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Abstract We calculated transitions of the higher radial
excited charmonia ψ(nS) (n = 3, 4, 5) to the orbital excited
charmonium hc(1P) with emission of one pion or eta meson.
In calculations, the intermediate S- and P-wave charmed
meson loops were considered in terms of the nonrelativis-
tic effective field theory. The results indicate that the tran-
sitions of interest are dominated by the loops involving the
sPl = (1/2)+ charmed mesons, whereas the sPl = (1/2)−
charmed meson loops are of minor contributions. The par-
tial decay widths of ψ(nS) → hcπ0 are of the order of
0.01–1 keV. For the case of ψ(nS) → hcη, the partial decay
widths are from 0.1 to 100 keV, implying the branching ratios
from 10−5 to 10−3. Moreover, the partial decay widths for
ψ(nS) → hcη are found to decrease as the η-η′ mixing angle
increases. It is hoped that the present calculated results would
be observed in the future experiments.

1 Introduction

Decays of the heavy quarkonia can give valuable insights into
quantum chromodynamics (QCD), the theory of the strong
interactions, in both the perturbative and non-perturbative
regimes [1–3]. Up to now, it has accumulated huge data sam-
ples for the heavy quarkonium decays by various experi-
ments in the world, as summarized in the Review of Particle
Data Group [4]. These experimental observations provide us
a basic understanding of the quarkonium physics, but there
still remain many mysteries in charmonium physics to be
settled. Moreover, a number of theoretical tools (e.g., Quark
and potential models [5], Effective field theories [6], Lat-
tice gauge theory approaches [7]) have been developed to
give further interpretations. In the cc̄ sector, apart from the
ordinary hadrons in terms of the quark model, many exotic
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states, usually referred to asXYZ states, with different proper-
ties from the quark-model expectations have been observed
in numerous experiments. Many theoretical investigations
have been carried out in order to understand their nature (see
Refs. [8,9] for reviews).

Numerous calculations provide evidence that the inter-
mediate meson loops play an important role in the decays
of charmonia [10–33]. It indicates that for the J/ψ decay-
ing into the light pseudoscalar and vector mesons the meson
loops have a comparable contribution to that from the single-
OZI process [10]. The importance of the meson loops
is also revealed in the magnetic dipole transitions of the
J/ψ and ψ(2S), namely J/ψ → γ ηc and ψ(2 S) →
γ ηc(γ η′

c) [12,23]. To better understand the puzzle charmo-
nium exclusive decays (e.g., the celebrated ψ(3770) non-
DD̄ decays and ρπ puzzle), the effects of the meson loops
appear to be one of the possible interpretations [17,34,35].
Furthermore, the properties of some charmoniumlike states,
for instance the Y (4260), could be studied using the meson
loops [36–38].

The hadronic transitions with one pion or eta meson emis-
sion between two charmonia of mass smaller than ∼ 4.0 GeV
have been systematically investigated by Guo et al. [20,21].
That work was primarily based on a nonrelativistic effec-
tive field theory [19]. For the transitions between two S-
wave or two P-wave charmonia the intermediate charmed
meson loops give dominant contributions compared with the
tree-level ones. However, for some transitions between one
S-wave and one P-wave charmonia, especially for the tran-
sition ψ(2S) → hcπ0, the charmed meson loops are found
to be strongly suppressed and the tree-level contributions
are of absolute dominance. The suppression is partly due to
the rather small phase space [20]. Additionally, only the P-
wave couplings of the initial ψ(2S) or the final pion to a pair
of charmed mesons with sPl = (1/2)− were considered in
the early work [20,21], which would also suppress the loop
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Fig. 1 The hadron-level diagrams for the transitions ψ(nS) →
hcπ0(η) through the charged charmed meson loops. The neutral
charmed meson loops can be obtained by changing the charged mesons

into the corresponding neutral ones. In the same way, we could get the
loops composed of the Ds mesons only for the processes ψ(nS) → hcη

contributions. Hence, if we consider the higher radial excited
charmonia that lead to relatively large phase spaces and open
the DD̄ threshold, the suppression would be weakened. Fur-
thermore, when the (1/2)− charmed meson connecting the
initial charmonia and the final light meson (π0) is replaced
by the (1/2)+ charmed meson, the corresponding couplings
would occur in a S-wave, thereby enhancing the loop contri-
butions.

