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Abstract We consider the quantized bi-scalar gravity,
which may serve as a locally Lorentz invariant cosmological
model with varying speed of light and varying gravitational
constant. The equation governing the quantum regime for the
case of homogeneous and isotropic cosmological setup is a
Dirac-like equation which replaces the standard Wheeler–
DeWitt equation. We show that particular cosmogenesis may
occur as a result of the action of the symmetry transfor-
mation which due to Wigner’s theorem can either be uni-
tary or antiunitary. We demonstrate that the transition from
the pre-big-bang contraction to the post-big-bang expansion
– a scenario that also occurs in string quantum cosmolo-
gies – can be attributed to the action of charge conjugation,
which belongs to the class of antiunitary transformations.
We also demonstrate that the emergence of the two classical
expanding post-big-bang universe–antiuniverse pairs, each
with opposite spin projections, can be understood as being
triggered by the action of a unitary transformation resembling
the Hadamard gate.

1 Introduction

The standpoint that quantum physics provides an accurate
representation of the physical world has led to the many-
worlds concept, which assumes the simultaneous existence of
parallel universes [1]. This may be the source of the quantum
over classical computation advantage, in which effectively
many classical calculations occur in parallel. Deutsch’s con-
cept of the multiverse [2], which extends the ideas proposed
by Everett, appears to be related to the structure of the Hilbert
space. The emergence of single universes occurs as a result of
basis choice, which bears a resemblance to spacetime slicing
in general relativity. In this slicing, a physical model distin-
guishes between the physical quantities defined on specific
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hypersurfaces and those that connect consecutive hypersur-
faces. The structure of the multiverse is moreover related to
the information flow, the proper description of which can be
achieved by applying the theory of quantum computational
networks [2]. It is essential to note that the multiverse notion
presented above significantly differs from the cosmological
idea of the multiverse, which describes an infinite ergodic
universe containing Hubble volumes and realizing all possi-
ble initial conditions, or the existence of multiple universes
with varying physical constants, dimensionality, and parti-
cle content [3]. However it is worth noting that the notions
of quantum computation have already been utilized as an
alternative language to describe the bridging of two large
Anti-de-Sitter (AdS) universes [4].

Deutsch’s concept of the multiverse appears to be con-
nected with the intriguing idea that the universe itself could
be considered a quantum computer [5] although the dynamics
of our universe is described by a local Hamiltonian specified
by quantum field theory, which differs from the local unitary
dynamics of a quantum computer. Despite this distinction,
the notion that the universe behaves like a quantum com-
puter is substantiated by the strong theoretical support of the
Feynman conjecture [6], which posits that quantum comput-
ers can simulate any local system. In particular a theory of
quantum gravity has been proposed, based on the principles
of quantum computation, where fundamental processes are
described through the framework of quantum information
processing [7].

Interesting scenarios of cosmogenesis have been found in
the framework of Wheeler–DeWitt quantized low energetic
string cosmologies [8,9]. It was also demonstrated that quali-
tatively similar scenarios appear in the quantized varying fun-
damental constants model [10]. Considering Deutsch’s idea
of the multiverse, it becomes particularly tempting to view
quantum cosmogenesis scenarios as quantum computational
processes involving unitary transformations. Let us also note
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that the unitary transformations are part of a broader class
of symmetry transformations, governed by Wigner’s theo-
rem [11], which includes only antiunitary transformations
alongside unitary ones.

In this paper, we use bi-scalar gravity theory, which may
serve as a locally Lorentz invariant theory involving vary-
ing speed of light and varying gravitational constant [12].
Within the framework of this theory, various scenarios of
multiverse emergence have been discovered [13], and the
mechanisms underlying entanglement in pairs of universes
have been explored [14,15]. Furthermore, the utilization of
the Dirac-like equation, as a replacement for the standard
Wheeler–DeWitt equation in governing the quantum aspects
of the model, has enabled an exploration of cosmogenesis
scenarios wherein two pairs of early universe–antiuniverse
emerge with differing spin projections [16]. In the context of
this particular model, which relies on the Dirac-like equation,
we propose that cosmogenesis emerges as a result of the sym-
metry transformations. In particular, we propose two scenar-
ios. In one, the transition from the pre-big-bang contracting
phase to the post-big-bang expanding phase occurs as a result
of the charge conjugation transformation, which acts as an
antiunitary transformation. In the other scenario, the emer-
gence of two classical expanding post-big-bang universe–
antiuniverse pairs, each with opposite spin projections, can be
attributed to the action of the unitary transformation resem-
bling the Hadamard gate, thus depicting cosmogenesis as a
basic one-gate quantum information processing.

