterotic string models with SO(10) embedding of the
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Standard Model charges have been constructed since the late
eighties. While the early constructions consisted of isolated
examples, over the past two decades, systematic comput-
erised methods have been developed that enable the explo-
ration of large spaces of vacua and the extraction of their
main characteristics. This methodology led to the important
discoveries of spinor-vector duality [7] and exophobic vacua
[8].

The majority of the phenomenological string models con-
structed to date possess N = 1 spacetime supersymmetry,
whereas non-supersymmetric vacua have been studied spo-
radically [9–20]. The advantage of supersymmetric back-
grounds is that they are stable and some of the properties
inferred from them, e.g. the number of chiral generations and
their charges, are certain. It is clear, however, that addressing
many of the open questions in string phenomenology man-
dates the exploration of non-supersymmetric configurations.
In particular, those pertaining to the dynamical and cosmo-
logical evolution close to the Planck scale. The key issue there
is the instability of the non-supersymmetric vacua, which
generically give rise to tachyonic instabilities. However, even
those that are free of physical tachyons, have non-vanishing
vacuum energy and other non-vanishing tadpole amplitudes
and are therefore, in general, unstable.

One of the prevailing features of the supersymmetric string
models is the existence of an anomalous U (1), which is can-
celled by an analogue of the Green–Schwarz mechanism.
The anomalous U (1) generates a Fayet–Iliopoulus D-term
that breaks supersymmetry, which can be restored by assign-
ing vacuum expectation values to some fields in the string
spectrum along F- and D-flat directions.

The Fayet–Iliopoulos D-term is generated by a one-loop
tadpole diagram in string perturbation theory whenever there
exists an anomalous U (1) in the spectrum. In the presence
of an anomalous U (1) the diagram is present also in string
vacua in which supersymmetry is broken directly at the string
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scale and contributes to the non-vanishing vacuum energy.
This contribution is particularly relevant for the question of
whether de Sitter vacua exist in string theory since a posi-
tive would-be D-term contribution may dominate a negative
vacuum energy contribution and produce a vacuum with a
positive one-loop cosmological constant [21]. The would-be
D-term may also play a role in scenarios of D-term inflation
[22].

In this paper we, therefore, undertake the task of calcu-
lating the would-be D-term in non-supersymmetric string
vacua. In Sect. 2 the calculation is set up and carried out by
using the background field method [23]. We then perform a
scan of chiral non-supersymmetric string vacua with unbro-
ken SO(10) symmetry using the systematic free fermion
classification method. The computerised analysis ensures
that the vacua are free of physical tachyons at the free
fermionic point and calculates the traces of theU (1) symme-
tries, hence extracting the vacua with an anomalousU (1). We
then perform a comparative investigation of the one-loop vac-
uum amplitude with respect to the anomalousU (1) would-be
D-term contributions. Following Florakis and Rizos [24], we
perform a numerical analysis of the potential for a specific
string model as a function of the moduli in the vicinity of a
local minimum and suggest that the would-be D-term con-
tribution may indeed uplift the vacuum energy to a positive
value. In this numerical analysis, the string model is found
to be tachyon free for any value of the moduli in which the
potential is being varied by. In this paper, we illustrate the
D-term uplifting mechanism in a single exemplary model.
A more extensive discussion, with further examples, will be
given in a forthcoming publication [25].

2 Anomalous U(1) tadpole calculation

In a four-dimensional heterotic theory the gauge group
may contain some U (1) symmetries which are anomalous,
namely the sum of the U (1) charges is not zero. In four
dimensions the anomalies come from the triangle diagrams,
with U (1) fields or U (1) mixed with gravitons as external
legs. Under a U (1) transformation of the anomalous gauge
boson Aμ −→ Aμ+∂μ�, the variation of the effective action
is non-zero. The Green–Schwarz mechanism [26] provides a
way to cancel these one-loop anomalies through the introduc-
tion of an antisymmetric 2-form coupled at one-loop to the
U (1)A 2-form field strength, Fρσ , in the effective Lagrangian

− ζ

2
M2

s

∫
d4x εμνρσ BμνFρσ , (2.1)

such that under a gauge transformation of the gauge field
strength, the variation of the B field compensates for the
anomalous triangle diagram transformation.

