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Abstract In the curved spacetime the conservation of
stress-energy tensor T ν

μ;ν = 0 has been questioned by
Rastall. However, this idea in which T ν

μ;ν = λR,μ is
own questionable. In this study and in follows the covari-
ant form of thermodynamics law proposed by Israel and his
colleagues, the new non-conserved modified gravity is intro-
duced. As its application, we have explored spherically sym-
metric solutions and evolution of the Universe for very early
and late time Universe in the presence of the cosmologi-
cal constant. As shown, the model gives no new result with
respect to Einstein gravity for vacuum solutions, while dur-
ing inflation only scalar spectra index deviates from standard
model. Also, we have considered late-time and constraint
model with observations through using MCMC algorithm.

1 Introduction

The canceling out the covariant divergence of Einstein ten-
sor is considered as one of the fundamental assumptions in
curved space-time. Such assumption implies that the energy–
momentum tensor is conserved. Actually, with an eye to
validity of conserved energy–momentum condition in spe-
cial relativity, one can use the principle of equivalence to
validity of this condition in general relativity [1]. Applying
variational principle is another way to derive T ν

μ;ν = 0. One
must assume that the Lagrangian density can be written as a
sum of two independent terms, the first term is independent
of the derivatives of the metric while second one is indepen-
dent of the non-gravitational field variables [2]. Finally, as
third approach, one can derive T ν

μ;ν = 0 on the basis of a
classical, statistical model of matter. Here, one must assume
that matter consists of particles that collide with one another,
geometrically without changing in rest mass during collisions
[3].
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These assumptions derive T ν
μ;ν = 0 are all questionable.

The well-known problem of the non-renormalisability of Ein-
stein gravity has given rise to dozen attempts to view it as an
effective low-energy theory [4]. In string theory, for instance,
the Einstein–Hilbert action is just the first term in an infinite
series of gravitational corrections. As result, it is possible in
quantumic circumstances in which energy levels increases
and or within event horizon of black holes, curvature of
spacetime and gravity deviates from the Einsteinian gen-
eral relativity theory. This can be explained through differ-
ent scenarios, using more curvature terms, and perturbations
in geometry and or as another possible approach through
breaking energy–momentum tensor. It depicts the validity
of conservation of energy–momentum in special relativity
may broke in quantumic mediums and or in high gravity
energy levels. Furthermore, the second assumption in which
one study Lagrangian of theory to derive T ν

μ;ν = 0 is own
questionable in astronomy. Coupling two independent terms
in Einstein–Hilbert action built some modified theories of
gravity, implies T ν

μ;ν �= 0, and thus to keep T ν
μ;ν = 0

in such theories one needs to redefine energy–momentum
tensor as effective energy–momentum tensor [5]. Moreover,
the creation and annihilation particles in collision process
demonstrates the classical, statistical model of matter is valid
only for so low temperature system [6].

Beside all plausible theories to address some of these
issues, and instead expanding geometrical part of action, it
is possible to develop matter term through non-Einsteinian
matter source [7] and or ignoring conservation of energy–
momentum tensor wherein one can assume T ν

μ;ν = aμ,
when the functions aμ vanish in flat spacetime. Such the-
ory is proposed by Rastall in which aμ = λR,μ, where λ

is proportional constant and R = gμνRμν is the curvature
invariant, Ricci scalar [8]. The Rastall theory can be con-
sidered as a good candidate for particle creation through its
non-minimal coupling [9]. Apart from the celestial object
solutions [10–12], different cosmological aspects of Rastall
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gravity are studied [13]. Recently, it is shown that the original
Rastall gravity presents the cosmological-like scenario while
both density and pressure of corresponded dark energy vary
with time [14]. Although Rastall gravity under some condi-
tions is equivalent to Einstein gravity [15], Rastall assump-
tion is own questionable. For instance, one may replace Ricci
scalar in relation T ν

μ;ν = λR,μ by an arbitrary function of
Ricci scalar or other geometrical scalar to illustrate flow of
the energy–momentum in curved geometry [16]. This implies
in the absence of strong theoretical evidence, one can sug-
gest different form of geometrical scalar built from Riemann
tensor and its derivatives to show flux of energy–momentum
tensor in curved spacetime, namely

T ν
μ;ν = λ f (R, RμνR

μν, RμνσλR
μνσλ, . . .),μ. (1)

In fact, Rastall argument gives family of modified theory
of gravity in which T ν

μ;ν = λR,μ presents simplest model.
Thus, Rastall idea is not clear and needs more considerations.