Our paper is organized as follows. In Sect. 2, we introduce
the quantized bi-scalar gravity homogeneous and isotropic
cosmological model with the Dirac-like governing equation
and present its natural solutions. In Sect. 3, we outline a
scenario wherein the shift from the pre-big-bang contracting
phase to the post-big-bang expanding phase happens due to
the action of the charge conjugation, operating as an antiuni-
tary transformation. In Sect. 4, we consider the emergence of
two classical expanding post-big-bang universe–antiuniverse
pairs, each with opposite spin projections, as a result of a
unitary transformation analogous to the Hadamard gate. In
Sect. 5 we give our conclusions.

2 Quantum cosmological setup for non-minimally
coupled bi-scalar gravity

We will be proceeding in the framework of the non-minimally
coupled bi-scalar gravity that (for the derivation of the model
see Appendix A), as it was pointed out in [12], may serve as
a theory that describes the variation of the speed of light and
the gravitational constant. The consequences of quantization
of such a model in the case of homogeneous and isotropic
cosmological setup have already been explored in [10,13–
16] where it was shown that such models involve interest-

ing scenarios of cosmogenesis. In particular, two different
approaches have been investigated – the standard one involv-
ing Wheeler–DeWitt equation and the other one where the
Wheeler–DeWitt equation was replaced by a Dirac-like equa-
tion and the wave function acquired spinorial degrees of free-
dom. The second approach will be adapted in what follows.
Let us note that establishing a positively definite probability
density for the Wheeler–DeWitt equation, being a hyperbolic
partial differential equation, is not obvious. The resolution of
this problem involved the introduction of a Dirac-square root
formulation of the Wheeler–DeWitt equation [17–20] result-
ing in ambiguities associated with factor ordering. Another
approach was to employ supersymmetric quantum mechan-
ics [21–26].

The Dirac-like equation obtained for such a non-minimally
coupled bi-scalar gravity homogeneous and isotropic cosmo-
logical model is [16]:[

γ 0
(

∂η − 1

4r

)
+ γ 1∂1 + γ 2∂2 +

√
Λ̄e− η

r γ 3∂3

]
Ψ = 0,

(1)

where γ α with α = 0, 1, 2, 3 are the Dirac matrices,
∂η ≡ ∂

∂η
, ∂i ≡ ∂

∂xi
with i = 1, 2, 3 and η, xi being

variables parametrizing the extended minisuperspace dimen-
sions, while r and Λ̄ are some parameters of the model (for
the detailed description of the minisuperspace parametriza-
tion and the derivation of (1) see Appendices A and B).
It is particularly interesting that such a Dirac-like equation
have been obtained by utilizing the Eisenhart–Duval [27–31]
method which rests on a geometrization of the potential term
by extending the original minisuperspace of the model, thus
making the wave function propagation geodesic. We will be
looking for a solutions which fulfill the following condition:

1

i

∂

∂x3
Ψ = Ψ, (2)

which takes us back to the physical minisuperspace (spanned
by the physical degrees of freedom of the model).

The natural solution of the Dirac-like equation (1) fulfill-
ing the condition (2) is [16]:

Ψ = 1√
2

⎛
⎜⎜⎝

φ1 + ϕ1

φ2 + ϕ2

φ1 − ϕ1

φ2 − ϕ2

⎞
⎟⎟⎠ , (3)

where

φ1 = ei
�k·�x e−iααikr− 1

4

(
C1U (ikr + 1, 2ikr + 1, 2iα)

+C2L
2ikr
−ikr−1(2iα)

)
, (4)

φ2 = ei
�k·�x e−iααikr− 1

4

(
C3U (ikr, 2ikr + 1, 2iα)

+C4L
2ikr
−ikr (2iα)

