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Abstract For a spatially Friedmann–Lemaître–Robertson–
Walker cosmology, we propose a multi-scalar field gravi-
tational model. Specifically, we consider a two-scalar field
cosmological model in which the kinetic components of
the scalar fields establish a two-dimensional sphere of
Lorentzian signature. For our Chiral-Quintom model we
choose a mixed potential term V (φ,ψ) = V0eλφ +
U0eκφψ

1
σ and we investigate the asymptotic limits of the

cosmological parameters. This model forU0 = 0, provides a
generalization of the hyperbolic inflation where the equa-
tion of the state parameter can cross the phantom divide
line. When U0 �= 0 we observe that this cosmological
model exhibits asymptotic solutions that encompass acceler-
ated universes, big rip singularities, and dust-like solutions.
Hence, this multi-scalar field model it can be regarded as
as a dark energy unify model which describes a variety of
asymptotic cosmological scenarios.

1 Introduction

Quintom cosmology falls within the family of multi-scalar
fields gravitational theories [1–3]. In this theory the cos-
mological fluid comprises two scalar fields that are mini-
mally coupled to gravity. One of these scalar fields is the
quintessence scalar [4,5] and the other is the phantom scalar
field [6,7] which possess distinct properties.

The quintessence is one of the first introduced dynami-
cal models to describe the expansion of the universe. The
quintessence field is characterized as inflaton during the
early-time acceleration phase of the universe [8,9], while in
the present time acceleration, the quintessence attributes the
dark energy components of the cosmological fluid [10,11].
Quintessence scalar field has been used to unify the dark
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matter and the dark energy [12,13]. The quintessence scalar
field adheres to the null energy condition, the weak energy
condition, and the dominant energy condition, while allow-
ing for the violation of the strong energy condition in order
to provide acceleration.

In contrast, in the case of a phantom field, the equation
of state parameter is not constrained by a lower boundary.
This implies that it has the ability to cross the phantom divide
line, allowing for the energy density to become negative [14].
Consequently, the phantom scalar field violates all the energy
conditions, which means that the equation of state parame-
ter can cross the phantom divide line. It worth to mention
that for the phantom scalar field model, the equation of state
parameter can cross the phantom divide line only once. The
results from the statistical analysis of the cosmological obser-
vations do not exclude the equation of state parameter for the
cosmological fluid to take values smaller than that of minus
one [14]. This cosmological fluid can be the source for the
so-called Big-Rip [15]. The detailed analysis of the cosmo-
logical dynamics for the phantom scalar fields has shown that
for an unbounded scalar field potential the late-time attractor
can describe a super-exponential universe which leads to a
Big-Rip or other kind of sudden singularities; however for a
bounded scalar field potential function the de Sitter space-
time is a future attractor [16].

The quintom cosmology it is a multi-scalar field model
that involves the dynamics of two scalar fields, namely
quintessence and phantom fields. It was proposed to over-
come the limitations imposed by single scalar field models
on the equation of state parameter Indeed, in the quintom
cosmology, there exist epochs provided by the cosmologi-
cal dynamics where the quintessence field dominates; or the
phantom field dominates and there exist solutions where the
two scalar field contributes in the cosmic fluid. As a result
it is possible the equation of state parameter for the quintom
model to cross more than once the phantom divide line [17].
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This is due to the presence of both quintessence and phan-
tom fields in the cosmic dynamics. A detailed analysis of the
evolution for the cosmological parameters in quintom model
for various potential functions is presented in [18,19]. It was
found that for various forms of the potential functions there
can be periods in the provided cosmological history where
one field dominates, followed by the an epoch where the
other field dominates, as also there exist asymptotic solutions
where both fields provide in the cosmic fluid. Recently in
[20] it was introduced a quintom model with mixed potential
term. This model has been used to fit the cosmological obser-
vations and it was found that it can describe well the recent
cosmological data. On the other hand, in [21] the quintom
model has been proposed to investigate if it solves Hubble
tension problem. Because of the importancy of the quintom
model, there are a plethora of studies in the literature, we
refer the reader in [22–28] and references therein. There are
various extensions and generalizations of the quintm model
in modified theories of gravity, for instance in scalar–tensor
theory [29,30], in Galilleon cosmology [31], in scalar-torsion
theory [32], in Gauss–Bonnet theory [33].

The Chiral model, a cosmological fluid characterized by
two scalar fields, has garnered significant attention and under-
gone extensive study in recent years. In the context of General
Relativity, the Lagrangian for the matter source describes two
scalar fields where interaction exists between the two scalar
fields in the components. Chiral model is part of the family of
the non-linear sigma model [34], where the two-scalar fields
are defined on a two-dimensional sphere [35,36]. Previous
studies of Chiral theory have shown that two acceleration
phases for the universe are provided by the model. The slow-
roll inflation is recovered in the limit where the model reduces
to quintessence, and the second acceleration phase is known
as the hyperbolic inflation [37,38] where the two scalar fields
contribute in the cosmic evolution. Because of the existence
of the second scalar field in the hyperbolic inflation there
are some characteristic differences with the slow-roll infla-
tion. Notably, the initial conditions at the onset and the end
of inflation can be different, and the curvature perturbations
being contingent upon the number of e-folds [39]. Further-
more, as it has been shown in [40] non-Gaussianities in the
power spectrum are provided by the Chiral theory. Although
the field equations of Chiral model are non-linear there are
various studies where analytic and closed-form solutions are
presented [41,42].

In the case of the exponential potential, an extensive exam-
ination of the phase-space encompassing the physical vari-
ables and the identification of asymptotic solutions for Chi-
ral cosmology are meticulously outlined in [43]. For a more
generic potential function we refer the reader in [44]. The
Chiral model with a mixed potential term can be seen as
a unified dark model which means that it can describe the
fluid components which contribute to the dark sector of the

universe. In the very early universe in Chiral theory there
exists a mechanism based on quantum transitions where the
effective cosmological fluid can have an equation of state
parameter which can cross the phantom divide line and pro-
vide a rapid expansion of the universe [45]. Extensions of
the Chiral model with more that two scalar fields have been
considered before in [46,47]. Furthermore, hyperbolic infla-
tion in the presence of spatial curvature is discussed in [48],
it was found that the hyperbolic inflationary solutions can
solve the flatness problem and describe acceleration for both
open and closed models.

