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Abstract In this work, we perform a QCD sum rules analy-
sis on �Q−�′

Q mixing. Contributions from up to dimension-
6 four-quark operators are considered. However, it turns
out that only dimension-4 and dimension-5 operators con-
tribute, which reveals the non-perturbative nature of mix-
ing. In particular, we observe that only the diagrams with
the two light quarks participating in gluon exchange con-
tribute to the mixing. Our results indicate that the mix-
ing angle θc = (1.2 ∼ 2.8)◦ for the Q = c case and
θb = (0.28 ∼ 0.34)◦ for the Q = b case. Our prediction
of θc is consistent with the most recent Lattice QCD result
within error. Such a small mixing angle seems unlikely to
resolve the tension between the recent experimental mea-
surement from Belle and Lattice QCD calculation for the
semileptonic decay �0

c → �−e+νe.

1 Introduction

The semileptonic decays of hadrons are of great signifi-
cance for extracting Cabibbo–Kobayashi–Maskawa (CKM)
matrix elements and testing the standard model. Recently,
the semileptonic decay �0

c → �−e+νe was measured by the
Belle collaboration [1]

B(�0
c → �−e+νe) = (1.31 ± 0.39)%, (1)

while the Lattice QCD prediction in Ref. [2] was

B(�0
c → �−e+νe) = (2.38 ± 0.44)%. (2)

Our preliminary calculation based on QCD sum rules in Ref.
[3] gives an even larger result

B(�0
c → �−e+νe) = (3.4 ± 0.7)%. (3)

a e-mail: shiyuji@ecust.edu.cn
b e-mail: zhaozx19@imu.edu.cn (corresponding author)

It can be seen that there exists one tension between experi-
mental data and theoretical predictions.

In Refs. [4–7], the authors suggested that this puzzle can
be resolved by considering �c−�′

c mixing on the theoretical
side. If so, one would expect that there exists a sizable�c−�′

c
mixing angle. Some efforts have been made in this direction.
Early in 2010, a QCD sum rules analysis was performed, and
the authors arrived at θc = 5.5◦ ± 1.8◦ [8]. In Ref. [9], this
mixing angle is obtained as |θc| = 8.12◦ ± 0.80◦ in heavy
quark effective theory. In Ref. [10], the result of Lattice QCD
shows that this mixing angle is equal to 1.2◦ ± 0.1◦. More
theoretical predictions can be found in Table 2.

One can see that large differences exist among different
theoretical predictions. In this work, we intend to perform a
new QCD sum rules analysis. First, it is necessary to establish
the concepts of flavor eigenstates and mass eigenstates. The
flavor eigenstates are defined as follows:

�3̄
Q = 1√

2
(qs − sq)Q,

�6
Q = 1√

2
(qs + sq)Q (4)

where Q = c, b and q = u, d. Equations (4) are of course
the classification of the quark model, where �3̄

Q belongs to

the SU(3) flavor antitriplet, and �6
Q belongs to the sextet, as

indicated by their notations. The two light quarks are usu-
ally considered to form a scalar diquark and an axial-vector
diquark in �3̄

Q and �6
Q , respectively. In reality, the physi-

cal mass eigenstates �Q and �′
Q are the mixing of flavor

eigenstates

( |�Q〉
|�′

Q〉
)

=
(

cos θ sin θ

− sin θ cos θ

)(
|�3̄

Q〉
|�6

Q〉

)
. (5)

Although there already exists a QCD sum rules analysis in
Ref. [8], in this work we will highlight the following points:
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• New definitions (see Eq. (9)) of interpolating currents are
adopted. These definitions have been proved in a quark
model [11], and are considered to be possibly better def-
initions of interpolating currents for baryons.

• We attempt to reveal the nature of mixing. Through
detailed calculation, one can clearly see that the gluon
exchange involving the two light quarks plays a crucial
role in flavor mixing. It is gluon exchange that can change
the spin of the system of two light quarks.

• In the heavy quark limit, the spin of the system of two
light quarks is a good quantum number; therefore, the
mixing angle between �Q and �′

Q should be zero. Our
calculation results show such a trend.

The rest of this article is arranged as follows. In Sec. II,
QCD sum rules analysis is performed, and contributions from
up to dimension-6 four-quark operators are considered. In
Sec. III, numerical results are shown and are compared with
other predictions in the literature. We conclude the article in
the last section.

