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Abstract B± → DK± transitions are known to provide
theoretically clean information about the CKM angle γ , with
the most precise available methods exploiting the cascade
decay of the neutral D into CP self-conjugate states. Such
analyses currently require binning in the D decay Dalitz plot,
while a recently proposed method replaces this binning with
the truncation of a Fourier series expansion. In this paper,
we present a proof of principle of a novel alternative to these
two methods, in which no approximations at the level of the
data representation are required. In particular, our new strat-
egy makes no assumptions about the amplitude and strong
phase variation over the Dalitz plot. This comes at the cost
of a degree of ambiguity in the choice of test statistic quan-
tifying the compatibility of the data with a given value of γ ,
with improved choices of test statistic yielding higher sensi-
tivity. While our current proof-of-principle implementation
does not demonstrate optimal sensitivity to γ , its conceptu-
ally novel approach opens the door to new strategies for γ

extraction. More studies are required to see if these can be
competitive with the existing methods.

1 Introduction

The B meson decays B± → DK± are mediated through a
combination of b → cūs and b → uc̄s transitions (and their
conjugates). Both receive tree-level contributions with com-
parable suppression factors from the Cabibbo–Kobayashi–
Maskawa (CKM) matrix. It has been recognized for over
four decades that the interference of the resulting diagrams
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allows for efficient access toCP violation in the CKM matrix
[1,2]. Specifically, these decay transitions provide sensitivity
to the phase γ (also referred to as φ3) [3,4] with negligible
theoretical error [5], where

γ = arg

(
−VudV ∗

ub

VcdV ∗
cb

)
. (1)

The method of Refs. [3,4] uses two-body D decays to
CP eigenstates, which is conceptually simple but suffers
from suppressed sensitivity to γ due to a large hierarchy
between the two interfering amplitudes. In Refs. [6,7], this
complication was ameliorated through the use of interference
between Cabbibo-allowed and doubly-Cabbibo-suppressed
flavor eigenstates of the neutral D mesons. However, the sin-
gle best measurement of γ is currently due to the BPGGSZ
method [8–12], where D0 and sD0 decay into multi-bodyCP
self-conjugate states (such as KSπ

−π+) with large interfer-
ence between the two parton-level weak transitions. All of
these methods have by now received many years of experi-
mental effort [10,13–32], with the resulting error on γ at the
several percent level.

In the BPGGSZ method, the D decays are binned in the
Dalitz plane in order to convert dependence on the full ampli-
tude and phase into a finite number of bin-averaged values.
Symmetry properties of the CP-conjugate decay ensure that
the number of independent quantities is smaller than the num-
ber of bins, provided the binning is symmetric with respect
to CP conjugation. Given the leading role of the BPGGSZ
method in the overall uncertainty of the measurement of γ ,
it is perhaps not surprising that the method has received sig-
nificant experimental and theoretical attention, resulting in
several improvements over the years.

Arguably the most significant is the optimized choice of
binning, pioneered in Refs. [33,34]. There, the shape of the
bins in the D → KSπ

−π+ Dalitz plot is initialized to the iso-
contours of the strong phase difference �δD = δ13,12−δ12,13
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(see Eqs. (8) and (9) for definitions) between CP symmet-
ric points in the D0 and D̄0 Dalitz plots. The bins are then
continuously deformed in order to optimize sensitivity to γ .
This procedure minimizes the washout of sensitivity to γ that
occurs when �δD is bin-averaged. Binning in this manner is
extremely powerful and is estimated to lead to only ∼ 10 %
lower statistical sensitivity to γ for the choice of 2 × 8 bins
than if the unbinned amplitude model were used [34]. (The
amplitude model provides the smallest statistical error, but
induces difficult-to-quantify systematical errors.)

An alternative approach, eliminating the bin dependence
of the BPGGSZ method, was presented in Ref. [35]. In that
work, the binning of the D decay Dalitz plot was replaced
by a Fourier transform in phase space variables. Truncation
of the series gives a setup with a finite number of unknown
parameters, such that it is possible to extract γ . The choice
of bins is thus replaced by the choice of variables in which to
perform the Fourier transform, as well as of the order at which
to truncate the series. That is, some information from the
Dalitz plane (in this case, the higher frequency components in
the Fourier expansion) is still removed at the data processing
step. Moreover, choosing a coordinate basis for the Fourier
transform is driven by the same modeling of the strong phase
that is used in the determination of optimized Dalitz plot
bins. While the Fourier transform method has not yet been
implemented on experimental data, the study of Ref. [35]
indicates that it can be highly competitive with the binned
BPGGSZ method.

