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Abstract We study the flow equations of the shear response
functions for hyperscaling violating Lifshitz (hvLif) theo-
ries, with Lifshitz and hyperscaling violating exponents z and
θ . Adapting the membrane paradigm approach of analysing
response functions as developed by Iqbal and Liu, we focus
specifically on the shear gravitational modes which now are
coupled to the perturbations of the background gauge field.
Restricting to the zero momenta sector, we make further sim-
plistic assumptions regarding the hydrodynamic expansion
of the perturbations. Analysing the flow equations shows that
the shear viscosity at leading order saturates the Kovtun–
Son–Starinets (KSS) bound of 1

4π
. When z = di − θ , (di

being the number of spatial dimension in the dual field the-
ory) the first-order correction to shear viscosity exhibits log-
arithmic scaling, signalling the emergence of a scale in the
UV regime for this class of hvLif theories. We further show
that the response function associated to the gauge field per-
turbations diverge near the boundary when z > di + 2 − θ .
This provides a holographic understanding of the origin of
such a constraint and further vindicates results obtained in
previous works that were obtained through near horizon and
quasinormal mode analysis.
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1 Introduction

The framework of gauge/gravity duality [1–4] has been gen-
eralized and applied to understand strongly coupled non-
relativistic field theories. In particular, a certain class of non-
relativistic field theories, dubbed as hyperscaling violating
Lifshitz (hvLif) theories (which are conformal to Lifshitz
theories) has been extensively explored in previous works
[5–37]. In fact, there are concrete examples of realizable
condensed matter systems where certain correlators exhibit
similar scaling behaviour as that of hvLif theories [35]. Inter-
ested readers can see [25,35] for a comprehensive review of
these class of non-relativistic field theories.

The gravity dual of hvLif theories can be realized as solu-
tions to effective Einstein–Maxwell-dilaton theories [5–19].
hvLif solutions may be embedded in string theory as null
reductions of boosted black branes [38,39] (Lifshitz space-
times which are conformal to hvLif spacetimes also admit
gauge/string realizations [40–45]). For a better understand-
ing of this class of non-relativistic field theories, it is cru-
cial to understand their infrared (IR) behaviour, in particular,
hydrodynamics and various response functions that emerges
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in the low-energy limit. In previous works, the shear diffu-
sion constant and the shear viscosity bound for hvLif theories
were analysed using the membrane paradigm approach [26]
as well as quasi-normal modes of the dual gravity theory [34].
It was found that for a di + 1-dimensional hvLif theory with
Lifshitz exponent z and hyperscaling violating exponent θ ,
one must have z ≤ di + 2 − θ for a consistent hydrodynamic
expansion. When z = di + 2 − θ , the shear diffusion con-
stant exhibits a novel logarithmic scaling while the Kovtun–
Starinets–Son (KSS) shear viscosity bound is saturated [46].
For z > di + 2 − θ , the first order solution diverges at the
boundary presumably hinting towards a breakdown of the
hydrodynamic expansion for this parameter regime.

In this paper, we take the approach as pioneered by Iqbal
and Liu [47]. The gauge/gravity duality maps the strongly
coupled field theory on the boundary to the weakly coupled
black hole spacetime in the bulk. However, the membrane
paradigm approach to black holes endows hydrodynamic
properties such as viscosity, entropy, conductivity etc. to a
fictitious stretched horizon which is hovering very close to
the real event horizon. Using the UV/IR point of view, Iqbal
and Liu essentially attempted to relate this horizon fluid to
the hydrodynamic regime of the strongly coupled field the-
ory living on the boundary in the context of AdS gravity. It
turned out that in the low-frequency, long wavelength limit
(i.e. hydrodynamic limit) the evolution of retarded Green’s
function of the boundary with respect to energy scale is triv-
ial. To be more precise, one can think of the radial direction
of the bulk gravity theory as the energy scale of the bound-
ary theory. Thus, the perturbed bulk Einstein’s equations at
linearized order can be thought of as a RG flow equation for
a certain generalized response function which turns out to
be independent of the radial direction at leading order. The
triviality of flow of the response function implies that the cor-
responding transport coefficient can be expressed in terms of
geometric quantities over any constant r hypersurface of the
bulk theory and hence can be shown to be universal.