The contents in the paper are organized as follows. In
Sect. 2 and by revisiting covariant thermodynamics laws, we
have proposed new modified theory of gravity. Section 3 is
devoted to effects of this new modified gravity in very early
Universe, inflation era, theoretically. Also, we have inves-
tigated the cosmology evolution in late-time through using
observations and adding the cosmological constant to field
equations. The remarks given in Sect. 5.

2 Covariant thermodynamics and new gravity model

In this section we will investigate first thermodynamics law to
explore and introduce new modified theory of gravity. In this
context, exploring thermodynamics may lead one to some
robust clues. In relativistic thermodynamics the transforma-
tion laws of heat and temperature under the Lorentz group is
considered as one of the most and opening topics. As exam-
ple, Einstein and Planck proposed [17,18]

δQ = δQ0γ
−1, T = T0γ

−1 (2)

while Ott and Arzelies suggested other transformation form
[19,20]

δQ = δQ0γ, T = T0γ (3)

where δQ and T denote heat and temperature, respectively,
the variables with subscript represent those observed in the
comoving frame, and γ is the Lorentz factor. In addition to
these options, Landsberg assumed that heat and temperature
are absolute parameters and thus comoving and independent
observers measure same heat and temperature [21,22]. How-
ever, just two first options (2) and (3) can satisfy a relativistic
Carnot cycle [23,24]. In particular, since Einstein theory of
relativity is formulated through covariant form, it seems that

covariant form of thermodynamics laws is necessary to sat-
isfy Lorentz transformation. One of the earliest attempts in
this issue was made by Israel and collaborators [25,26]. They
proposed a 4-vector Sμ for the flux of entropy in similar way
to the 4-vector for the flux of particle number. So, like the par-
ticle number that is scalar for comoving observer, it is shown
that entropy in its comoving frame is a scalar as well [27].
As result, this model is not in conflict with standard expres-
sion of thermodynamical expression only when it is explored
by comoving observer. To study such model in a continu-
ous medium we assume that there are some interactions and
non-viscous components. In addition to conservation of the
energy–momentum tensor given by
∑

i

T μν
i,μ = 0 (4)

there exists number of 4-vector Jμ
j i = n ji uμ, representing

the flux densities of conserved charges j for component i-th
expressed as1

∑

i

Jμ
j i,μ = 0. (5)

Introducing the entropy 4-flux Sμ
i and using Gibbs–

Duhem relations, one can write the following covariant equa-
tion [25]

∑

i

Sμ
i,μ = −

∑

i

⎛

⎝
∑

j

α j i Jμ
j i,μ + βνiT μν

i,μ

⎞

⎠ (6)

where βν = uν/T0 is the inverse temperature 4-vector pro-
posed by Van Kampen [28], and α j = ζ j/T0. The parameter
ζ j denotes the relativistic injection energy or chemical poten-
tial per particle of type j , related to its classical counterpart
by:

ζ j = m j + ζ
(classic)
j . (7)

Although this model proposed for interaction between two
or among some different fluids, one may use this model
for unique field, includes interacting particles carry differ-
ent chemical potential/charge. Hence, Eq. (6) recasts to

Sμ
,μ = −

∑

l

αl Jμ
l,μ − βνT μν

,μ (8)

where l represents l-th particle in the finite system. For such
explicit case, rearranging Eq. (8) with respect to energy–
momentum tensor yields

T μν
,μ = −uν

(
T0S

μ
,μ +

∑

l

ζl Jμ
l,μ

)
. (9)

1 The n ji is positive number denotes number of particles with charge
j for i-th component.
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For the perfect fluid given by density ρ and pressure p,
the energy–momentum tensor given by

T μν = (ρ + p) uμuν + pgμν (10)

where gμν presents contravariant form of metric gμν . As
result, for non-interacting/chargeless fluid, Eq. (9) shrinks to
the first law of thermodynamics, namely

dρ = |T0|dS. (11)

Thus, Eqs. (6) or (8) present entropy and temperature as
non-conserved effect of stress-energy tensor in Minkowski
geometry. Consequently, in the system includes interact-
ing/charged particles, entropy and temperature evolve and
thus the energy–momentum tensor is not conserved in flat-
ness spacetime. It demonstrates one can expand Rastall argu-
ment to Minkowskian geometry. On the other hand, Eqs. (6)
and or (8) give robust theoretical origin of non-conserved
scenario for energy–momentum tensor. In fact, although
these equations confirm Rastall viewpoint, unlike his model
conservation of energy–momentum is broken with entropy-
temperature evolution not Ricci or other geometrical param-
eters.