In this manuscript, we present a proof of principle for a
novel γ extraction method that requires neither binning nor
truncation. Given the highly optimized binning procedure
currently used in experimental implementations of the BPG-
GSZ method, our main goal here is conceptual. Our hope is
that, eventually, this new method will be able to improve on
the BPGGSZ method and/or the method of Ref. [35]. This
is because the existing methods all require removal of a cer-
tain amount of information during data processing. While
this step can be optimized, the lost information cannot be
recovered by any statistical treatment. We replace this with
an alternative data processing procedure that, in principle,
removes no decay information. (Note, however, that not all
relevant information is used in the current implementation.)
Our method makes the problem of γ determination equiv-
alent to the question of whether two inequivalent measure-
ments are sampling the same function. This structure allows
for the application of a wide range of nonparametric meth-
ods to the problem, replacing the optimization of the data
processing step with the conceptually different procedure of
test statistic optimization.

The explicit analysis we introduce in the main part of the
paper indeed falls short in terms of its statistical sensitivity to
γ compared to the methods above. Nevertheless, we find that
a toy example of a method without binning or truncation is

still useful, as it makes clear that such approximations can be
replaced with the problem of finding an optimal test statistic
(that is, an observable optimally sensitive to γ ). We wish to
stress that while each of the available methods – BPGGSZ,
Ref. [35], and the methods presented in this paper – require
some optimization in order to reduce the statistical error on
γ , these optimizations take on qualitatively different forms.
For the BPGGSZ method, this is the number of bins and their
shapes. For Ref. [35], it is the choice of Fourier transform
variables and the order of truncation. For our method, it is
the choice of test statistic. The question of which method can
ultimately give the smallest statistical error on measurements
of γ depends critically on this optimization step. We hope
to improve on our proof-of-principle implementation with a
follow-up work in which we perform such an optimization
for our method.

The paper is structured as follows. In Sect. 2.1, we review
the dependence of the B± → (KSπ

−π+)DK± decay rates
on the CKM angle γ . In Sect. 2.2, we present a carefully
chosen combination of reduced differential partial decay
widths in order to extract cot2 γ . In Sect. 2.3, we derive the
implications for cumulative reduced partial decay widths and
present the fundamental idea of our algorithm. Namely, we
extract γ as a parameter that brings two functions of empiri-
cal cumulative probability distributions into as much agree-
ment as possible. We implement this idea by employing a
measure adapted from the Kolmogorov–Smirnov test statis-
tic in Sect. 3. To demonstrate our proof of principle, we show
numerical results based on toy Monte Carlo data in Sect. 4.
Conclusions are given in Sect. 5.

2 Theory

2.1 Notation

To set the stage, we review how sensitivity to the CKM uni-
tarity triangle angle γ is achieved in B± → DK± transi-
tions, following the notation of Ref. [9]. Consider the CP-
conjugate cascade decays

B± → DK± → (KSπ
−π+)DK

±. (2)

A Dalitz plot analysis of KSπ
−π+, characterizing the inter-

mediate neutral D meson, allows us to fully specify the γ -
dependence of the process. Focusing first on the initial two-
body decay, we define

A(B− → D0K−) = A(B+ → sD0K+) ≡ AB, (3)

A(B− → sD0K−) ≡ ABrBe
i(δB−γ ), (4)

A(B+ → D0K+) ≡ ABrBe
i(δB+γ ). (5)
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AB is real by convention, with δB the difference between the
strong phases of the D0K and sD0K amplitudes. The ampli-
tudes in Eq. (4) carry a weak phase which agrees with γ in
Eq. (1) up to O(λ4) corrections. These have been computed to
give relative shifts in the determination of γ of ∼ 2 × 10−3,
which we ignore going forward [5]. Due to the color and
CKM suppression of the amplitudes in Eq. (4), the theoret-
ical expectation is that rB is small (rB ∼ 0.1 − 0.2), in
agreement with the experimental determination [13],

rB = 0.0984+0.0027
−0.0026. (6)

The smallness of rB reduces sensitivity to γ in all methods
using B± → DK±. In the following analysis, we neglect
D0– sD0 mixing, which contributes at second order in the mix-
ing parameters and yields a subleading correction of less than
1 % in the extraction of γ [36].