The computation of the Fayet–Iliopoulos coefficient ζ has
been discussed in Refs. [27–30] and is performed by evaluat-
ing the 2-point function of the antisymmetric B field and the
anomalous U (1)A gauge boson at one loop in the odd-spin
structure, for chiral fermions charged under the anomalous
U (1)A circulating in the loop. In order to soak up the zero
modes of the ghost fields, one of the vertex operators has to
be put in the 0-picture, the other in the −1 and an insertion
of the picture changing operator is needed, such that the zero
modes are projected out of the integration. The calculation
can then be written as

〈Bμν Aρ〉 ∼
∫
F

d2τ

τ2

∫
d2z d2w 〈Vμν

B,0V
ρ
A,−1e

φTF 〉

∼ pα

∫
F

d2τ

τ2

∫
d2z d2w 〈ψαψμψρψσ 〉

×〈∂̄Xν∂Xγ 〉〈 J̄ 〉〈e−φeφ〉ησγ . (2.2)

The computation is performed in the linear approximation
O (p) evaluating the correlators at genus 1 each in its appro-
priate sector. Due to the fermion correlator, only the N = 1
sector gives a non-vanishing result. The current correla-
tor instead gives a contribution proportional to the U (1)A
charges of the massless fermions in the loop. So the Fayet-
Iliopoulos term reads

ζ = M2
s

192π2 tr [QA] , (2.3)

where Ms ≈ gsMPlanck ≈ gs · 5 × 1017GeV [31], and QA

are the charges of the matter states under the properly nor-
malised U (1)A. In the numerical analysis in Sect. 4 we will
fix gs ∼ O(1). A more complete analysis would require
some non-perturbative effect to stabilise the dilaton VEV
that determines gs . Such a mechanism may be induced by the
race-track mechanism [32], or by a non-perturbative effect in
M-theory [33]. Note in four dimensions the antisymmetric
B field can be dualized, on-shell, into the pseudoscalar axion
field such that the coupling with the gauge and gravitational
field strength terms, under a U (1)A gauge transformation,
cancels the anomalous triangle diagram contribution.

When the trace tr[QA] is non-zero, an additional D-term
appears in the potential of the form

VD = 1

2
g2
s ζ

2. (2.4)

Even when the last supersymmetry is broken, this term still
remains in the action and in particular gives an additional
positive contribution to the minimum of the potential and
eventually can uplift the minimum to a de Sitter one.

In the heterotic string the N = 4 −→ N = 1 path is
achieved by the introduction of the b1, b2 basis vectors asso-
ciated to the Z2 × Z2 orbifold (see Sect. 3). The way the
last supersymmetry is broken depends on how we imple-
ment the breaking into the GGSO phases. These conditions
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are given in the following section in Eq. (3.3). An explicit
breaking projects out the last gravitino of the spectrum, while
in a spontaneous breaking induced by the Scherk–Schwarz
mechanism [34–36], the gravitino acquires a mass and super-
symmetry is restored at the boundary of the moduli space.

One may question the notion of a D-term in non-
supersymmetric string vacua, and in particular its contribu-
tion to the vacuum energy. We may make an analogy with
the gauge symmetries, which are broken directly at the string
scale. The string spectra still preserves a memory of the
underlying symmetries that play a role in e.g. the Yukawa
coupling relations and flavour symmetries. Similarly, we may
expect the string vacua to retain a memory of the under-
lying supersymmetric structures. In the case of the sponta-
neous Scherk–Schwarz breaking, supersymmetry is broken
by coupling the boundary conditions of the superpartners of
the internal dimensions to a shift in one of the compacti-
fied circles. In this case, the gravitino mass is proportional to
the radius of the supersymmetry breaking circle and we may
indeed expect a D-term potential to be generated. In the cases
with hard supersymmetry breaking we may take the contri-
bution to the vacuum energy on dimensional grounds. We
note that the existence of a Fayet–Iliopoulos term in super-
gravity is an area of contemporary debate [37], and therefore
further scrutiny of our reasoning here is warranted.

3 Partition function and one-loop potential

We explore the one-loop cosmological constant and U (1)A
tadpole calculations for models defined through the basis set

1 = {ψμ, χ1,...,6, y1,...,6, ω1,...,6 | y1,...,6, ω1,...,6, η1,2,3,

ψ
1,...,5

, φ
1,...,8},

S = {ψμ, χ1,...,6},
ei = {yi , wi | yi , wi }, i = 1, . . . , 6,

b1 = {χ34, χ56, y34, y56 | y34, y56, ψ
1,...,5

, η1},
b2 = {χ12, χ56, y12, y56 | y12, y56, ψ

1,...,5
, η2},

z1 = {φ1,...,4},
z2 = {φ5,...,8}.