The Chiral cosmological model is characterized by a fun-
damental property wherein the effective energy density of the
cosmological fluid remains positive by definition [35]. Fur-
thermore, the effective equation of state parameter within the
Chiral cosmological model is subject to a lower limit that pre-
cisely matches the value of the cosmological constant [35].
Inspired by the quintom model in [49] two families of Chiral-
Quintom models were proposed. From the analysis of the
asymptotic it was found that the Chiral-Quintom model has
similar properties to the quintom model, while the hyperbolic
inflation is supported [50]. Moreover, the dynamical evolu-
tion of the physical parameters in the Chiral-Quintom theory
in the presence of curvature was recently investigated in [51].
In Chiral-Quintom theory, the interaction for the scalar fields
is the same as in the Chiral model, but what changes is the
signature of the two-dimensional manifold which defines the
dynamics for the scalar fields. There are two possible models
[49]; however from the analysis of the dynamics [50] it was
found that one of this provides an cosmological history which
can explain the major eras of the cosmological evolution.

The objective of this study is to examine the dynamics of
the Chiral-Quintom cosmological model with a mixed poten-
tial term. Our investigation aims to assess the viability of uti-
lizing the Chiral-Quintom model as a simplified framework
for unifying the components within the dark sector of the
universe. In particular we extend the analysis presented in
[44] for the case where the second scalar field is a phantom
field. This cosmological model holds the potential to estab-
lish a connection between various epochs of cosmic evolu-
tion, elucidating phenomena such as inflation, the matter era,
and the late-time acceleration phase. The plan of this study
is outlined as follows.

In Sect. 2 we discuss the basic definitions of the Chiral-
Quintom model of our consideration. Additionally, we
present the field equations specifically in the context of a spa-
tially flat Friedmann–Lemaître–Robertson–Walker (FLRW)
cosmology. In Sect. 3 we reformulate the field equations
using dimensionless variables for a more convenient and
comprehensive analysis. The main results of this analysis
are presented in Sects. 5 and 4. In these sections, we focus
on investigating the asymptotic limits of the field equations
for two different mixed potential functions. We analyze the
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evolution of the physical parameters and thoroughly examine
the stability properties of the asymptotic solutions at both the
stationary points in the finite regime and those in the infinity
regime. Finally, in Sect. 6 we draw our conclusions.

2 Chiral-Quintom cosmology with mixed potential

The action integral of the chiral model is defined within the
framework of general relativity, that is, [44]

S = SEH + SChiral , (1)

in which SEH is the Einstein–Hiblert action integral

SEH =
∫ √−gdx4R, (2)

and SChiral attributes the dynamical terms of the two-scalar
fields

SChiral =
∫ √−gdx4

×
(

−1

2
gμνHAB

(
�C

)
∇μ�A∇ν�

B − V
(
�C

))
,(3)

with �A = (φ (xμ) , ψ (xμ))T , V
(
�C

)
is the poten-

tial function and HAB
(
�C

)
is a second-rank tensor which

defines the space where the scalar fields are defined.
For the action integral (1) the Einstein field equations are

Gμν = HAB

(
�C

)
∇μ�A∇ν�

B

−gμν

(
1

2
gμνHAB

(
�C

)
∇μ�A∇ν�

B + V
(
�C

))
,(4)

while for the scalar fields the equations of motion read

gμν
(
∇μ

(
H A

B

(
�C

)
∇ν�

B
))

+H A
B

(
�C

) ∂V
(
�C

)
∂�B

= 0.

(5)

In Chiral model HAB
(
�C

)
is considered to be described

by the second rank tensor [37]

HAB

(
�C

)
= diag

(
1, eκφ

)
, (6)

with signature (+,+).
However, in the Chiral-Quintom theory of our considera-

tion we assume the signature to be (+,−), hence we set [49]

HAB

(
�C

)
= diag

(
1,−eκφ

)
. (7)

2.1 FLRW cosmology

On large scales, the physical structure of the universe is rep-
resented by the spatially flat FLRW geometry, given by the
line-element

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
. (8)

where function a (t) is scale factor. The Hubble function is
determined H (t) = ȧ

a . Additionally, the expansion rate for
a comoving observer, uμ = δ

μ
t is defined as θ = uμ

;μ, that is,
θ (t) = 3H (t).

The FLRW spacetime (8) possesses a sixth-dimensional
Killing algebra. Consequently, if we assume that the scalar
fields inherit the symmetries of the background space, we
arrive at the conclusion that the scalar fields φ (xμ) = φ (t),
ψ (xμ) = ψ (t).

Following the analysis presented in [44], we adopt a mixed
scalar field potential

V
(
�C

)
= V (φ) + eκφU (ψ) . (9)

Thus, for the latter potential function and the second rank
tensor (7) we can derive the Friedmann’s equations as fol-
lows:

3H2 = 1

2
φ̇2 − 1

2
eκφψ̇2 + V (φ) + eκφU (ψ) , (10)

−
(

2Ḣ + 3H2
)

= 1

2
φ̇2 − 1

2
eκφψ̇2 − (

V (φ) + eκφU (ψ)
)
.

(11)

Furthermore, the scalar fields obey the system of Klein–
Gordon equations:

(
φ̈ + 3H φ̇

) + 1

2
κeκφψ̇2 + V,φ + κeκφU (ψ) = 0, (12)

ψ̈ + 3H ψ̇ + κφ̇ψ̇ +U,ψ = 0, (13)

From (10)–(11) we can define the effective energy density
and pressure components

ρφ = 1

2
φ̇2 + V (φ) , pφ = 1

2
φ̇2 − V (φ) , (14)

ρψ =
(

−1

2
ψ̇2 +U (ψ)

)
eκφ,

pψ =
(

−1

2
ψ̇2 −U (ψ)

)
eκφ. (15)

With the use of the fluid components the filed Eqs. (10),
(11) can be written in the traditional form

Gμν = T (φ)
μν + T (ψ)

μν
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where now T (φ)
μν and T (ψ)

μν attributes the components of the
two interact scalar fields, that is,

T (φ)
μν = (

ρφ + pφ

)
uμuν + pφgμν, (16)

T (ψ)
μν = (

ρψ + pψ

)
uμuν + pψgμν, (17)

Moreover, the continuous equation is (T e f f μν );ν = 0, or
equivalent

(
T (φ)μν + T (ψ)μν

)
;ν = 0. Since the two scalar

fields interact, we can write the continuous equation as(
T (φ)μν

)
;ν = Q,

(
T (ψ)μν

)
;ν = −Q, which are the two equa-

tions of motion for the scalar fields φ and ψ , Eqs. (12) and
(13) if we select Q = κφ̇ψ̇ .

