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Abstract In principle, the local cosmic void can be simply
modeled by the spherically symmetric Lemaitre–Tolman–
Bondi (LTB) metric. In practice, the real local cosmic void is
probably not spherically symmetric. In this paper, to recon-
struct a more realistic profile of the local cosmic void, we
divide it into several segments. Each segment with certain
solid angle is modeled by its own LTB metric. Meanwhile,
we divide the 1048 type Ia supernovae (SNIa) of the Pantheon
Survey into corresponding subsets according to their distribu-
tion in the galactic coordinate system. Obviously, each SNIa
subset can only be used to reconstruct the profile of one seg-
ment. Finally, we can patch together an irregular profile for
the local cosmic void with the whole Pantheon sample. Note
that, the paucity of each data subset lead us to focus on the
inner part of each void segment and assume that the half radii
of the void segments are sufficient to constrain the whole seg-
ment. We find that, despite 2σ signals of anisotropy limited
to the depth of the void segments, the constraints on every
void segment are consistent with �CDM model at 95% CL.
Moreover, our constraints are too weak to challenge the cos-
mic homogeneity and isotropy.

1 Introduction

The cosmological principle assumes that the universe is
homogeneous and isotropic on cosmic scales. Based on
this assumption as well as the standard model of particle
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physics and Einstein’s general relativity (GR), the Lambda
cold dark matter (�CDM) model is proposed. This standard
model of cosmology has proved successful on large cosmic
scales according to the latest cosmic microwave background
(CMB) observations, namely Planck 2018 data [1], DES [2]
or eBOSS [3]. However, it faces major challenges on small
scales, such as the Hubble tension [4], the σ8 tension [5–7]
and the dipolar tension [8]. Besides GR, dark energy model
or treatments of systematic uncertainty, the former tension
also challenges the local cosmic homogeneity and the latter
one challenges as well the cosmic isotropy on small scales.
Therefore, further testing of the local cosmic inhomogeneity
and anisotropy on small scales is necessary.

The local cosmic inhomogeneity can be modeled by the
spherically symmetric Lemaitre-Tolman-Bondi (LTB) met-
ric [9–11]. Considering the late-time matter and dark energy,
we can use it as an inhomogeneous generalisation of a
�CDM model, namely as a �LTB model. Using the com-
bination of the latest available cosmological observations,
the local radial inhomogeneity in the �LTB model has been
probed [12,13]. Even though a deeper local void can recon-
cile the Hubble tension [14] and a larger local void can rec-
oncile the dipolar tension [15], a shallower and smaller local
void is favored by the combination of the latest available
cosmological observations [12,13]. However, a spherically
symmetric local cosmic inhomogeneity may not meet real-
ity. Therefore, in this paper, we will probe the true profile of
the local cosmic inhomogeneity as realistically as possible.

The cosmic anisotropy on small scales can be tested by
type Ia supernovae (SNIa) data, such as the combined Pan-
theon sample [16]. One straightforward method is to divide
the whole samples into several subsets according to the distri-
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bution of individual SNIa in the galactic coordinate system.
In particular, the hemisphere comparison method [17,18]
divides the whole sample into two data subsets which are
designated as the “up” and the “down” hemispheres, respec-
tively [19–21]. Furthermore, HEALPix [22] can be used to
divide the whole sample into more data subsets [21,23,24].
Another common method is the dipole fitting method [25],
which assumes a priori the existence of a dipole in the cosmic
anisotropy on small scales [19–21,26,27]. Until now, there
is no evidence for cosmic anisotropy on small scales in the
SNIa samples. However, these null signals are just obtained
from overall constraints and may neglect some fine structures
in the universe.