In order to generalize Israel model to curved geometry,
one just need to use general relativity principle [1],

∑

i

Sμ

i;μ = −
∑

i

⎛

⎝
∑

j

α j i Jμ

j i;μ + βνiT μν

i;μ

⎞

⎠ (12)

in which usual (scalar) derivative replaced by covariant
derivative. As result, after some manipulations, the field
equations become,

Gμν − κ ′ ∑

i

uνi

⎛

⎝T0Sμi +
∑

j

ζ j i J jμi

⎞

⎠ = κ ′ ∑

i

Tμν i

(13)

where κ ′ is proportional constant. Defining non-conserved
term for each component participated in our system as

Eμν = uν

⎛

⎝T0Sμ +
∑

j

ζ j J jμ

⎞

⎠ (14)

recasts field equations (13) like

Gμν − κ ′ ∑

i

Eμνi =
∑

i

Tμνi (15)

which shows each fluid plays explicit role in field equations.
Summation on all different components participated in

system (summation on index i), yields,

Gμν − κ ′E [e]
μν = κ ′T [e]

μν (16)

where we define effective terms E [e]
μν and T [e]

μν through
∑

i

Xμνi = Xμν[e] (17)

where X = E and T .
Obviously, in the absence of 4-vector flux entropy and

charge terms on the left-hand side, the field equations (16)
give the standard field equations. It implies without losing
generality, one can set κ ′ = κ = 8π . Moreover, in absence of
the matter (vacuum scenario), the energy–momentum tensor
and non-conserved terms in left-hand side vanished and thus
one finds R = 0. It implies that the field equations (16) for
vacuum solutions gives no new results and thus considering
static and spherically symmetric solutions of field equations
(16) leads one to the usual Schwarzschild metric.

To consider consistency of our modified theory, it is worth-
while to explore and present Lagrangian of non-conserved
term. In this regard, relation (9) and or (12) leads one to

δE/δT = −1, δEμν/δTμν = −1 (18)

where E = gμνEμν and T = gμνTμν are trace of non-
conserved and energy–momentum parts, respectively for
each field attends in our model.

We introduce total Lagrangian as follows

Ltot = LEH + LM + LNC (19)

where LEH , LM and LNC are Lagrangian of Einstein–
Hilbert, matter field and non-conserved LNC = E/4.

With aid of Lagrangian (19), the action of our model
becomes

S =
∫ (

R

2κ
+ LM + 1

4
E
)√−g d4x . (20)

Variation with respect to metric gμν , we find

δS =
∫

1

2κ

√−gGμν − 1

2

√−gTμν + 1

4

δ
(E√−g

)

δgμν
d4x

=
∫ √−g

2

(
Gμν

κ
− Tμν

)
+ 1

4
E δ

(√−g
)

δgμν
+ 1

4

√−g
δE

δgμν
d4x

=
∫ √−g

2

(
Gμν

κ
− Tμν − 1

4
Egμν

)
+ 1

4

√−g
δE
δT

(
δT

δgμν

)
d4x .

(21)

To find modified field equation one only needs to derive
last term in action (21). In this context, the last term in action
(21) given by [29]

δT

δgμν
= Tμν + Tμν (22)

in which Tμν defined by

Tμν ≡ gαβ δTαβ

δgμν
= −1

2

(
8T̄μν − T̄ gμν

) + (ρ + p) uμuν

(23)
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where T̄μν as modified energy–momentum tensor is defined
as

T̄μν = (ρ + p) uμuν + 1

2
pgμν. (24)

Hence, T̄ = −ρ + p. Rewriting Eq. (24) as covariant form
of the standard energy–momentum tensor (10) reveals

Tμν ≡ gαβ δTαβ

δgμν
= −3Tμν + 1

2
Tgμν. (25)

As result, Eq. (22) recasts to

δT

δgμν
= −2Tμν + 1

2
Tgμν. (26)

In general case, the relation (18) illustrates that non-
conserved part given as function of energy–momentum ten-
sor, and thus LM and LNC are depend on each other, shown in
Eq. (26). This is not surprising result in our model. As shown
in [30], even original Rastall gravity can be given by using
explicit form of f (R, T ) gravity for non-linear relation
between matter and non-conserved terms. To keep standard
form of Einstein field equations and also since Eq. (26) arises
from variation of non-conserved Lagrangian with respect to
metric, i.e., ∂