For the two scalar fields we can define the equation of
state parameters as

wφ =
1
2 φ̇2 − V (φ)

1
2 φ̇2 + V (φ)

, wψ = − 1
2 ψ̇2 −U (ψ)

− 1
2 ψ̇2 +U (ψ)

. (18)

Thus,
∣∣wφ

∣∣ ≤ 1, while wψ can take values smaller than
minus one. The limit where U (ψ) = 0, was investigated
in [49] where in this piece of study the second scalar field
ψ describes a stiff fluid with wψ = 1. In our consideration
wψ is a dynamical variable, since U (ψ) is assumed to be a
nonzero variable.

Finally, for the effective cosmological fluid we find

wtot =
1
2 φ̇2 − V (φ) + eκφ

(− 1
2 ψ̇2 +U (ψ)

)
1
2 φ̇2 + V (φ) + eκφ

(− 1
2 ψ̇2 +U (ψ)

) . (19)

3 Autonomous dynamical system

We proceed our study by defining new variables (x, y, z, u,

λ, μ) in the so-called H -normalization approach [44]

φ̇ = √
6xH, V (φ) = 3y2H2, ψ̇ = √

6e− κ
2 φzH, (20)

U (ψ) = 3e−κφu2H2, V,φ = λV, U,ψ = e
κ
2 φμU. (21)

With the application of the latter dimensionless variables the
field equations are written in the equivalent form of a system
of first-order ordinary differential equations.

Friedmann’s Eq. (10) provides the algebraic equation

1 − x2 − y2 + z2 − u2 = 0. (22)

Furthermore, for the field Eqs. (11)–(13) it follows

dx

dτ
= 3

2
x

(
x2 −

(
1 + u2 + y2 + z2

))

−
√

6

2

(
λy2 + κ

(
u2 + z2

))
, (23)

dy

dτ
= 3

2
y
(

1 + x2 − z2 − y2 − u2
)

+
√

6

2
λxy, (24)

dz

dτ
= −3

2
z
(
z2 + y2 − x2 + u2 − 1

)
−

√
6

2

(
κxz − μu2

)
,

(25)

du

dτ
= 3

2
u

(
1 + x2 − z2 − y2 − u2

)
+

√
6

2
u (κx + μz) ,

(26)

dμ

dτ
=

√
3

2
μ

(
2μz

(
�̄ (μ, λ) − 1

) − κx
)
, (27)

dλ

dτ
= √

6λ2x (� (λ) − 1) , (28)

where now the new independent variable is τ = ln a, and
functions � (λ) , �̄ (μ, λ) are

� (λ) = V,φφV(
V,φ

)2 , �̄ (μ, λ) = U,ψψU(
U,ψ

)2 . (29)

At this point we remark that on the constant surface u = 0,
where U (ψ) = 0, the latter dynamical system is reduced to
the special case studied before in [49]. However, in our study,
we introduce a non-zero potential U (ψ) which significantly
impacts the dynamics and introduces new asymptotic solu-
tions in the cosmological model.

�φ = x2 + y2, �ψ = −z2 + u2, (30)

where �φ and �ψ are the energy densities for the two scalar
fields.

Consequently, the equation of state parameters corre-
sponding to the fields φ and ψ are as follows

wφ = −1 + 2x2

x2 + y2 , wψ = −1 − 2z2

u2 − z2 . (31)

On the contrary, for the effective cosmological fluid, the
equation of state parameter reads

wtot = −1 − 2

3

Ḣ

H2 = x2 − z2 − y2 − u2 (32)

For a general potential function V (φ,ψ), the dynami-
cal system (23)–(28) has dimension six. Nevertheless for the
exponential potential function V (φ) = V0eλφ , we derive
� (λ) = λ , that is, λ is always a constant parameter and the
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dimension of the system (23)–(28) is reduced by one. Further-
more, for this potential, with the use of the algebraic Eq. (22)
we end with a four-dimensional dynamical system. Given
its connection with hyperbolic inflation, we focus our subse-
quent analysis on the exponential potential V (φ) = V0eλφ .
As for the second scalar field, we adopt the power-law poten-

tialU (ψ) = U0ψ
1
σ . It is worth noting that from this potential

function, we derive �̄ (μ, λ) = 1−σ, where σ is a constant
parameter [44]. The power-law potential U (ψ) = U0ψ

1
σ is

of important interest, because on the surface where the scalar
field φ is constant, that is, φ does not contribute in the uni-
verse, then the de Sitter solution is provided by the dynamical
terms of the second scalar field ψ . Therefore, we proceed our

analysis with the selection V (φ,ψ) = V0eλφ + U0eκφψ
1
σ .

The limit where V0 = 0, it is examined individually.
The variables y and u are strictly positive, indicated by

the conditions y ≥ 0 and u ≥ 0. On the other hand, the
variables x and z can assume any real number value within
their respective ranges. It is important to note that in Chi-
ral theory, all parameters are constrained to reside on the
surface of a four-dimensional sphere. However, in this par-
ticular case, of the Chiral-Quintom theory, such restrictions
do not apply. Consequently, a thorough investigation of the
asymptotic behavior at infinity becomes necessary.

We compute the stationary/critical points of the dynamical
system (23)–(27). Each stationary point corresponds to a spe-
cific asymptotic solution governing the background geome-
try. At these stationary points, it becomes possible to deter-
mine the values of the physical parameters and reconstruct
the associated asymptotic solutions.

For wtot �= −1, the asymptotic solution describes a scal-

ing solution with a (t) = a0t
2

3(1+wtot ) , and acceleration is
occurred for wtot < − 1

3 . Besides wtot = −1, the asymptotic
solution describes a de Sitter universe with exponential scale
factor a (t) = a0eH0t , where the effective cosmological fluid
is described by the cosmological constant.

4 Asymptotic solutions for potential
V (φ,ψ) = V0eλφ + U0eκφψ

1
σ

Let us now consider the scenario where the mixed potential

function takes the form V (φ,ψ) = V0eλφ +U0eκφψ
1
σ .

