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Abstract This article presents a novel parametrization of
the deceleration parameter (DP) to investigate the cosmo-
logical scenario. The newly proposed parametric form of the
DP is both physically plausible and model-independent. Con-
strained by a combined dataset of 31 cosmic chronometers
(CC) data points, 26 non-correlated baryonic acoustic oscil-
lations (BAO) points, and 1701 Pantheon+ data points from
supernovae type Ia (SNeIa), we determine the model param-
eters using a Markov Chain Monte Carlo (MCMC) method.
The analysis explores the kinematic behavior of the model,
including the transition from deceleration to acceleration.
The results indicate that the Universe is currently in an accel-
erated phase. Furthermore, we apply the obtained parameter
values to constrain f (Q) gravity models and compare them
with observations. This study provides valuable insights into
the accelerating Universe and underscores the importance of
employing a model-independent approach in cosmological
investigations.
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1 Introduction

The �CDM model is a fundamental framework in cosmol-
ogy, explaining various observations with minimal parame-
ters. However, recent studies [1] expose its limitations, chal-
lenging its reliability, including fine-tuning the cosmolog-
ical constant and tensions between model predictions and
observations [2–4]. While still important, the model requires
refinement to overcome its shortcomings. Recently, stud-
ies are exploring alternative frameworks, modifying General
Relativity or introducing new fields, to build on �CDM’s
success while addressing its limitations.

In light of these considerations, a new approach known as
“reconstruction” has emerged as a response, whereby obser-
vational data is directly incorporated into the process of con-
structing cosmological models. This approach holds signifi-
cant promise in enriching our understanding of the Universe
and enhancing the accuracy and efficiency of future cosmo-
logical surveys.

The reconstruction approach offers the key advantage of
being independent of the specific gravity model underly-
ing cosmological studies. It encompasses two methods: non-
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parametric reconstruction, which involves deriving models
directly from observational data through statistical proce-
dures, and parametric reconstruction, which establishes a
kinematic model with free parameters and subsequently con-
strains these parameters through statistical analysis of obser-
vational data. The parametric reconstruction approach has
been successfully employed in studying the accelerating Uni-
verse through various cosmological entities, including the
jerk parameter, the deceleration parameter (DP), and the
Hubble parameter, shedding light on the behavior of dark
energy. Also, numerous works have focused on parametriz-
ing physical parameters, such as pressure, energy density,
and EoS. These parametrizations aid in obtaining precise
solutions to the Einstein field equations (see [5–14]).

Furthermore, the remarkable observations from cosmo-
logical surveys, including those by Riess et al. [15] and Perl-
mutter et al. [16], have confirmed the current acceleration
of the Universe’s expansion following a period of decelera-
tion characterized by structure formation. The DP is a vital
quantity in explaining this phenomenon, and parametrizing it
offers an appropriate approach compared to other kinematic
quantities. Several works have proposed parametrizations of
the DP [12–14,17,18] (one can see the references therein). In
addition, more prominently, the redshift-based DP is advan-
tageous as it directly relates to the Universe’s expansion rate
and facilitates comparisons among different observational
datasets.

Additionally, in recent years, significant attention has been
given to modified gravity theories such as f (R), f (T ), and
f (Q) theories. One innovative approach to exploring grav-
itational interactions is through non-metricity, where both
curvature and torsion vanish. This approach is valuable for
understanding gravity at a fundamental level, as it treats grav-
ity as a gauge theory without presuming the preeminence of
the Equivalence Principle. Investigating f (Q) theories can
provide insights into the cosmic acceleration resulting from
different geometries compared to Riemannian geometry. The
connection between the disformation tensor and the Levi–
Civita connection in f (Q) gravity highlights the intricate
interplay between non-metricity and the geometry of space-
time. Ongoing research aims to explore the consequences
and potential applications of f (Q) gravity in deepening our
understanding of the fundamental nature of gravity and its
effects on the large-scale structure of the universe. In the
literature, one can see several prominent studies on f (Q)

gravity [19–23].
In this study, we propose a newly reconstructed form of

the deceleration parameter that aligns with both physical con-
siderations and theoretical arguments. This parameterization
is independent of the specific gravity model. The free param-
eters are constrained via statistical analysis of observational
data using the Bayesian approach and Markov Chain Monte
Carlo (MCMC) analysis. Specifically, we utilize data sets

including Cosmic Chronometers, Baryonic Acoustic Oscil-
lations, and the latest Pantheon+ dataset. Based on these con-
straints, we study the kinematics of the model. More inter-
estingly, with these obtained parameters, we constrain f (Q)

gravity models and compare the results with observational
data.

Article organization: The basic field equations in f (Q)

gravity are discussed in Sect. 2. The newly proposed param-
eterization and its characteristics are explained in Sect. 3. The
detailed statistical analysis of the data sets is given in Sects. 4
and 5. Further, using the results obtained from the statistical
method, we interpret the behavior of the Universe for our
newly defined DP model in Sect. 6. With the obtained param-
eter values we constrain f (Q) gravity models in Sect. 7.
Finally, we conclude our results in Sect. 8.

2 The basic field equations in f (Q) gravity

A general affine connection can be written in terms of three
components, namely, the Levi–Civita connection, the con-
torsion tensor, and the disformation tensor. The Levi–Civita
connection is a unique connection that is derived from the
metric tensor of the space. It has the property that it is torsion-
free, which means that the derivative of a vector field along a
curve depends only on the endpoints of the curve. The Levi–
Civita connection �α

μν of the metric gμν is defined by

�α
μν = 1

2
gαλ(gμλ,ν + gλν,μ − gμν,λ). (1)

The contortion tensor K α
μν is a tensor field that describes the

deviation of a given affine connection from the Levi–Civita
connection. It is defined as

K α
μν = 1

2
(T α

μν + T α
μ ν − T α

ν μ). (2)

where T α
μν is the torsion tensor given by

T α
μν = Y α

μν − Y α
νμ. (3)

The disformation tensor Lα
μν is a tensor field that describes

the deviation of the metric tensor from its Euclidean form. It
is defined as

Lα
μν = 1

2
(Qα

μν + Q α
μ ν − Q α

ν μ), (4)

where the non-metricity tensor Qαμν is defined by Qαμν =
∇αgμν .

Putting these components together, the general affine con-
nection Y α

μν can be written in the form

Y α
μν = �α

μν + Lα
μν + K α

μν. (5)

This form of the affine connection allows for a more gen-
eral description of the geometry of a curved space than the
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Levi–Civita connection alone, and it is used in modified grav-
ity theories where the deviation from General Relativity is
described by the contorsion and disformation tensors.

Recently, a research paper by Jimenez et al. [24] intro-
duced a novel approach to gravity known as f (Q) gravity.
This theory is distinctive as it is solely defined by the non-
metricity ∇αgμν �= 0 of the spacetime, where both curvature
and torsion vanish and Y α

μν = 0. One noteworthy result
in f (Q) gravity is the equivalence between the disforma-
tion tensor and the Levi–Civita connection, albeit with a sign
change:

Lα
μν = −�α

μν. (6)

This finding implies a direct relationship between the dis-
formation tensor, which characterizes the deviation of the
metric tensor from its Euclidean form, and the Levi–Civita
connection derived from the metric tensor.