(
E√−g

)
/∂gμν , using relations (18) yields

δT

δgμν
= 2Eμν − 1

2
Egμν. (27)

Plugging this equation in last term of Eq. (21), one finds

δS =
∫ √−g

2

(
Gμν

κ
− Tμν − Eμν

)
d4x (28)

which leads to modified Einstein–Hilbert action

Gμν − κEμν = κTμν. (29)

Thus, the Lagrangian (19) demonstrate that the model is con-
sistent for different fluids and the field equations (16) give
valuable modified theory of gravity in different astrophysical
and astronomical studies.

It is to be noted that if the energy–momentum tensor
depends on metric only, the relations (18) implies that the
non-conserved term is also function of metric. This assump-
tion helps us to present simplest field equations in this study,
Eq. (29). However, as discussed in Refs. [31,32], if Tμν given
by other scalar field such as χ , model includes two field
equations, one comes from variation of Lagrangian (19) with
respect to metric while other derives from variation of (19)
with respect to field χ which can unify dark energy and dark
matter as uniqueness field.

In the next two sections the cosmological applications for
primary inflation and late-time acceleration phase are stud-
ied.

3 Inflation

In follows and as the first glance, it is worthwhile to consider
field equations (13) or (16) for evolution of the Universe
while FRW metric is used,

ds2 = −dt2 + a2
(

dr2

1 − kr2 + r2dθ2 + r2sin2θdφ2
)

(30)

where a = a(t) is the cosmic scale factor and k = 0, 1 and
−1 correspond to flat, close, and open Universe, respectively.
Observations confirm that the Universe is flat and thus in fol-
lows we assume k = 0. As results, the Friedmann equations
for comoving observer given by,

3H2 − 8π

⎛

⎝T0S0 +
∑

j

ζ j J j0

⎞

⎠ = 8πρ̃ (31)

2Ḣ + 3H2 = −8π p̃ (32)

in which H = ȧ/a is Hubble parameter and over dot denotes
derivative with respect to cosmic time. Two parameters ρ̃ and
p̃ are total density and pressure filled Universe, respectively.
As shown, in frame of comoving observer entropy is pre-
sented as scalar parameter as well.

The general relativity governs well space-time curvature
around massive objects and large-scale structure. However,
finding the flux density J0 for these celestial ingredients and
or for whole Universe as unique system is far away from hand
and thus one needs to use approximation methods. In this con-
text, by using definition of charge density J j0 in comoving
frame, n ju0, and using relation (7), we should have:

ζ j J j0 =
(
m j + ζ

(classic)
j

)
n ju

0. (33)

If we assume that relativistic injection energy ζ j is propor-
tional to density of total density ρ̃, namely

ζ j = m j + ζ
(classic)
j = ξ ρ̃ j (34)

the first Friedmann equation (13) becomes

3H2 − 8π

⎛

⎝T0S0 +
∑

j

ζ̃ j ρ̃ j

⎞

⎠ = 8πρ̃ (35)

where we define ζ̃ j = ξn j . Although this coefficient plays
key role in studying charged black holes surrounded by mat-
ter fields or in system with high levels of interaction among
particles such as interior medium of stars, due to negligible
interaction among different particles in the large-scale struc-
ture this parameter must be so small. However, keeping it
in cosmological models may alleviate some inconsistencies
especially in �CDM model.

In the large-scale structures, homogeneity and isotropic
assumptions implies that the electric charge/interaction is
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same in all directions and in all selected part of the observable
Universe. So, summation on index j in Eq. (35)
∑

j

ζ̃ j ρ̃ j0 = ζ̃ ρ̃ (36)

must be universal. In fact, this assumption helps us to simplify
what comes in follows. According to this suggestion, the total
charge/interaction density is uniform in different directions
and zones of the Universe. As result, summation gives net
charge in our model and so sign of constant ζ̃ shows resultant
charge/interaction in system, Universe.