2 QCD sum rules analysis

The mass sum rule for �
(′)
Q can be obtained by considering

the following two-point correlation function:

�(′)(p) = i
∫

d4xeip·x 〈0|T {J (′)(x) J̄ (′)(0)}|0〉, (6)

where J (′) stands for the interpolating current of the mass
eigenstate �

(′)
Q . It is natural to expect that J̄ (′) creates only

�
(′)
Q and not the other one, and in this sense, the following

two correlation functions should be zero:

i
∫

d4xeip·x 〈0|T {J (x) J̄ ′(0)}|0〉 = 0,

i
∫

d4xeip·x 〈0|T {J ′(x) J̄ (0)}|0〉 = 0. (7)

J and J ′ are linear combinations of J0 and J1—the inter-
polating currents of flavor eigenstates �3̄

Q and �6
Q :

(
J
J ′

)
=

(
cos θ sin θ

− sin θ cos θ

) (
J0

J1

)
, (8)

which is a counterpart of Eq. (5). However, it should be
noted that since there is no exact one-to-one correspondence
between the interpolating current and the hadron state, the
quark–hadron duality ansatz is actually implicit in Eq. (8).
In this work, J0,1 are given by

J0 = εabc[qTa Cγ5(1 + /v)sb]Qc,

J1 = εabc[qTa C(γ μ − vμ)(1 + /v)sb] 1√
3
γμγ5Qc, (9)

where a, b, c are color indices, and vμ ≡ pμ/|√p2| is the
4-velocity of the baryon. As mentioned in the Introduction,
these new definitions have been proved in a quark model,
and are possibly better definitions of interpolating currents
for baryons.

It can be seen from Eqs. (6) and (7) that we need to cal-
culate the following four correlation functions:

�i j (p) = i
∫

d4xeip·x 〈0|T {Ji (x) J̄ j (0)}|0〉 (10)

where i, j = 0, 1.
From Eq. (6), one can obtain the mass sum rules for �Q

and �′
Q :

� = �00 cos2 θ + �11 sin2 θ + �01 sin 2θ, (11)

�′ = �11 cos2 θ + �00 sin2 θ − �01 sin 2θ. (12)

As explicit calculation has shown, �01 = �10, and then from
Eq. (7), one can arrive at

�01 cos 2θ + (�11 − �00)
1

2
sin 2θ = 0, (13)

or

tan 2θ = 2 �01

�00 − �11
. (14)

One can easily check that the above description is equiv-
alent to the following matrix diagonalization formula:

O�O−1 = �diag (15)

where

� =
(

�00 �01

�01 �11

)
, O =

(
cos θ sin θ

− sin θ cos θ

)
,

�diag =
(

� 0
0 �′

)
. (16)

One important note can be made. From Eq. (14), one can
see that we had better normalize the two interpolating cur-
rents in Eq. (9) to a same factor, and we have indeed done
that. Therefore, in this work, �00, �11, and �01 are on equal
footing, and we can explicitly compare their respective con-
tributions from the same dimensions at the QCD level, see
below.

In this work, we calculate the four correlation functions
in Eq. (10), considering the contributions from the pertur-
bative term (dim-0), quark condensate (dim-3), gluon con-
densate (dim-4), quark-gluon condensate (dim-5), and four-
quark condensate (dim-6), as can be seen in Fig. 1. The ana-
lytical results are listed in Appendix A. Through detailed
calculation, one can clearly see the following:

• For �01, it turns out that only four diagrams are
nonzero—dim-4(a,b) and dim-5(a,c). The physical mean-
ing of �01 is that it provides the absolute possibility for
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the diquark to transition from 0+ to 1+, or vice versa. As
far as we are concerned, the mixing between �3̄

Q and �6
Q

originates from the fact that the two light quarks exchange
gluons with the background fields in vacuum, and with
the heavy quark Q.

• For �00 and �11, dim-0,3,6 and dim-4(d,e,f) are equal
to each other, respectively, so they do not contribute to
the denominator �00−�11 in Eq. (14). Only dim-4(a,b,c)
and dim-5(a,b,c,d) contribute to �00 −�11. The physical
meaning of�00−�11 is that it measures the difference, or
the “gap,” between �3̄

Q and �6
Q : The larger the difference,

the less likely the two flavor eigenstates are to mix.

The mixing angle formula in Eq. (14) is of course our
main research object. However, the corresponding QCD sum
rules are very different from the traditional ones: they do
not have the hadron-level representation. For this point, try
to consider the hadron-level representation of �01. That is,
Eq. (14) has only a representation at the QCD level. The
continuum threshold parameter

√
s0 and Borel parameters

T 2 cannot be determined by the methods commonly used
in the literature. However, note that a reasonable threshold
parameter for Eq. (14) should lie between those of �Q and
�′

Q . Naturally, in the following, we present the mass sum

rule of �
(′)
Q .