(3.1)

Such a basis can be associated with symmetric Z2 ×Z2 orb-
ifolds [38] extensively classified in previous works (see e.g.
[39,40]) with an untwisted sector generating a gauge group
of

SO(10) ×U (1)1 ×U (1)2 ×U (1)3 × SO(8)2. (3.2)

Models may then be defined through the choice of GGSO
phases C

[ vi
v j

]
. There are 66 free phases for this basis, with

all others specified by modular invariance. The full space of

models is thus of size 266 ∼ 1019.9. Since we are interested in
the non-supersymmetric vacua in this work we will be con-
sidering the set of vacua that project the potential gravitino
arising from the S sector. The following GGSO phases can
be fixed in order to retain N = 1 supersymmetry

C

[
1

S

]
= C

[
S
S

]
= C

[
S
ei

]

= C

[
S
bk

]
= C

[
S
z1

]
= C

[
S
z2

]
= −1 (3.3)

for i = 1, . . . , 6 and k = 1, 2. The space of non-
supersymmetric vacua can then be explored by violating this
condition.

The generic form of the partition function for any model
derived from the basis (3.1) can be written in a compact form
as

Z = 1

η10η̄22
1

22

∑
a,k,ρ
b,l,σ

1

26

∑
ζi
δi

1

24

∑
h1,h2,H
g1,g2,G

×(−1)

a+b+HG+�

[
a k ρ ζi h1 h2 H
b l σ δi g1 g2 G

]

×ϑ

[
a
b

]
ψμ

ϑ

[
a + h1
b + g1

]
χ12

×ϑ

[
a + h2
b + g2

]
χ34

ϑ

[
a − h1 − h2
b − g1 − g2

]
χ56

×
∣∣∣∣ϑ

[
ζ1
δ1

]
ϑ

[
ζ1 + h1
δ1 + g1

]
ϑ

[
ζ2
δ2

]
ϑ

[
ζ2 + h1
δ2 + g1

]∣∣∣∣
×

∣∣∣∣ϑ
[

ζ3
δ3

]
ϑ

[
ζ3 + h2
δ3 + g2

]
ϑ

[
ζ4
δ4

]
ϑ

[
ζ4 + h2
δ4 + g2

]∣∣∣∣
×

∣∣∣∣ϑ
[
ζ5
δ5

]
ϑ

[
ζ5 − h1 − h2
δ5 − h1 − h2

]
ϑ

[
ζ6
δ6

]
ϑ

[
ζ6 − h1 − h2
δ6 − h1 − h2

]∣∣∣∣

×ϑ̄

[
k
l

]5

ψ̄1−5
ϑ̄

[
k + h1
l + g1

]
η̄1

×ϑ̄

[
k + h2
l + g2

]
η̄2

ϑ̄

[
k − h1 − h2
l − g1 − g2

]
η̄3

×ϑ̄

[
ρ

σ

]4

φ̄1−4
ϑ̄

[
ρ + H
σ + G

]4

φ̄5−8
.

(3.4)

The modular invariant phase �
[
a k ρ ζi h1 h2 H
b l σ δi g1 g2 G

]
implements

the various GGSO projections. A choice of phase is equiva-
lent to a choice of GGSO matrix and hence there is a unique
one-to-one map between them. The factor of a + b ensures
correct spin statistics, while the explicit inclusion of the extra
phase HG means that � = 0 is a valid modular invariant
choice.

The summation indices used to write the fermionic par-
tition function (3.4) correspond to various features of the
model. The indices a, b correspond to the spin structures of
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the spacetime fermions ψμ, while k, l are associated to the 16
right-moving complex fermions giving the gauge degrees of
freedom of the heterotic string. The non-freely actingZ2×Z2

orbifold twists are associated to the parameters h1, g1 and
h2, g2. One of the key features of models defined by the basis
(3.1) is the inclusion of the basis vectors ei which generate
freely acting orbifold shifts in the internal dimensions of the
compact torus. In order to render these shifts explicit in the
partition function, we can introduce the twisted/shifted lat-
tices �

(i)
2,2 of the underlying orbifold geometry that, at the

maximally symmetric point (T = i,U = i
2 ), at which

bosonic degrees of freedom can be fermionised, admit a fac-
torised form which can be written entirely in terms of theta
functions as follows