In this work, we calculated, using the nonrelativistic effec-
tive field theory, the hadronic transitions with one pion or
eta meson emission from the higher radial excited char-
monia ψ(nS) (n = 3 , 4 , 5) to the P-wave charmonium
hc(1P). In the calculations, we considered both the S- and
P-wave charmed meson loop contributions. As mentioned
above, compared with the suppressed transitions ψ(2S) →
hcπ0(η), the present transitions we consider have relatively
large phase spaces, thereby partly weakening the suppres-
sion. Moreover, the triangular loops comprised of three
S-wave vertices were included in our calculations. As a
consequence, the charmed meson loop contributions would
become more important again. Our calculations presented in
the following bear this out.

The rest of the paper is organized as follows. In Sect. 2,
we present the theoretical framework used in this work. Then
in Sect. 3 the numerical results are presented, and a brief
summary is given in Sect. 4.

2 Theoretical considerations

The numerical calculations in the framework of nonrela-
tivistic effective field theory used here are basically sim-
ilar to those [19–21] that turn out to be adequate for the
heavy quarkonium transitions through the corresponding
open quark mesons [8,19–22,39,40]. In the present calcu-
lations, we consider the contribution of the S- and P-wave
intermediate charmed meson loops. We exhibit in Fig. 1 the
Feynman diagrams of the charged charmed meson loops for
the transition processes ψ(nS) → hcπ0(η). The loops made
of the neutral or strange charmed mesons are not shown here,
but included in our calculations.

In the case of transitions between the radial and orbital
excited charmonia, we could describe the charmonium fields
using the two-component notation. The representation for the
S-wave charmonium fields is

J = �ψ · �σ + ηc , (1)

where �σ are Pauli sigma matrices, and �ψ and ηc indicate the
annihilation of the ψ and ηc states, respectively.

The fields for the pseudoscalar (Pa) and vector ( �Va)
charmed mesons made of heavy and light quarks of sPl =
(1/2)− are written together as

Ha = �Va · �σ + Pa . (2)

Here the subscript a indicates the light flavor. In terms
of the light quark, Pa = (D0 , D+ , D+

s ) and �Va =
(D∗0 , D∗+ , D∗+

s ). Apart from the sPl = (1/2)− charmed
mesons, we also take the sPl = (1/2)+ states into account.
In an analogous manner, such field is expressed by

Sa = �V1a · �σ + P∗
0a , (3)

with �V1a = (D0
1 , D+

1 , D+
s1) and P∗

0a = (D∗
0 , D∗+

0 , D∗+
s0 ).

As an illustration, three intermediate meson loops involving
the D0

1 and D∗
0 are shown in Fig. 2. Since the D±

1 and D∗±
0

have not been discovered, we assumed that the mass differ-
ence between D±

1 (D∗±
0 ) and D0

1(D∗
0) follows the relation [4]

mD±
1

− mD0
1

= mD∗±
0

− mD∗
0

= 1

2

[
(mD± − mD0) + (mD∗± − mD∗0)

] = 4.116 MeV.

(4)

In view of the parity, charge conjugation, and spin sym-
metry, the leading order Lagrangian involving an S-wave
charmonium and a pair of charmed and anticharmed mesons
is given by

Lψ = i
g1

2
〈H̄†

a �σ · ↔
∂H†

a J 〉 + g′
1〈(H̄†

a S
†
a + S̄†

a H
†
a )J 〉 + H.c.