The observations related to the cosmic microwave back-
ground (CMB) through various surveys contain different
information about the formation and evolution of the Uni-
verse in which some concepts such as flatness and horizon
problems challenge the standard cosmological model [33].
To solve these problems, the primary accelerated expansion
known as cosmic inflation has been proposed for the earliest
stage of the evolution of the Universe [34]. During this short
era, one may assume that the Universe fills with unknown
field, for instance, the scalar field given by Lagrangian

L = −1

2
gμν∂μϕ∂νϕ − V (ϕ) (37)

where ϕ = ϕ(t) presents the scalar field and V (ϕ) is the
potential of the scalar field. As result, density and pressure
of such field become

ρ = 1

2
ϕ̇2 + V (ϕ) , p = 1

2
ϕ̇2 − V (ϕ) (38)

and then Friedmann equations recast to

3H2 − κT0S0 = κ
(

1 + ζ̃
) (

1

2
ϕ̇2 + V (ϕ)

)
(39)

2Ḣ + 3H2 = −κ

(
1

2
ϕ̇2 − V (ϕ)

)
. (40)

Taking derivative with respect to time from Eq. (39) and
substituting its result in Eq. (40) yields continuity equation,

ϕ̇
(
ϕ̈ + 3H ϕ̇ + V ′) + ζ̃

(
ϕ̇ϕ̈ + ϕ̇V ′ + d

dt

(
T0S0

ζ̃

))

+3H ζ̃

(
1

2
ϕ̇2 + V (ϕ) + T0S0

ζ̃

)
= 0 (41)

where prime is derivative with respect to scalar field. More-
over, Lagrangian (37) obtains the Klein–Gordon equation

ϕ̈ + 3H ϕ̇ + V ′ = 0. (42)

During the inflation era the comoving Hubble horizon
shrinks, i.e.,

d (aH)−1

dt
= −1

a
(1 − ε1) < 0 (43)

where, ε1 < 1 is the first slow-roll parameter, defined as
[35,36]

ε1 (t) ≡ − Ḣ

H2 . (44)

In inflation context we can describes the rate of the expansion
of inflation as a natural logarithm of the scale factor [37,38],

N = ln
(aend

a

)
=

∫ tend

t
Hdt (45)

where the index ‘end’ denotes the value of quantitates at the
end of inflation epoch. Through this e-folding number N ,
one can define several possible sets of slow roll parameters,
namely [39]

εn+1 (t) ≡ d ln |εn (t)|
dN

. (46)

As result, the second slow-roll parameter becomes

ε2 (t) = ε̇1

Hε1
= Ḧ

H Ḣ
− 2

Ḣ

H2 . (47)

It is well-known under condition |εn| � 1, the inflation
occurs and will continue long enough to solve the standard
cosmological problems [39].

In order to find first and second slow roll parameters, using
Eqs. (41) and (42) suggest

∂

∂t

(
ζ̃ ρ + T0S0

)
+ 3H

(
ζ̃ ρ + T0S0

)
= 0. (48)

Thus, we should have:

ζ̃ ρ + T0S0 = c0a
−3 (49)

where c0 is constant of the model. With aid of above relation
and Friedmann equations, one finds

ε1 = 3
(
ϕ̇2 + c0a−3

)

ϕ̇2 + 2V (ϕ) + 2c0a−3 . (50)

Satisfying ε1 � 1 leads one to

ϕ̇2 + c0

2
a−3 � V (ϕ) . (51)

Using this condition, Eq. (49) implies that

T0S0 ∝ V (ϕ) (52)

where density (38) is used. Since temperature exponentially
drops down as function of scale factor, with suitable potential
form, the Eq. (52) can keep the second law of thermodynam-
ics, namely

S0 ∝ anV, for n > 0. (53)

For instance, in the so-called chaotic inflation model, the
potential becomes [40]

V = V0 (κφ)σ (54)
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where V0 and σ are constants of the model. As discussed in
[41], κφ ≈ √

σ (4N + σ)/2 wherein N is the natural loga-
rithm of the scale factor given by Eq. (45). Plugging potential
(54) in entropy (53) shows that the entropy increases with
cosmic time, satisfies the second law of thermodynamics.