The aim of this work is to adapt the above approach and
study the RG flow of response functions in the context of
hvLif theories. The analysis is significantly more compli-
cated due to nontrivial coupling between the shear perturba-
tive modes with the gauge field perturbations. This is to be
contrasted with previous works such as [22,48] where such
flow equations were studied in the context of anisotropic
gravity duals or the background resulted from higher deriva-
tive corrected action. In such cases, the holographic duals
interpolate between Lifshitz or hvLif in the deep IR while it
asymptotes to pure AdS near the boundary.

The starting point of our analysis is a (d+1)-dimensional
gravity dual of hvLif theory. Turning on perturbations of the
form e−iωt+iqx hμν(r) and e−iωt+iqxaμ(r) respectively for
the metric and gauge field, we notice the shear sector modes
hxi , hti and ai (where i runs over all boundary direction

except t and x) forms a coupled set of differential equations.
We associate a conjugate momenta to each of these perturba-
tion modes and correspondingly define appropriate response
functions. As one would expect, the radial flow equations
for each of these response functions also follow complicated
coupled non-linear differential equations. However, one must
note that our principal aim is to extract the transport coeffi-
cient out of these response function in the hydrodynamic
limit which one does in the language of linear response the-
ory, adapted to the context of gauge/gravity duality. Consider
a generic field theory containing an operator O which is cou-
pled to a source ϕ. At the level of linear response they are
related as

〈O(ω, q)〉 = −GR(ω, q)ϕ(ω, q) (1.1)

where ω and q are very small frequency and momenta respec-
tively, while GR denotes the retarded correlator for the oper-
ator O. The corresponding transport coefficient is defined
as

χ = lim
ω→0

GR(ω, q = 0)

iω
, (1.2)

which is known as Kubo’s formula. In particular, when
O ≡ T xy , the corresponding transport coefficient is the shear
viscosity η while for a charge current i.e. O ≡ J x , the analo-
gous transport coefficient is the DC conductivity. Since in the
above we essentially require to find the response function at
zero momenta, we focus on that regime and analyse the flow
equations. Interestingly, we see that indeed for q = 0, the
flow equation for χxi i.e. the response function correspond-
ing to hxi follows a Riccati equation which leads to a constant
χxi at leading order for all values of z and θ . This behaviour
is identical to that encountered in pure AdS gravity [47].
However, when z = di − θ , the first order correction to the
response function has a logarithmic scaling which diverges
at the boundary r → 0. This necessitates the introduction of
a cut-off presumably signifying the UV scale beyond which
the hydrodynamic expansion breaks down.

The analysis for the response function associated with ai
i.e. χai is more involved due to the complicated nature of
the flow equation. In fact at q = 0, it turns out the vari-
able ζai = ωχai seems to admit a hydrodynamic expan-
sion. In order to analyse the behaviour of ζai , we focus on
the near-horizon region and the near-boundary region sep-
arately which somewhat simplifies the analysis. At lead-
ing order itself, we see the solutions for ζai are different
for the two different regimes. This is different qualitatively
from the behaviour of χxi which followed a trivial flow
equation allowing one to write the response function at any
point along the radial direction. Interestingly, we see close
to the boundary, the leading piece of χai diverges when
z > di + 2 − θ which is identical to results obtained in ear-
lier works [26,28,34]. To further vindicate our result, one can
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look at theMarkovianity index of the fluctuating modes in the
spirit of [49]. Interestingly, we observe that for z ≤ di+2−θ ,
the fluctuations starts to behave like a non-Markovian probe.

The paper is organized as follows: In Sect. 2, we describe
our setup and define appropriate response functions cor-
responding to the shear gravitational modes. The general
flow equations are worked out which describes the non-
perturbative evolution of response function for arbitrary fre-
quency and momenta. Section 3 focuses on the zero momenta
sector and look at the transport coefficient associated with the
modes hxi , hti and ai . Finally, keeping some details of the
calculations in three appendices, we end with a discussions
of our main results with possible future directions along with
a simple analysis of theMarkovianity index results in Sect. 4.