4.1 Stationary points at the finite regime

The stationary points P = (x (P) , y (P) , z (P) , u (P) ,

μ (P)) of the five-dimensional dynamical system (23)–(27)
which satisfy the algebraic Eq. (22) are as follows:

P±
1 = (±1, 0, 0, 0, 0) ,

where only the kinetic components of the scalar field φ con-
tributes to the cosmological fluid, resulting in, �φ

(
P±

1

) =
1 and �ψ

(
P±

1

) = 0. Furthermore, at the stationary
points P±

1 the effective equation of state parameter is
given by wtot

(
P±

1

) = 1, indicating that the effective
cosmological fluid corresponds to stiff matter. To exam-
ine the stability properties of the stationary points we
derive the eigenvalues of the linearized system by replacing
y = √

1 − u2 − x2 + z2. The eigenvalues are e1
(
P±

1

) =
∓

√
6

2 κ, e2
(
P±

1

) = ∓
√

6
2 κ , e3

(
P±

1

) =
√

6
2

(√
6 ± κ

)
and

e4
(
P±

1

) = √
6

(√
6 ± λ

)
. For −√

6 < κ < 0 and

λ > −√
6, stationary point P+

1 is always a source, other-
wise it is a saddle point. Similarly, for 0 < κ <

√
6 and

λ <
√

6, point P−
1 is a source, otherwise is a saddle point.

P2 =
⎛
⎝− λ√

6
,

√
1 − λ2

6
, 0, 0, 0

⎞
⎠ , (33)

with �φ (P2) = 1, �ψ (P2) = 0 and wtot (P2) = −1 + λ2

3 .
The point exists in real space for λ2 < 6, and it represents the
scaling solution previously discovered for the quintessence
scalar field [52]. Acceleration occurs when λ2 < 2. The
eigenvalues of the linearized system are derived e1 (P2) =
κλ
2 , e2 (P2) = λ2−6

2 , e3 (P2) = λ
2 (λ − κ) and e4 (P2) =

1
2 (λ (λ + κ) − 6). Therefore, point P2 is always a saddle
point.

P±
3 =

(
−

√
6

κ + λ
,

√
κ

κ + λ
,±

√
6 − λ (κ + λ)

κ + λ
, 0, 0

)
,

(34)

with �φ

(
P±

3

) = κ(κ+λ)+6
(κ+λ)2 , �ψ

(
P±

3

) = λ(κ+λ)−6
(κ+λ)2 and

wtot
(
P±

3

) = λ−κ
λ+κ

. Points P±
3 are real and physically

accepted for {λ < 0, κ > −λ} or {λ > 0, κ < −λ} or
{κλ > 0, λ (κ + λ) < 6} or {λ = 0, κ �= 0}. The asymptotic
solutions at the stationary points P±

3 describes the hyper-
bolic inflation [37] when λ−κ

λ+κ
< − 1

3 . We remark that
wtot

(
P±

3

)
crosses the phantom divide line {λ > 0, κ < −λ}

and {λ < 0, κ > −λ} . The eigenvalues of the linearized

system are e1
(
P±

3

) = 3κ
κ+λ

, e2
(
P±

3

) = 3
(

1 − 2κ
κ+λ

)
,

e3
(
P±

3

) = − 3
2

κ
κ+λ

+ i
√

3κ(4λ2(λ+2κ)+4λ(κ2−6)−27κ)
2(κ+λ)

and

e4
(
P±

3

) = − 3
2

κ
κ+λ

− i
√

3κ(4λ2(λ+2κ)+4λ(κ2−6)−27κ)
2(κ+λ)

. We
conclude that the stationary points are always saddle points.
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P±
4 =(
−

√
6

κ + λ
,

√
κ

κ + λ
,±

√
6 − λ (κ + λ)

κ + λ
, 0,±

√
6κ

σ
√

6 − λ (κ + λ)

)
,

(35)

have the same physical properties and existence condi-
tions with points P±

3 . Indeed, the stationary points P±
4

describe the hyperbolic inflation for λ−κ
λ+κ

< − 1
3 . The eigen-

values of the linearized system are derived e1
(
P±

4

) =
− 3κ

κ+λ
, e2

(
P±

4

) = 3(κ+2σ(λ−σ))
2σ(κ+λ)

, e3
(
P±

4

) = − 3κ
2(κ+λ)

+
i
√

3κ(4λ2(λ+2κ)+4λ(κ2−6)−27κ)
2(κ+λ)

and e4
(
P±

4

) = − 3κ
2(κ+λ)

−
i
√

3κ(4λ2(λ+2κ)+4λ(κ2−6)−27κ)
2(κ+λ)

. Hence, points P±
4 are always

saddle points.

P±
5 =

(
−

√
6

2κ
, 0, ±

√
6 − 2κ2

2κ
,

√
2

2
, 0

)

with �φ

(
P±

5

) = 3
2κ2 , �ψ

(
P±

5

) = 1− 3
2κ2 and wtot

(
P±

5

) =
0. As a result, the asymptotic solutions at the stationary points
P±

5 describe a universe where the cosmological fluid is a dust

fluid. The exact solution of the scale factor is a (t) = a0t
2
3 ,

indicating that these points describe the matter-dominated
era in the cosmological evolution. The eigenvalues of the
linearized system are computed, e1

(
P±

5

) = 3
2 , e2

(
P±

5

) =
3
(
1 − λ

κ

)
, e3

(
P±

5

) = − 3
4 +

√
3(51−16κ2)

4 and e4
(
P±

5

) =
− 3

4 −
√

3(51−16κ2)
4 . Consequently, the eigenvalues reveals

that points P±
5 are always saddle points.

P±
6 =

(
x6, 0,±z6,

√
1 + x2

6 − z2
6 + κ (2σ − 1)√

6σ
x6,− κx6

2σ z6

)
,

where z6 =
√

−κx6

(√
6σ+κ(1+2σ)x6+

√
6σ x2

6

)

2σ
(

6σ+√
6κ(2σ−1)x6

) and x6 =

κ2(1−2σ)−6σ+
√

κ4(1−4σ)+4σ 2(κ2−3)
2

√
6κ(4σ−1)

. We derive �φ

(
P±

6

) =
(

κ2(1−2σ)−6σ+
√

κ4(1−4σ)+4σ 2(κ2−3)
2
)

6κ2(1−4σ)2

2

and wtot
(
P±

6

) =
κ2(1−2σ)2−12σ 2+(1−2σ)

√
κ4(1−4σ)+4σ 2(κ2−3)

2

6σ(4σ−1)
. In Fig. 1 we

present the region in the two-dimensional space (κ, σ ) where
points P±

6 are real, and the contour plot for wtot
(
P±

6

)
from

where we see that wtot
(
P±

6

)
can take values less than the

minus one.