)
, (5)
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ϕ1 = ei
�k·�xe−iααikr− 1

4

(
C5U (ikr, 2ikr + 1, 2iα)

+C6L
2ikr−ikr (2iα)

)
, (6)

ϕ2 = ei
�k·�xe−iααikr− 1

4

(
C7U (ikr + 1, 2ikr + 1, 2iα)

+C8L
2ikr
−ikr−1(2iα)

)
. (7)

Here, �k = (k1, k2), �x = (x1, x2), k =
√
k2

1 + k2
2, U and L

denote the confluent hypergeometric function of the second
kind and the associated Laguerre polynomial, respectively,
α = r

√
Λ̄e− η

r while {C1,C2,C3,C4,C5,C6,C7,C8} is a
set of integration constants.

The solution of (1) given by (3) expressed in the new
representation defined by the unitary matrix:

F = H ⊗ I = 1√
2

(
I I
I −I

)
, (8)

where H = 1√
2

(
1 1
1 −1

)
is a matrix representation of the

Hadamard gate and I is a unit 2 × 2 matrix, reads as:

ΨF = FΨ =

⎛
⎜⎜⎝

φ1

φ2

ϕ1

ϕ2

⎞
⎟⎟⎠ . (9)

Notice that the unitary transformation F leaves untouched
the four-momentum operator and the x3-axis projection spin

operator Σ3 = 1
2

(
σ3 0
0 σ3

)
, where σ3 stands for the Pauli

matrix. The Eq. (9) can be used to build the low-curvature
(η → −∞ or equivalently α ≡ r

√
Λ̄e− η

r → ∞) eigenstates
of both the Σ3 and the four-momentum operator, each sepa-
rately solving Eq. (1) (see Appendix A for the description of
the low- and the high-curvature regimes). The explicit form
of such low-curvature eigenstates is [16]:

Ψ+,+ 1
2

= Aei
�k·�x e−iααikr− 1

4

⎛
⎜⎜⎝

L2ikr−ikr−1(2iα)

0
U (ikr, 2ikr + 1, 2iα)

0

⎞
⎟⎟⎠ ,

(10)

Ψ+,− 1
2

= Bei
�k·�xe−iααikr− 1

4

⎛
⎜⎜⎝

0
U (ikr, 2ikr + 1, 2iα)

0
L2ikr

−ikr−1(2iα)

⎞
⎟⎟⎠ ,

(11)

Ψ−,+ 1
2

= Cei
�k·�xe−iααikr− 1

4

⎛
⎜⎜⎝
U (ikr+1, 2ikr+1, 2iα)

0
L2ikr

−ikr (2iα)

0

⎞
⎟⎟⎠ ,

(12)

Ψ−,− 1
2

= Dei
�k·�xe−iααikr− 1

4

⎛
⎜⎜⎝

0
L2ikr

−ikr (2iα)

0
U (ikr+1, 2ikr+1, 2iα)

⎞
⎟⎟⎠ ,

(13)

where A, B, C and D are integration constants. The func-
tions above satisfy in the low-curvature limit for η → −∞
(equivalently for α → ∞) the following conditions:

i
∂

∂η
Ψ+,± 1

2
= πη(−∞)Ψ+,± 1

2
, (14)

i
∂

∂η
Ψ−,± 1

2
= −πη(−∞)Ψ−,± 1

2
, (15)

where πη(−∞) =
√

Λ̄e− η
r , which means that they are indeed

the low-curvature limit eigenstates of the four-momentum
operator. Let us also notice that (10), (12) and (11), (13)
formally represent the spin 1/2 and −1/2 states (along the
x3 axis), respectively.

3 Cosmogenesis as the charge conjugation
transformation

Since πη(−∞) and −πη(−∞) correspond to the pre-big-bang
collapsing branch and the expanding post-big-bang branch,
respectively, of the classical solution in the low-curvature
limit (see formula (A.19) in Appendix A), we recognize
that the solution Ψ+,± 1

2
is peaked over the pre-big-bang col-

lapsing branch while the solution Ψ−,± 1
2

is peaked over the
expanding post-big-bang branch in that limit.