2.1 The mass sum rule

Since our preliminary results indicate that θc and θb are very
small, Eqs. (11) and (12) are reduced to

� = �00, (17)

�′ = �11. (18)

Following the same steps as in Refs. [3,14], one can perform
QCD sum rules analysis on the correlation functions �00,11

as follows.
At the hadron level, after inserting the complete set of

hadronic states, one can obtain

�had(p) = λ2+
/p + M+
M2+ − p2

+ λ2−
/p − M−
M2− − p2

+ · · · , (19)

where λ+(−) and M+(−) are the pole residue and mass of the
positive-parity (negative-parity) baryon, respectively. The
pole residues of positive-parity and negative-parity baryons
are respectively defined by

〈0|J+|B+(p, s)〉 = λ+u(p, s),

〈0|J+|B−(p, s)〉 = λ−(iγ5)u(p, s). (20)

At the QCD level, the correlation function is also calcu-
lated. In this work, contributions from up to dimension-6 four

quark operators are considered, as can be seen in Fig. 1. The
corresponding results can be formally rewritten as

�QCD(p) = A(p2)/p + B(p2). (21)

The coefficient functions A(p2) and B(p2) are further writ-
ten into dispersion relations

A(p2) =
∫

ds
ρA(s)

s − p2 , B(p2) =
∫

ds
ρB(s)

s − p2 . (22)

Using the quark–hadron duality assumption, and after per-
forming the Borel transformation, one can arrive at the fol-
lowing sum rule for the positive-parity baryon:

(M+ + M−)λ2+e−M2+/T 2+

=
∫ s+

ds(M−ρA(s) + ρB(s))e−s/T 2+ , (23)

where s+ and T 2+ are the continuum threshold parameter and
Borel parameter, respectively. From Eq. (23), one can obtain
the mass of the 1/2+ baryon:

M2+ =
∫ s+ ds(M−ρA + ρB) s e−s/T 2+∫ s+ ds(M−ρA + ρB) e−s/T 2+

. (24)

In practice, Eq. (24) can be viewed as a constraint of Eq.
(23), in which M+ is required to be equal to the experimental
value of the positive-parity baryon. In this way, the threshold
parameter can be determined.

3 Numerical results

The following parameters are adopted [12]:

mc(mc) = 1.27 ± 0.02 GeV,

ms(2 GeV) = 0.093 ± 0.009 GeV,

mb(mb) = 4.18 ± 0.03 GeV. (25)

The condensate parameters are taken as follows [13]:
〈q̄q〉(1 GeV) = −(0.24 ± 0.01 GeV)3, 〈s̄s〉 = (0.8 ±
0.2)〈q̄q〉, and 〈g2

s G
2〉 = (0.47±0.14) GeV4, and 〈q̄gsσGq〉

= m2
0〈q̄q〉 and 〈s̄gsσGs〉 = m2

0〈s̄s〉, where m2
0 = (0.8 ±

0.2) GeV2. The renormalization scale is taken as μc = 1 ∼
3 GeV and μb = 3 ∼ 6 GeV, from which one can estimate
the dependence of the calculation results on the energy scale.

Following similar steps as in Refs. [3,14], one can arrive
at the optimal parameter selections for continuum thresholds√
s0 and Borel parameters T 2 for �Q and �′

Q . The corre-
sponding results can be found in Fig. 2 and Table 1. Some
comments are given in order.

• As expected in Ref. [11], the pole residues of �Q and
�′

Q are almost equal when the interpolating currents in
Eq. (9) are used.
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Fig. 1 All the diagrams considered in this work. We calculate all these diagrams for the four correlation functions �i j , where i, j = 0, 1

Fig. 2 Pole residues of �
(′)
Q , where Q = c, b. The blue lines correspond to the energy scale μ = mQ , while the red lines correspond to the energy

scale μ = 3 GeV for �
(′)
c and μ = 6 GeV for �

(′)
b . The selections of

√
s0 can be found in Table 1
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Table 1 Optimal parameter selections for the continuum thresholds
√
s0 and Borel parameters T 2 for �Q and �′

Q , where Q = c, b. The central

values are obtained at μ = mc for �
(′)
c and μ = mb for �

(′)
b . The masses of �

(′)0
c (csd) and �

(′)−
b (bsd) are also listed for reference [12]

√
s0 (GeV) T 2 (GeV2) Mass (GeV)