In f (Q)gravity, the gravitational interactions are described
by the following action:

S =
∫ [

−1

2
f (Q) + Lm

] √−gd4x, (7)

where g represents the determinant of the metric gμν , Lm

denotes the matter Lagrangian, and f (Q) is an arbitrary func-
tion of Q. Here, we assume the natural units k2 = 8πG = 1.
The selection of the non-metricity scalar and the action
described above in f (Q) gravity is motivated by the desire
to reproduce General Relativity (GR) in a certain limit [24].
Specifically, when the function f is chosen as f = Q,
the action (7) yields, up to a boundary term, the so-called
Symmetric Teleparallel Equivalent of GR (STEGR) which
is known to be equivalent to GR in the classical regime,
albeit with some differences in the mathematical formalism.
This classical correspondence with GR provides a signifi-
cant motivation for this particular choice. This allows for a
seamless transition between the two theories and ensures that
f (Q) gravity remains consistent with the well-established
framework of GR. The action in Eq. (7) incorporates both
the gravitational and matter sectors, where the former is
described by the function f (Q) and the latter by the mat-
ter Lagrangian Lm .

The non-metricity of the spacetime is characterized by
two independent traces, given by:

Qα = Q ν
α ν and Q̃α = Qν

αν. (8)

In accordance with the work by [24], the conjugate of non-
metricity is defined as:

4Pα
μν = −Qα

μν + 2Q α
(μ ν) + (Qα − Q̃α)gμν − δα

(μQν).

(9)

Using this definition, the non-metricity scalar is further
defined as Q = −Qαμν Pαμν .

The energy–momentum tensor, denoted as Tμν , is a fun-
damental quantity in the study of gravitational interactions. It
characterizes the distribution and flow of energy and momen-
tum within a given system. In the context of general relativ-
ity and curved spacetime, the energy–momentum tensor is
derived from the matter Lagrangian, denoted as Lm .

The expression for the energy–momentum tensor is given
by:

Tμν = − 2√−g

δ(
√−gLm)

δgμν
, (10)

where δ(
√−gLm)/δgμν represents the functional derivative

of the Lagrangian with respect to the metric tensor com-
ponents gμν . The functional derivative captures how the
Lagrangian varies as a result of infinitesimal changes in the
metric tensor. The field equation for f (Q) gravity, which
describes the gravitational dynamics in this modified theory,
can be obtained by varying the action integral (7) with respect
to the metric tensor gμν . The resulting equation is given by:

fQ(Pμβγ Q
βγ

ν − 2QβγμP
βγ

ν) + 1

2
gμν f

+ 2√−g
∇α(

√−g fQ Pα
μν) = Tμν,

(11)

where fQ represents the partial derivative of the function f
with respect to Q. These field equations play a fundamental
role in f (Q) gravity, governing the behavior of the metric
tensor and the connection. They establish the relationship
between the non-metricity of spacetime, the matter-energy
distribution encoded in the energy–momentum tensor Tμν ,
and the functional form of f (Q). In addition to varying the
action with respect to the metric tensor, we can also vary
it with respect to the connection. This variation yields the
equation:

∇μ∇ν(
√−g fQ Pμν

γ ) = 0. (12)

2.1 The cosmological model

To investigate the evolution of the universe, it is often use-
ful to make the assumption that the background space-
time is isotropic and homogeneous. This assumption allows
us to employ the Friedmann–Lemaitre–Robertson–Walker
(FLRW) metric, which describes a homogeneous and isotropic
universe. In the case of an isotropic and homogeneous uni-
verse, we specifically consider the flat FLRW metric, given
by:

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (13)

where a(t) is the scale factor that quantifies the size of the
expanding universe and is related to the Hubble parameter
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as H = ȧ
a . Here, overhead dot indicates derivative with cos-

mic time t and the same convention is used throughout the
article. This framework allows us to study the behavior of
cosmological models, analyze the dynamics of matter and
energy within the universe, and investigate phenomena such
as cosmic expansion, the age of the universe, and the behav-
ior of different components like dark matter and dark energy.
In this case, the non-metricity scalar is given by Q = 6H2.

By employing the FLRW metric, the equations governing
the dynamics of the universe can be derived. These equations
are known as the cosmological equations of motion. In this
context, the cosmological equations of motion are given by:

6 fQH
2 − 1

2
f = ρ, (14)

Ḣ(12 fQQH
2 + fQ) = −1

2
(ρ + p). (15)

Here, fQ represents the first derivative of the function f
partially with respect to Q, while fQQ denotes the second
partial derivative. The variables ρ and p correspond to the
energy density and pressure of the matter fluid, respectively.
In the absence of any interaction, the conservation equation
ρ̇+3H(ρ+ p) = 0 holds true, ensuring consistency with the
aforementioned cosmological equations. To provide a more
familiar form, these cosmological equations can be written
in the standard Friedman equations format:

3H2 = ρe f f , (16)

2Ḣ + 3H2 = −pef f , (17)

by defining the effective pressure pef f and effective density
ρe f f of the total fluid as

ρe f f = 1

2 fQ

(
f

2
+ ρ

)
, (18)

pef f = 1

fQ

(
p − f

2
+ 3H2( fQ + 8Ḣ fQQ)

)
. (19)

An important quantity of interest is the effective equation of
state (EoS), denoted as ωe f f . It is defined as the ratio of the
effective pressure pef f to the effective density ρe f f :

ωe f f = pef f
ρe f f

= 4p − 2 f + 12H2( fQ + 8Ḣ fQQ)

f + 2ρ
. (20)

The value of ωe f f in f (Q) gravity can play a significant role
in addressing issues related to dark energy (DE). It allows
for the investigation of the nature of DE and its impact on the
expansion of the universe. It is worth noting that for an accel-
erating universe, one requires ωe f f < − 1

3 . These equations
provide a comprehensive framework for studying the behav-
ior of the universe within the context of f (Q) gravity. They
offer insights into the effective energy density, pressure, and
equation of state, which play essential roles in understanding
the dynamics and properties of dark energy.

3 New parametrization of deceleration parameter

The deceleration parameter (q) plays a fundamental role
in characterizing the evolution of the homogeneous and
isotropic cosmos, making it a crucial parameter in cosmol-
ogy. It is directly associated with the second time derivative
of the scale factor in the FLRW metric and can be expressed
as:

q = − ä

H2a
= −

(
Ḣ

H2 + 1

)
. (21)

The DP provides insight into the rate at which the Universe’s
expansion is accelerating or decelerating. A positive value of
q indicates a decelerating expansion, while a negative value
signifies an accelerating expansion. The relationship between
the Hubble parameter and the DP is given by:

H(z) = H0 exp

(∫ z

0
(q(ξ) + 1)d ln(ξ + 1)

)
, (22)

where H0 denotes the value of the Hubble parameter at z = 0,
and z represents the redshift, which is related to the scale
factor a through z = −1 + 1

a .
The choice of a specific parametric form for the DP q(z)

allows us to investigate various cosmological models and
explore the properties of dark energy and modified gravity
theories. The DP plays a crucial role in understanding the
dynamics of the Universe, and therefore, several authors have
proposed parametrized forms of q(z) based on practical and
theoretical considerations, as discussed in the introduction.
It is important to note that different parametric forms of q(z)
have different ranges of applicability. Some parametrizations
work well when the redshift z is much smaller than 1 (z � 1),
while others may not accurately predict the future evolution
of the Universe. Ideally, the chosen parametric form should
be valid and predictive for all ranges of redshifts, encom-
passing both the early and late stages of the Universe’s evo-
lution. This ensures that the parametrization captures the full
dynamics and behavior of dark energy and provides reliable
insights into the expansion history of the Universe.