2 Flow equations of response functions

We are considering a hvLif theory living in d = di + 1
spacetime dimensions with Lifshitz exponent z and hyper-
scaling violating exponent θ . This field theory has a (d + 1)-
dimensional gravity dual given by

ds2 = r
2θ
di

⎛
⎝− f (r)

r2z dt2 + dr2

r2 f (r)
+

di∑
i=1

dx2
i

r2

⎞
⎠ ;

d = di + 1; f (r) = 1 − (r0r)
di+z−θ . (2.1)

The above metric is a solution to Einstein–Maxwell-dilaton
theory (details of background solution in Appendix A). The
temperature of the field theory dual to the hvLif theory (2.1)
is the Hawking temperature of the black brane

T = di + z − θ

4π
r z0, (2.2)

where the event horizon is located at r = 1
r0

.
As per the holographic dictionary, the radial coordinate r

can be thought of as the energy scale in the bulk theory. Our
central goal in this section is to essentially set up the RG flow
equations governing the response functions that we want to
study. In order to obtain the RG flow equations, we turn on
linearized perturbations in the bulk theory, which in general
is given as,

gμν = ḡμν + hμν; Aμ = Āμ + aμ; φ = φ̄ + ϕ, (2.3)

where quantities ḡμν, Āμ and φ̄ denote background fields as
given in Appendix A. We turn on perturbations of the form
e−iωt+iqx hμν(r) and e−iωt+iqxaμ(r) and restrict ourselves
to the radial gauge (hμr = ar = 0). The shear gravitation
modes hxi now couples to hti and ai where the index i runs
over all boundary coordinates except t and x . For conve-
nience, we define the following field variables

Hxi = gii hix = r
2− 2θ

di hxi ; Hti = gii hti = r
2− 2θ

di hti .

(2.4)

In terms of these modes the equations of motion take the
form

∂r (r
z+θ−(di+1)H ′

ti ) − ka′
i

−r z+θ−(di+1)

f
q(ωHxi + qHti ) = 0, (2.5)

∂r (r
θ−z−di+1 f H ′

xi )

+r z+θ−(di+1)

f
ω(ωHxi + qHti ) = 0, (2.6)

qr2−2z H ′
xi + ω

f
(H ′

ti − kr (di+1)−z−θai ) = 0, (2.7)

∂r (r
di+3−z−θ f a′

i ) + rdi+1+z−θ

f
ω2ai

−rdi+3−z−θq2ai − kH ′
ti = 0, (2.8)

where k = (di + z − θ)α. The above linearized equations
of motion follow from the perturbed second order action, the
details of which are provided in Appendix B. In terms of the
variables defined in (2.4), the action (B.1) can be recast in a
more ‘canonical’ form as

S(2) = −1

16πGN

∫
dr ddk

×
[
−1

2
r1−di−z+θ f H ′

xi
2 + 1

2
r−1−di+z+θ H ′

ti
2

+kHti a
′
i + ω2

2

r−1−di+z+θ

f
H2
xi

+q2

2

r−1−di+z+θ

f
H2
ti + qω

f
r−1−di+z+θ Hxi Hti

−1

2
f rdi+3−z−θa′2

i

+
(

ω2

2

rdi+1+z−θ

f
− q2

2
rdi+3−z−θ

)
a2
i

]
+ S(2)

bdy,

(2.9)

which yields (2.5)–(2.8) as the equations of motion. For com-
pletion, we state the boundary action i.e. S(2)

bdy is given by

S(2)
bdy = − 1

16πGN

∫
ddk

×
[
2r1−di−z+θ f H ′

xi Hxi − 2r−1−di+z+θ H ′
ti Hti

+ (θ − di ) f

di
r−di−z+θ H2

xi

+ r−di−2+θ+z
((
d2
i −di (θ+z−4)−2θ

)
f −di (di−θ+z)

)
2di f

H2
ti

]
.