(5)
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Fig. 2 The hadron-level diagrams including the neutral charmed
mesons (D1(2430)0 and D∗

0 ) with sPl = (1/2)+. The charged and
strange charmed meson loops are similar

Here the coupling constants g1 and g′
1 vary for different

n’s (see Appendix A). H̄a = − �̄V a · �σ + P̄a and S̄a =
− �̄V 1a · �σ + P̄∗

0a represent the charge conjugated meson fields.

Conventionally, A
↔
∂ B ≡ A(�∂B) − (�∂A)B and the symbol

〈· · ·〉 means the trace operation in spinor space.
For the coupling of the orbital excited P-wave charmo-

nium fields to the charmed mesons, we have

Lhc = i
g2

2
〈h†i

c Haσ
i H̄a〉 + H.c. , (6)

where h†i
c creates the hc state. The coupling constant g2 =

−4.2 GeV1/2 [20] was kept unchanged throughout the
present work.

By means of the heavy meson chiral perturbation theory,
the leading order Lagrangian coupling the light mesons π0

or η to the charmed meson pair is

Lφ = −g

2
〈H†

a Ha �σ · �uaa〉 + i
g′

2
〈H†

a Sau
0
aa〉 . (7)

Here the coupling constant g is known to be 0.6. �u =
−√

2�∂φ/Fπ + cφ3 and u0 = −√
2∂0φ/Fπ , where Fπ =

92.4 MeV is the pion decay constant in the chiral limit. φ

denotes the pseudoscalar fields represented by

φ =

⎛

⎜⎜⎜
⎜
⎝

π0

√
2

+ βη + γ η′
√

2
π+ K+

π− − π0

√
2

+ βη + γ η′
√

2
K 0

K− K̄ 0 −γ η + βη′

⎞

⎟⎟⎟
⎟
⎠

,

(8)

where the physical states η and η′ are generally considered
as the mixtures of the flavor eigenstates [25,41–44]:

|η〉 = β|nn̄〉 − γ |ss̄〉 ,

|η′〉 = γ |nn̄〉 + β|ss̄〉 ,
(9)

with |nn̄〉 ≡ (|uū〉 + |dd̄〉)/√2. The parameters β = cos α

and γ = sin α, where α = θP + arctan
√

2 with the pseu-
doscalar mixing angle θP ranging from −24.6◦ to −11.5◦
(see Ref. [4] and references therein).

Fig. 3 The partial widths of the different radial excited charmonia
ψ(3S) (a), ψ(4S) (b), and ψ(5 S) (c) decaying into hc and π0. The
black dash-dotted lines describe the widths contributed only from the
loops made of charmed mesons of sPl = (1/2)−, while the blue dashed
lines represent the results only by the loops involving D1(2430)0 or D∗

0
mesons with sPl = (1/2)+. The red lines are the total partial widths
including all the loops

3 Results and discussion

In Fig. 3, we show the partial widths of ψ(nS) → hcπ0.
It is known that different theoretical models predict various
masses of the S state charmonia. Consequently, we assign a
range of masses to ψ(nS) according to the theoretical pre-
dictions [45–52], which cover most of the 1−− charmonia.

3.1 Partial width of ψ(nS) → hcπ0

Transitions ψ(nS) → hcπ0 break the isospin symmetry.
As a result, the amplitudes are given by the differences of
the neutral and charged charmed meson loops, which are
formulated mathematically in Eqs. (B6) and (B7). In Fig. 3
we show the partial decay widths contributed from the sPl =
(1/2)− (dash-dotted line) and sPl = (1/2)+ (dashed line)
meson loops. The total widths result from all possible loops
are depicted by the solid line.