�2,2

[
H1 H2
G1 G2

∣∣∣ hg
](

i,
i

2

)

= 1

4

∑
ζi ,δi∈Z

∣∣∣∣ϑ
[
ζ1

δ1

]
ϑ

[
ζ1 + h
δ1 + g

]
ϑ

[
ζ2

δ2

]
ϑ

[
ζ2 + h
δ2 + g

]∣∣∣∣
×(−1)(ζi+h)Gi+(δi+g)Hi+HiGi (3.5)

Then, recasting appropriately the phase �, the partition func-
tion (3.4) can be written as follows

Z = 1

η10η̄22

1

22

∑
a,k,ρ
b,l,σ

1

26

∑
Hi
Gi

1

24

∑
h1,h2,H
g1,g2,G

× (−1)

a+b+HG+�

[
a k ρ Hi h1 h2 H
b l σ Gi g1 g2 G

]

× ϑ

[
a
b

]
ψμ

ϑ

[
a + h1

b + g1

]
χ12

ϑ

[
a + h2

b + g2

]
χ34

× ϑ

[
a − h1 − h2

b − g1 − g2

]
χ56

× �
(1)
2,2

[
H1 H2
G1 G2

∣∣∣ h1
g1

](
i,
i

2

)

× �
(2)
2,2

[
H3 H4
G3 G4

∣∣∣ h2
g2

] (
i,
i

2

)

× �
(3)
2,2

[
H5 H6
G5 G6

∣∣∣ h1+h2
g1+g2

] (
i,
i

2

)

× ϑ̄

[
k
l

]5

ψ̄1−5
ϑ̄

[
k + h1

l + g1

]
η̄1

ϑ̄

[
k + h2

l + g2

]
η̄2

× ϑ̄

[
k − h1 − h2

l − g1 − g2

]
η̄3

ϑ̄

[
ρ

σ

]4

φ̄1−4
ϑ̄

[
ρ + H
σ + G

]4

φ̄5−8
.

(3.6)

Now the indices Hi ,Gi parameterize each of the six indepen-
dent shifts. The additional indices ρ, σ and H,G correspond
to the basis vectors z1 and z2 acting on the hidden sector of
our model.

The form of the twisted/shifted lattice dependent on the
moduli T (i) and U (i) of the compact T6 = T2 × T2 × T2

requires closer attention. We know that all dependence on
the geometric moduli is contained in the untwisted sector of
the model and hence

�2,2

[
H1 H2
G1 G2

∣∣∣ hg
]
(T,U )

∣∣∣
h,g �=0

= �2,2

[
H1 H2
G1 G2

∣∣∣ hg
]
(T∗,U∗).

(3.7)

This means that for nonzero twists the lattice is precisely
given by its factorised form in (3.5). Here T = T1 + iT2,
U = U1 + iU2 are the moduli of the torus, and parame-
terise the metric and the antisymmetric tensor field of the
two dimensional torus and (T∗,U∗ = i, i/2). In the case of
the untwisted sector, the shifted lattice can be written in a
Poisson resummed Hamiltonian form as

�2,2

[
H1 H2
G1 G2

∣∣∣ 0
0

]
(T,U )

=
∑

mi ,ni∈Z
q

1
2 |PL (T,U )|2 q̄

1
2 |PR(T,U )|2eiπ(G1m1+G2n2)

(3.8)

where the left and right-moving momenta are

PL = 1√
2T2U2

[
m2 + H2

2
−Um1 + T

(
n1 + H1

2
+Un2

)]

PR = 1√
2T2U2

[
m2 + H2

2
−Um1 + T̄

(
n1 + H1

2
+Un2

)]
.

(3.9)

Written in this form, it is easy to extract the q-expansion of
the partition function at any given point in the moduli space
which is crucial for calculating the one-loop potential. It can
be shown that the twisted/shifted lattice sums (3.7) and (3.8)
evaluated at the special point (T∗,U∗) indeed reproduce the
free fermionic form of the partition function (3.6).

Given the partition function (3.6), the one-loop potential
is evaluated by summing over all inequivalent worldsheet tori
via the modular invariant integral

Vone-loop(T
(i),U (i))

= −1

2

M4
s

(2π)4

∫
F

d2τ

τ 2
2

Z(τ, τ̄ , T (i),U (i)), (3.10)

where in Z(τ, τ̄ , T (i),U (i)) we have now taken into account
the extra two bosonic degrees of freedom arising from the
worldsheet. In models with an anomalousU (1), an additional
contribution to the potential VD is generated as discussed
in Sect. 2. Since this term is independent of the geometric
moduli it provides a constant shift of the potential throughout
moduli space. Hence we can write a total potential as

Vtotal = Vone-loop(T
(i),U (i)) + VD, (3.11)
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where VD is given in term of the trace of the anomalousU (1)

via (2.4).