The parametrization of the DP offers several advantages
over other kinematic models, making it a valuable tool for
studying the dynamics of the universe. The DP provides a
direct physical interpretation, allowing us to understand the
formation and evolution of cosmic structures. By choosing a
suitable form for q(z), we can capture the behavior of cos-
mic expansion across different epochs, shedding light on the
intricate processes involved in the growth of large-scale struc-
tures. Crucially, the DP must approach 1/2 at high redshifts to
meet the requirements of cosmic structure formation, ensur-
ing that the universe undergoes the necessary deceleration
for structures to develop over cosmic timescales. The adher-
ence of the universe to the second law of thermodynamics is
another important aspect that the parametrization of q(z) can

123



Eur. Phys. J. C (2023) 83 :840 Page 5 of 15 840

address. The second law imposes constraints on the dynamics
of the universe, and incorporating thermodynamic consider-
ations into the parametrization allows us to satisfy these con-
straints. One such constraint is that the Friedmann–Lemaître–
Robertson–Walker (FLRW) universe approaches thermody-
namic equilibrium in the distant future, ensuring the con-
sistency of the cosmological model. By incorporating these
thermodynamic aspects, we can refine the parametrization
of q(z) and ensure its adherence to the underlying principles
of thermodynamics. Moreover, the parametrization of q(z)
offers predictive power, enabling us to accurately describe the
past and present cosmic expansion and make reliable predic-
tions about the future evolution of the universe. By carefully
selecting an appropriate parametric form, we can extrapolate
the behavior of q(z) beyond the range of observed redshifts,
providing insights into the long-term fate of the universe. This
predictive capability is particularly valuable in understand-
ing whether the cosmic expansion will continue to accelerate,
decelerate, or undergo a transition to a different regime in the
future.

Considering the factors discussed above, we propose a
new parametric expression for the DPq(z) that satisfy several
important criteria. Firstly, we ensure that q(z) remains finite
for all redshifts within the range z ∈ [−1,∞]. This condition
guarantees that the parametrized form remains well-defined
and applicable across a wide range of cosmic epochs. Addi-
tionally, we impose the requirement that q(z) ≥ −1 for all
z ∈ [−1,∞], q(z) → −1 and dq/dz > 0 as z → −1
indicating that the FLRW universe approaches thermody-
namic equilibrium in the distant future, as discussed in a
previous study by Campo et al. [17] and Capozziello et al.
[6]. To ensure an effective and reliable analysis, we focus on
just two parameters, motivated by the challenges of higher-
dimensional spaces and the potential for degeneracies that
hinder parameter determination and increase uncertainties.
Exploring high-dimensional spaces becomes computation-
ally demanding and time-consuming, while a smaller param-
eter space enables more efficient sampling and convergence
checks. Taking into account these considerations, we intro-
duce a parametrized model for the DP q(z) as given by the
expression:

q(z) = −1 + a

(
(1 + z)3

z3 + 5z2 + b

)
, (23)

where a and b are model parameters. These parameters con-
trol the shape and behavior of the DP and allow for customiza-
tion based on specific cosmological scenarios. By adopting
this parametric forms for q(z), we meet the requirements of
finiteness, positivity of q(z) + 1, and convergence of FLRW
universe to thermodynamic equilibrium in the distant future.
The next step involves comparing these parametric expres-
sions with observational data to determine the best-fit values
for the model parameters and assess their agreement with

empirical evidence. This analysis will provide insights into
the dynamics and future evolution of the Universe within the
framework of this parametrized model.

It is important to note that the cubic polynomial z3 +
5z2 + b exhibits distinct root characteristics depending on
the value of b. When b > 0, the polynomial will possess one
negative root (which is less than -5) and two complex roots.
On the other hand, when b < 0, it can have at most one
positive real root. Consequently, when b > 0, we observe
that the equation z3 + 5z2 + b �= 0 holds true for any z ∈
[−1,∞). In order to ensure the finite nature of the DP across
all redshifts, it becomes necessary to impose the condition
b > 0 in the parametric form. By adhering to this condition,
we guarantee that the DP remains free from divergences,
thereby upholding the validity of the model throughout the
entire range of redshifts. This provides a solid foundation
for using this parametrized model to analyze and interpret
observational data on the expansion history of the Universe.

4 Observational data and methodology

In order to build a cosmological model that accurately
describes the behavior of our Universe, it is crucial to rely on
robust observational data and employ appropriate method-
ologies for parameter estimation. In this section, we outline
the observational data sets used and the methodology adopted
to constrain the model parameters a, b, and H0. The data uti-
lized in this analysis consists of cosmic chronometers (CC),
baryonic acoustic oscillations (BAO), and the Pantheon+
sample derived from observations of Supernovae type Ia
(SNeIa). By leveraging these diverse and complementary
data sets, we can effectively constrain the model parameters
a and b, enabling a comprehensive analysis of the Universe’s
evolution and providing valuable insights into its underlying
dynamics and properties.

4.1 Cosmic chronometers (CC)

The CC method plays a crucial role in measuring the Hubble
rate by utilizing ancient and slowly evolving galaxies that
are separated by a small interval of redshift. This method
employs the concept of differential aging, which involves
measuring the difference in ages of these galaxies at differ-
ent redshifts. By utilizing the definition of the Hubble rate
within an FLRW metric, given by H = − 1

1+z
dz
dt , the CC

method enables the measurement of the Hubble parameter
H(z) independently of any specific cosmological assump-
tions. This attribute makes CC a powerful tool for testing
cosmological models, as it provides an independent mea-
surement of the Universe’s expansion rate.

In our study, we have collected a comprehensive set of 31
data points from various sources [25–32] using the cosmic

123



840 Page 6 of 15 Eur. Phys. J. C (2023) 83 :840

chronometers (CC) method. These data points span a wide
range of redshifts, from 0.1 to 2, allowing for a detailed anal-
ysis of the expansion history of the Universe. To perform the
Markov Chain Monte Carlo (MCMC) analysis, we employ
the chi-square function for the cosmic chronometers, given
by:

χ2
CC (�) =

31∑
i=1

[
(Hth(zi ,�) − Hobs(zi ))2)

σ 2
H (zi )

]
. (24)

Here, Hth represents the theoretical value of the Hubble
parameter for a specific model with model parameters �,
while Hobs represents the corresponding observed Hubble
parameter. The term σH represents the error associated with
the observed value of H at each redshift zi .

4.2 Baryonic acoustic oscillations (BAO)

Baryonic Acoustic Oscillations (BAO) serve as a significant
cosmological probe for studying the large-scale structure
of the Universe. These oscillations originate from acoustic
waves in the early Universe, which compress baryonic mat-
ter and radiation in the photon-baryon fluid. This compres-
sion leads to a distinctive peak in the correlation function of
galaxies or quasars, providing a standard ruler for measur-
ing cosmic distances. The comoving size of the BAO peak is
determined by the sound horizon at the time of recombina-
tion, which relies on the baryon density and the temperature
of the cosmic microwave background.

At a given redshift z, the position of the BAO peak
in the angular direction determines the angular separation
�θ = rd/((1 + z)DA(z)), while in the radial direction, it
determines the redshift separation �z = rd/DH (z). Here,
DA represents the angular distance, DH = c/H corresponds
to the Hubble distance, and rd denotes the sound horizon at
the drag epoch. By accurately measuring the position of the
BAO peak at different redshifts, we can constrain combina-
tions of cosmological parameters that determine DH/rd and
DA/rd . By selecting an appropriate value for rd , we can esti-
mate H(z). In this study, we employ a dataset comprising 26
non-correlated data points obtained from line-of-sight BAO
measurements [33–44].

Similar to the cosmic chronometers (CC) method, the
BAO data is incorporated into the analysis through the com-
putation of the chi-square function,

χ2
BAO(�) =

26∑
i=1

[
(Hth(zi ,�) − HBAO

obs (zi ))2)

σ 2
H (zi )

]
, (25)

where Hth represents the theoretical values of the Hubble
parameter for a specific model with model parameters �. On
the other hand, HBAO

obs corresponds to the observed Hubble
parameter obtained from the BAO method, and σH denotes
the error associated with the observed values of HBAO .