�c For μ = mc, 2.95; for μ = 3 GeV, 3.00 ≈ 8 2.470

�′
c For μ = mc, 3.02; for μ = 3 GeV, 3.10 10 ± 2 2.579

�b For μ = mb, 6.27; for μ = 6 GeV, 6.30 ≈ 40 5.797

�′
b For μ = mb, 6.40; for μ = 6 GeV, 6.45 50 ± 10 5.935

Fig. 3 Our predictions for θc and θb. For the left figure, the solid blue
and red lines represent the curves of θc obtained from the first and second
sum rules, respectively, where μ = mc,

√
s0 = 2.98 GeV. The blue and

red dashed lines represent the curves of θc obtained from the first and
second sum rules, respectively, where μ = 3 GeV,

√
s0 = 3.05 GeV.

For the right figure, the solid blue and red lines represent the curves
of θb obtained from the first and second sum rules, respectively, where
μ = mb,

√
s0 = 6.33 GeV. The blue and red dashed lines represent the

curves of θb obtained from the first and second sum rules, respectively,
where μ = 6 GeV,

√
s0 = 6.38 GeV

Table 2 Comparison with other results in the literature (in units of degree). These theoretical predictions come from QCD sum rules (QCDSR),
heavy quark effective theory (HQET), Lattice QCD (LQCD), and quark model (QM), respectively

θQ This work QCDSR [8] HQET [9] LQCD [10] QM [15] QM [16] HQET [17]

θc 1.2–2.8 5.5 ± 1.8 ±8.12 ± 0.80 1.2 ± 0.1 3.8 3.8 14 ± 14

θb 0.28–0.34 6.4 ± 1.8 ±4.51 ± 0.79 – – 1.0 –

• The continuum threshold and Borel parameter at the min-
imum point in Fig. 2 are selected as the optimal parame-
ters, as can be seen in Table 1. These optimal parameters
correspond to the experimental value of the baryon mass.

• As can be seen in Table 1, the optimal parameter selec-
tion satisfies the following:

√
s0 is about 0.5 GeV higher

than the corresponding baryon mass, and T 2 ∼ O(m2
H ),

where mH is the baryon mass.
• As can be seen in Fig. 2, the dependence of the pole

residues on the Borel parameters is weak, while they are
sensitive to changes in energy scales. The latter leads to
the main source of error.

For the sum rule in Eq. (14), considering that the contin-
uum threshold should lie between those of �Q and �′

Q , and

assuming T 2 ∼ O(m2
H ), we choose the following parame-

ters:

• For θc, when μ = mc,
√
s0 = 2.98 GeV, and when

μ = 3 GeV,
√
s0 = 3.05 GeV, the Borel parameters are

T 2 ∈ [6, 14] GeV2.
• For θb, when μ = mb,

√
s0 = 6.33 GeV, and when

μ = 6 GeV,
√
s0 = 6.38 GeV, the Borel parameters are

T 2 ∈ [30, 70] GeV2.

Our main results are shown in Fig. 3, and the corresponding
central values and error estimates are as follows:

• θc = (1.3 ± 0.1)◦ from the first sum rule, and θc =
(2.0 ± 0.8)◦ from the second sum rule;

• θb = (0.31 ± 0.03)◦ from the first sum rule, and θb =
(0.32 ± 0.02)◦ from the second sum rule.

Here, the first and second sum rules refer to those from the
coefficients of /p and constant terms, respectively, since all
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Fig. 4 These radiative corrections may play an important rule in �Q − �′
Q mixing

the �i j at the QCD level can be computed as

�QCD(p) = A(p2)/p + B(p2). (26)

In Table 2, we compare our results with others in the lit-
erature. It can be seen that our result for θc is consistent with
that of Lattice QCD in Ref. [10] if the uncertainty is taken
into account.

4 Conclusions and discussion

There is a tension between the recent Belle measurement
and Lattice QCD calculation for the branching ratio of
semileptonic decayB(�0

c → �−e+νe). Some have proposed
that it is possible to resolve this puzzle by considering the
�Q −�′

Q mixing. Following this suggestion, we investigate
the �Q − �′

Q mixing using QCD sum rules in this work.
Contributions from up to dimension-6 four-quark operators
are considered. However, it turns out that only dimension-4
and dimension-5 operators contribute, which reveals the non-
perturbative nature of mixing. In particular, we observe that
only the diagrams with the two light quarks participating in
gluon exchange contribute to the mixing. Contributions from
three-gluon condensate and radiative corrections in Fig. 4
may be sizable and deserve further investigation. We leave
these more detailed considerations for future works.