P±
7 =

(
x7, 0, ±z7,

√
1 + x2

7 − z2
7 + κ (2σ − 1)√

6σ
x7, − κx7

2σ z7

)
,

where z7 =
√

−κx7

(√
6σ+κ(1+2σ)x7+

√
6σ x2

7

)

2σ
(

6σ+√
6κ(2σ−1)x7

) and x7 =

κ2(1−2σ)−6σ−
√

κ4(1−4σ)+4σ 2(κ2−3)
2

√
6κ(4σ−1)

. Moreover, we calculate

�φ

(
P±

7

) =
(

κ2(1−2σ)+6σ+
√

κ4(1−4σ)+4σ 2(κ2−3)
2
)

6κ2(1−4σ)2

2

and

wtot
(
P±

7

) = κ2(1−2σ)2+12σ 2−(1−2σ)

√
κ4(1−4σ)+4σ 2(κ2−3)

2

6σ(4σ−1)
.

In Fig. 1 we present the region in the two-dimensional space
(κ, σ ) where points P±

7 are real, and the contour plot for
wtot

(
P±

6

)
from where we see that wtot

(
P±

7

)
can take val-

ues smaller than the minus one.
Due to the intricate nature of the eigenvalues of the lin-

earized system around the points P±
6 and P±

7 we conducted a
numerical analysis to investigate their stability properties. By
employing random numbers for parameters λ, κ and σ we
performed multiple runs. Our findings consistently indicated
that the stationary points P±

6 , P±
7 are saddle points.

P8 =
⎛
⎝− κ√

6
, 0, 0,

√
1 − κ2

6
, 0

⎞
⎠

which a scaling solution with wtot (P8) = −1 + κ2

3 . The
point is real and physically accepted for κ2 < 6. We
remark that point P8 has similarities with P2 where now the
exponential term in the mixed potential drive the dynamics
and the second-scalar field is constant. The eigenvalues of
the linearized system are e1 (P8) = κ2

2 , e2 (P8) = κ2−6
2 ,

e3 (P8) = κ2 −3 and e4 (P8) = κ (κ − λ), which means that
P8 is always a saddle point.

P9 =
(

0,

√
κ

κ − λ
, 0,

√
λ

κ − λ
, 0

)
,

describes a de Sitter universe with wtot (P9) = −1. The point
is real for {λ < 0, κ < λ} or {λ > 0, κ > λ}. The eigenval-
ues of the linearized system are e1 (P9) = 0, e2 (P9) =
−3, e3 (P9) = 1

2

(−3 + √
3 (3 + 4κλ)

)
and e4 (P9) =

1
2

(−3 − √
3 (3 + 4κλ)

)
, which means that P9 is always a

saddle point.
The above results are summarized in Table 1.

4.2 Stationary points at the infinity

We proceed with the definition of the Poincare variables

x = X

ρ
, z = Z

ρ
, u = U

ρ

where ρ = √
1 − X2 − Z2 −U 2 and we have used the con-

straint equation y = √
1 − x2 + z2 − u2.
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Fig. 1 First column: region
space on the variables (κ, σ )

where the points P±
6 and P±

7 are
real. Second column: contour
plots of the effective equation of
state parameters at the stationary
points P±

6 and P±
7 . We observe

that the effective equation of
state parameter can take value
less than minus one

In the new variables (X, Z ,U ) the field equations read

dX

dT
= −1

2

(
1 − 2X2

) (
6Xρ + √

6
(
λ

(
1 − X2

)
+ κZ2

))

−
√

6

2
(κ − 2λ + 2X (λX + μZ)) , (36)

dZ

dT
=

√
6

2
λX Z

(
1 − 2

(
X2 +U 2

))
− 3Zρ

(
1 − 2X2

)

−
√

6

2

(
1 − 2Z2

) (
κX Z − μU 2

)
, (37)

dU

dT
= 6UX2ρ − √

6U 3 (λX + μZ)

+
√

6

2
U

(
X

(
κ

(
1 + 2Z2

)
+ λ

)
+ μZ − 2λX3

)
,

(38)

dμ

dT
= −

√
6

2
μ (κX + 2σμZ) , (39)

in which T is a new independent variable dT = ρdτ.

The stationary points at the infinity are the points on the
surface ρ = 0. At each stationary point the effective equation

Table 1 Stationary points at the finite regime for the Chiral-Quintom
model with a mixed potential

Point �ψ Acceleration wtot < −1 Stability

P±
1 0 No (wtot = 1) No Saddle

P2 0 Yes No Saddle

P±
3 �= 0 Yes Yes Saddle

P±
4 �= 0 Yes Yes Saddle

P±
5 �= 0 No (wtot = 0) No Saddle

P±
6 �= 0 Yes Yes Saddle

P±
7 �= 0 Yes Yes Saddle

P8 �= 0 Yes No Saddle

P9 �= 0 Yes (wtot = −1) No Saddle

of state parameter for the cosmological fluid is

wtot (X, Z ,U ) = −1 − 3X2 + Z2 −U 2

ρ
. (40)

The stationary points Q= (X (Q) , Z (P) ,U (P) , μ (P))

of the dynamical system (36)–(39) at the infinity are

Q±
1 = (±1, 0, 0, 0) ,
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Q±
2 =

(
0,±

√
λ − κ

2λ
,

√
κ + λ

2λ
0

)
,

Q±
3 =

(√
2

2
,±

√
2

2
, 0, 0

)
,

Q±
4 =

(
−

√
2

2
,±

√
2

2
, 0, 0

)
,

Q±
5 =

(√
2

2
,±

√
2

2
, 0,∓ κ

2σ

)
,

Q±
6 =

(
−

√
2

2
,±

√
2

2
, 0,± κ

2σ

)
,

Q±
7 =

(√
2σ ,±

√
2

2
,

√
1 − 4σ

2
,∓ κ√

6

)
,

Q±
8 =

(
−√

2σ ,±
√

2

2
,

√
1 − 4σ

2
,± κ√

6

)
.

The existence conditions indicate that, points Q±
1 are

not physically accepted and for the points Q±
2 it fol-

lows {λ < 0, 0 < κ < −λ}, {λ > 0,−λ < κ < 0}. More-
over, points Q±

7 and Q±
8 are real for σ > 0 and 1 − 4σ ≥ 0,

that is, 0 < σ ≤ 1
4 .