For the subsequent three-body decay of the intermediate
neutral D meson,

D → KS(p1)π
−(p2)π

+(p3), (7)

we define the amplitudes

A(D0 → KSπ
−π+) ≡ A(s12, s13)e

iδ(s12,s13) ≡ A12,13e
iδ12,13 ,

(8)

A( sD0 → KSπ
−π+) ≡ A(s13, s12)e

iδ(s13,s12) ≡ A13,12e
iδ13,12 ,

(9)

where si j = (pi + p j )
2 is the invariant mass squared of the i j

system. We define A12,13 and δ12,13 to be real functions with
A12,13 ≥ 0 and δ12,13 ∈ [0, 2π). The simple relationship
between the amplitudes in Eqs. (8) and (9) follows from the
CP symmetry of the strong interaction and the fact that the
final state KSπ

−π+ has zero spin. (CP violation in D decays
is very small and thus is neglected in this discussion.)

The D meson is a narrow state that decays weakly, jus-
tifying the use of the narrow width approximation and the
neglect of any continuum contribution. In the vicinity of the
D resonance, we thus have

A(B− → (KSπ
−π+)DK

−)

= AB PD

[
A12,13e

iδ12,13 + A13,12rBe
i(δB−γ+δ13,12)

]
,

(10)

A(B+ → (KSπ
−π+)DK

+)

= AB PD

[
A13,12e

iδ13,12 + A12,13rBe
i(δB+γ+δ12,13)

]
,

(11)

where PD is the neutral D meson propagator. In the narrow
width approximation, we can write the B meson partial width
for these decays in terms of Eqs. (8) and (9) as

d�±
ds12ds13

= 1

(2π)4

1

128m3
D

| �pK±|
m2

B�D

×
∣∣∣A [

D0( sD0)
]

+ rBe
i(δB∓γ )A

[
sD0(D0)

]∣∣∣2

(12)

using

P2
D = π

mD�D
δ(s123 − m2

D), (13)

where s123 = (p1 + p2 + p3)
2 denotes the invariant

mass squared of the KSπ
−π+ system. Since the A(D)-

independent prefactors are the same for all decays, we can
ignore them by defining reduced partial decay widths

d�̂−
ds12ds13

= A2
12,13 + r2

B A
2
13,12 + 2rB A12,13A13,12

cos (δB − γ + δ13,12 − δ12,13), (14)

d�̂+
ds12ds13

= A2
13,12 + r2

B A
2
12,13 + 2rB A12,13A13,12

cos (δB + γ + δ12,13 − δ13,12), (15)

in agreement with Ref. [9]. Note that �̂ is dimensionless.
We can obtain additional information about the magni-

tudes A12,13 and strong phases δ12,13 from D decay data.
In particular, D∗+ → D0π+ decays tell us about A12,13.
Since data on D → KSπ

−π+ decays is abundant, this gives
rather precise, direct information on A12,13. Measurements
of the D → KSπ

−π+ Dalitz plot distributions in coherent
ψ(3770) → D sD decays, where at least one of the two D
decays is in the KSπ

−π+ channel, give model-independent
information about δ12,13 (though limited in statistics). Still,
at the moment, determinations of D decay parameters are a
subdominant source of error, almost an order of magnitude
smaller than the statistical error incurred with the binned
extraction of γ [14,15,37].

In our proof-of-principle unbinned method for γ extrac-
tion (introduced in Sect. 2.2), we will make two simplifica-
tions. First, we will assume that the cumulative distributions
of the A12,13 functions are measured precisely enough to be
treated as exactly known. Secondly, we will formulate the
method such that information about the strong phases δ12,13

is never required. The first simplification is made for ease of
presentation: in the intermediate theory expressions, we can
treat A12,13 as known functions, while in the final expressions
only the cumulative distribution functions will be used (and
errors on their determinations will certainly be subleading).
We would prefer to relax the second simplification in the
future, since we are clearly discarding useful information.
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2.2 γ from reduced partial widths in theory