It is noticeable that the partial decay widths for
ψ(3 S, 4 S, 5 S) → hcπ0 are dominated by the loops involv-
ing the sPl = (1/2)+ charmed mesons. The partial widths
contributed from the loops in Fig. 1 and those like them that
are made of the sPl = (1/2)− charmed mesons are of order
10−3–10−2 keV, while they are around 0.1–10 keV from
those loops in Fig. 2. This finding is plausible in view of
the fact that all the vertex couplings for the loops involv-
ing the sPl = (1/2)+ charmed mesons can happen in an
S-wave, while the pion vertex and the initial charmonium
vertex in Fig. 1 and the analogue have to be in a P-wave. A
semi-quantitative estimation of the importance of the loops
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involving the sPl = (1/2)+ charmed mesons using the power
counting scheme [8,20,21] is given in Appendix C.

It is recalled that the contribution to the amplitude of
the ψ(2 S) → hcπ0 from the sPl = (1/2)− charmed
meson loops is strongly suppressed due to the small phase
spaces [20,21]. The partial width for the ψ(3 S, 4 S, 5 S) →
hcπ0 from the sPl = (1/2)− charmed meson loops was cal-
culated to be around 10−3–10−2 keV, more than two orders
of magnitude larger than the cases for the ψ(2S) (about 10−5

keV [20,21]). The weakened suppression can be attributed to
the large phase spaces of the present transitions of the higher
radial excited charmonia ψ(3S, 4S, 5S) with greater mass.

As seen from Fig. 3a the partial width of the ψ(3 S) →
hcπ0 remains nearly constant in the mass range considered.
The ψ(4040) with a full width of 80 MeV [4] is widely
accepted as the ψ(3 S). It yields a branching ratio of the order
of 2.1 × 10−7 for the ψ(3 S) → hcπ0. For the ψ(4S), the
partial decay width increases from 0.05 keV to 0.7 keV with
increasing the mass. Moreover, the curve shows two steps at
the mass of 4.28 GeV and 4.35 GeV. These two values are
close to the thresholds of the D1 D̄ and D∗

0 D̄
∗. The theoret-

ical model calculations [46,47] suggest both ψ(4230) and
ψ(4415) to be ψ(4S). In view of the widths of the ψ(4230)

and ψ(4415) [4], it yields branching ratios of ∼ 1 × 10−6

and 1 × 10−5, respectively.
For the ψ(5S), we consider the masses ranging from 4.421

GeV to 4.711 GeV based on the theoretical predictions [45–
52], which is larger than the threshold of the D1 D̄∗, i.e.,
∼ 4.42 GeV. Consequently, the partial width for the transi-
tion ψ(5S) → hcπ0 decreases as the mass goes away from
the threshold. It is seen that the partial width decreases mono-
tonically from about 0.3–0.02 keV with increasing the mass.
Either of the two resonances ψ(4415) and ψ(4660) could
be considered as ψ(5S) based on the predictions of different
theoretical models [45,46]. Combining our results and the
world average widths of 62 and 72 MeV for the ψ(4415) and
ψ(4660) [4], we get the branching ratios of ∼ 4 × 10−6 and
∼ 3.5 × 10−7, respectively.

3.2 Partial width of ψ(nS) → hcη

For the transitions ψ(nS) → hcη, they do not break isospin
symmetry, but suffer violation of the SU(3) symmetry. In
this case, the amplitudes can be described by the differ-
ences between the charmed-nonstrange and charmed-strange
meson loops as in Eqs. (B8) and (B9).

We exhibit in Fig. 4 the partial widths of the processes
ψ(3S, 4S, 5S) → hcη, which follow the different mass
dependence from the ψ(3 S, 4 S, 5 S) → hcπ0, especially
for the ψ(4 S , 5 S). The results were obtained using the η-
η′ mixing angle of −19.1◦, which was determined experi-
mentally [53]. In the mass range we considered, the partial
widths vary between 0.1 and 100 keV. Obviously, the par-

Fig. 4 The partial widths for ψ(3 S, 4 S, 5 S) → hcη. The represen-
tations of the different lines are analogous to those in the caption of
Fig. 3. The calculations were performed using the η-η′ mixing angle of
θP = −19.1◦ [53]

tial widths are also mainly contributed from the loops made
of the sPl = (1/2)+ mesons, although the sPl = (1/2)−
meson loops give rise to relatively large contributions for the
ψ(4S, 5S) → hcη due to the isospin symmetry in compar-
ison with the case of the pion emission (see Fig. 3). For the
case of ψ(3 S) → hcη, the rather small contribution from the
sPl = (1/2)− charmed meson loops results from the small
phase space.