Applying condition (51) on Eq. (50) gives ε1,

ε1 ≈ 3
(
ϕ̇2 + c0a−3

)

2V (ϕ)
(55)

approximately. The second slow-roll parameter can also be
defined as

η = 2ε1 − ε2

2
≈ − ϕ̇ϕ̈ − 3c0Ha−3

H
(
ϕ̇2 + c0a−3

) (56)

where in the last approximation, relation (51) is used. Fur-
thermore, condition |η| � 1 yields (c0 �= 0)

If c0 > −ϕ̇2a3 :
⎧
⎨

⎩

3c0H
2ϕ̇a3 < ϕ̈ <

H
(
2ϕ̇2a3+5c0

)

2ϕ̇a3

− H
(
2ϕ̇2a3−c0

)

2ϕ̇a3 < ϕ̈ ≤ 3c0H
2ϕ̇a3

(57a)

If c0 < −ϕ̇2a3 :
⎧
⎨

⎩

H
(
2ϕ̇2a3+5c0

)

2ϕ̇a3 < ϕ̈ < 3c0H
2ϕ̇a3

3c0H
2ϕ̇a3 ≤ ϕ̈ < − H

(
2ϕ̇2a3−c0

)

2ϕ̇a3 .

(57b)

These conditions together with condition (51) are known as
the slow-roll conditions. If these conditions are fulfilled, the
inflation onsets, continues and when those are violated, the
inflation process will end. Using the slow-roll conditions (51)
and (57), Eqs. (39) and (42) can also be approximated to

H2 ≈ κ

3
V (ϕ) (58)

ϕ̇ ≈ − V ′

3H
(59)

where Eq. (49) is used. Consequently, the slow-roll parame-
ters (55) and (56) can be written in terms of the inflationary
potential and its derivatives,

ε1 ≈ 1

2κ

(
V ′

V

)2

(60)

η ≈ V ′2V ′′ + 9c0κ
2V 2a−3

κVV ′2 + 3c0κ2V 2a−3
(61)

In order to describe and examine the theoretical predictions of
the inflation scenario, the model should satisfy observations.
In this context, three observables defined as [39]

• The scalar spectra index:

nS = 1 − 6ε1 + 2η. (62)

• The tensor spectral index:

nT = −2ε1. (63)

• The tensor-to-scalar ratio:

r = 16ε1. (64)

In this regard, the latest constraints from Planck data on the
scalar spectral index and the tensor-to-scalar ratio suggests
[42]

nS = 0.9649 ± 0.0042 (65)

r < 0.10. (66)

Although the non-conserved terms give no new ε1 with
respect to standard inflation theory [43,44], the second slow-
roll parameter η depends on non-conserved parameter. As
result, the model only deviates from standard inflation theory
for the scalar spectra index. However, exploring the second
slow roll (61) shows,

η ≈ V ′′

κV
+ 9c0κVa−3

V ′2 (67)

when condition (51) is used. The exponentially evolution of
the Universe during inflation era, for instance implies that the
second term gives no tangible effects on the second slow-
roll parameter for chaotic potential (54), and thus it gives
no tangible deviations from the standard form of the scalar
spectra index [43].

However, this is open field and thus interested people can
explore different potential models to check effects of the non-
conserved term on scalar potential V (ϕ) and the scalar spec-
tra index nS .

4 Late-time universe

In this section the late-time Universe in the presence of the
cosmological constant is studied. Adding the cosmological
constant parameter to Friedmann equations (31) and (32),
one obtains

3H2 = k (ρm + ψ) + � (68)

2Ḣ + 3H2 = � (69)

where ρm is matter density and we define

ψ = −T0St −
∑

j

ζ j J j t . (70)

Defining density and pressure of effective dark energy as

ρe
X = �

κ
+ ψ (71)

peX = −�

κ
(72)
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lead us to following continuity equations:

ρ̇m + 3Hρm = Q (73)

ρ̇e
X + 3H

(
ρe
X + peX

) = −Q (74)

where Q denotes an interaction term.
As first scenario and in lack of microscopic origin of inter-

action term between dark energy and matter one may assume
Q = 0, which gives

ρm = ρm0a
−3 (75)

ψ = ψ0a
−3. (76)

Substituting Eqs. (75) and (76) in Friedmann equation (68)
and constraining model with current value of free parameters,
yields

� = 3H2
0 (1 − �m0) − κψ0. (77)

Obviously in the absence of non-conserved term the model
coincides with �CDM theory. With aid of this relation,
Eqs. (75) and (76), the equation of state of such dark energy
becomes

ωX = −1 + κψ0a−3

3H2
0 (1 − �m0) + κψ0

(
a−3 − 1

) . (78)

Furthermore, the deceleration parameter given by

q = 1

2

(
1 + 3pX

ρX + ρm

)
. (79)

In order to constraint model with observations, we apply
the Markov Chain Monte Carlo (MCMC) method based
on the emcee package [45], in which the total likelihoods
L ∝ e−χ2/2 includes supernovae Ia data, baryon acous-
tic oscillations (BAO) measurements from redshift interval
(0.1 < z < 0.7), and cosmic microwave radiation (CMB).
Then the χ2 is given as