For the CC and BAO dataset, the total chi-square func-
tion, χ2

T , is defined as the sum of the individual chi-square
functions:

χ2
T = χ2

CC + χ2
BAO . (26)

The combined analysis allows for a more comprehensive con-
straint on the model parameters a, b, and H0 by incorporating
complementary information from both cosmic chronometers
and baryonic acoustic oscillations.

4.3 Pantheon+ (SNeIa)

The Pantheon+ dataset contains distance moduli estimated
from 1701 light curves of 1550 SNeIa with a redshift range
of 0.001 ≤ z ≤ 2.2613, acquired from 18 distinct surveys.
Notably, 77 of the 1701 light curves are associated with
Cepheid-containing galaxies. Pantheon+ has the benefit of
being able to constrain H0 in addition to the model parame-
ters. We extremize the χ2 function as shown below to fit the
parameter of the model from the Pantheon+ samples.

χ2
SNeIa = �μT (C−1

stat+sys)�μ, (27)

where Cstat+sys is the covariance matrix of Pantheon+
dataset formed by adding the systematic and statistic uncer-
tainties and �μ is the distance residual given by

�μi = μi − μth(zi ), (28)

where μi is the distance modulus of the i th SNeIa. Note that
μi = mBi − M , where mBi is the apparent magnitude of
i th SNeIa and M is fiducial magnitude of an SNeIa. The
theoretical distance modulus μth can be calculated from the
following expression

μth(z,�) = 5 log10

(
dL(z,�)

1Mpc

)
+ 25, (29)

where dL is the model-based luminosity distance in Mpc
given by

dL(z,�) = c(1 + z)

H0

∫ z

0

dξ

E(ξ)
, (30)

where c is the speed of light and E(z) = H(z)
H0

.
When analyzing SNeIa data alone, there exists a degen-

eracy between the parameters H0 and M . To address this
issue, a modification is made to the SNeIa distance residuals
presented in Eq. (27) as shown in previous studies [45,48].
Specifically, the modified residuals �μ̃ are defined as:

�μ̃ =
{

μi − μ
Ceph
i , if i ∈ Cephied hosts

μi − μth(zi ), otherwise
(31)

where μ
Ceph
i indicates Cepheid host of the i th SNeIa which

is provided by SH0ES. It is to be noted that μi − μ
Ceph
i is

sensitive to the Hubble constant H0 and M . In our analysis,
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we take M = −19.253 which has been determined from
SH0ES Cepheid host distances (see [49]).

For a comprehensive analysis incorporating the CC, BAO,
and SNeIa datasets, we combine the individual χ2 functions
to obtain the total χ2

tot function:

χ2
tot = χ2

CC + χ2
BAO + χ2

SNeIa . (32)

To determine the best-fit parameters of our cosmological
model, we adopt the approach of minimizing the χ2 function.
It is important to note that minimizing the χ2 is equivalent
to maximizing the likelihood, which in turn is equivalent to
minimizing the negative log-likelihood. In order to obtain
numerical constraints on the model parameters, we employ
the Markov Chain Monte Carlo (MCMC) sampling method.
This approach allows us to explore the parameter space and
obtain a statistical distribution of the parameter values that are
consistent with the observational constraints. In our analysis,
we utilize the widely-used MCMC package called emcee
[50], which provides efficient and reliable sampling tech-
niques.

The results of our analysis are presented in the form of
contour plots, which illustrate the joint constraints on the
model parameters. These contour plots depict regions in the
parameter space that are consistent with the observational
data at different confidence levels. In particular, we present
the contours up to 3σ (99.7%) confidence level, indicating
the regions where the model is in good agreement with the
observed data.

5 Observational constraints

The dynamics of the Universe can be better understood with
the help of cosmological surveys and observational data. In
order to derive physically meaningful parameter space for the
free parameters, statistical analysis of the observed datasets
is performed in the context of parametric reconstruction. In
the previous section, we discussed various observational data
sets that were used for the analysis. In this section, we will use
these datasets to constrain the model parameters a, b, and H0

for the parametrization of DP presented earlier. Furthermore,
we will attempt to reconstruct the DP q by finding the best-fit
parameter values. To achieve this, we will use the expression
of DP (23) and numerically compute the Hubble parameter
using equation (22), where H0 is also a free parameter.

The MCMC method is employed for the analysis, and the
results are presented in the form of contour plots in Fig. 1.
These contour plots illustrate regions in the parameter space
that are consistent with the observational data at various con-
fidence levels. Specifically, we present the contours up to 3σ

(99.7%) confidence level, indicating the regions where the
model agrees well with the observed data. Based on our anal-
ysis, the mean values of the model parameters a, b, and H0

Fig. 1 2D-contour plot of the model parameters a, b, and H0, indi-
cating the most likely values and confidence regions upto 3σ obtained
from the combined analysis of CC, BAO and SNeIa datasets

are determined to be 1.513+0.073
−0.073, 5.04+0.44

−0.37, and 74.43+0.18
−0.18

(with 1σ error), respectively. Notably, the obtained value of
a = 1.513+0.073

−0.073 leads to an interesting consequence. At
high redshifts, the DP approaches nearly 1/2, which is sig-
nificant for the cosmic structure formation. This finding sug-
gests that the universe undergoes the necessary deceleration
required for the development of cosmic structures over vast
timescales. The agreement between the obtained value of a
and the requirements for cosmic structure formation further
strengthens the consistency of our model with observational
data.

In Fig. 3a, we present the observed data on H(z), accom-
panied by error bars, as well as the best-fit theoretical curves
represented by a red line. The shaded regions in blue indicate
1σ , 2σ , and 3σ error bands of the Hubble function H(z). The
agreement between the model predictions and the observed
data is evident from the consistency of the error bars with
the shaded regions. This visual representation confirms the
accuracy of our model in capturing the observed behavior
of the Hubble function. Furthermore, in Fig. 3b, we display
the error plot of the distance modulus. The observed distance
modulus of the 1701 SNeIa dataset is depicted, along with the
best-fit theoretical curves of the distance modulus function
μ(z) shown as a red line. The blue shaded regions correspond
to the error bands at a confidence level of up to 99.7%. The
consistency observed in these plots further strengthens the
confidence in the reliability of our results.

In addition to analyzing the model parameters, we have
successfully constrained the present value of the Hubble
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Table 1 Results of MCMC for parameters a, b and H0 (km/s/Mpc)
with 1σ -3σ errors

Confidence Level a b H0

1σ 1.513+0.073
−0.073 5.04+0.37

−0.44 74.43+0.18
−0.18

2σ 1.51+0.15
−0.14 5.04+0.87

−0.77 74.43+0.35
−0.34

3σ 1.51+0.19
−0.17 5.04+1.2

−0.96 74.43+0.45
−0.46

Fig. 2 A plot illustrating the current values of H0 along with their
corresponding error bars obtained from various studies is presented.
The orange-red shaded strips represent the H0 value with 1σ , 2σ , and
3σ errors obtained in this work

parameter H0. Utilizing the combined CC+BAO+SNeIa
dataset, we determine the value of H0 to be 74.43+0.18

−0.18
km s−1Mpc−1, accompanied by a 1-σ error. The results of
this constrained H0 value are presented in Fig. 2, where we
compare our findings with the outcomes of previous studies.