If the ψ(3S) has a mass larger than the threshold of hc
and η, i.e., 4.073 GeV, we could observe a partial width of
about 1 keV. However, there is no experimental observation
of the 1−− cc̄ states in the mass range between 4.073 and
4.100 GeV. It is noted that the total width for the transi-
tion ψ(4 S) → hcη shows a minimum. This minimum is
caused by the contribution of the meson loops including the
D1 or D∗

0 . For the ψ(4230) and ψ(4415), which favor the
ψ(4S) states [45–47], our numerical results predict branch-
ing ratios of about 1.6 × 10−5 and 2.2 × 10−3, respectively.
For the ψ(5S) state, corresponding possibly to the experi-
mental observations of the ψ(4415) and ψ(4660), it yields
branching ratios of 9 × 10−4 and 1.5 × 10−3, respectively.

In Fig. 5 we plot the partial widths for the ψ(4415) and
ψ(4660) as a function of the η–η′ mixing angle θP . In calcu-
lations, the mixing angle θP was assumed to be varied from
−24.6◦ to −11.5◦ [4]. Moreover, we selected the ψ(4415)

and ψ(4660) to be ψ(4 S) and ψ(5 S), respectively, based
on the model predictions [46]. It is clearly seen that the par-
tial decay widths for ψ(4 S) and ψ(5 S) both decrease with
increasing the mixing angle.

4 Summary

We have presented the partial widths for the higher radial
excited charmonia ψ(nS) decaying into the orbital excited
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Fig. 5 The partial decay widths for ψ(4 S , 5 S) → hcη with the η–η′
mixing angle. The ψ(4S) is taken to be the ψ(4415) and the ψ(4660)

is assigned to be the ψ(5S). The solid lines are only to guide the eye

charmonium hc and the pion or eta meson. The widths were
calculated using the nonrelativistic effective field theory.
In the calculations, we considered only the contributions
from the loops made of the intermediate charmed mesons.
The results indicate that the partial widths for the transi-
tions ψ(nS) → hcπ0 are dominated by the loops involv-
ing the charmed mesons with sPl = (1/2)+, whereas the
sPl = (1/2)− charmed meson loop contributions are of minor
importance.

For the transitions ψ(3S, 4S, 5S) → hcπ0, the partial
widths are of the order of 0.01–1 keV, whereas the partial
widths of the processes ψ(3S, 4S, 5S) → hcη are found to
be between 0.1 keV and 100 keV. In view of the experimental
measurements for the full widths of the possible S-state char-
monia [4], for instance the ψ(4040), ψ(4415), and ψ(4660)

usually known as ψ(3 S), ψ(4S), and ψ(5S), respectively,
the partial widths for ψ(3S, 4S, 5S) → hcπ0 correspond
to branching ratios on the order of 10−7, 10−5, and 10−7,
while the branching ratios for ψ(4 S, 5 S) → hcη are 10−3

when the masses of the 4S and 5S charmonia are higher than
ψ(4415). Moreover, it is indicated that the partial widths
for the transitions ψ(4S, 5S) → hcη decrease as the η-η′
mixing angle increases. We found that the branching ratios
for ψ(nS) → hcπ0(η) exhibit maxima near ψ(4415) mass.
The ψ(4415) is generally supposed to be the ψ(4S) state
in literature. As a result, it is more likely to observe these
two processes in the ψ(4415) decays. Furthermore, more
and more data in the higher charmonia energy region can be
expected in the BESIII and Belle-II experiments.
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Appendix A: The coupling constants g1, g′
1, and g′