By replacing in (40) it follows that the stationary points
Q±

2 , Q±
7 and Q±

8 describe a cosmological solution with
wtot → −∞, that is Big Rip. However, for σ = 1

4 the
stationary points Q±

7 and Q±
8 describe dust fluid solutions

with wtot
(
Q±

7

) = 0 and wtot
(
Q±

8

) = 0. However, as we
reach the limit of the rest of the stationary points we derive

wtot

(
Q±

3,4,5,6

)
= 0, that is, these points describe dust fluid

asymptotic solutions.
Regarding the stability properties of the stationary points,

we omit the presentation of the analysis but we conclude that
the stationary points at the infinity when they exist are always
saddle points.

In Figs. 2 and 3 we present the qualitative evolution of
the effective equation of state parameter wtot (X, Z ,U ) as it
is given by the numerical solution of the dynamical system
(36)–(39). The figures are for different sets of initial condi-
tions and different values of the free parameters. We remark
that this scalar field model can describe a unification of the
dark matter and of the dark energy in the cosmic evolution.

5 Asymptotic solutions for potential
V (φ,ψ) = U0eκφψ

1
σ

Consider the second scenario where the mixed potential

function takes the form V (φ,ψ) = U0eκφψ
1
σ , which means

that the dynamical system is defined on the surface with
y = 0.

5.1 Stationary points at the finite regime

Assume the potential function V (φ,ψ) = U0eκφψ
1
σ , where

y is always zero. As a result, the dynamical system’s dimen-
sion is decreased by one. The stationary points for this poten-
tial are the one derived before with y = 0.

Points A = (x (A) , z (A) , u (A) , μ (A)) of the dynami-
cal system on the surface 1 − x2 + z2 − u2 = 0, are:

A±
1 = (±1, 0, 0, 0) ,

A±
2 =

(
−

√
6

2κ
,±

√
6 − 2κ2

2κ
,

√
2

2
, 0

)

A±
3 =

(
x6,±z6,

√
1 + x2

6 − z2
6 + κ (2σ − 1)√

6σ
x6,− κx6

2σ z6

)
,

A±
4 =

(
x7,±z7,

√
1 + x2

7 − z2
7 + κ (2σ − 1)√

6σ
x7,− κx7

2σ z7

)
,

A5 =
⎛
⎝− κ√

6
, 0,

√
1 − κ2

6
, 0

⎞
⎠ .

where z6, z7 , x6 and x7 are that of points P±
6 and P±

7 respec-
tively.

The characteristics of the asymptotic solutions at these
points are similar with that found before. We recall that
because y = 0, the stationary points which describe the
hyperbolic inflation do not exist. However, inflation can occur
by the stationary points A±

3 , A±
4 and A5. Points A±

2 describe
universes dominated by a pressureless fluid source.

Because the dynamical system for this specific potential
function lies on the surface y = 0, the stability properties of
the stationary points may exhibit variations. In particular, we
observe that the stability properties of points A±

1 , A±
2 and A5

are the same as their related points P , indicating that they are
all saddle points. Nevertheless, the stability property for the
points A±

3 and A±
4 differs from the others. Upon conducting a

similar analysis as before, we determine that points A±
3 and

A±
4 can be attractors, exhibiting distinct stability behavior

compared to the aforementioned saddle points.
In order to give a comprehensive view of the dynamics and

behavior of the for the field equations, in Fig. 4 we demon-
strate the phase-space portraits for or κ = 1 and σ = 1.
In particular we give a plot in the three-dimensional space
and on two-dimensional surfaces on the the values where
point A−

3 is an attractor. For κ = 1 and σ = 1 it holds
wtot

(
A±

3

) 
 −0.81 which means that an accelerated uni-
verse is described by point A−

3 .
We conclude that this model can describe a cosmological

history, with an early acceleration phase (point A5), a matter
era (points A±

2 ) and a future acceleration point (points A±
3 or

A±
4 ).
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Fig. 2 Qualitative evolution of the equation of state parameter (40) as it is given by numerical simulations of the dynamical system (36)–(39) for
various values of the free parameters. For the plots we considered the initial conditions X0 = 0.1, Z0 = 0.3, U0 = 0.2 and μ0 = 2

To ensure a thorough analysis, it is imperative to study the
existence of stationary points at the infinity regime.

5.2 Stationary points at the infinity

We introduce the new set of Poincare variables

x = X

ρ̄
, z = Z

ρ̄
, dT̄ = ρ̄dτ.

where now ρ = √
1 − X2 − Z2 and we have used the con-

straint condition u = √
1 − x2 + z2.

Therefore, the field equations in the Poincare variables
(X, Z) read

dX

dT̄
= 1

2

(
1 − 2X2

) (√
6κ

(
X2 − 1 − Z2

)
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Fig. 3 Qualitative evolution of the equation of state parameter (40) as it is given by numerical simulations of the dynamical system (36)–(39) for
various values of the free parameters. For the plots we considered the initial conditions X0 = 0.6, Z0 = 0.1, U0 = 0.1 and μ0 = 2

−6X ρ̄ − √
6X Zμ

)
, (41)

dZ

dT̄
= 3Z ρ̄

(
2X2 − 1

)
+ √

6κ
(
Z2 − X2

)

+
√

6

2
μ

(
1 − 2X2

) (
1 − Z2

)
, (42)

and

dμ

dT̄
= −

√
6

2
μ (κX + 2σμZ) . (43)

The stationary points of the aforementioned dynamical
system are of the form B = (X (B) , Z (B) , μ (B)); they
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Fig. 4 Phase-space portrait for the dynamical system with the mixed potential function V (φ, ψ) = U0eκφψ
1
σ . We observe that the stationary

points A−
3 is an attractor

are

B±
1 = (±1, 0, 0) ,

B±
2 =

(√
2

2
,±

√
2

2
, 0

)
,

B±
3 =

(
−

√
2

2
,±

√
2

2
, 0

)
,

B±
4 =

(√
2

2
,±

√
2

2
,∓ κ

2σ

)
,

B±
5 =

(
−

√
2

2
,±

√
2

2
,± κ

2σ

)
,

B±
6 =

(√
4σ

1 + 4σ
,±

√
1

1 + 4σ
,∓ κ√

σ

)
,

B±
7 =

(
−

√
4σ

1 + 4σ
,±

√
1

1 + 4σ
,± κ√

σ

)
.