In this paper, we try to test both of the local cosmic inho-
mogeneity and the cosmic anisotropy on small scales at the
same time using the SNIa data of Pantheon. To account for
the asymmetry in the local cosmic inhomogeneity and the
fine structures in the cosmic anisotropy on small scales, we
will fit cosmic anisotropy on small scales with the �LTB
model. We first divide the local cosmic void into several seg-
ments. Each segment with given solid angle is fitted to its
own LTB metric, where the void depth and radius parame-
ters only correspond to the local segment and ignore the data
from the other segments. We then divide the 1048 SNIa of
Pantheon into corresponding subsets according to their dis-
tribution in the galactic coordinate system. Obviously, each
SNIa subset can only be used to reconstruct the profile of one
segment. Finally, we can patch together an irregular profile
for the local cosmic void with the whole Pantheon sample.
The whole profile will contain all the information about both
of the local cosmic inhomogeneity and the cosmic anisotropy
on small scales, as shown in Fig. 1.

This paper is organized as follows. In Sect. 2, we present
our method modeling the local cosmic inhomogeneity and
introduce our treatment of the Pantheon data. In Sect. 3, we
show the constraints on the profiles of all segments of the
local cosmic inhomogeneity and compare them. Finally, a
brief summary and discussions are included in Sect. 4.

2 Methodology and data

2.1 Model

A spherically symmetric void can be modeled by the LTB
metric

ds2 = −dt2 + R′2(r, t)
1 + 2r2k(r)M̃2

dr2 + R2(r, t)d�, (1)

where d� = dθ2 + sin2 θdφ2, M̃ is an arbitrary mass scale,
k(r) is an arbitrary curvature profile function, R(r, t) = a(t)r
is dependent on the FLRW scale factor a(t) and a prime (or
dot) denotes derivative with respect to the radial coordinate
r (or the time t). As �CDM model is built on the FLRW

Fig. 1 The diagram of an irregular local cosmic void. Each segment
with the same solid angle π is modeled by its own LTB metric and
constrained by the corresponding SNIa subset given in Table 1. Dif-
ferent specific solid angle LTB segments calibrated on data from that
angle allow to capture anisotropic fine structures, contrary to previous
isotropic studies [12,13]. Those studies’ spherical symmetry assump-
tion restriction might have washed away a weak signal from some fine
structures. Such signal would favor the �LTB model over the �CDM
model

metric, there is a �LTB model built on the LTB metric. The
universe’s expansion in the �LTB model is determined by a
Friedmann-like equation

Ṙ2(r, t)

R2(r, t)
= 2m(r)

R3(r, t)
+ 2r2k(r)M̃2

R2(r, t)
+ �

3
, (2)

where m(r) is the so-called Euclidean mass function1 and
be set as m(r) = 4π M̃2r3/3, the Big Bang time tBB(r)
is fixed as a constant and the curvature profile k(r) is the
only free function to determine the void. More precisely,
the void’s expansion can be decomposed into a transverse
expansion rate and a longitudinal expansion rate. The former
one depends on a transverse scale factor a⊥(r, t) = R(r, t)/r
as

H⊥(r, t) = ȧ⊥(r, t)

a⊥(r, t)
; (3)

while the latter one is defined by a longitudinal scale factor
a‖(r, t) = R′(r, t) as

H‖(r, t) = ȧ‖(r, t)
a‖(r, t)

. (4)

1 Choice of initial density profile.
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Fig. 2 The distribution of 1048 SNIa of Pantheon in the galactic coordinate system (l, b), where the discrete colorbar indicates the redshifts of
these SNIa

Table 1 According to the distribution of 1048 SNIa of Pantheon [16] in
the galactic coordinate system (l, b), the full dataset is divide into PN+PS
by a division along the galactic plane, PE+PW by a division orthogonal
to the galactic plane and PNE+PNW+PSE+PSW by both simultaneous
divisions

Dataset l b

PAll 0◦ ≤ l < 360◦ −90◦ ≤ b ≤ 90◦

PN 0◦ ≤ l < 360◦ 0◦ ≤ b ≤ 90◦

PS 0◦ ≤ l < 360◦ −90◦ ≤ b < 0◦

PW 0◦ ≤ l ≤ 180◦ −90◦ ≤ b ≤ 90◦

PE 180◦ < l < 360◦ −90◦ ≤ b ≤ 90◦

PNW 0◦ ≤ l ≤ 180◦ 0◦ ≤ b ≤ 90◦

PNE 180◦ < l < 360◦ 0◦ ≤ b ≤ 90◦

PSW 0◦ ≤ l ≤ 180◦ −90◦ ≤ b < 0◦

PSE 180◦ < l < 360◦ −90◦ ≤ b < 0◦

According to the above Friedmann-like equation, we can
define the density parameters of matter, curvature and dark
energy today as