In order to obtain the coupling constants g1 and g′
1 involving

the ψ(nS) and D mesons, we use the two-body decays of
ψ(nS) into the DD̄ pair and the D1 D̄0 pair, whose partial
decay widths have been theoretically predicted in Ref. [45].
From the Lagrangian in Eq. (5), the widths for the foregoing
decays are

(ψ → DD̄) = g2
1

6π

M2
D

Mψ

|�q|3 ,

(ψ → D1 D̄
0) = g′

1
2

2π

MD1 MD0

Mψ

|�q| ,
(A1)

where �q is the momentum of some D meson in the final
states. Using the theoretical decay widths for the processes
ψ(3 S, 4 S, 5 S) → DD̄ calculated in linear and screened
potential models [45], we estimate the coupling constant
g1 = 0.28, 0.17, and 0.085 GeV−3/2 for ψ(3 S), ψ(4S),
and ψ(5S), respectively. These values are consistent with
Guo’s estimation [20,21,54] that the coupling constant g1

seems to decrease as n increases and to become less than 1
for n > 3.

Similarly, we get g′
1 = 0.42 GeV−1/2 for ψ(4 S) and

0.27 GeV−1/2 for ψ(5 S). Since the threshold of the pro-
cess ψ → D1 D̄0 exceeds all predicted masses of the ψ(3S),
we cannot directly estimate the coupling constant from the
decay width. Therefore, we assume g′

1
2
(3 S)/g′

1
2
(4 S) 

g1
2(3 S)/g1

2(4 S) and get g′
1 = 0.69 GeV−1/2 for ψ(3S).
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To estimate the coupling constant g′, the full width of the
particles D1(2340)0 and D∗

0 were assumed to be saturated
by the processes D0

1 → D∗π and D∗
0 → Dπ , respectively.

The relevant widths are [40]

(D0
1 → D∗π) = 3g′2

8πF2
π

MD∗

MD0
1

(
M2

π + |�qπ |2
)

|�qπ | ,

(D∗
0 → Dπ) = 3g′2

8πF2
π

MD

MD∗
0

(
M2

π + |�qπ |2
)

|�qπ | . (A2)

Using  = 314 MeV for D1(2340)0 [4], we get |g′| = 0.74.
Likewise, it follows |g′| = 0.52 for D∗

0 with  = 229 MeV.
In present calculations, we take the average value of g′ =
0.63.

Appendix B: Amplitudes of ψ(nS) → hcπ0(η)

Here we use the so-called vector loop integral introduced
by Guo [21] to describe the amplitudes governed by the
Lagrangians in the foregoing section. In the initial charmo-
nium frame the vector loop is defined as

qi I (1) ≡ i
∫

ddl

(2π)d

li

D1D2D3
, (B1)

where D1 = l2 − m2
1 + iε, D2 = (p − l)2 − m2

2 + iε, and
D3 = (l − q)2 − m2

3 + iε. m1, m2, and m3 are the mass
of the intermediate charmed mesons in the triangular loops
shown in Figs. 1 and 2, and l, (p − l), and (l − q) are their
four-momenta. Note that p represents the four-momentum
of the initial particle and q is the four-momentum of the light
meson in the final states, i.e., the pion or eta meson. Using the
technique of tensor reduction, the vector loop can be written
in the analytic form [21]

I (1) = μ23

am3

[
B(c′ − a) − B(c) + 1

2
(c′ − c)I (q)

]
. (B2)

Here I (q) is the three-point scalar loop function. In the non-
relativistic framework, we have [21]

I (q) = μ12μ23

16πm1m2m3

1√
a

[
arctan

(
c′ − c

2
√
ac

)

+ arctan

(
2a + c − c′

2
√
a(c′ − a)

)]
. (B3)

Moreover, the function B(c) is defined as

B(c) = − μ12μ23

16πm1m2m3

√
c − iε . (B4)