6 Dynamics of the model

The dynamics of a cosmological model provide valuable
insights into the behavior and evolution of the Universe. In
this section, we explore the dynamics of our model through
three key aspects: the transition from a deceleration to an
acceleration phase, the analysis of the jerk parameter, and
the examination of the Om diagnostics. Each of these subsec-
tions sheds light on different aspects of the model’s behavior
and helps us better understand the underlying dynamics of
the Universe. By studying these aspects, we gain a deeper
understanding of the fundamental processes that govern the
expansion and evolution of our Universe.

6.1 Transition from deceleration to acceleration phase

The transition from a deceleration to an acceleration phase
holds significant importance in understanding the dynam-
ics of the Universe. Prior to this transition, the Universe was
characterized by a decelerating expansion, driven by the grav-
itational interaction between matter and radiation. However,
as the cosmos continued to expand and matter became more
dispersed, the gravitational force gradually weakened, lead-
ing to a shift in the cosmic dynamics. This transition marks a
turning point in the evolution of the Universe, as it entered a
phase of cosmic acceleration. The current accelerating action
of the Universe can be quantified by estimating negative val-

Fig. 3 Comparison of the obtained best-fit theoretical curves (red line)
of the Hubble function H(z) and distance modulus function μ(z)
with their corresponding 1σ , 2σ , and 3σ error bands (blue shaded

regions) against the �CDM model (orange dotted line) with �� = 0.7,
�m = 0.3, and H0 = 67.8 km s−1 Mpc−1
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Fig. 4 Deceleration parameters as a function of redshift for proposed
parametric model, obtained from the combined CC, BAO, and SNeIa
datasets, with shaded zones representing 68%, 95%, and 99.7% confi-
dence levels

ues of the DP. Exploring this transition is essential for com-
prehending the underlying mechanisms driving the expan-
sion and evolution of the cosmos. By studying the transition
from deceleration to acceleration, we gain valuable insights
into the dynamic nature of our Universe.

In Fig. 4, we present the results, showcasing three DP
curves accompanied by their corresponding 1σ , 2σ , and 3σ

error bands. The displayed curves clearly depict a transition
of the Universe from a decelerating phase to an accelerat-
ing phase. Notably, we observe that the occurrence of this
phase transition is influenced by the variations in the model
parameters a and b. The specific redshift value at which the
transition takes place is determined as zt = 0.789+0.186

−0.165,
based on the constrained parameters derived from the com-
bined CC+BAO+SNeIa dataset, with a 1 − σ error. Remark-
ably, these values align with those reported by several other
researchers in diverse scenarios [17,18,51]. Furthermore, the
current estimate of the DP is q0 = −0.7+0.045

−0.033, with a 1-
σ error. These findings consistently agree with values pre-
viously reported in the literature [52,53]. To facilitate ref-
erence, these values are compiled in Table 2. Further, we
present the obtained q0 in Fig. 5 and compare them with the
results of previous studies.

6.2 Jerk parameter (j)

The jerk parameter serves as a significant quantity in our
understanding of the accelerating Universe. It is defined as

Fig. 5 A graph displaying the present values of DP, accompanied by
their corresponding error bars, as obtained from several studies is pre-
sented [8,13,17,18,54–58]. The blue shaded regions on the graph indi-
cate the q0 value, along with their 1σ , 2σ , and 3σ errors obtained in
this study

the dimensionless third-order derivative of the cosmic scale
factor a(t). Furthermore, we can express the jerk parameter
as a function of redshift z(t) using the DP q(z), which can
be given by the equation:

j (z) = q(z)(2q(z) + 1) + dq

dz
(1 + z). (33)

The jerk parameter plays a crucial role in discerning various
dark energy models [44], as deviations from the value of
j = 1 would favor non-�CDM models. For our specific
model, the expression for the jerk parameter can be derived
from the expression for the DP. It takes the form:

j (z) = 2a2(z + 1)6 − az(3z + 10)(z + 1)4

(
b + (z + 5)z2

)2 + 1. (34)

The equation provides insights into the behavior of the jerk
parameter within the framework of our model.

Figure 6 presents the evolution of the jerk parame-
ter, j (z), within the 3σ error regions for the combined
CC+BAO+SNeIa dataset. The results depicted in Fig. 6 indi-

Table 2 Summary of the results
for DP, effective EoS, zt , and
jerk parameter obtained from
constrained values of model
parameter with 1σ -3σ errors

Confidence level q0 ω
e f f
0 zt j0

1σ −0.7+0.045
−0.033 −0.8+0.03

−0.085 0.789+0.186
−0.165 1.18+0.058

−0.038

2σ −0.7+0.089
−0.068 −0.8+0.059

−0.045 0.789+0.481
−0.281 1.18+0.123

−0.072

3σ −0.7+0.117
−0.085 −0.8+0.078

−0.057 0.789+0.690
−0.338 1.18+0.168

−0.087
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Fig. 6 Jerk parameters as a function of redshift for the proposed model,
obtained from the combined CC, BAO, and SNeIa datasets, with shaded
zones representing 68%, 95%, and 99.7% confidence levels

cate that our model only exhibits slight deviations from the
concordance �CDM model at the present epoch. These devi-
ations, observed in the value of j0, prompt further investiga-
tion as the underlying cause of cosmic acceleration remains
unknown. Furthermore, our analysis demonstrates that the
future behavior of our model is marginally consistent with
the �CDM model. The current value of the jerk parame-
ter, along with its corresponding 1σ error, is estimated as
j0 = 1.18+0.058

−0.038, which is consistent with the results obtained
in [18,59]. These findings, presented in Table 2, provide val-
idation for our model and lend support to the notion of an
accelerating Universe.

6.3 Om(z) diagnostic

The Om(z) diagnostic is an effective tool in differentiating
between different dark energy (DE) or cosmological models
from the standard �CDM model. Sahni et al. introduced this
diagnostic in 2008 [60], and it has since been studied exten-
sively by numerous researchers. The function Om(z) relates
the observed Hubble parameter, which is a measure of the
rate of expansion of the Universe, to the density of matter in
the Universe. A constant value of Om(z) at any redshift indi-
cates that the DE behaves like a cosmological constant. How-
ever, if Om(z) varies with redshift, it suggests that the DE
is dynamic and changes its form over time. Furthermore, the
slope of Om(z) can distinguish between two distinct types of
dynamic DE models: quintessence and phantom. A positive
slope in Om(z) implies a phantom phase, while a negative
slope implies a quintessence phase. In general, the Om(z)
diagnostic is an influential tool for studying various DE and
cosmological models and provides important insights into
the expansion of the Universe.

Fig. 7 The behavior of the Om(z) diagnostic vs. redshift z

In a Universe with flat spatial geometry, the Om(z) diag-
nostic can be expressed as

Om(z) = E2(z) − 1

(1 + z)3 − 1
, (35)

where E(z) = H(z)/H0 and H(z) is obtained numer-
ically using the Eq. (22). By utilizing the mean values
of the constrained parameters derived from the combined
CC+BAO+SNeIa dataset, we plot the evolution of Om(z)
with respect to z in Fig. 7. The resulting graph illustrates that
Om(z) exhibits a negative slope for all redshift ranges, indi-
cating a quintessence phase. This suggests that our model
displays distinct behavior compared to the standard �CDM
model.