Now let us define a boundary condition by assuming that
initially in the high-curvature limit for η → ∞ (α → 0) the
spinor wave function of the universe is given by Ψ+,± 1

2
. In

other words the in-state represents a collapsing pre-big-bang
branch of the classical solution in the low-curvature limit
(long before the big-bang). However, in the high-curvature
limit η → ∞ (α → 0) the in-state Ψ+,± 1

2
is not peaked over

any classical trajectory (pure quantum regime).
The charge conjugation transformation, considered a

canonical example of antiunitary transformations, is defined
as:

Ψ ≡ γ 2Ψ ∗. (16)

It can be easily shown that both Ψ and its charge conjugate
Ψ satisfy the Dirac-like equation (1). We also notice that in
the low-curvature limit for η → −∞ (α → ∞)

Ψ +,± 1
2

≡ γ 2Ψ ∗
+,± 1

2
∼ Ψ−,∓ 1

2
, (17)

where ∼ indicates the physical equivalence of the wave func-
tions in terms of the quantum numbers (related to the fre-
quency and the spin orientation). Considering the above for-
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mula, the transition from the contracting pre-big-bang phase
to the expanding post-big-bang phase (‘bypassing’ the big
bang singularity) is made feasible through the action of the
charge conjugation transformation.

4 Cosmogenesis as the one-gate quantum information
processing

The action of the unitary transformation (8) involving a
matrix representation of the Hadamard gate on the natural
solution of the Dirac-like equation (1) given by (3) leads to
the following spinor wave function (with suitable choice of
the integration constants Ci , i = 1, 2, . . . , 8) [16]:

ΨF = ei
�k·�x e−iααikr− 1

4

×

⎛
⎜⎜⎝
A L2ikr−ikr−1(2iα) + C U (ikr + 1, 2ikr + 1, 2iα)

B U (ikr, 2ikr + 1, 2iα) + D L2ikr−ikr (2iα)

A U (ikr, 2ikr + 1, 2iα) + C L2ikr−ikr (2iα)

B L2ikr
−ikr−1(2iα) + D U (ikr + 1, 2ikr + 1, 2iα)

⎞
⎟⎟⎠

= Ψ+,+ 1
2

+ Ψ+,− 1
2

+ Ψ−,+ 1
2

+ Ψ−,− 1
2
. (18)

Let us note that, in the low-curvature limit as η → −∞ (or
equivalently, as α → ∞), the solutions (10) and (12) can
be interpreted as post-big-bang expanding positive and neg-
ative frequency modes, respectively, with spin 1/2 along the
x3 axis. Similarly, in the same low-curvature limit, the solu-
tions (11) and (13) can also be interpreted as post-big-bang
expanding positive and negative frequency modes, respec-
tively, with spin −1/2 along the x3 axis [16].

In view of formula (18) and the interpretation given above,
the emergence of the two classical expanding post-big-bang
universe–antiuniverse pairs with opposite spin projections
can be seen as a result of the action of the unitary matrix F .
Since this result is an equal superposition state, the action
of the unitary matrix F can be regarded as analogous to the
action of the Hadamard gate, thus depicting the cosmogenesis
scenario as a simple one-gate quantum information process-
ing.

5 Conclusions

We have shown that, within the framework of the bi-scalar
gravity that can serve as a locally Lorentz invariant theory
involving varying speed of light and varying gravitational
constant with the Dirac-like equation governing its quantum
regime, the cosmogenesis can be understood as a result of
the action of the specific symmetry transformation. Within
our analysis, we have presented two distinct scenarios. In

the first scenario, the shift from the pre-big-bang contracting
phase to the post-big-bang expanding phase may be treated
as caused by the charge conjugation which belongs to a class
of antiunitary transformations. In the alternative scenario,
the appearance of two classical expanding post-big-bang
universe–antiuniverse pairs (each with opposite spin projec-
tions) can be associated with the operation of a unitary trans-
formation similar to the Hadamard gate, thereby portraying
cosmogenesis as a simple quantum computation involving
one gate. In this specific context, it is worth noting that the
transition between successive aeons in the Conformal Cyclic
Cosmology (CCC) model of the universe becomes viable
through the ‘intervention’ of the reciprocal hypothesis [32]
within the so called bandage region where the spacetimes
defining the two consecutive aeons are solely determined by
their respective lightcone structures. Let us also note that
the matter creation accompanied by the spacetime bending
which gives rise to homogeneous and isotropic universes can
be attributed to the action of conformal transformation [33]
being a central notion of the mentioned reciprocal hypothe-
sis in CCC models. However, considering the action of any
antiunitary transformation as a physical process lacks strong
justification. The requirement for such a transformation in
the initial scenario, which leads to the transition between pre-
and post-big-bang phases, might be linked to the separation
of both phases by a curvature singularity, signifying a gen-
uine spacetime singularity. It is conceivable that establishing
a true physical process would require the regularization of the
singularity at the classical level. In contrast, the absence of a
curvature singularity in the second scenario permits the rep-
resentation of the process through a unitary transformation
that holds physical significance.
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Appendices