(2.10)

Motivated by the equations of motion appearing in (2.5)–
(2.8), we observe that the coupling term between Hti and ai
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appearing in the above action (2.9), namely +kHti a′
i can be

rewritten as −kH ′
ti ai along with a boundary term. Thus, the

effective Lagrangian reads as

S(2) = 1

16πGN

∫
dr ddk

×
[
−1

2
r1−di−z+θ f H ′

xi
2 + 1

2
r−1−di+z+θ H ′

ti
2

−kH ′
ti ai + ω2

2

r−1−di+z+θ

f
H2
xi

+q2

2

r−1−di+z+θ

f
H2
ti + qω

f
r−1−di+z+θ Hxi Hti

−1

2
f rdi+3−z−θa′2

i

+
(

ω2

2

rdi+1+z−θ

f
− q2

2
rdi+3−z−θ

)
a2
i

]
+ S(2)

bdy .

(2.11)

The conjugate momenta for the modes Hxi , Hti and ai are
defined respectively as,

16πGNxi = ∂L
∂H ′

xi
, 16πGNti = ∂L

∂H ′
ti

,

16πGNai = ∂L
∂a′

i
. (2.12)

The above definitions immediately yield

16πGN . xi = − f r1−di−z+θ H ′
xi , (2.13)

16πGN . ti = r−1−di+z+θ H ′
ti − kai , (2.14)

16πGN . ai = − f rdi+3−z−θa′
i . (2.15)

Corresponding to each of the modes Hti , Hxi and ai , we
associate a response function given by,

χ(r, q, ω) = (r, q, ω)

iωφ(r, q, ω)
; φ = {Hxi , Hti , ai }. (2.16)

In terms of the response functions, the constraint equation
(2.7) takes the form

χti

χxi
= qHxi

ωHti
. (2.17)

Using the Eqs. (2.12)–(2.17), we can eventually write down
the generalized flow equations for the response functions
χxi , χti and χai which takes the form

∂rχxi = iω

[
16πGN χ2

xi

f r1−di−z+θ
− r z+θ−di−1

16πGN f

(
1 + q2

ω2

χxi

χti

)]
,

(2.18)

∂rχti = −iω

[
16πGN

r−1−di+z+θ
χ2
ti + k ai

iωr−1−di+z+θ Hti
χti

+r z+θ−(di+1)

16πGN f

(
χti

χxi
+ q2

ω2

) ]
, (2.19)

∂rχai = iω

[
16πGN

rz+θ−di−3

f
χ2
ai − rdi+1+z−θ

16πGN f

+ k2

16πGNω2 r
di+1−z−θ

+ q2

ω2

rdi+3−z−θ

16πGN
− q k

ω3

f r2−2z

16πGN

H ′
xi

ai

]
. (2.20)

Note that the above set of coupled differential equations are
exact i.e. they describe the flow of response functions for
generic values of frequency and momentum. Although, they
are complicated and analytically intractable, we are however
interested in the hydrodynamic regime which is essentially
the limit where the frequency and momenta ω and q are much
smaller than the temperature scale i.e. q � T 1/z ∼ r0 and
ω � T ∼ r z0 . Further, it is evident from (1.2) that the q = 0
sector is relevant for evaluating shear transport coefficient.
Thus, we will focus exclusively on the q = 0 sector of the
flow equations (2.18)–(2.20).

3 Zero momentum response functions

Before we proceed to study the q → 0 limit of the flow
equations we derived in the preceding section, it is imperative
to talk about solutions of the field equations in the q →
0 limit. An earlier work [34] analysed the field equations
assuming a hydrodynamic expansion in the dimensionless
parameters � = ω

2πT and Q = q
(2πT )1/z . One can however

reabsorb the constant temperature factor in each term of the
hydrodynamic expansion and simply write the fields as an
expansion in ω and q.

Starting with the equations of motion (2.5)–(2.8), a gauge
invariant combination Hi was defined as

Hi = ωHxi + qHti − kq
∫ r

rc
sdi+1−z−θai (s) ds. (3.1)

The fields Hi and ai formed a system of coupled differential
equations which were solved up to first order in the hydrody-
namic expansion. For the redefined field H, it was observed
that for z < di +2−θ the terms in the hydrodynamic expan-
sion of the field variables can be solved order-by-order. When
z = di + 2 − θ , the first order correction to Hi scales loga-
rithmically and seems to diverge close to the boundary. The
logarithmic scaling is suggestive of the emergence of a new
scale in the UV limit. In the regime when z > di + 2 − θ ,
the first order correction to Hi diverges suggesting a break-
down of the methodology for parameters in this regime. The
solution to the combination Hi up to first order in the hydro-
dynamic expansion is given by