�m(r) = 2m(r)

R3(r, t0)H2⊥(r, t0)
, (5)

�k(r) = 2r2k(r)M̃2

R2(r, t0)H2⊥(r, t0)
, (6)

��(r) = �

3H2⊥(r, t0)
. (7)

The profile of the void can be parameterized by the depth,
size, and boundary width of the void [28]. In fact, the depth
and size of the void are sufficient to constrain it and the
width of the void boundary can be ignored [29]. We thus

Table 2 The �CDM model’s six parameters given by Planck 2018
TT,TE,EE+lowE+lensing [1]

�bh2 �ch2 H0[km s−1 Mpc−1] τ ln 1010As ns

0.02237 0.12 67.36 0.0544 3.044 0.9649

parameterise the void with the following curvature profile

k(r) = kcP3(r), (8)

Pn(r) =
{

1 − exp
[−(1−r/rB)n

r/rB

]
0 ≤ r < rB

0 rB ≤ r
, (9)

where we have assumed the universe is flat outside the void,
kc is the curvature at the center and rB is the comoving radius
of the void.

If the void is spherically symmetric and all the latest cos-
mological observations are available, the profile at r can be
constrained by data from any direction or sky location. There-
fore, the depth of the void and the boundary of the void in
particular, where the curvature reaches 0, can be constrained
relatively well [12]. If the asymmetry of the void is only
probed with SNIa data, however, we find that although the
depth of the void can still be constrained relatively well,
this is not the case for the boundary of the void, where the
curvature changes to 0. Therefore, we introduce a scale rC

where the curvature changes by 10%. That is to say, we will
not attempt to characterise the whole void but conservatively
concentrate on the partial profile of the inner void, replacing

123



859 Page 4 of 11 Eur. Phys. J. C (2023) 83 :859

Fig. 3 The triangular plot of void parameters (see Sect. 3) and MB for the no cut case, where the contours shown at 68% (inner lines) and 95%
(outer lines) confidence ranges

Eq. (9) with the following function:

Pn(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 0.1 exp
[−(1−r/rC)n

r/rC

]
0 ≤ r < rC

0.9

[
1 − exp

[
−

(
1− r−rC

rB−rC

)n
r−rC
rB−rC

]]
rC ≤ r < rB

0 rB ≤ r

.

(10)

The void now is parameterized by three parameters
{kc, rC, rB}. All of them are derived parameters in our code.
kc is related to δ̃0 = δ̃(r = 0, t0), where the integrated mass
density contrast δ̃(r, t0) [12] is defined as

δ̃(r, t0) = �mH⊥2

�out
m Hout

0
2 − 1, (11)

where “out” denotes the corresponding FLRW quantities.
Because −1 ≤ δ̃0 < ∞ is not good for the convergence of
the Monte Carlo Markov Chain (MCMC), we will use a new
parameter

δ0 =
{

δ̃0 δ̃0 ≤ 0
δ̃0/(1 + δ̃0) δ̃0 > 0

. (12)

As for the two radii {rB, rC}, we will relate them to their
corresponding redshifts by rB = r(zB) and rC = r(zC),
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Fig. 4 The triangular plot of void parameters (see Sect. 3) and MB for the horizontal cut case, where the contours shown at 68% (inner lines) and
95% (outer lines) confidence ranges

where r(z) satisfies the geodesic equations

dt

dz
= − R′(r, t)

(1 + z)Ṙ′(r, t)
, (13)

dr

dz
= −

√
1 + 2r2k(r)M̃2

(1 + z)Ṙ′(r, t)
. (14)