χ2 = χ2
SN + χ2

BAO + χ2
CMB (80)

with the following 3-dimensional parameter space:

θ ≡ (�m0, H0, ψ0) . (81)

Furthermore, the priors to the model parameter is taken as fol-
lows: the initial fractional matter density �m0 ∈ (0, 1); the
Hubble constant range H0 ∈ (50, 100) and ψ0 ∈ (0, 10).
The results of the best fit values of the model derived by min-
imizing χ2, relation (80). In Table 2 the best fit values for
parameter space (81) are summarized. We also have plotted
the one dimensional marginalized distribution on individual
parameters and two-dimensional contours in Fig. 1.

With aid of these set of free parameters of the model, the
evolution of equation of state (78) and deceleration parame-
ter (79) are plotted in Fig. 2. As shown, model presents dark
energy that behaves as pressureless matter in past while in

Fig. 1 The one-dimensional marginalized distribution on individual
parameters and two-dimensional contours by using SNe + BAO + CMB
data points

Fig. 2 The Evolution of equation of state (up) and deceleration param-
eter (below) panels versus redshift for non-interaction model when we
use H0 = 67.59, �m0 = 0.29 and ψ0 = 1.84

future it coincides with standard cosmological constant. Fur-
thermore, its current equation of state is slightly bigger than
−1, ωX ≈ −0.995. Exploring deceleration parameter reveals
that the acceleration phase onsets at zT ≈ 0.68 which satis-
fies the joint analysis of SNe + CMB data with the �CDM
model [46].
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Fig. 3 The total entropy of non-interaction scenario versus redshift
when free parameters are set with values in Table 1

Table 1 The best-fit parameters of the non-interaction scenario wherein
effective dark energy includes non-conserved term and cosmological
constant

Parameter SNe + BAO + CMB

H0 67.59+0.26
−0.27

�m0 0.29+0.18
−0.17

ψ0 1.84+0.47
−0.48

In this step it is worthwhile to explore validity of the sec-
ond law of thermodynamics in this scenario, non-interaction
one. In this context, and with Eqs. (36), (70) and (76) at
hand, the entropy of matter due to interior interaction among
particles of matter component becomes

St = −
(
ζ̃ ρm0 + ψ0

)
a−2 (82)

where we assume T0 ∝ a−1. To have positive entropy, the
Eq. (82) implies ζ̃ must be negative, ζ̃ < −ψ0/ρm0 ≈
−0.01. However, the evolution of entropy (82) illustrates St
decreases with redshift, which violates the second law of ther-
modynamics. This problem is not new issue. In fact, there is
same problem for the cosmological models in which dark
energy comes from modified entropy expression [47,48]. In
such models the entropy of matter field decreases with red-
shift due to expanding Universe and thus one needs to check
total entropy of the Universe includes matter and dark energy
components on the apparent horizon. If we follow same rule,
the first law of thermodynamics leads us to

Stot = κπ

3
r4ρtot = π

H2 (83)

where we use T = 1/2πr and H = r−1 on the apparent
horizon [47]. The behavior of total entropy Stot for Hubble
parameter (68) is plotted in Fig. 3 which satisfies the second
law of thermodynamics.

Table 2 The best-fit parameters of the interaction scenario for our
model

Parameter SNe + BAO + CMB

H0 67.62+0.43
−0.51

�m0 0.31+0.26
−0.36

α 0.39+0.16
−0.16

c2 17.30+0.45
−0.18

In follows we attempt to consider model in presence of
the interaction term Q = αH(ρm +ρX ) with free parameter
α. In order to consider model under this interaction form and
by using e-folding number x = ln (a), solving Eqs. (73) and
(74), we obtain

ρm = (c1 + xc2) e
−3x (84)

ψ = c2

α
e−3x − (c1 + xc2) e

−3x (85)

which leads one to

ρX = �

κ
+ c2

α
e−3x − (c1 + xc2) e

−3x . (86)

The equation of state of dark energy in interaction scenario
given by

ωX = −1 + κ ((c1 + c2x) α − c2) e−3x

κ ((c1 + c2x) α − c2) e−3x − α�
. (87)

Theoretically, constraining model with current Universe
yields

c1 = 3H2
0

κ
�m0� = 3H2

0 − κc2

α
(88)

which implies c1 = ρm0.
To find other free parameters of model, includes α and c2,

redefining codes with parameter space

θ ≡ (�m0, H0, α, c2) (89)

and adding priors set α ∈ (0, 1) and c2 ∈ [0, 20) to MCMC
package approximates free parameters of our model given
in Table 2. Also, one-dimensional marginalized distribution
on individual parameters and two-dimensional contours are
plotted in (Fig. 4).