We now demonstrate that, by considering simple odd and
even combinations of the partial widths of Sect. 2.1, the rel-
ative dependence on the parameters of the B± → DK±
decays take on a particularly simple form. (For an alterna-
tive use of symmetry considerations to parameterize approx-
imate flavor symmetries in 3-body decays, see Ref. [38]).
With respect to the s12 = s13 axis of the Dalitz plane, we
first form even (
) and odd (�) quantities made from the
widths d�̂± given in Eqs. (14) and (15):

d
±(s12, s13), d�±(s12, s13)

≡ d�̂±(s12, s13) ± d�̂±(s13, s12)

2
. (16)

Here, the subscripts correspond to the B± charge and agree
across both sides of the equation. Further symmetrizing and
anti-symmetrizing the quantities in Eq. (16) with respect to
the B meson charge yields

d
S,A(s12, s13) ≡ d
+(s12, s13) ± d
−(s12, s13)

2
, (17)

d�S,A(s12, s13) ≡ d�+(s12, s13) ± d�−(s12, s13)

2
. (18)

The subscripts S and A on the left-hand sides of Eqs. (17) and
(18) stand for symmetric and anti-symmetric and correspond
to the choices of + and −, respectively. Inserting the explicit
expressions given in Eqs. (14) and (15), we find

d
S

ds12ds13
= 1 + r2

B

2
(A2

12,13 + A2
13,12)

+ 2rB A12,13A13,12 cos (δ13,12 − δ12,13) cos δB cos γ,

(19)
d
A

ds12ds13
= −2rB A12,13A13,12 cos (δ13,12 − δ12,13) sin δB sin γ,

(20)
d�S

ds12ds13
= 2rB A12,13A13,12 sin (δ13,12 − δ12,13) cos δB sin γ,

(21)

d�A

ds12ds13
= 1 − r2

B

2
(A2

13,12 − A2
12,13)

+ 2rB A12,13A13,12 sin (δ13,12 − δ12,13) sin δB cos γ.

(22)

We finally define the quantities d
S|sub and d�A|sub by sub-
tracting away the first terms in Eqs. (19) and (22), resulting
in

d
S

ds12ds13

∣∣∣∣
sub

≡ d
S

ds12ds13
− 1 + r2

B

2
(A2

12,13 + A2
13,12)

= 2rB A12,13A13,12 cos (δ13,12 − δ12,13) cos δB cos γ,

(23)

d�A

ds12ds13

∣∣∣∣
sub

≡ d�A

ds12ds13
− 1 − r2

B

2
(A2

13,12 − A2
12,13)

= 2rB A12,13A13,12 sin (δ13,12 − δ12,13) sin δB cos γ.

(24)

Note that the subtracted quantities above are not directly
observed experimentally. However, while the terms sub-
tracted away from Eqs. (19) and (22) depend on the D decay
amplitudes and rB , they do not depend on γ . Moreover, the
subtracted terms only depend on rB quadratically, with the
effect of subtracting using an incorrectly determined value
of rB suppressed. As explained above, for our proof-of-
principle demonstration, we treat A12,13 as a known function
of s12, s13, determined with good enough precision from D
decay data, while rB is a parameter which we fit within the
method. Note further that the above subtraction is equivalent
to replacing the decay widths given in Eqs. (14) and (15) by

d�̂−
ds12ds13

∣∣∣∣∣
sub

≡ d�̂−
ds12ds13

− (A2
12,13 + r2

B A
2
13,12), (25)

d�̂+
ds12ds13

∣∣∣∣∣
sub

≡ d�̂+
ds12ds13

− (A2
13,12 + r2

B A
2
12,13), (26)

and then forming combinations of them analogous to
Eqs. (16)–(18).

It is easy to see that the ratios

d
S

ds12ds13

∣∣∣∣
sub

/
d
A

ds12ds13
= − cot δB cot γ, (27)

d�A

ds12ds13

∣∣∣∣
sub

/
d�S

ds12ds13
= tan δB cot γ, (28)

take on constant values in the Dalitz plane. Furthermore, the
product of these two ratios,

(
d
S

ds12ds13

∣∣∣∣
sub

d�A

ds12ds13

∣∣∣∣
sub

)/(
d
A

ds12ds13

d�S

ds12ds13

)
= − cot2 γ,

(29)

allows us direct access to γ up to a four-way degeneracy
equivalent to that in Ref. [9]. The relations in Eqs. (27)
and (28) are what form the basis of the unbinned method
for extracting γ described in the subsequent sections of this
work.
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2.3 γ from cumulative reduced partial widths in practice