As mentioned before, the information about the whole void
is out of reach of SNIa data. As we probe the central part
of the void with an evaluated rC and consider the unknown

boundary to be far, but not extremely far, from that limit,
we therefore further relate rB to rC as rB = 2rC. That is to
say, we will only conservatively concentrate on the profile of
the void where z ≤ zC, while the profile of the void where
zC < z ≤ zB is set by our assumption rB = 2rC. Moreover,
as zB > 0 is meaningless when δ0 ∼ 0, we relate zB to
|δ0| by a free parameter |zB/δ0| which will proceed from a
uniform prior distribution |zB/δ0| ∈ [0, 100]. The remaining
free parameter δ0 will have a uniform prior distribution δ0 ∈
[−0.99, 0.99]. We finally can use the dependence of SNIa’s
luminosity distance on these two synthetic void parameters
{δ0, zB = |δ0| × |zB/δ0|} to probe the profile of the void,
where the angular diameter distance dA and the luminosity

123



859 Page 6 of 11 Eur. Phys. J. C (2023) 83 :859

Fig. 5 The triangular plot of void parameters (see Sect. 3) and MB for the vertical cut case, where the contours shown at 68% (inner lines) and
95% (outer lines) confidence ranges

distance dL are obtained from

dA(z; δ0, zB) =R(r(z), t (z); δ0, zB), (15)

dL(z; δ0, zB) =(1 + z)2dA(z; δ0, zB). (16)

2.2 Data

In this paper, we only use the combined Pantheon sample
[16] to constrain the local cosmic void. This dataset consists
of 1048 SNIa in the redshift range 0.01 < z < 2.3. In Fig. 2,
we show the distribution of these 1048 SNIa in the galactic
coordinate system (l, b). To probe the asymmetry in the local
cosmic inhomogeneity, we divide the full dataset into several
subsets, as listed in Table 1. Obviously, each SNIa subset

can only give the local information of the universe which
can be characterized by a corresponding LTB metric. That
is to say, the whole profile of the local comic void should
be reconstructed with the full SNIa dataset and described
by several corresponding LTB metrics. In other words, our
model obtains a probe of anisotropy as illustrated in Fig. 1.
There, each LTB metric being spherically symmetric, the
anisotropy of our model does not proceed from individual
segments but from the assembly of the various solid angle
segments. The model for each segment of the final assembly
is indeed spherically symmetric. Such segment’s model is
obtained by considering the data from that specific solid angle
to virtually be duplicated in all directions into a spherically
symmetric virtual data coverage. It then can be represented
by an LTB metric. We virtually proceed by restricting the
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Fig. 6 The triangular plot of void parameters (see Sect. 3) and MB for the two cuts case, where the contours shown at 68% (inner lines) and 95%
(outer lines) confidence ranges

obtained LTB metric within its source data solid angle. The
set of such solid-angle-restricted LTB metric is then able
to capture anisotropy in the composite total model, despite
originating from spherically symmetric models.

Therefore, for the case when the whole data set is used
(hereafter, no cut case), we have

χ2 = χ2
PAll

; (17)

for the division between North and South galactic plane sub-
sets (one horizontal cut case), we have

χ2 = χ2
PN

+ χ2
PS

; (18)

for the division between East and West galactic plane subsets
(one vertical cut case), we have

χ2 = χ2
PE

+ χ2
PW

; (19)

for the division into four quadrant using the previous subsets
of the galactic plane (two cuts case), we have

χ2 = χ2
PNE

+ χ2
PNW

+ χ2
PSE

+ χ2
PSW

. (20)

The χ2
s for every data subset are defined with

χ2
s =

∑
(mobs

B,s − mmod
B,s )TC−1

s (mobs
B,s − mmod

B,s ), (21)
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Table 3 The constraints on void parameters (see Sect. 3) and the abso-
lute magnitude

Dataset δ0 (68%) zC (95%) MB (68%)