Hi = C0 f (r)
− i�

2

[
1 + iq2

(di + 2 − z − θ)ω
r z−2

0
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·(1 − (r0r)
di+2−z−θ )

]
. (3.2)

The gauge field fluctuations, ai satisfy a second order non-
homogeneous differential equation. Upon imposing regular-
ity on ai , the leading solution takes the form

ai = −iC0k
q

ω
· rdi−θ

0

(di + z − θ)2

× f (r)1− iω
4πT (r0r)

−(di+z−θ), (3.3)

where C0 is an arbitrary non-zero constant. The first order
piece does not have a closed form solution but can be writ-
ten as an integral and thus cannot give us further insight into
its behaviour. The reader can find details and methodology
of solving for ai up to first order in [34]. Since in the cur-
rent context, our interest is to explore the flow equations, we
will not further concern ourselves with solutions to the fields
Hxi , Hti . We will however make certain assumptions about
them which will help us in dealing with the complicated flow
equations we derived in the preceding section.

Motivated from the form of Hi and ai as given in (3.2)
and (3.3), we will assume that the perturbations Hxi , Hti and
ai for ω 
= 0 and q 
= 0 admit a hydrodynamic expansion of
the form

φ(r, ω, q) = φ(−1)(r, ω, q) + φ(0)(r, ω, q)

+φ(1)(r, ω, q) + · · ·

=
∞∑

n=−1

φ(n)(r, ω, q), (3.4)

where φ(r, ω, q) represents any one of the perturbative
modes Hxi , Hti orai . The leading termφ(−1)(r, ω, q) is para-
metrically an O( 1

ω
) quantity while φ(n)(r, ω, q) ∼ O(ωn) ∼

O(qn). The first term in the above expression can be generi-
cally of the form

φ(−1)(r, ω, q) ∼
∑
a≥0

qa

ωa+1 ba(r) (3.5)

while the O(1) term and the n-th order term in the hydrody-
namic expansion will take the general schematic form

φ(0)(r, ω, q) ∼
∑
a≥0

qa

ωa
ga(r) and

φ(n)(r, ω, q) ∼
∑
a,b
k>0

qaωb q
k

ωk
h(a,b,k)(r), (3.6)

respectively. In (3.5) and (3.6), all the exponents a, b
and k are strictly positive. The functions ba(r), ga(r) and
h(a,b,k)(r) are all regular in the interval 0 < r < 1

r0
. The sum

in the n-th order term has a ‘prime’ to denote that it is a con-
strained sum such that a + b = n ≥ 1. The above schematic

forms of each term in the hydrodynamic expansion of the
field variables is well behaved in the limit q → 0.

A comparison of (3.3) with the schematic forms as given
in (3.5) and (3.6) tells us that for ai , the O( 1

ω
) term is iden-

tically zero; the O(1) term consists of a single term with

a = 1 while g1(r) ∼ f (r)− i�
2 . A comparison of the above

schematic expansion with Hi as given in (3.2) is difficult,
since it appears as a linear combination of Hxi , Hti and
an integral over ai . We can still comment on the heuristic
behaviour of the response functions that follows from the
above assumptions regarding the hydrodynamic expansion
of the field variables.

The structure of (2.13)–(2.16) along with (3.5)–(3.6)
implies that the response function can be written schemati-
cally as

χ  F(r)

iω

(
χ(0)(r, ω, q)+χ(1)(r, ω, q)+χ(2)(r, ω, q)+ · · ·

)

(3.7)

where χ(n)(r, ω, q) denotes a term which isO(qn) ∼ O(ωn)

in the hydrodynamic expansion but is determined by the
explicit forms of ba(r), ga(r) and h(a,b,k)(r) while F(r) is
some specific function depending on which mode is under
consideration. More specifically,

χ(0)(r, ω, q) =
∑

a≥0
qa

ωa+1 ∂rba(r)∑
a≥0

qa

ωa+1 ba(r)
,

χ(1)(r, ω, q) =
∑

a,b≥0
qa+b

ωa+b+1 W[ba(r), gb(r)]
∑

a,b≥0
qa+b

ωa+b+2 ba(r)bb(r)
(3.8)

where W[ f, g] = f g′ − f ′g denotes the Wronskian for the
pair of functions f and g. In the case, neither of these are
linear combinations of various powers of the ratio q

ω
, we

simply recover

χ(0)(r, ω, q) = ∂r ln ba(r),

χ(1)(r, ω, q) = ω
W[ba(r), gb(r)]

ba(r)bb(r)
. (3.9)

Armed with the above heuristic analysis, we further closely
look at the following terms appearing in (2.18)–(2.20).