7 Constraints on f (Q) models

The exploration of alternative theories of gravity, such as
f (Q) gravity models, provides valuable insights into the fun-
damental nature of the Universe. In this section, we aim to
constrain the parameters of two specific f (Q) gravity models
using the observed values of the DP q0 and the Hubble con-
stant H0. The first model we consider is the power-law form
of f (Q) gravity and the second model is the logarithmic form
of f (Q) gravity. To derive constraints on these models, we
utilize the generalized Friedmann equations in the present-
day values, taking into account the contribution of pressure-
less matter while neglecting the influence of radiation. By
analyzing the available observational data, we aim to deter-
mine the parameter values that best describe the dynamics of
the Universe within the framework of f (Q) gravity models.
Thus, (14) and (15) take the forms

6 fQH
2
0 − 1

2
f0 = ρ0, (36)

(12 fQQ0 H
2
0 + fQ0)Ḣ0 = −1

2
ρ0, (37)
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Table 3 Summary of the
findings for constraints on f(Q)
gravity models

Power-law form of f (Q) gravity Logarithmic form of f (Q) gravity
α β α β

Present work 0.255708 −0.839416 1.155 −0.42

Planck 2018 0.685 3.09284 × 10−16 0.771667 −0.228333

SH0ES team 0.678107 0.00302792 0.773973 −0.223986

where a subscript 0 indicates the present-day value of the
corresponding parameter. We make use of (36) and (37) to
set constraints on the parameter of f (Q) model.

7.1 Power-law form of f (Q) gravity model

In this subsection, we focus on the power-law form of the
f (Q) gravity model, given by the equation

f (Q) = Q + αQ0

(
Q

Q0

)β

, (38)

where α and β are scalars. Though there are models like
f (Q) = Q + αQβ in the literature [61,62], we chose the
above specific form because it allows us to express the param-
eters α and β as dimensionless quantities. By substituting the
Eq. (38) into the Eqs. (36) and (37), we obtain

α(2β − 1) − �m0 + 1 = 0, (39)

2(q0 + 1)(αβ(2β − 1) + 1) − 3�m0 = 0, (40)

where �m0 is the dimensionless matter density parameter. By
substituting the values q0 = −0.7, H0 = 74.43 obtained in
this study along with �m0 = 0.315 [63], into Equations (39)
and (40), we find the corresponding parameter values for
the power-law f (Q) gravity model as α = 0.255708 and
β = −0.839416. Alternatively, considering the observa-
tional constraints from Planck2018 [63] results, with values
q0 = −0.5275, H0 = 67.4, and �m0 = 0.315, we obtain
parameter values of α = 0.685 and β = 3.09284 × 10−16.
Similarly, by using the observational constraints from the
SH0ES team [49] with values q0 = −0.51, H0 = 73.3, and
�m0 = 0.326, we find parameter values of α = 0.678107
and β = 0.00302792. These parameter values are summa-
rized in Table 3.

Figure 8 displays the reconstructed f (Q) functions for
the power-law f (Q) gravity model in comparison to the
�CDM model with �m0 = 0.3 and H0 = 70. The f (Q)

curves corresponding to the parameter sets α = 0.685,
β = 3.09284 × 10−16 and α = 0.678107, β = 0.00302792
closely align with the �CDM model. These curves exhibit a
strong similarity to the standard cosmological scenario. How-
ever, the f (Q) curve corresponding to α = 0.255708 and
β = −0.839416 shows a small deviation from the �CDM
model. While still resembling the standard cosmological sce-

nario, this particular parameter set exhibits a slight departure
from the expected behavior.

7.2 Logarithmic form of f (Q) gravity model

As our second specific example, we examine the f (Q) grav-
ity model expressed as

f (Q) = αQ + βQ0 log(Q/Q0). (41)

A similar kind of model has also been explored in recent
studies, such as the work by [62]. By substituting this model
into the Eqs. (36) and (37), we obtain the following

α + 2β − �m0 = 0, (42)

2(q0 + 1)(α − β) − 3�m0 = 0. (43)

By employing the values q0 = −0.7 and H0 = 74.43
obtained in this study, along with �m0 = 0.315, we derive
the parameter values for the logarithmic f (Q) gravity model
as α = 1.155 and β = −0.42. On the other hand, when
considering the values q0 = −0.5275, H0 = 67.4, and
�m0 = 0.315 based on the observational constraints from
Planck Collaboration [63], the resulting parameter values are
α = 0.771667 and β = −0.228333. Additionally, adopting
the values q0 = −0.51, H0 = 73.3, and �m0 = 0.326
following the observational constraints by the SH0ES team
[49], yields the parameter values of α = 0.773973 and
β = −0.223986. These parameter values are summarized
in Table 3.

Figure 9 depicts the reconstructed f (Q) function for the
logarithmic form of the f (Q) gravity model, compared to
the �CDM model with �m0 = 0.3 and H0 = 70. The plot
showcases the minor deviations of the logarithmic form of
the f (Q) model from the standard cosmological scenario.
Notably, the f (Q) curve corresponding to α = 1.155 and
β = −0.42 closely resembles the �CDM model. However,
the f (Q) curves associated with the other two parameter sets,
α = 0.771667, β = −0.228333, and α = 0.773973, β =
−0.223986, exhibit increasing deviations from the �CDM
model as the redshift increases. These findings underscore
the capability of the logarithmic form of the f (Q) gravity
model to reproduce the standard cosmological scenario while
also manifesting deviations from it within specific parameter
regimes.
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Fig. 8 Comparison between the reconstructed f (Q) = Q +
αQ0

(
Q
Q0

)β

and �CDM model

Fig. 9 Graph of f (Q) = αQ + βQ0 log(Q/Q0) against �CDM
model

Overall, our analysis of both the power-law and loga-
rithmic forms of f (Q) gravity models reveals their abil-
ity to reproduce the standard cosmological scenario while
also exhibiting departures from it in specific parameter
regimes. The derived parameter constraints and the corre-
sponding reconstructed f (Q) functions provide insights into
the behavior of these models and their compatibility with
observational data. These findings contribute to our under-
standing of modified gravity theories and their implications
for cosmology.

8 Concluding remarks

The investigation of cosmic evolution through reconstruc-
tion methods has shed light on the dynamics of the Universe,
providing valuable insights into its expansion history and the
nature of dark energy and modified gravity. Building upon
the advancements in parametric reconstruction and consid-
ering the importance of a suitable deceleration parameter

model, this study has made significant contributions to our
understanding of the cosmological scenario. The choice of
a parametric form for q(z) is a critical step in cosmologi-
cal analysis. It must be done thoughtfully, considering both
observational constraints and theoretical considerations, to
ensure that the parametrization is valid and predictive across
all ranges of redshifts. This ensures robust investigations
of the Universe’s dynamics and facilitates the exploration
of dark energy and modified gravity theories. In this paper,
we introduced a new parametrization for the DP, offering a
more flexible and model-independent approach to studying
the dynamics of the universe. The proposed DP model in this
article is capable of explaining several physical phenomena,
such as satisfying the second law of thermodynamics and
describing the entropy of the Universe.

In this work, the utilization of observational probes includ-
ing 31 data sets of Cosmic Chronometers (CC), 26 non-
correlated points from Baryon Acoustic Oscillations (BAO),
and 1701 newly updated type Ia supernovae data points has
enabled the constraint of cosmological parameters and vali-
dation of the viability of the proposed model. The Bayesian
statistical inference techniques and MCMC methods used to
constrain the model parameters have allowed us to accurately
analyze the data and derive meaningful conclusions. The best
fits (see Table 1) obtained from this procedure are used to
analyze the kinematic behavior of the Universe. Our find-
ings demonstrate that the best-fit parameters of our models
align well with the observed data. This success in constrain-
ing the model’s parameters showcases the importance of uti-
lizing observational data and statistical methods to improve
our understanding of the Universe’s behavior.