Our observations consist of individual B decay events and
not continuous distributions. To make connections with the
results above, we introduce the cumulative reduced partial
decay widths, defined as1

R±(s12, s13) ≡
∫ s12

0
ds′

12

∫ s13

0
ds′

13
d�̂±

ds′
12ds′

13
, (30)

where, outside the physical region of the Dalitz plot,
d�̂±/(ds12ds13) = 0. These functions are monotoni-
cally increasing, with limiting values R±(0, 0) = 0 and
R±(s12, s13 > (mD − mπ )2) = �̂

(tot)
± , where

�̂
(tot)
± =

∫
d�̂±(s12, s13) (31)

is the reduced partial width of B± → DK±. Note that �̂
(tot)
±

is not, in general, normalized to unity, and, thus, resulting
objects do not directly correspond to cumulative distribution
functions. The functions R±(s12, s13) continue to vary out-
side of the physical Dalitz region, i.e., in the rectangle around
the physical region of the Dalitz plot.

With many observed B± decay events, Eq. (30) will be
approached, up to an overall constant, by the counting func-
tions

N±(s12, s13) =
∑

i±<s12
j±<s13

1, (32)

where the index i± ( j±) runs over the s12 (s13) values of
all observed decays. N±(s12, s13) are thus the number of
observed B± → DK± decays with (pK + pπ−)2 < s12 and
(pK + pπ+)2 < s13. They are nonzero almost everywhere
in the Dalitz plane and can be constructed with no binning
and with minimal processing of the data. These functions
are approximations of the continuous partial decay widths,
such that, in the limit of large N (tot)

± , the total number of
B± → DK± events, we have

R±(s12, s13)

�̂
(tot)
±

≈ N±(s12, s13)

N (tot)
±

. (33)

We now bring Eq. (32) through the procedure laid out in
Sect. 2.2, namely, we symmetrize and anti-symmetrize the
function with respect to phase space and initial B meson
charge. This gives

R
S,
A(s12, s13) = 1

2
(
+(s12, s13) ± 
−(s12, s13)), (34)

R�S,�A(s12, s13) = 1

2
(�+(s12, s13) ± �−(s12, s13)), (35)

1 This is just one possible definition of the cumulative reduced partial
decay widths. A priori, other integration orders are equally viable.

with


±(s12, s13), �±(s12, s13)

= N±(s12, s13) ± N±(s13, s12)

2
, (36)

which are the cumulative versions of the functions in
Eqs. (16)–(18). We may also find the cumulative versions
of Eqs. (23) and (24) by subtracting away the appropriate
cumulative flavor-tagged D0 meson decays. To do this, we
define

N−(s12, s13)|sub = N−(s12, s13) − r−
N (tot)

−
N (tot)
D

(ND(s12, s13)

+ r2
BND(s13, s12)), (37)

N+(s12, s13)|sub = N+(s12, s13) − r+
N (tot)

+
N (tot)
D

(ND(s13, s12)

+ r2
BND(s12, s13)), (38)

where

r± =
∫

ds12ds13|A(D0 → KSπ
−π+)|2

�̂
(tot)
±

, (39)

is necessary for the proper normalization of Eqs. (37) and
(38). The forms of the subtracted parts in Eqs. (37) and (38)
follow from Eqs. (25) and (26). Here, N (tot)

D is the total num-
ber of (independently) observed D0 → KSπ

−π+ events,
while ND(s12, s13) is defined in exactly the same way as
N±(s12, s13) in Eq. (32) except with summations now over
all D0 → KSπ

−π+ events.
Note that the normalization factor r± in Eq. (39) is

measured in the experiment and is simply given by the
ratio of measured D0 → KSπ

−π+ and (reduced) B± →
(KSπ

−π+)DK± decay rates. For the purposes of our proof-
of-principle demonstration, we set r± to its expected mea-
sured value as predicted by γ , δB , and rB values and do not
take into account experimental errors. Likewise, for the pur-
poses of the calculation of r±, we use the D0 → KSπ

−π+
amplitude model of Ref. [39], including the strong phases.
However, in the algorithm itself, we use the discrete data
ND(s12, s13) only and no phase information. The experimen-
tal determination of ND(s12, s13) can make use of both D0

and sD0 decays, since, in the above discussion, we neglect
CP violation in D decays. Note also that the discussion of
experimental effects – such as backgrounds, efficiencies, and
resolutions – is outside of the scope of the present manuscript.