Points B±
1 are not physically accepted, while points B±

6
and B±

7 are real for 0 < σ < 1
4 .

Regarding the physical properties of the stationary points
B±

2 , B±
3 , B±

4 and B±
5 , the points describe dust fluid asymp-

totic solutions; on the other hand, points B±
6 and B±

7 corre-
spond to Big Rip singularities.

The eigenvalues of the linearized system around the sta-

tionary points B±
2 and B±

3 are e1
(
B±

2

) = −
√

3
2 κ, e2

(
B±

2

) =√
3κ , e3

(
B±

2

) = 2
√

3κ and e1
(
B±

3

) =
√

3
2 κ, e2

(
B±

3

) =
−√

3κ , e3
(
B±

3

) = −2
√

3κ respectively. Hence, these
two sets of points are always saddle points. Furthermore,
for the points B±

4 and B±
5 we derive the eigenvalues

e1
(
B±

4

) = −
√

3κ(1−4σ)
2σ

κ, e2
(
B±

4

) = √
3κ , e3

(
B±

4

) =
2
√

3κ and e1
(
B±

5

) =
√

3κ(1−4σ)
2σ

κ, e2
(
B±

5

) = −√
3κ ,

e3
(
B±

5

) = −2
√

3κ . Therefore, points B±
4 are attractors for{

κ < 0, σ < 0,σ > 1
4

}
while points B±

5 are attractors for{
κ > 0, 0 < σ < 1

4

}
.
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Fig. 5 Qualitative evolution of the equation of state parameter
wtot (X, Z) as it is given by numerical simulations of the dynamical
system (41)–(43) for various values of the free parameters. Left Fig. is

for the initial conditions (X0, Z0, μ0) = (0.6, 0.1, 2) while right Fig.
is for the initial conditions (X0, Z0, μ0) = (0.7, 0.2,−2)

Finally, the stability properties for the points B±
6 and B±

7
have been studied numerically. Based on our findings, we
conclude that the asymptotic solutions associated with these
points are consistently unstable.

The qualitative evolution of the effective equation of state
parameter for this model is presented in Fig. 5.

6 Conclusions

The Chiral model is a multi-scalar field cosmological sce-
nario which has been proposed to describe inflation. In par-
ticular the inflationary mechanism generated by the Chiral
model is known as hyperbolic inflation. In this study we con-
sidered the Chiral-quintom model which is a generalization
where one of the scalar fields has phantom energy compo-
nent. As a result, the hyperbolic inflationary mechanism is
generalized where now the equation of state parameter can
cross the phantom divide line.

Considering a spatially flat FLRW geometry within this
model, we introduced a mixed potential term to modify the
dynamics of the Chiral-quintom fluid. Through a comprehen-
sive analysis of the phase-space of the field equations, we
successfully reconstructed the complete cosmological his-
tory provided by this model. Remarkably, this new multi-
scalar field model effectively replicates cosmological epochs
that encompass the early-time and the late-time acceleration

phases of the universe as well as the matter-dominated epoch.
Consequently, this two-scalar field model holds promise as
a unification framework for the dark sector of the universe.
We remark that the cosmological history obtained from the
same model without the mixed potential term [49] can be
considered a special case of this more general model

In a forthcoming study, we plan to explore the dynami-
cal evolution of perturbations within this multi-scalar field
model featuring the mixed potential. Additionally, we find it
particularly intriguing to investigate whether Chiral models
can offer potential solutions to reconcile cosmological ten-
sions that exist in current observations and measurements.

Acknowledgements AP was partially financially supported by the
National Research Foundation of South Africa (Grant Numbers 131604).
AP thanks the support of Vicerrectoría de Investigación y Desarrollo
Tecnológico (Vridt) at Universidad Católica del Norte through Núcleo
de Investigación Geometría Diferencial y Aplicaciones, Resolución
Vridt No - 098/2022.

Data Availability Statement Data sharing is not applicable to this
article as no datasets were generated or analyzed during the current
study.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-

123



Eur. Phys. J. C (2023) 83 :756 Page 13 of 13 756

cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. Z.-K. Guo, X.-M. Zhang, Y.-Z. Zhang, Cosmological evolution of
a quintom model of dark energy. Phys. Lett. B 608, 177 (2005)

2. X. Zhang, An interacting two-fluid scenario for quintom dark
energy. Commun. Theor. Phys. 44, 762 (2005)

3. W. Zhao, Quintom models with an equation of state crossing—1.
Phys. Rev. D 73, 123509 (2006)

4. P. Ratra, L. Peebles, Cosmological consequences of a rolling homo-
geneous scalar field. Phys. Rev. D 37, 3406 (1988)

5. C. Wetterich, Cosmology and the fate of dilatation symmetry. Nucl.
Phys. B 302, 668 (1988)

6. R.R. Caldwell, A phantom menace cosmological consequences of
a dark energy component with super-negative equation of state.
Phys. Lett. B 545, 23 (2002)

7. F. Briscese, E. Elizalde, S. Nojiri, S.D. Odintsov, Phantom scalar
dark energy as modified gravity: understanding the origin of the
Big Rip singularity. Phys. Lett. B 646, 105 (2007)

8. A.D. Linde, Chaotic inflation. Phys. Lett. B 129, 177 (1983)
9. J.D. Barrow, P. Parsons, Inflationary models with logarithmic

potentials. Phys. Rev. D 52, 5576 (1995)
10. I. Zlatev, L. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)
11. W. Liu, J. Ouynag, H. Yang, Quintessence field as a perfect cosmic

fluid of constant pressure. Commun. Theor. Phys. 63, 391 (2015)
12. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 70, 083519

(2004)
13. S. Basilakos, G. Lukes-Gerakopoulos, Dynamics and constraints of

the unified dark matter flat cosmologies. Phys. Rev. D 78, 083509
(2008)

14. Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI.
Cosmological parameters, A&A 641, A6 (2020)

15. R.C. Caldwell, M. Kamionkowski, N.N. Weinberg, Phantom
energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)

16. V. Faraoni, Phantom cosmology with general potentials. Class.
Quantum Gravity 22, 3235 (2005)

17. Y.F. Cai, E.N. Saridakis, M.R. Setare, J.Q. Xia, Quintom cosmol-
ogy: theoretical implications and observations. Phys. Rep. 493, 1
(2010)