Through the investigation of the proposed model’s dynam-
ics, which includes examining the transition from decelera-
tion to acceleration, analyzing the Jerk Parameter (j), and
utilizing the Om(z) diagnostic, we gain a better understand-
ing of the Universe’s behavior and its evolutionary pro-
cesses. The results of the cosmological quantities for the
statistically estimated values of model parameters are in
Table 2. The current DP value, upto 3σ error, is presented
and compared with earlier studies in Fig. 5. Moreover, our
study effectively constrained both the model parameters and
the Hubble constant (H0). Notably, our obtained Hubble
constant values align with those derived from other stud-
ies that employed reconstruction methods (both parametric
and non-parametric) [17,59,64–67] and observational data
(including the distance ladder method, TRGB technique, and
H0LiCOW) [49,68–79]. We present our findings of the con-
strained H0 in Fig. 2 and compare them with the results of
previous studies.

By employing a careful analysis of the observational con-
straints, we obtained substantial findings into the behavior
of the power-law and logarithmic f (Q) gravity models. We
presented the parameter values of f (Q) gravity models for

123



Eur. Phys. J. C (2023) 83 :840 Page 13 of 15 840

three different sets of observational constraints: one obtained
in the present work, one following the Planck2018 observa-
tional constraints, and one based on the SH0ES team’s obser-
vational constraints. We summarized these parameter values
in the Table 3 and demonstrated their impact on the recon-
structed f (Q) function. Notably, we found that the power-
law f (Q) model closely resembles the �CDM model for
certain parameter sets, while others exhibit increasing devi-
ations as redshift increases.

Overall, this paper offers valuable cosmological per-
spectives utilizing observational data and a novel decelera-
tion parameter, providing meaningful astrophysical insights.
These findings will aid in the continued exploration of the
nature of dark energy and the future trajectory of the cosmos.
In future research, we plan to explore the behavior of the Uni-
verse from a different perspective by constructing paramet-
ric models for various cosmological models. We also intend
to investigate the different modified gravity theories using
reconstructed kinematic models. Furthermore, we believe it
would be interesting to adopt a non-parametric approach to
reconstruct the Universe, which can offer additional insights
into the cosmic evolution beyond the limitations of para-
metric models. Future investigations and observations will
further refine and expand our understanding of f (Q) gravity
and its implications for the nature of the universe.
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Appendix

See Tables 4 and 5.

Table 4 CC data used for analysis

z H(z) Ref. z H(z) Ref. z H(z) Ref. z H(z) Ref.

0.07 69 ± 19.6 [29] 0.09 69 ± 12 [27] 0.12 68.6 ± 26.2 [29] 0.17 83 ± 8 [27]

0.1791 75 ± 4 [28] 0.1993 75 ± 5 [28] 0.2 72.9 ± 29.6 [29] 0.27 77 ± 14 [27]

0.28 88.8 ± 36.6 [29] 0.3519 83 ± 14 [28] 0.3802 83 ± 13.5 [31] 0.4 95 ± 17 [27]

0.4004 77 ± 10.2 [31] 0.4247 87.1 ± 11.2 [31] 0.4497 87.1 ± 11.2 [31] 0.47 89 ± 34 [32]

0.4783 80.9 ± 9 [31] 0.48 97 ± 62 [27] 0.5929 104 ± 13 [28] 0.6797 92 ± 8 [28]

0.7812 105 ± 12 [28] 0.8754 125 ± 17 [28] 0.88 90 ± 40 [27] 0.9 117 ± 23 [27]

1.037 154 ± 20 [28] 1.3 168 ± 17 [28] 1.363 160 ± 33.6 [30] 1.43 177 ± 18 [27]

1.53 140 ± 14 [27] 1.75 202 ± 40 [27] 1.965 186.5 ± 50.4 [30]

Table 5 BAO data used for analysis

z H(z) Ref. z H(z) Ref. z H(z) Ref. z H(z) Ref.

0.24 79.69 ± 2.99 [34] 0.3 81.7 ± 6.22 [39] 0.31 78.18 ± 4.74 [43] 0.34 83.8 ± 3.66 [34]

0.35 82.7 ± 9.1 [37] 0.36 79.94 ± 3.38 [43] 0.38 81.5 ± 1.9 [44] 0.4 82.04 ± 2.03 [43]

0.43 86.45 ± 3.97 [34] 0.44 84.81 ± 1.83 [35] 0.44 82.6 ± 7.8 [43] 0.48 87.79 ± 2.03 [35]

0.51 90.4 ± 1.9 [44] 0.52 94.35 ± 2.64 [43] 0.56 93.34 ± 2.3 [43] 0.57 87.6 ± 7.8 [36]

0.57 96.8 ± 3.4 [40] 0.59 98.48 ± 3.18 [43] 0.6 87.9 ± 6.1 [35] 0.61 97.3 ± 2.1 [44]

0.64 98.82 ± 2.98 [43] 0.73 97.3 ± 7.0 [35] 2.3 224 ± 8.6 [38] 2.33 244 ± 8 [42]

2.34 222 ± 8.5 [33] 2.36 226 ± 9.3 [41]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


840 Page 14 of 15 Eur. Phys. J. C (2023) 83 :840

References

1. P. Bull, Y. Akrami, J. Adamek et al., Phys. Dark Univ. 12, 56 (2016)
2. P.J. Steinhardt, L. Wang, I. Zlatev, Phys. Rev. D 59, 123504 (1999)
3. L. Perivolaropoulos, F. Skara, New Astron. Rev. 95, 101659 (2022)
4. E. Di Valentino, L.A. Anchordoqui, Ö. Akarsu et al., Astropart.

Phys. 131, 102605 (2021)
5. N. Roy, S. Goswami, S. Das, Phys. Dark Univ. 36, 101037 (2022)
6. S. Capozziello, R.D. Agostino, O. Luongo, Phys. Dark Univ. 36,

101045 (2022)
7. M. Koussour, S.K.J. Pacif, M. Bennai et al., Fortschr. Phys. In press,

2200172 (2023)
8. A. Mukherjee, N. Banerjee, Phys. Rev. D 93, 043002 (2016)
9. A. Mukherjee, Mon. Not. Roy. Astron. Soc. 460, 1 (2016)

10. G. Pantazis, S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 93,
103503 (2016)

11. L.G. Jaime, M. Jaber, C. Escamilla-Rivera, Phys. Rev. D 98, 8
(2018)

12. R. Nair, S. Jhingan, D. Jain, J. Cosmol. Astropart. Phys. 01, 018
(2012)

13. Ö. Akarsu, T. Dereli, S. Kumar et al., Eur. Phys. J. Plus 129, 22
(2014)

14. Y. Gong, A. Wang, Phys. Rev. D 75, 043520 (2007)
15. A.G. Riess, A.V. Filippenko, P. Challis et al., Astron. J. 116, 1009

(1998)
16. S. Perlmutter, G. Aldering, G. Goldhaber et al., Astrophys. J. 517,

565 (1999)
17. S. del Campo, I. Duran, R. Herrera et al., Phys. Rev. D 86, 083509

(2012)
18. A.A. Mamon, S. Das, Eur. Phys. J. C 77, 7 (2017)
19. R. Lazkoz, F.S.N. Lobo, M. Ortiz-Baños et al., Phys. Rev. D 100,

104027 (2019)
20. S. Capozziello, R. D’Agostino, Phys. Lett. B 832, 137229 (2022)
21. S. Capozziello, M. Shokri, Phys. Dark Univ. 37, 101113 (2022)
22. F. Esposito, S. Carloni, R. Cianci et al., Phys. Rev. D 105, 084061

(2022)
23. T. Harko, T.S. Koivisto, F.S. Lobo, G.L. Olmo et al., Phys. Rev. D

98, 084043 (2018)
24. J.B. Jimenez et al., Phys. Rev. D 101, 103507 (2020)
25. R. Jimenez, L. Verde, T. Treu et al., Astrophys. J. 593, 622 (2003)
26. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)
27. D. Stern, R. Jimenez, L. Verde et al., J. Cosmol. Astropart. Phys.