PAll −0.05 ± 0.10 < 1.97 −19.41 ± 0.04

PN −0.11 ± 0.09 < 2.16 −19.40 ± 0.03

PS −0.07 ± 0.09 < 2.05

PW −0.08 ± 0.09 < 2.02 −19.40 ± 0.03

PE −0.11 ± 0.09 < 2.28

PNW −0.11 ± 0.08 < 2.16 −19.40 ± 0.03

PNE −0.09 ± 0.09 < 2.10

PSW −0.06 ± 0.08 < 1.88

PSE −0.15 ± 0.08 < 2.34

where Cs is the covariance matrix2 of the s-th subset, the
apparent magnitudes mobs

B,s observed by Pantheon, including
contributions from stretch x1, color c and host-galaxy cor-
rection �M . Note that the apparent magnitude mmod

B,s,i for the
i-th SNIa of the s-th subset in the �LTB model depends on
two void parameters {δ0,s, zB,s} and the absolute magnitude
MB as

mmod
B,s,i (zi ; δ0,s, zB,s, MB) (22)

= 5 log10
dL(zi ; δ0,s, zB,s)

1Mpc
+ 25 + MB. (23)

Since SNIa are supposed to be standard candles, we exclude
the effects of variations of MB in each SNIa subset on the
asymmetry in the local cosmic inhomogeneity. Therefore, for
every division case, we use the full dataset to constrain the
only nuisance parameter MB.

3 Results

The luminosity distance dL(z; δ0, zB) in the �LTB model
is numerically given by VoidDistances2020 [30] which
should be fed with parameters corresponding to the largest
scales of the universe. The initialization of the large scale uni-
verse parameters, outside the void, is done by CLASS [31],
even though we don’t use the CMB data here. For CLASS
[31], we need to provide the �CDM model’s six parameters.
In Table 2, we list such parameters given by Planck 2018
for TT,TE,EE+lowE+lensing [1]. Finally, the likelihoods in
Sect. 2.2 are added into MontePython [32] by our modified
monteLLTB [12].

2 The covariant matrix is made of all SNIa data correlations with each
other for the total set. Therefore the subset correlation matrices are
simply the sub-blocks of the total matrix where the lines and columns
have been rearranged to group the selected subsets together, restricted
to the subset considered.

In Table 3, the constraints on {δ0,s, zC,s, MB} with every
data subset are summarized. In Figs. 3, 4, 5 and 6, the con-
straints on {δ0,s, zC,s, MB} with every data subset for the no
cut, horizontal cut, vertical cut and two cuts cases are also
shown respectively. We choose to assume no anisotropy for
MB and treat it as a nuisance parameter. Because we need a
standard probe, we used the full data set to constrain it. This is
vindicated as the results shown in Table 3 turn out to be self-
consistent. Although we suppose δ0,s of every LTB metric is
only constrained with the corresponding data subset and there
is no correlation between δ0,s , for any division case, there is
an obvious correlation between δ0,s in Figs. 4, 5 and 6. That
correlation results from our assumption that SNIa are stan-
dard candles so all δ0,s directly correlates with MB and thus
indirectly correlates with the other δ0,s . For every division
case, the correlation between δ0,s just leads to a similar error
on δ0,s 0.08 ∼ 0.10 but imposes no effect on the mean value
of δ0,s . Generally speaking, for all division cases, the con-
straints on δ0,s are consistent with the FLRW metric at 95%
confidence level (CL): on the one hand, the constraints on δ0,s

are consistent with 0, which denotes cosmic homogeneity; on
the other hand, the constraints on δ0,s are consistent with each
other, which indicates cosmic isotropy. However, the con-
straint on δ0,PSE = −0.15 ± 0.08 deviates from 0 at almost
2σ . This deviation results either from the paucity of data in
the PSE data subset or the real depth of the local cosmic void
in this direction. Even though we have given up the determi-
nation of the profile at zC ≤ z < zB by setting rB = 2rC, the
constraints on zC,s are still very weak. Although we found
PDF peaks at zC,s = 0 and 1 � zC,s � 2.26, we can’t
conclude that the Pantheon data prefers a non-zero zC,s to
zC,s = 0.