4 The uplifted string model

The anomalous U (1)A in the string models generated by the
basis vectors in Eq. (3.1), when non-vanishing, is given by

U (1)A =
3∑

i=1

aU1 + bU2 + cU3√
a2 + b2 + c2

(4.1)

where (a, b, c) = 1
k (tr[U1], tr[U2], tr[U3]) and k = gcd

(tr[U1], tr[U2], tr[U3]), with Ui = U (1)i being generated
by the world-sheet currents : η̄i∗η̄i :, for i = 1, 2, 3. We note
that with the set of basis vectors given in Eq. (3.1), U (1)1,2,3

are the only U (1) symmetries that are left unbroken in the
four-dimensional gauge group. This may, in general, be dif-
ferent in models that utilise asymmetric boundary conditions,
and in which the SO(10) symmetry is broken to a subgroup.
In the first case, there are additional boundary conditions aris-
ing from the internal compactified space, whereas in the sec-
ond there may be additional U (1) symmetries arising from
the hidden sector [1,2].

To demonstrate the possibility of using the Fayet–Iliopoulos
D-term to uplift the one-loop potential we take the following
GGSO configuration

C

[
vi

v j

]
=

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 −1 −1 1 1 −1 1 −1 1 1 1 −1 1
S −1 −1 −1 −1 −1 −1 −1 −1 1 −1 −1 1
e1 1 −1 −1 −1 −1 1 1 1 1 1 −1 −1
e2 1 −1 −1 −1 −1 −1 −1 −1 1 −1 1 1
e3 −1 −1 −1 −1 1 −1 −1 −1 −1 −1 −1 −1
e4 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 −1
e5 −1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
e6 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 −1
b1 1 −1 1 1 −1 −1 1 1 1 1 1 −1
b2 1 1 1 −1 −1 −1 −1 −1 1 1 1 −1
z1 −1 −1 −1 1 −1 −1 −1 −1 1 1 −1 −1
z2 1 1 −1 1 −1 −1 1 −1 −1 −1 −1 1

. (4.2)

The modular invariant phase corresponding to this choice is
given by

�
[
a k ρ Hi h1 h2 H
b l σ Gi g1 g2 G

]
= b (a + H + h2 + k + ρ)

+ l (a + H + h2 + H2 + H3 + H5 + H6 + ρ)

+ σ (a + H + h1 + h2 + H2 + H3 + H6 + k + ρ)

+G1 (h2+H2+H3)+G2 (H1+H4+H5 + k + ρ)

+ G3 (H + H1 + h2 + H4 + H5 + k + ρ)

+G4 (h1 + H2 + H3)+G5 (H2 + H3 + H5 + H6 + k)

+ G6 (H + h1 + h2 + H5 + k + ρ)

+ g1 (h1 + h2 + H4 + H6 + ρ)

+ g2 (a + H + h1 + H1 + h2 + H3 + H6 + k + ρ)

+ G (a + H + h2 + H3 + H6 + k + ρ) , (4.3)

where we note that the breaking of supersymmetry is induced
by the term al+aσ +aG+bk+bρ+bH which corresponds
to the GGSO phase C

[
S
z2

] = +1.
According to the discussion in Sect. 3, we can choose to

analyse the behaviour of the vacuum energy in all or some
directions of the geometric moduli space parametrised by
the T (i),U (i). Evaluating the behaviour of the potential over
the entire moduli space is beyond the scope of this paper,
however, the obstructions to doing so are purely based on
computational time constraints and the techniques described
above are general. A usual choice to make is the volume of
the first torus T (1)

2 as done so in [24,41]. It is important to
note, however, that this choice is somewhat arbitrary. T2 is
usually chosen as in the case of a Scherk–Schwarz breaking
of supersymmetry, one can choose a configuration in which
the scale of the breaking is controlled by the volume of the
first torus. As we will demonstrate in what follows, our model
corresponds to a hard breaking of supersymmetry and hence
such a justification is not valid.