02, 008 (2010)
28. M. Moresco, A. Cimatti, R. Jimenez et al., J. Cosmol. Astropart.

Phys. 08, 006 (2012)
29. Z. Cong, Z. Han, Y. Shuo et al., Research in Astron. Astrop. 14,

1221 (2014)
30. M. Moresco, Mon. Not. Roy. Astron. Soc. Lett. 450, L16 (2015)
31. M. Moresco, L. Pozzetti, A. Cimatti et al., J. Cosmol. Astropart.

Phys. 05, 014 (2016)
32. A.L. Ratsimbazafy, S.I. Loubser, S.M. Crawford et al., Mon. Not.

Roy. Astron. Soc. 467, 3239 (2017)
33. T. Delubac, J.E. Bautista, N.G. Busca et al., Astron. Astrophys.

574, A59 (2015)
34. E. Gaztanaga, A. Cabre, L. Hui, Mon. Not. Roy. Astron. Soc. 399,

45 (2009)
35. C. Blake, S. Brough, M. Colless et al., Mon. Not. Roy. Astron. Soc.

425, 405 (2012)
36. C.H. Chuang, F. Prada, A.J. Cuesta et al., Mon. Not. Roy. Astron.

Soc. 433, 3559 (2013)
37. C.H. Chuang, Y. Wang, Mon. Not. Roy. Astron. Soc. 435, 255

(2013)
38. N.G. Busca, T. Delubac, J. Rich et al., Astron. Astrophys. 552, A96

(2013)

39. A. Oka, S. Saito, T. Nishimichi et al., Mon. Not. Roy. Astron. Soc.
439, 2515 (2014)

40. L. Anderson, É. Aubourg, S. Bailey et al., Mon. Not. Roy. Astron.
Soc. 441, 24 (2014)

41. A. Font-Ribera, D. Kirkby, N. Busca et al., J. Cosmol. Astropart.
Phys. 05, 027 (2014)

42. J.E. Bautista, N.G. Busca, J. Guy et al., Astron. Astrophys. 603,
A12 (2017)

43. Y. Wang, G.B. Zhao, C.H. Chuang et al., Mon. Not. Roy. Astron.
Soc. 469, 3762 (2017)

44. S. Alam, M. Ata, S. Bailey et al., Mon. Not. Roy. Astron. Soc. 470,
2617 (2017)

45. D. Brout, D. Scolnic, B. Popovic et al., Astrophys. J. 938, 110
(2022)

46. D. Brout, G. Taylor, D. Scolnic et al., Astrophys. J. 938, 111 (2022)
47. D. Scolnic, D. Brout, A. Carr et al., Astrophys. J. 938, 113 (2022)
48. L. Perivolaropoulos, F. Skara, Mon. Not. Roy. Astron. Soc. 520,

5110 (2023)
49. A.G. Riess, W. Yuan, L.M. Macri et al., Astrophys. J. Lett. 934, L7

(2022)
50. D. Foreman-Mackey, D.W. Hogg, D. Lang et al., Publ. Astron. Soc.

Pac. 125, 306 (2013)
51. A.A. Mamon, S. Das, Int. J. Mod. Phys. D 25, 1650032 (2016)
52. J. Lu, L. Xu, Phys. Lett. B 699, 246–250 (2011)
53. N. Banerjee, S. Das, Gen. Relativ. Grav. 37, 1695 (2005)
54. P. Mukherjee, N. Banerjee, Phys. Dark Univ. 36, 100998 (2022)
55. P. Mukherjee, N. Banerjee, Eur. Phys. J. C 81, 36 (2021)
56. A.C.C. Guimaraes, J.V. Cunha, J.A.S. Lima, J. Cosmol. Astropart.

10, 010 (2009)
57. N. Rani, D. Jain, S. Mahajan et al., J. Cosmol. Astropart. 12, 045

(2015)
58. L. Xu, W. Li, J. Lu, J. Cosmol. Astropart. 07, 031 (2009)
59. A. Mehrabi, M. Rezaei, Astrophys. J. 923, 274 (2019)
60. V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502

(2008)
61. S. Mandal, P.K. Sahoo, J.R.L. Santos, Phys. Rev. D. 102, 024057

(2020)
62. S. Capozziello, M. Shokri, Phys. Dark Univ. 37, 101113 (2022)
63. P. Collaboration et al., A&A 641, A6 (2020)
64. J. Román-Garza, T. Verdugo, J. Magaña et al., Eur. Phys. J. C 79,

890 (2019)
65. B.S. Haridasu, V.V. Lukovi, M. Moresco et al., J. Cosmol.

Astropart. Phys. 10, 015 (2018)
66. E.R.M. Tarrant, E.J. Copeland, A. Padilla et al., J. Cosmol.

Astropart. Phys. 12, 013 (2013)
67. R.Y. Guo, J.F. Zhang, X. Zhang et al., J. Cosmol. Astropart. Phys.

02, 054 (2019)
68. A.G. Riess, S. Casertano, W. Yuan et al., Astrophys. J. 876, 85

(2019)
69. W.L. Freedman, B.F. Madore, D. Hatt et al., Astrophys. J. 882, 34

(2019)
70. V. Bonvin, F. Courbin, S.H. Suyu et al., Mon. Not. Roy. Astron.

Soc. 465, 4914 (2017)
71. S. Birrer, T. Treu, C.E. Rusu et al., Mon. Not. Roy. Astron. Soc.

484, 4726 (2019)
72. V. Gayathri, J. Healy, J. Lange et al. (2020). arxiv preprint,

arXiv:2009.14247
73. G. d’Amico, N. Kokron, J. Gleyze et al., J. Cosmol. Astropart.

Phys. 05, 005 (2020)
74. D. Dutcher, L. Balkenhol, P.A.R. Ade et al., Phys. Rev. D 104,

022003 (2020)
75. J.P. Blakeslee, J.B. Jenesn, C.P. Ma et al., Astrophy. J. 65, 911

(2021)
76. E. Kourkchi, R.B. Tully, G.S. Anand et al., Astrophy. J. 3, 896

(2020)

123

http://arxiv.org/abs/2009.14247


Eur. Phys. J. C (2023) 83 :840 Page 15 of 15 840

77. M.J. Reid, D.W. Pesce, A.G. Riess et al., Astrophy. J. 886, L27
(2019)

78. K.C. Wong, S.H. Suyu, G.C. Chen et al., Mon. Not. Roy. Astron.
Soc. 492, 1420 (2020)

79. G.S. Anand, R.B. Tully, L. Rizzi et al., Astrophy. J. 932, 15 (2022)

123


	Impact of a newly parametrized deceleration parameter on the accelerating universe and the reconstruction of f(Q) non-metric gravity models
	Abstract 
	1 Introduction
	2 The basic field equations in f(Q) gravity
	2.1 The cosmological model

	3 New parametrization of deceleration parameter
	4 Observational data and methodology
	4.1 Cosmic chronometers (CC)
	4.2 Baryonic acoustic oscillations (BAO)
	4.3 Pantheon+ (SNeIa)

	5 Observational constraints
	6 Dynamics of the model
	6.1 Transition from deceleration to acceleration phase
	6.2 Jerk parameter (j)
	6.3 Om(z) diagnostic

	7 Constraints on f(Q) models
	7.1 Power-law form of f(Q) gravity model
	7.2 Logarithmic form of f(Q) gravity model

	8 Concluding remarks
	Acknowledgements
	Appendix
	References