18. M.R. Setare, E.N. Saridakis, Quintom cosmology with general
potentials. Int. J. Mod. Phys. D 18, 549 (2009)

19. G. Leon, Y. Leyva, J. Socorro, Quintom phase-space: beyond the
exponential potential. Phys. Lett. B 732, 285 (2014)

20. J.A. Vázquez, D. Tamayo,G. Garcia-Arroyo, I. Gómez-Vargas, I.
Quiros, A.A. Sen, Coupled multi scalar field dark energy (2023).
arXiv:2305.11396

21. S. Papanich, P. Burikham, S. Ponglertsakul, L. Tannukij, Resolving
Hubble tension with quintom dark energy model. Chin. Phys. C 45,
015108 (2021)

22. M. Alimohammadi, H. Mohseni Sadjadi, The w = -1 crossing of
the quintom model with arbitrary potential. Phys. Lett. B 648, 113
(2007)

23. M.R. Setare, E.N. Saridakis, Quintom dark energy models with
nearly flat potentials. Phys. Rev. D 79, 043005 (2009)

24. J. Sadeghi, The deformation of quintom dark energy model. Astro-
phys. Space Sci. 364, 64 (2019)

25. R. Lazkoz, G. Leon, I. Quiros, Quintom cosmologies with arbitrary
potentials. Phys. Lett. B 649, 103 (2007)

26. J. Socorro, S. Perez-Payan, A. Espinoza-Garcia, L.R. Diaz-Barron,
Quintom fields from chiral K-essence cosmology. Universe 8, 548
(2022)

27. J. Socorro, P. Romero, L.O. Pimentel, M. Aguero, Quintom poten-
tials from quantum cosmology using the FRW cosmological model.
Int. J. Theor. Phys. 52, 2722 (2013)

28. G. Leon, A. Paliathanasis, The past and future dynamics of quintom
dark energy models. Eur. Phys. J. C 78, 753 (2018)

29. M.R. Setare, M. Saharaee, Gen. Relativ. Grav. 48, 119 (2016)
30. M. Marciu, Dynamical description of a quintom cosmological

model nonminimally coupled with gravity. Eur. Phys. J. C 80, 894
(2020)

31. M. Marciu, Quintom cosmology with generalized Galileon correc-
tions. Rom. J. Phys. 65, 115 (2020)

32. K.F. Dialektopoulos, G. Leon, A. Paliathanasis, Multiscalar-torsion
cosmology: exact and analytic solutions from Noether symmetries.
Eur. Phys. J. C 83, 218 (2023)

33. M. Marciu, Prospects of the cosmic scenery in a quintom dark
energy model with generalized nonminimal Gauss–Bonnet cou-
plings. Phys. Rev. D 99, 043508 (2019)

34. S.V. Ketov, Quantum Non-linear Sigma Models (Springer, Berlin,
2000)

35. S.V. Chervon, Chiral cosmological models: dark sector fields
description. Quantum Matter 2, 71 (2013)

36. I.V. Fomin, The chiral cosmological models with two components.
J. Phys. Conf. Ser. 918, 012009 (2017)

37. A.R. Brown, Hyperbolic inflation. Phys. Rev. Lett. 121, 251601
(2018)

38. P. Christodoulidis, D. Roest, R. Rosati, Many-field inflation: uni-
versality or prior dependence? JCAP 04, 021 (2020)

39. D.H. Lyth, A numerical study of non-Gaussianity in the curvaton
scenario. JCAP 6, 511 (2005)

40. D. Langlois, S. Renaux-Peterl, Perturbations in generalized multi-
field inflation. JCAP 17, 804 (2008)

41. A. Paliathanasis, M. Tsamparlis, Two scalar field cosmology: con-
servation laws and exact solutions. Phys. Rev. D 90, 043529 (2014)

42. N. Dimakis, A. Paliathanasis, P.A. Terzis, T. Christodoulakis, Cos-
mological solutions in multiscalar field theory. EPJC79, 618 (2019)

43. P. Christodoulidis, D. Roest, E.I. Sfakianakis, Attractors, bifurca-
tions and curvature in multi-field inflation. JCAP 08, 006 (2020)

44. A. Paliathanasis, Dynamics of chiral cosmology. Class. Quantum
Gravity 37, 19 (2020)

45. N. Dimakis, A. Paliathanasis, Crossing the phantom divide line
as an effect of quantum transitions. Class. Quantum Gravity 38,
075016 (2021)

46. P. Christodoulidis, A. Paliathanasis, N-field cosmology in hyper-
bolic field space: stability and general solutions. JCAP 05, 038
(2021)

47. P. Christodoulidis, R. Rosati, (Slow-)Twisting inflationary attrac-
tors (2022). arXiv:2210.14900

48. A. Paliathanasis, G. Leon, Hyperbolic inflationary model with
nonzero curvature. Phys. Lett. B 834, 137407 (2022)

49. A. Paliathanasis, G. Leon, Dynamics of a two scalar field cosmo-
logical model with phantom terms. Class. Quantum Gravity 38,
075013 (2021)

50. A. Paliathanasis, G. Leon, Global dynamics of the hyperbolic
Chiral-Phantom model. Eur. Phys. J. Plus 137, 165 (2022)

51. J. Tot, B. Yildirim, A. Coley, G. Leon, The dynamics of scalar-
field Quintom cosmological models. Phys. Dark Univ. 39, 101155
(2023)

52. E.J. Copeland, A.R. Liddle, D. Wands, Exponential potentials and
cosmological scaling solutions. Phys. Rev. D 57, 4686 (1998)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2305.11396
http://arxiv.org/abs/2210.14900

	Unified dark energy from Chiral-Quintom model with a mixed potential in Friedmann–Lemaître–Robertson–Walker cosmology
	Abstract 
	1 Introduction
	2 Chiral-Quintom cosmology with mixed potential
	2.1 FLRW cosmology

	3 Autonomous dynamical system
	4 Asymptotic solutions for potential V( φ,ψ) =V0eλφ+U0eκφψ1σ
	4.1 Stationary points at the finite regime
	4.2 Stationary points at the infinity

	5 Asymptotic solutions for potential V( φ,ψ) =U0eκφψ1σ
	5.1 Stationary points at the finite regime
	5.2 Stationary points at the infinity

	6 Conclusions
	Acknowledgements
	References