The equation of state (87) and deceleration parameter (79)
for interaction model are illustrated in Fig. 5. As shown the
dark energy evolves as pressureless matter filed in high red-
shift while in future coincides with the cosmological con-
stant model. Comparing the interaction scenario with non-
interaction one reveals that the model in former case evolves
like phantom field for small interval of future with extremum
point ωX ≈ −1.022 at z ≈ −0.283. This behavior, phantom-
like dark energy is usual result in holographic dark energy
models [49,50] and some explicit forms of f (R) gravity [51–
53] which possesses negative kinetic energy.
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Fig. 4 The one-dimensional marginalized distribution on individual
parameters and two-dimensional contours by using SNe + BAO + CMB
data points for interaction scenario

Fig. 5 Equation of state (up) and deceleration parameter (below) pan-
els as function of redshift for interaction model when we use H0 =
67.62, �m0 = 0.31, c2 = 17.30 and α = 0.39

At the end, exploring total entropy (83) for interaction
model with same approach shows such scenario keeps the
validity of the second law of thermodynamics for whole Uni-
verse (Fig. 6). However, the outstanding result in comparing
non-interaction with interaction medium may come from the
evolution of the corresponded entropy to non-conserved term
ψ wherein St has the extremum during matter-dominated era

Fig. 6 The total entropy of interaction model when free parameters
are set with data in Table 1

Fig. 7 The evolution of entropy St for non-interaction scenario (left
panel) and for interaction model (right panel) with respect to redshift.
The free parameters are set with data in Tables 1 and 2

for interaction scenario. This behavior shows during matter
era, the entropy of non-conserved part increases while this
process ends due to expanding Universe at z ≈ 6.88 and
shrinks with redshift to present time. In Fig. 7, the St for both
non-interaction and interaction cases are plotted versus red-
shift. As shown, St for non-interaction model is so large even
before nucleosynthesis process while for interaction model
the corresponded entropy onsets after big bang and grows
up with matter creation, proportionally. It demonstrates that
the second scenario, interaction model, gives better physical
results with respect to the first one, non-interaction scenario.

5 Remark

To summarize, in this study, we have reconsidered Rastall
argument in which the conservation of energy–momentum
tensor in curved spacetime is broken. As discussed, explor-
ing covariant form of thermodynamics can lead one to out-
standing results in this context. For finite system in which
particles of different fluids and or of a unique field interact to
each other, conservation of energy–momentum is just broken
in Minkowskian spacetime. Using general relativity principle
allows one to generalize this issue to curved spacetime, gov-
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erns with field equations. Thus, the field equations get two
extra terms includes temperature-entropy term and interac-
tion/charge one. In the absence of interior interactions among
particles, the non-conserved terms are vanished; the standard
field equations reproduced. It shows this model gives no new
solutions for vacuum geometry, R = 0, with respect to stan-
dard field equations. Studying the modified field equations
(15) reveals that only time component deviates compared
with that in standard field equations for comoving observers.
The exploring field equations (15) needs more details for
different systems such as evolution of the Universe, dynam-
ics of black holes and stars, etc. However, in this paper we
only concentrate on its applications in cosmology and evo-
lution of the Universe in very early era, inflation, and late-
time phase. Introducing scalar field as source of the infla-
tion depicts that the non-conserved term gives no tangible
effects on observables. However, depending on model and
potential the scalar spectra index deviates from standard one.
In order to study late-time we added the cosmological con-
stant to Friedmann equations. For non-interaction scenario
and fixing free parameters through MCMC algorithm one
finds that the model can satisfy observations. Furthermore,
in such model coincidence problem of the cosmological con-
stant vanished. However, exploring entropy of non-conserved
part shows this parameter decreases from so large values
before big bang wherein matter is not existed. To alleviate
this problem, we assume that dark energy interacts with mat-
ter. This assumption, as shown in Fig. 7, can solve this prob-
lem wherein entropy of non-conserved term increases during
matter-dominated era and shrinks by expanding Universe to
current time.

The investigating other solutions and their applications are
assigned to the future studies.
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