In the next step, we use Eqs. (37) and (38) in Eqs. (34)–(36)
to get the cumulative functions R
S|sub and R�A|sub. Due to
the linearity of the integral operation in Eq. (30), the relations
in Eqs. (27)–(29) all hold if we replace the functions therein
with their corresponding cumulative counterparts. That is,
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we have

R
S|sub

R
A
= − cot δB cot γ,

R�A|sub

R�S
= tan δB cot γ, (40)

and(
R
S|sub

R
A

) (
R�A|sub

R�S

)
= − cot2 γ. (41)

Stopping to examine the ratios in Eq. (40) closely, we empha-
size the following observation: Up to a δB- and γ -dependent
rescaling, the cumulative functions within each R
 and R�

pair are the same. For instance, note that the first equation in
Eq. (40) tells us that R
S|sub = − cot δB cot γ R
A, where
the left-hand side depends only on a correct determination
of rB (due to the subtraction, see the first line in Eq. (23))
and the right-hand side only on δB and γ . As a result, we
recast the problem of measuring γ as one of finding values
of γ , δB , and rB that give the two pairs of functions R


and R�, rescaled following Eq. (40), the highest statistical
significance of having been drawn from the same underlying
distributions. Note that, below, we make use of Eq. (40) rather
than Eq. (41), since Eq. (40) allows for the extraction of all
three parameters γ , δB , and rB , while Eq. (41) is sensitive
only to γ and rB .

3 Extraction of γ as an optimization problem

The strategy of Sect. 2.3 for extracting γ , δB , and rB is con-
densed in Eq. (40). One way to practically employ this equa-
tion is to vary these three parameters such that the functions

D
(γ, δB, rB) ≡ max
s12,s13

∣∣R
S|sub(s12, s13)

− (− cot δB cot γ )R
A(s12, s13)
∣∣, (42)

D�(γ, δB, rB) ≡ max
s12,s13

∣∣R�A|sub(s12, s13)

− (tan δB cot γ )R�S(s12, s13)
∣∣, (43)

are minimized. The respective minima of D
(γ, δB, rB) and
D�(γ, δB, rB) should be reached for the same values of γ ,
δB , and rB , within statistical uncertainties.

This procedure is analogous to the minimization of the
Kolmogorov–Smirnov (KS) test statistic. In its original, one-
dimensional formulation, the KS test takes two empirical
cumulative distribution functions (CDFs), F1(x) and F2(x),
and computes, as its test statistic, their maximum difference:

DKS ≡ max
x

|F1(x) − F2(x)|. (44)

Two-dimensional realizations of the KS test, which are most
relevant to our functions in Eqs. (42) and (43), have been
described in Refs. [40–42]. Note importantly that Eqs. (42)
and (43) are not exactly KS test statistics, as, unlike in the

KS test, the functions R
S|sub, R
A, R�A|sub, and R�S are
not CDFs because they are not positive definite.

One complication that arises for two-dimensional cumu-
lative functions is how to deal with the orientation of the
integration in Eq. (30). That is, including Eq. (30), we may
define R±(s12, s13) in an infinite number of ways, each one
an equally valid alternative to constructing test statistics
DR


(γ, δB, rB) and DR
�(γ, δB, rB). This freedom in unbinned

methods of extracting γ corresponds to the infinite number
of possible binnings of phase space in the binned methods.
In this present work, we limit our analysis to two additional
definitions of cumulative R±(s12, s13) functions, given by

sR±(s12, s13) ≡
∫ ∞

s12

ds′
12

∫ s13

0
ds′

13
d�̂±

ds′
12ds′

13
, (45)

R̃±(s12, s13) ≡
∫ ∞

s12

ds′
12

∫ ∞

s13

ds′
13

d�̂±
ds′

12ds′
13

. (46)

We recall that, outside the Dalitz plot, d�̂±/(ds12ds13) = 0.
Generalizing Eqs. (42) and (43) in this fashion, this means
that we additionally minimize

D̃
(γ, δB , rB)

= max
s12,s13

∣∣R̃
S |sub(s12, s13) − (− cot δB cot γ )R̃
A(s12, s13)
∣∣ ,

(47)