The parameters μi j , a, c, and c′ in Eqs. (B2)–(B4) are defined
as [21]

μi j = mim j

mi + m j
, a =

(
μ23

m3

)2

�q2,

c = 2μ12(m1 + m2 − M),

c′ = 2μ23(m2 + m3 + q0 − M) + μ23

m3
�q2, (B5)

where M is the mass of the initial particle.
In terms of the integral I (1), the amplitude Mπ

(1/2)− due

to the loops made of charmed mesons with sPl = (1/2)− is

Mπ
(1/2)− = 2gg1g2

Fπ
�q2�ε(ψ) · �ε(hc)

×
[
I (1)(D∗0 , D̄0 , D∗0) − I (1)(D∗0 , D̄∗0 , D∗0)

+ I (1)(D∗0 , D̄∗0 , D0) − I (1)(D0 , D̄∗0 , D∗0)

− I (1)(D∗+ , D− , D∗+) + I (1)(D∗+ , D∗− , D∗+)

− I (1)(D∗+ , D∗− , D+) + I (1)(D+ , D∗− , D∗+)

]

+ 2gg1g2

Fπ
�q · �ε(ψ)�q · �ε(hc)

×
[
I (1)(D0 , D̄0 , D∗0) − I (1)(D∗0 , D̄0 , D∗0)

+ I (1)(D0 , D̄∗0 , D∗0) − I (1)(D∗0 , D̄∗0 , D∗0)

− I (1)(D+ , D− , D∗+) + I (1)(D∗+ , D− , D∗+)

− I (1)(D+ , D∗− , D∗+)+ I (1)(D∗+ , D∗− , D∗+)

]
.

(B6)

Note that the variables D’s of the function I (1) not only
indicate the mesons forming the loops but also serve as the
corresponding charmed meson masses. For the loops involv-
ing the charmed mesons with sPl = (1/2)+, i.e., the loops in
Fig. 2 and the analogue, the amplitude is

Mπ
(1/2)+ = i

g′g′
1g2

Fπ

Eπ �ε(ψ) · �ε(hc)
[
I (1)(D∗

0 , D̄∗0 , D0)

+ 2I (1)(D0
1 , D̄0 , D∗0)−4I (1)(D0

1 , D̄∗0 , D∗0)

− I (1)(D∗+
0 , D∗− , D+)−2I (1)(D+

1 , D− , D∗+)

+ 4I (1)(D+
1 , D∗− , D∗+)

]
,

(B7)

where Eπ = √�q2 + M2
π is the pion energy in the rest frame

of the initial charmonium.
However, the amplitude of the transition ψ → hcη is

somewhat complicated for the loops composed of charmed
mesons of sPl = (1/2)− state due to the charmed-strange
mesons. It reads
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Mη

(1/2)− = β
2gg1g2

Fπ
�q2�ε(ψ) · �ε(hc)

×
[
I (1)(D∗0 , D̄0 , D∗0) − I (1)(D∗0 , D̄∗0 , D∗0)

+ I (1)(D∗0 , D̄∗0 , D0) − I (1)(D0 , D̄∗0 , D∗0)

+ I (1)(D∗+ , D− , D∗+) − I (1)(D∗+ , D∗− , D∗+)

+ I (1)(D∗+ , D∗− , D+) − I (1)(D+ , D∗− , D∗+)

]

+ √
2γ

2gg1g2

Fπ
�q2�ε(ψ) · �ε(hc)

×
[
I (1)(D+

s , D∗−
s , D∗+

s ) − I (1)(D∗+
s , D∗−

s , D+
s )

− I (1)(D∗+
s , D−

s , D∗+
s ) + I (1)(D∗+

s , D∗−
s , D∗+

s )

]

+ β
2gg1g2

Fπ
�q · �ε(ψ)�q · �ε(hc)

×
[
I (1)(D0 , D̄0 , D∗0) − I (1)(D∗0 , D̄0 , D∗0)