• The last term appearing in (2.18) can be written as

H(r)
q2

ω

χxi

χti
, (3.10)

where H(r) is a function of r whose details we are not
concerned with for the purpose of this analysis. For the
sake of simplicity, if we assume (3.5) is not in fact a linear
combination of various powers of the ratio q

ω
, the leading
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behavior of this term for non-zero q and ω is given by

H(r)
q2

ω

χxi

χti
 q2

ω

(
H̃1(r) + ωH̃2(r) + · · ·

)
, (3.11)

where the “· · · ” represents terms that are higher order
in q or ω while H̃n(r) represents various functions of r .
Now, every expression H̃n(r) involve ratios of derivatives
of the family of functions ba(r), ga(r) and h(a,b,k)(r)
that appear in the hydrodynamic expansion of the field
variables. To be more explicit,

H̃1(r) ∼ ∂rb
(xi)
a (r)

∂rb
(ti)
a (r)

. (3.12)

At this point, we further make the assumption that for
non-zeroq and ω, each of these functions i.e.ba(r), ga(r)
and h(a,b,k)(r) appearing in the field expansion of Hti and
Hxi are non-constant, non-trivial functions of r . Clearly,
under the above assumption, this term vanishes when
q → 0. We will subsequently infer from the equations of
motion at q = 0 that χti = 0 for this sector however, the
term that we just discussed does not have any singular-
ity or does not go to any constant as q → 0. Physically
speaking, χti presumably contains a leading O(q) piece

which ensures that the ratio q2

χti
→ 0 as q → 0 while

presence of higher powers of the momenta q in subse-
quent higher order terms ensure it vanishes identically as
q → 0.

• In (2.19), we see the last two terms can be schematically
written as

ωG(r)

(
χti

χxi
+ q2

ω2

)
q→0−−−→ ωG(r)

χti

χxi
. (3.13)

Although this term will indeed vanish at q = 0, since
χti = 0 in this sector, our assumptions up to this point
dictates a possible O(ω) contribution as to the flow equa-
tions as q → 0. Hence, we keep this term in the limit of
vanishing momenta.

• Finally, we need to study the final term in (2.20) which
we schematically write as

q

ω2 P(r)
H ′
xi

ai
. (3.14)

Note that from (3.3) and comparing with the expansion
(3.4), it follows that for the field ai , the family of func-
tions ba(r) = 0 identically. Again, for simplicity, assum-
ing Hxi does not have a linear combination of terms at

O(1/ω), we get the leading behaviour of the last term as

q

ω2 P(r)
H ′
xi

ai
 qa

ωa+2 P(r)
∂rb

(xi)
a (r)

g(ai )
1 (r)

q→0−−−→ 0. (3.15)

Thus, in the q → 0 limit, we recover the simplified flow
equations as

∂rχxi = iω

[
16πGN χ2

xi

f r1−di−z+θ
− r z+θ−di−1

16πGN f

]
, (3.16)

∂rχti = −iω

[
16πGN

r−1−di+z+θ
χ2
ti

+ k ai
iωr−1−di+z+θ Hti

χti + r z+θ−(di+1)

16πGN f

χti

χxi

]
,

(3.17)

∂rχai = iω

[
16πGN

rz+θ−di−3

f
χ2
ai

−rdi+1+z−θ

16πGN f
+ k2

16πGNω2 r
di+1−z−θ

]
. (3.18)

The above equations can also be derived by turning on per-
turbations of the form e−iωt hμν(r) and choosing the radial
gauge hμr = 0. Before we proceed with the detailed analysis
of the flow of response functions, the equations of motion in
the q = 0 sector simplifies significantly to give