D̃�(γ, δB , rB)

= max
s12,s13

∣∣R̃�A|sub(s12, s13) − (tan δB cot γ )R̃�S(s12, s13)
∣∣ ,
(48)

as well as the analogously-defined sD
(γ, δB, rB) and
sD�(γ, δB, rB) test statistics. In total, we therefore consider
three out of the infinite different integration orderings, i.e.,
the orderings specified in Eqs. (30), (45) and (46). For finite
data, the unbinned extraction of γ works most effectively
if one takes many more orderings into account and chooses
the one that best minimizes the corresponding D
(γ, δB, rB)

and D�(γ, δB, rB) functions.
To compute the sR and R̃ versions of R
S|sub, R
A,

R�A|sub, and R�S , we follow the steps laid out in Sect. 2.3
but use, respectively, the following modified versions of the
counting function in Eq. (32):

sN±(s12, s13) =
∑

i±>s12
j±<s13

1, Ñ±(s12, s13) =
∑

i±>s12
j±>s13

1. (49)

The forms of these functions follow trivially from the inte-
grations in Eqs. (45) and (46). Using the D meson decay
data, we may also define sND(s12, s13) and ÑD(s12, s13) in
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the same way as above for the computation of the sR and R̃
versions of Eqs. (37) and (38).

In summary, we extract a measurement of γ as follows.
Varying γ , δB , and rB , we determine the locations of the
minima

Dmin = min
γ,δB ,rB

(
DR


(γ, δB, rB) + DR
�(γ, δB, rB)

)
, (50)

D̃min = min
γ,δB ,rB

(
DR̃


(γ, δB, rB) + DR̃
�(γ, δB, rB)

)
, (51)

sDmin = min
γ,δB ,rB

(
D

sR

(γ, δB, rB) + D

sR
�(γ, δB, rB)

)
. (52)

As the minima of D
(γ, δB, rB) and D�(γ, δB, rB) are at the
same point for each choice of R, we combine the functions in
the above fashion for symmetry reasons. With infinite data,
we would expect to achieve

Dmin = D̃min = sDmin = 0, (53)

for a particular set of parameter values γ , δB , and rB .
With finite data, some integration orderings will achieve
more effective minimizations in Eqs. (50)–(52), meaning that
deeper minima are attained. We therefore identify the “best”
of the integration orderings by the one that gives the deep-
est minimum, corresponding to the most reliable value of γ ,
which we quote as our final result.

4 Numerical results

As a proof of principle of our unbinned methodology, we
generate 1000 sets of toy Monte Carlo Dalitz plots with
fixed input values for γ , δB , and rB given in Table 1. To
do this, we implement the Dalitz plot amplitude model for
D → KSπ

−π+ from Ref. [39]; see Refs. [43,44] for further
details.2 We apply our unbinned procedure to each of these
sets of generated data, arriving at 1000 extractions of the three
parameters γ , δB , and rB using Eqs. (50)–(52). Each of the
Monte Carlo samples has 7000 B+ decay events, 7000 B−
decay events, and 5500 (independently-measured) D decay
events. Note that we use input values for γ , δB , and rB that
are quite far away from the values realized in nature. This
is because the main goal of the present Monte Carlo study
is to demonstrate that an unbinned extraction of γ is possi-
ble. From the outset, it is clear that, in its present form, this
model-independent unbinned method is much less sensitive
to γ than the optimized binned one is.

2 The Zemach factors [45,46], using the conventions of Ref. [44], have
different mass dimension depending on the spin of the resonance. We
assume therefore that the amplitude coefficients given in Table III of
Ref. [39] compensate the mass dimension of the Zemach factors. Note,
however, that our proof of principle demonstration does not rely on the
details of the amplitude model of the charm decay.

Table 1 Input values for the parameters γ , δB , and rB used for the
generation of the toy Monte Carlo data and the corresponding output of
the implementation of our unbinned algorithm

Variable Input Output

γ 150◦ (148+3
−5)

◦

rB 0.9 0.90+0.01
−0.01

δB 60◦ (59+4
−4)

◦

In order to identify the most effective integration order-
ing, we calculate the average values of Dmin, D̃min, and sDmin

over these 1000 Dalitz plots and choose the smallest one. For
the optimal integration ordering, we histogram the obtained
global minima and extract our measurements of γ , δB , and
rB as the averages of these histograms. The respective errors
are given by the left and right bounds on the middle 68 %
of entries in each histogram, resulting, in general, in asym-
metric errors. In future experimental analyses, this statistical
treatment can be replaced by a more sophisticated procedure.