A Bi-scalar non-minimally coupled varying c and G
model

The bi-scalar non-minimally coupled gravity theory which
can be use to model variation in the speed of light c and the
gravitational constant G [12] is given by the following action
[10]:

S =
∫ √−g

(
eφ

eψ

)

× [
R + Λ + ω(∂μφ∂μφ + ∂μψ∂μψ)

]
d4x, (A.1)

where φ and ψ stand for non-minimally coupled scalar fields,
R corresponds to the Ricci scalar,Λdenotes the cosmological
constant, and ω is as a parameter of the model. This action
can be derived by substituting in the original Einstein-Hilbert
action the following functions for c and G:

c3 = eφ, (A.2)

G = eψ. (A.3)

The following fields transformation:

φ = β√
2ω

+ 1

2
ln δ, (A.4)

ψ = β√
2ω

− 1

2
ln δ (A.5)

brings the action (A.1) to the Brans–Dicke form:

S =
∫ √−g

[
δ(R + Λ) + ω

2

∂μδ∂μδ

δ
+ δ∂μβ∂μβ

]
d4x .

(A.6)

The variability of the speed of light with respect to space and
time variables results in the general covariance breaking. To
overcome this problem, a particular reference frame known
as the ‘light frame’ must be chosen. This frame serves as the
primary reference for constructing the model. Following the
approach detailed in [34,35], we designate the cosmological
frame as the light frame for our model, defined by the FLRW
metric:

ds2 = −N 2(dx0)2 + a2(dr2 + r2dΩ2), (A.7)

where N denotes the lapse function and a is the scale factor
(both functions depend on the coordinate x0). The action
(A.6) expressed in the light frame (A.7) is:

S = 3V0

8π

∫
dx0

(
−a2

N
a′δ′ − δ

N
aa′2 + Λδa3N

− ω

2

a3

N

δ′2

δ
− a3

N
δβ ′2

)
, (A.8)

Fig. 1 The changes in the scale factor a (black), the speed of light c
(red), and the gravitational constantG (blue) over time are demonstrated
for two separate periods: x̄0 < 0, which pertains to the phase before
the curvature singularity, and x̄0 > 0, representing the phase after it

where ()′ ≡ ∂
∂x0 . The behavior of the model defined by (A.8)

in the gauge N = a3δ is described by its solutions given by
[10]:

a = 1

D2(eFx0
)
2

sinhM |√(A2 − 9)Λx0|
, (A.9)

δ = D6(eFx
0
)
6

sinhW |√(A2 − 9)Λx0| , (A.10)

where A = 1√
1−2ω

, M = 3−A2

9−A2 , W = 2A2

9−A2 while D and F

are the integration constants. The variable x0 expressed by
the rescaled cosmic time x̄0 is [10]:

x0 = 2√
(A2 − 9)Λ

arctanh
(
e
√

(A2−9)Λx̄0
)

, for x̄0 < 0,

x0 = 2√
(A2 − 9)Λ

arctanh
(
e−

√
(A2−9)Λx̄0

)
, for x̄0 > 0,

(A.11)

where as in [10] we limit the scope of examined models
to cases with A2 > 9. The sequence of events involves a
pre-big-bang contraction, taking place for x̄0 < 0, followed
by a post-big-bang expansion, occurring for x̄0 > 0. Both
of these phases adhere to the solutions (A.9) and (A.10),
supplemented by (A.11). These distinct phases are separated
by a curvature singularity situated at x̄0 = 0. The changes in
the fundamental constants c and G are contained in (A.9) and
(A.10). In accordance with these formulas, the gravitational
constant G approaches zero, while the speed of light c goes
to infinity as the universe converges towards the curvature
singularity at x̄0 = 0 (see Fig. 1).