∂r (r
z+θ−(di+1)H ′

ti − kai ) = 0, (3.19)

∂r (r
θ−z−di+1 f H ′

xi ) + r z+θ−(di+1)

f
ω2Hxi = 0, (3.20)

H ′
ti − kr (di+1)−z−θai = 0, (3.21)

∂r (r
di+3−z−θ f a′

i ) + rdi+1+z−θ

f
ω2ai − kH ′

ti = 0. (3.22)

Thus, in the q = 0 sector, the mode Hxi further decou-
ples from Hti and ai . The constraint equation (3.21) clearly
implies

ti |q=0 = 0. (3.23)

By the assumptions we made in (3.4)–(3.6), we see that

lim
q→0

χti = lim
q→0

ti

iωHti
= 0. (3.24)

This indeed is consistent with (3.17) and renders the equation
trivial. Thus the q = 0 sector requires us to analyse two
independent equations governing the flow of Hxi andai given
by (3.16) and (3.18) respectively.

3.1 Response function χxi at q = 0

As argued in the previous section, in the q = 0 sector, the
χxi flow equation decouples from the χti flow equation and
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(2.18) simplifies to

∂rχxi = iω

f

[
16πGN

r1−di−z+θ
χ2
xi − r z+θ−di−1

16πGN

]
. (3.25)

If we demand regularity of χxi at the horizon, we clearly see

the RHS of the above is singular at r = 1

r0
. This forces us to

choose
[

16πGN

r1−di−z+θ
χ2
xi − r z+θ−di−1

16πGN

]

r= 1
r0

= 0, (3.26)

leading to the boundary condition

χxi

(
1

r0
, ω

)
= rdi−θ

0

16πGN
. (3.27)

In the hydrodynamic regime, we are allowed to write a per-
turbative expansion for χxi (r, ω) as

χxi (r, ω) = χ
(0)
xi (r) + ωχ

(1)
xi (r) + O(ω2), (3.28)

whereO(ω2) represents higher order terms beyond the linear
one. Plugging in the above expansion, in (3.25), the leading
order piece follows

∂rχ
(0)
xi (r) = 0. (3.29)

Physically, the above equation tells us that the RG flow of
the χxi is trivial at leading order remaining unchanged as
we go along the radial direction. Along with the boundary
condition (3.27) that we just derived, we have

χ
(0)
xi (r) = rdi−θ

0

16πGN
. (3.30)

The O(ω) equation which gives the flow of χ
(1)
xi , is given by,

∂rχ
(1)
xi = −i

r−di−1+z+θ

16πGN f (r)

(
1 − (r0r)

2(di−θ)
)

. (3.31)

The solution to the above equation is

χ
(1)
xi (r) = − irdi−z−θ

0

16πGN

[
(r0r)−di+z+θ

z + θ − di
2F1

×
[
1, 1 − 2(di − θ)

di + z − θ
, 2

− 2(di − θ)

di + z − θ
; (r0r)

di+z−θ
]

+ log f (r)

di + z − θ
+ C

]
when z 
= di − θ,

= − i

16πGN
log

r

C ′ when z = di − θ, (3.32)

where C and C ′ are integration constants for the two cases of
the Lifshitz exponent z while 2F1[a, b, c; r ] represents the
hypergeometric function. We then come across the following
two cases,

Case I • z 
= di − θ : Using the boundary condition (3.27),
we can fix the constant of integration to be

C = (γ + ψ(
z−di+θ
di+z−θ

))

di + z − θ
(3.33)

where γ is the Euler–Mascheroni constant and ψ(x) is the
polygamma function which is singular over the set non-
positive definite integers. Taking into account the null energy
condition (A.5), we focus when di −θ > 0 and z > 1. Since,
this solution is true when z 
= di − θ , the argument in the
polygamma function cannot be 0. However, z−di+θ

di+z−θ
= −1

gives z = 0 which violates our the assumption of z ≥ 1. For
all other parameter values of (z, θ) the null energy condition
ensures that ψ(

z−di+θ
di+z−θ

) is non-singular.