Finally, we can use the constraints on {δ0,s, zC,s} for every
division case, i.e. their best fit, to probe both of the local
cosmic inhomogeneity and the cosmic anisotropy on small
scales. In Figs. 7, 8 and 9, we reconstruct the profile of local
cosmic void δ(z, t0) in different direction (solid lines) with
the constraints summarized in Table 3. At z � zC,s (dashed
lines), the curvature changes by 10%. And we complete the
rest of profile until zB,s (dotted lines) by setting rB = 2rC.
We find that even a small difference between zC,s can lead
to a large difference between zB,s when the void is deeper
at the center. And a deeper void (or a smaller δ0,s) usually
favours a wider void (or a larger zB,s). Therefore, even a
smaller cosmic inhomogeneity at the center of a deeper void
can lead to a larger cosmic anisotropy at the boundary of this
void.

4 Summary and discussion

In this paper, we try to test both of the local cosmic inho-
mogeneity and anisotropy on small scales at the same time
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Fig. 7 The integrated mass
density contrast δ(z, t0) for the
no cut and horizontal cut cases,
where δ0 = −0.05 (black solid),
zC = 1.97 (black dashed) and
zB = 15.1 (black dotted) for
PAll, δ0 = −0.11 (blue solid),
zC = 2.16 (blue dashed) and
zB = 19.4 (blue dotted) for PN
and δ0 = −0.07 (red solid),
zC = 2.05 (red dashed) and
zB = 16.8 (red dotted) for PS
respectively

Fig. 8 The integrated mass
density contrast δ(z, t0) for the
no cut and vertical cut cases,
where δ0 = −0.05 (black solid),
zC = 1.97 (black dashed) and
zB = 15.1 (black dotted) for
PAll, δ0 = −0.08 (blue solid),
zC = 2.02 (blue dashed) and
zB = 15.9 (blue dotted) for PW
and δ0 = −0.11 (red solid),
zC = 2.28 (red dashed) and
zB = 23.5 (red dotted) for PE
respectively
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Fig. 9 The integrated mass
density contrast δ(z, t0) for the
no cut and two cuts cases, where
δ0 = −0.05 (black solid),
zC = 1.97 (black dashed) and
zB = 15.1 (black dotted) for
PAll, δ0 = −0.11 (blue solid),
zC = 2.16 (blue dashed) and
zB = 19.4 (blue dotted) for
PNW, δ0 = −0.09 (red solid),
zC = 2.10 (red dashed) and
zB = 17.9 (red dotted) for PNE,
δ0 = −0.06 (green solid),
zC = 1.88 (green dashed) and
zB = 13.0 (green dotted) for
PSW and δ0 = −0.15 (cyan
solid), zC = 2.34 (cyan dashed)
and zB = 24.6 (cyan dotted) for
PSE respectively

using the SNIa data of Pantheon. Similarly to the hemisphere
comparison method, however using the LTB metric instead
of the FRLW metric, we first divide the full dataset into sev-
eral data subsets and then use the data subsets to constrain
the void parameters {δ0,s, zC,s} in the corresponding direc-
tion. Due to the paucity of data, we concentrate on the profile
of the void at z < zC where the curvature changes by 10%.
Despite this maneuver, only δ0,s turns out well constrained,
contrary to zC,s . The constraints on δ0,s for all division cases
are consistent with the FLRW metric at 95% CL. The con-
straints on zC,s for all division cases are almost beyond 2.26
at 95% CL. That is to say, our constraints are too weak to
challenge the cosmic homogeneity and isotropy. If the local
cosmic void does exist, however, even a smaller cosmic inho-
mogeneity at the center of a deeper void can lead to a larger
cosmic anisotropy at the boundary of this void.

Although our results are consistent with the cosmic homo-
geneity and isotropy at 95% CL, as the δ0,s are consistent
with 0 (denoting cosmic homogeneity) while the constraints
on δ0,s are consistent with each other (indicating cosmic
isotropy), there are some deviations from FLRW metric at
68% CL. These deviations result either from the paucity of
data in the subset or real physics in the corresponding direc-
tion. Therefore, more SNIa observations or other cosmolog-
ical observations are needed to alleviate the possible effect
of paucity of data in certain directions.
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