In order to find the global minimum of each set of gen-
erated data according to Eqs. (50)–(52), we vary γ , δB , and
rB simultaneously. We vary γ in steps of 2◦ in the inter-
val [91◦, 179◦] and δB in steps of 2◦ in the interval [1◦, 89◦].
That is, we search for the global minimum in the complete
quadrant of the input values given in Table 1. Further, we
vary rB in steps of 0.01 in the interval [0.8, 1.0], correspond-
ing to the value of rB = 0.9 in Table 1. These choices were
made because of the high computational cost of computing
the functions in Eqs. (42) and (43) for R, sR, and R̃ (we
perform simulations on a personal laptop), as well as some
degeneracies that appear because Eq. (40) only constrains
trigonometric functions of γ and δB . For example, one such
degeneracy occurs due to the fact that

cot(π − θ) = − cot θ, tan(π − θ) = − tan θ. (54)

Additionally, because it is impractical to implement a compu-
tation of Eqs. (32) and (49) at all points (s12, s13), we instead
sample the functions at a discrete set of points in the rect-
angle surrounding the physical region of the Dalitz plot and
interpolate. In our implementation, we use grid points with
a horizontal and vertical separation of 0.01 GeV2.

We show the results of these computations for our consid-
ered scenario in Table 1. In this case, the optimal ordering
turns out to be R. In particular, although the average value of
D̃min is nearly the same as that of Dmin, the average value of
sDmin is larger than that of D̃min and Dmin by about an order
of magnitude. We give the resulting histograms of the 1000
extracted values of γ , δB , and rB in Fig. 1. From Table 1,
we see that the output achieved by our unbinned analysis
technique agrees with the input.

123



877 Page 8 of 10 Eur. Phys. J. C (2023) 83 :877

Fig. 1 Histograms of the global minima for γ (a), δB (b), and rB (c)
obtained by applying our method to 1000 sets of toy Monte Carlo data.
The input parameters are fixed to the values shown in Table 1. Each of

the Monte Carlo samples has 7000 B+ decay events, 7000 B− decay
events, and 5500 (independently-measured) D decay events

5 Conclusions

In this work, we have introduced a new, model-independent,
unbinned method designed to extract γ from B± →
DK± → (KSπ

−π+)DK± decays. This development con-
tributes to the long-term effort towards achieving ultimate
precision in the determination of γ , enabling unprecedented
tests of the Standard Model. It is presently unclear if our
method can provide a superior statistical error as compared
to the other two theoretically clean methods. As mentioned
in the introduction, each approach requires a different kind
of statistical optimization. For us, the required optimization
is in the choice of test statistic, which can be formed from
variants of cumulative distribution functions such as Eq. (30).

On the other hand, our method does not involve additional
optimization of auxiliary variables that specify the analysis

(such as shapes of bins or Fourier modes), unlike both the
classic BPGGSZ method and the method of Ref. [35]. How-
ever, we are still in the early stages of developing a com-
petitive alternative. Using toy Monte Carlo data, we have
demonstrated as a proof of principle that this method returns
values for γ , δB , and rB that are in agreement with the input
values chosen for the generated data. Future work is required
to see how one can optimize the test statistic for this particular
method.

Our method is not yet optimized for the highest sensitiv-
ity to γ since it does not include all the possibly relevant
observables. For instance, by forming ratios such as those in
Eq. (27), one reduces the number of observables sensitive to
γ . That not all of the available information is being used is
further signaled by the fact that this method requires no infor-
mation about the phases of the D decay amplitudes, while
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these phases are an integral part of the more sensitive binned
methods. The competitiveness of the unbinned method could
thus be greatly enhanced in the future by extending this
approach to include data from correlated charm decays.

Just as the effectiveness of binned methods depends on
the choice of the binning, the effectiveness of our unbinned
method depends on the integration ordering of the cumulative
functions. In principle, there are an infinite number of ways
to perform this integration over the Dalitz plot. As such, it
is not presently clear whether the binned or the unbinned
methods will ultimately give the most competitive results.
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