+ I (1)(D0 , D̄∗0 , D∗0) − I (1)(D∗0 , D̄∗0 , D∗0)

+ I (1)(D+ , D− , D∗+) − I (1)(D∗+ , D− , D∗+)

+ I (1)(D+ , D∗− , D∗+) − I (1)(D∗+ , D∗− , D∗+)

]

+ √
2γ

2gg1g2

Fπ
�q · �ε(ψ)�q · �ε(hc)

×
[
I (1)(D∗+

s , D−
s , D∗+

s ) − I (1)(D+
s , D−

s , D∗+
s )

− I (1)(D+
s , D∗−

s , D∗+
s )+ I (1)(D∗+

s , D∗−
s , D∗+

s )

]
.

(B8)

Here β and γ , already defined in Eq. (9), are governed by
the pseudoscalar mixing angle θP . The form of the amplitude
from the loops of the sPl = (1/2)+ mesons are

Mη

(1/2)+ = iβ
g′g′

1g2

Fπ

Eη�ε(ψ) · �ε(hc)
[
I (1)(D∗

0 , D̄∗0 , D0)

+ 2I (1)(D0
1 , D̄0 , D∗0) − 4I (1)(D0

1 , D̄∗0 , D∗0)

+ I (1)(D∗+
0 , D∗− , D+) + 2I (1)(D+

1 , D− , D∗+)

− 4I (1)(D+
1 , D∗− , D∗+)

]

− i
√

2γ
g′g′

1g2

Fπ

Eη�ε(ψ) · �ε(hc)
[
I (1)(D∗+

s0 , D∗−
s , D+

s )

+ 2I (1)(D+
s1 , D−

s , D∗+
s ) − 4I (1)(D+

s1 , D∗−
s , D∗+

s )

]
.

(B9)

Here it should be pointed out that the amplitudes in Eqs. (B6)–
(B9) need to be multiplied by the factor

√
MψMhc due to

the nonrelativistic normalization of the heavy fields in the
Lagrangian, where Mψ and Mhc are the initial and final char-
monium, respectively.

Appendix C: Power counting

In order to semiquantitatively evaluate the importance of
the loops involving the (1/2)+ charmed mesons as shown
in Fig. 2, we here provide the NREFT power counting [8].
Within the framework of NREFT, the amplitudes from those
loops made of (1/2)− charmed mesons like in Fig. 1 scale
as [20,21]

M(1/2)− ∝ �q2

v−M2
D

1

v2−
. (C1)

For the loops involving the (1/2)+ charmed mesons like in
Fig. 2, the corresponding amplitudes scale as

M(1/2)+ ∝ Eπ

v+MD

1

v2+
. (C2)

Note that these two scaling laws have included the sym-
metry breaking [21], which is implied by 1/v2. Here v±
are regraded as the average velocities of the intermediate
charmed mesons in the triangular loops, defined as [8]

v = 1

2

( √|c|
2μ12

+
√|c′ − a|

2μ23

)
, (C3)

where a, c, c′, and μi j have been defined in Eq. (B5).
In the present case, the momentum |�q| and the energy

Eπ are approximately equal as well as the two velocities
v±. Hence, from Eqs. (C1) and (C3), the importance of the
(1/2)+ charmed meson loops is roughly indicated by the fac-
tor MD/|�q| > 1. In a detailed manner, taking Figs. 1a and 2a
as examples, we get v− = 0.41, v+ = 0.38, |�q| = 464 MeV,
and Eπ = 483 MeV for ψ(4040) → hcπ0. Therefore, it
yields M(1/2)+/M(1/2)− ∼ O(5). For ψ(4415) → hcπ0,
the amplitude ratio M(1/2)+/M(1/2)− ∼ O(10). The power
counting for the transitions with eta emission is similar. These
rough estimations could indicate the importance of the loops
involving the (1/2)+ charmed mesons.
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