Starting with the model defined by the basis vectors (3.1)
and GGSO configuration (4.2), the theory can be deformed
in the T2 direction by implementing the moduli dependence
via the replacement

�
(1)
2,2

[
H1 H2
G1 G2

∣∣∣ h1
g1

]
(T (1)∗ ,U (1)∗ )

−→ �
(1)
2,2

[
H1 H2
G1 G2

∣∣∣ h1
g1

]
(T (1)

2 , T (1)
1∗ ,U (1)∗ ) (4.4)

in the partition function (3.6). This means that we fix all other
geometric moduli at the free fermionic point while varying
T (1)

2 freely. This produces a model with a minimum for the
potential at T2 = 2 where the one-loop cosmological con-
stant takes the value � = −0.000785598M4 as shown in
Fig. 1. As per Sect. 2, the trace of the anomalousU (1) for this
model is tr[U (1)A] = 144/

√
2 which generates a FI contri-

bution of VD = 0.00144365M4 to the potential ensuring a
positive uplifted minimum via (3.11) as depicted in Fig. 1.
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Fig. 1 One-loop potential of
example model before and after
uplift by the FI contribution via
(3.11)

5 Conclusion

String theory provides a self-consistent framework for the
synthesis of gravity and quantum mechanics. String phe-
nomenology aims to connect string theory with observational
data. For that purpose, detailed phenomenological models
were constructed. The free fermionic models, which corre-
spond to Z2 ×Z2 toroidal orbifold compactifications at spe-
cial points in the moduli space, provide a large space of three-
generation models with an unbroken SO(10) subgroup that
can be further broken to the Standard Model in the effective
field theory limit. The majority of these constructions pos-
sess N = 1 spacetime supersymmetry in four dimensions.
Making contact with observational data mandates moving
away from the stability afforded by supersymmetry. For that
purpose, over the past few years a systematic classification
program of tachyon-free non-supersymmetric string models
was developed.

A recurring feature in theN = 1 string models is the exis-
tence of an anomalousU (1) gauge symmetry that generates a
non-trivial Fayet–Illiopoulos D-term that breaks supersym-
metry. Supersymmetry is restored by giving Vacuum Expec-
tation Values (VEVs) to some Standard Model singlets in
the massless string spectrum, along F- and D-flat direc-
tions, that restores N = 1 supersymmetry at the string scale.
Supersymmetry is then expected to be broken by some non-
perturbative effect, e.g. by hidden sector gaugino condensa-
tion. Restoration of N = 1 supersymmetry implies that the
vacuum energy at the string scale vanishes in these models.

Anomalous U (1) symmetries also arise in non-super
symmetric string vacua, and the same diagrams that lead
to the Fayet–Illiopoulos D-term in N = 1 supersymmet-
ric models are generated in the non-supersymmetric models.
Hence, similar contributions to the vacuum energy arise in
these non-supersymmetric configurations and their effects
have to be taken into account. The possibility then exists
that the would-be D-term contribution lifts an a priori neg-
ative vacuum energy to a positive value. We discussed this

scenario in Sect. 4, where the one-loop vacuum energy, as
well as the would-be D-term contribution, is calculated in
a specific heterotic string model. This possibility was envi-
sioned by Burgess, Kallosh and Quevedo [21]. We empha-
sise, however, that the analysis in Sect. 4 is for illustration
purposes only. Indeed, there are many issues that have not
been addressed, including the stabilisation of the dilaton and
the other moduli in the string vacuum as well as the backre-
action on the internal and spacetime geometry. Such issues
have to be addressed before an informed statement can be
made about the existence of stable string vacua with positive
cosmological constant.

Nevertheless, the would-be D-term is prevalent in non-
supersymmetric string vacua and its contribution has to
be taken into account. Non-supersymmetric string vacua
include those that correspond to compactifications of the
SO(16)× SO(16) heterotic string, as well as those that cor-
respond to the tachyon-free compactifications of the tachy-
onic ten-dimensional configurations. In the first class, we
can distinguish between string vacua in which supersymme-
try is broken by a Scherk–Schwarz mechanism versus those
in which it is broken explicitly. In the first class, we expect
supersymmetry to be restored when the radius of the Scherk–
Schwarz circle goes to infinity, whereas in the second it does
not. A more detailed analysis of the different cases will be
presented in a forthcoming publication [25]. We note that
the model in Sect. 4 is of the second type. We further remark
that many of the geometrical moduli in the free fermionic
string models can be fixed by using asymmetric boundary
conditions and such configurations offer a more restricted
framework to investigate the issue of stability.
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