By employing the field transformations given by:
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X = ln(a
√

δ), Y = 1

2A
ln δ,

η = r(AY − 3X), x1 = r(3Y − AX), x2 = 2
√
Ṽ0β,

(A.12)

where Ṽ0 = 3V0
8π

and r = 2
√

Ṽ0
A2−9

, the action (A.8) can be
reformulated in the following manner:

S =
∫

dx0
[

1

4
(η′2 − x ′2

1 − x ′2
2 ) + Λ̄e−2 η

r

]
, (A.13)

with Λ̄ = Ṽ0Λ. The Hamiltonian corresponding to the action
(A.13) is:

H = π2
η − π2

x1
− π2

x2
− Λ̄e−2 η

r , (A.14)

where πη = η′
2 , πx1 = − x ′

1
2 and πx2 = − x ′

2
2 denote the con-

jugated momenta. The structure of the Hamiltonian (A.14)
indicates the constancy of both πx1 and πx2 throughout the
evolution. As a result, the classical evolution can be visu-
alized as a particle encountering an exponential potential
barrier. The solutions to Hamilton’s equations related to the
Hamiltonian (A.14) are:

η = ln sinh |
√

(A2 − 9)Λx0|, (A.15)

x1 = −2πx1x
0 + E, (A.16)

x2 = −2πx2x
0 + P, (A.17)

where E and P represent integration constants. Upon analyz-
ing the solution (A.15), it becomes apparent that the param-
eter η can be used to define two distinct situations. The first
pertains to the high-curvature regime, characterized by the
scale factor a approaching zero as η tends towards infin-
ity, η → ∞. The second situation corresponds to the low-
curvature regime, characterized by higher values of the scale
factor a as η approaches negative infinity, η → −∞. Fur-
thermore, it can be checked that the high-curvature regime,
η → ∞, exhibits the following asymptotic values of momen-
tum πη:

πη =
{√

Λ̄ (collapsing pre-big-bang solution)

−
√

Λ̄ (expanding post-big-bang solution).
(A.18)

On the other hand, in the low-curvature regime, η → −∞,
the asymptotic values of πη are:

πη =
{√

Λ̄e− η
r (collapsing pre-big-bang solution)

−
√

Λ̄e− η
r (expanding post-big-bang solution).

(A.19)

The Wheeler–DeWitt equation, describing the quantum
regime of the considered model, can be derived by apply-
ing the Jordan quantization rules to the Hamiltonian con-
straint HΦ = 0. In these rules, the canonical momenta are

replaced with corresponding operators according to the fol-
lowing scheme: πη → π̂η = −i ∂

∂η
, πx1 → π̂x1 = −i ∂

∂x1

and πx2 → π̂x2 = −i ∂
∂x2

. The resulting Wheeler–DeWitt
equation is:

Φ̈ − ΔΦ + m2
e f f (η)Φ = 0, (A.20)

where (̇) ≡ ∂
∂η

, Δ = ∂2

∂x2
1

+ ∂2

∂x2
2

and m2
e f f (η) = Λ̄e− 2

r η.

B Eisenhart–Duval lift of the bi-scalar non-minimally
coupled varying c and G cosmological model – the Dirac-
like equation

The Eisenhart–Duval lifting scheme provides a geometri-
cal description of the evolution of the system, even in the
presence of the potential term [27,28]. This is achieved by
incrementing the dimensionality of the original minisuper-
space of the model by one, through the addition of an auxil-
iary degree of freedom. In this extended minisuperspace, the
trajectories of the system follow geodesics associated with
the so-called lifted metric equipping the extended minisuper-
space. Meanwhile, their projections onto the original minisu-
perspace correspond to the original trajectories of the system.
We will use the Eisenhart–Duval lift adjusted the cosmologi-
cal model arising form the scalar-tensor gravity [29–31]. Let
us consider the Lagrangian defined by the action (A.13) of
our bi-scalar non-minimally coupled cosmological model:

L = 1

4
(η′2 − x ′2

1 − x ′2
2 ) + Λ̄e−2 η

r . (B.1)

The so-called lifted Lagrangian associated with (B.1) that
gives rise to the extended minisuperspace is:

Lext = 1

2

(
η′2

2
− x ′2

1

2
− x ′2

2

2
− x ′2

3

2Λ̄e−2 η
r

)
, (B.2)

where x3 is an axillary dynamical variable which extends the
original minisuperspace of the model. The lifted metric on
the extended minisuperspace is [16]:

G̃αβ = diag

(
1

2
,−1

2
,−1

2
,

−1

2Λ̄e−2 η
r

)
. (B.3)

Due to the conformal invariance of the Hamiltonian con-
straint given by:

1

2
G̃αβ P̃α P̃β = 0, (B.4)

with P̃α = G̃αβx ′β , in the following, we will use the confor-
mally equivalent extended minisuperspace metric:

Gαβ = Ω2G̃αβ, (B.5)
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where Ω2 =
[
2Λ̄e−2 η

r

] 1
n−2

with n denoting the dimension of

the extended minisuperspace. Since in the case of our model
n = 4 the conformal factor is:

Ω2 =
√

2Λ̄e− η
r (B.6)

and the conformally equivalent extended minisuperspace
metric reads:

Gαβ = diag

⎛
⎝

√
Λ̄

2
e− η

r ,−
√

Λ̄

2
e− η

r ,−
√

Λ̄

2
e− η

r ,
−e

η
r√

2Λ̄

⎞
⎠ .

(B.7)

The expression for the covariant Wheeler–DeWitt equation
in the extended case is:

1√−G
∂α(

√−GGαβ∂βΦ) = 0, (B.8)

where G denotes the determinant of Gαβ . Using (B.7), the
Wheeler–DeWitt equation (B.8) takes the following form:

∂2
ηΦ − ∂2

1 Φ − ∂2
2 Φ − Λ̄e−2 η

r ∂2
3 Φ = 0. (B.9)

The condition that leads to the reduction of the extended case
(B.9) to the initial one (A.20) reads:

∂2
3 Φ = −Φ. (B.10)

To obtain the Dirac-like cosmological equation, we
enforce covariance on the minisuperspace [30,31] as we did
in the case of the Wheeler–DeWitt equation (B.8). Due to the
conformal covariance of the Dirac equation without the mass
term [36], we once again employ (B.7) as the lifted metric.
The resulting Dirac-like cosmological equation is:

γ̂ αDαΨ ≡ γ Ae α
A DαΨ = 0, (B.11)

where γ A denotes Dirac matrices:

γ 0 =
(
I 0
0 −I

)
, γ k =

(
0 σk

−σk 0

)
. (B.12)

Here, k takes values of 1, 2 and 3, σk represents the Pauli
matrices, and I denotes the identity matrix. The symbols e α

A

in (B.11) are vector fields which fulfil ηAB = e α
A e β

B Gαβ

while the covariant derivative Dα is:

Dα = ∂α + Γα, (B.13)

where

Γα = 1

2
ωABαΣ AB . (B.14)

Here, ωABα = Gνμe
μ

A ∇αe ν
B denotes the spin connection

and Σ AB = 1
4

[
γ A, γ B

]
. The expression for the particular

vector fields e α
A takes the following form:

e α
A = diag

⎛
⎝

(
Λ̄

2

)− 1
4

e
η
2r (1, 1, 1) ,

(
2Λ̄

) 1
4 e− η

2r

⎞
⎠ ,

(B.15)

while the non-vanishing elements of the spin connection
ωABα are given by:

ω101 = 1

2r
, ω011 = − 1

2r
,

ω202 = 1

2r
, ω022 = − 1

2r
,

ω303 = −e
η
r

2r
√

Λ̄
, ω033 = e

η
r

2r
√

Λ̄
. (B.16)

Thus, the Dirac-like cosmological equation on the extended
minisuperspace is [16]:
[
γ 0

(
∂η − 1

4r

)
+ γ 1∂1 + γ 2∂2 +

√
Λ̄e− η

r γ 3∂3

]
Ψ = 0.

(B.17)
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