Our results show that the mixing angle θc is very small, and
is consistent with the most recent Lattice QCD calculation
result within error. Such a small mixing angle seems unlikely
to resolve the tension between the experimental measure-
ment and Lattice QCD calculation for the semileptonic decay
�0

c → �−e+νe. We have to draw the conclusion that the ten-
sion is still there.

Finally, it is worth pointing out that Ref. [18] recently
proposed a method for measuring the mixing angle experi-
mentally, which is helpful for further clarifying the issue of
the �Q − �′

Q mixing.
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Appendix A: Analytical results

In this appendix, we present the calculation results for the
correlation functions �00,11,01 at the QCD level. Some notes
are given below.

• All nonzero results in Fig. 1 are shown in this appendix.
The spectral densities ρA and ρB are shown together.

• m1 = mQ , m2 = mq , m3 = ms , and m2 have been
taken to be zero. Because we have defined m2

23 ≡ k2
23 ≡

(k2 + k3)
2 with k2,3 respectively as the momenta of the

light quark q and the strange quark, numeric subscripts
are preferable.

• The m2
23 appearing in the spectral densities of perturba-

tive diagrams (dimension-0) and gluon condensate dia-
grams (dimension-4) should be integrated out.

• m1s is the m2
1 that appears on the denominator of the

propagator of quark 1. Similar for m2s and m3s.
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Results of ρ00

ρdim−0
00 = 3

32π6

{
m2

1 − m2
23 + s

6m4
23s

2

[
2

(
m2

23 − m2
3

)
2m2

23s

+ 6m3

(
m2

23 − m2
3

)
m2

23
√
s
(
−m2

1 + m2
23 + s

)

+
(
−2m4

3 + m2
23m

2
3 + m4

23

) (
−m2

1 + m2
23 + s

)
2
]
,

m1

3m4
23s

[
2

(
m2

23 − m2
3

)
2m2

23s

+ 6m3

(
m2

23 − m2
3

)
m2

23
√
s
(
−m2

1 + m2
23 + s

)

+
(
−2m4

3 + m2
23m

2
3 + m4

23

) (
−m2

1 + m2
23 + s

)
2
]}

×
π

√
λ(m2

23, 0,m2
3)

2m2
23

π

√
λ(s,m2

1,m2
23)

2s
, (A1)

ρ
dim−3(a)
00 = − 〈q̄q〉

16π3

⎧⎨
⎩

2
(
m2

1 − m2
3 + s

) ((
m3 + √

s
) 2 − m2

1

)
s3/2 ,

4m1

((
m3 + √

s
) 2 − m2

1

)
√
s

⎫⎬
⎭ ×

π

√
λ(s,m2

1,m2
3)

2s
,

(A2)

ρ
dim−3(b)
00 = − 〈s̄s〉

16π3

⎧⎨
⎩

2
(
s2 − m4

1

)
s3/2 ,

4m1

(
s − m2

1

)
√
s

⎫⎬
⎭

×
π

√
λ(s,m2

1, 0)

2s
, (A3)

ρ
dim−4(c)
00 =

(
− 〈g2

s G
2〉

24576π6

)
∂

∂m2s

∂

∂m3s

{
16

(
m2

1 − m2
23 + s

)
s2

×
[

− 1

6m4
23

( (−m2
1 + m2

23 + s
)2

× (
m4

23 + m2
23(m2s + m3s) − 2(m2s − m3s)2)

+ 2m2
23s

(
m4

23 − 2m2
23(m2s + m3s) + (m2s − m3s)2) )

− 3m3
√
s
(−m2

1 + m2
23 + s

)
(m2

23 + m2s − m3s)

m2
23

− 4s(m2
23 − m2s − m3s)

]
,

32m1

[
− 1

6m4
23s

( (−m2
1 + m2

23 + s
)

× 2 (
m2

23(m2s + m3s) + m4
23 − 2(m2s − m3s)2)

+ 2m2
23s

(
m4

23 − 2m2
23(m2s + m3s) + (m2s − m3s)2) )

− 3m3
(−m2

1 + m2
23 + s

) (
m2

23 + m2s − m3s
)

m2
23

√
s

− 4
(
m2

23 − m2s − m3s
)]}

×
π

√
λ(m2

23, m2s, m3s)

2m2
23

π

√
λ(s,m2

1,m
2
23)

2s
, (A4)

ρ
dim−4(d)
00 = 〈g2

s G
2〉

128π6
1

6

∂3

∂m1s3

⎧⎨
⎩
m2

1

(
−m2

23 + m1s + s
)

6m4
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