Case II • z = di − θ : In this case too, plugging in the
boundary condition (3.27), we get,

C ′ = 1

r0
(3.34)

which then gives the full solution

χxi (r) = rdi−1
0

16πGN
− iω

16πGN
log(r0r). (3.35)

Clearly the divergent nature of the solutions as r → 0, hints
at a possible breakdown of the analysis when z = di −θ near
the boundary.

Earlier works [28,34] used perturbative techniques to eval-
uate 2-point correlator of the stress-energy tensor which
seemingly broke down when z > di + 2 − θ . However,
an analysis of the response function corresponding to Hxi

i.e. χxi seems to carry through for all values of the Lifshitz
exponent. As mentioned earlier in (1.2), shear viscosity up
to leading order is thus given by

η = χxi = rdi−θ
0

16πGN
(3.36)

which inturn saturates the KSS bound of η
s = 1

4π
. Also,

note that the first order correction for either cases, namely
z = di − θ and z 
= di − θ is positive since r0r < 1 thus
following the bound. However, when z = di − θ , we see
the first order correction to be logarithmic and is actually
divergent at the boundary when r → 0. This enforces us to
put a cut-off suggesting the emergence of a new scale.

Interestingly, earlier works [40,41] constructed families
of Lifshitz geometries as dimensional reduction of AdS null
deformations. Specifically, starting with AdS5 null deforma-
tion, one can perform a reduction along one of the light-cone
coordinates, namely x+ which results in a 4-dimensional
metric of the form (2.1) with z = di = 2 and θ = 0.
Thus, dimensional reduction of null deformed AdS5 results
in a metric which falls in the family of hvLif solutions con-
strained by z = di − θ . In light of this observation, it will
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be interesting to understand the logarithmic scaling of the
first order contribution to χxi from the perspective of the
deformed higher dimensional theory.

3.2 Response function χai at q = 0

Recall from our earlier definition (2.16), that the response
function χai associated to ai is defined as

χai = ai

iωai
. (3.37)

To reiterate, the flow equation for the response function χai
decouples from that of χxi and χti in the limit q → 0 to
yield,

∂rχai = iω

(
16πGN

rz+θ−di−3

f
χ2
ai

−rdi+1+z−θ

16πGN f
+ k2

16πGNω2 r
di+1−z−θ

)
. (3.38)

The structure of (3.38) is significantly different from the flow
equation of χxi . Assuming a Laurent expansion in ω for the
function χai (r, ω), we see that in general it must have a term
which goes as 1

ω
along with regular terms. Thus, like the

earlier case of χxi , it does not make sense to naively perform a
hydrodynamic expansion of containing only positive powers
of ω. However, we define the new field

ζai = ωχai , (3.39)

in terms of which (3.38) becomes

∂rζai (r, ω) = i

[
16πGN

rz+θ−di−3

f
ζ 2
ai (r, ω)

+k2rdi−z−θ+1

16πGN
− ω2 r

di+z−θ+1

16πGN f

]
. (3.40)

Imposing regularity for ζai along the radial direction demands
us to write the boundary condition as
[

16πGNr
z+θ−di−3ζ 2

ai (r, ω) − ω2rdi+1+z−θ

16πGN

]

r= 1
r0

= 0,

(3.41)

which eventually yields,

ζai

(
1

r0
, ω

)
= ω

r θ−di−2
0

16πGN
. (3.42)

One must note that (3.40) is exact in ω and consistent with a
hydrodynamic expansion of the form

ζai (r, ω) = ζ (0)
ai (r) + ωζ (1)

ai (r) + ω2ζ (2)
ai (r) + · · · . (3.43)

Also, the demand of regularity gives us the ζai at the horizon
which depends explicitly on the frequencyω. Thus, regularity
in the context of the above hydrodynamic expansion implies

ζ
(m)
ai (1/r0) = 0 for all m 
= 1 while ζ

(1)
ai (1/r0) = r

θ−di−2
0

16πGN
.

Unlike the earlier case of χxi , we see here that at leading
order ∂rζai follows a nontrivial flow equation given by

∂r ζ
(0)
ai (r) = i

[
16πGN

rz+θ−di−3

f
ζ
(0)
ai (r)

2 + k2rdi−z−θ+1

16πGN

]
.

(3.44)

Thus, we see for this response function, the RG flow is not
trivial and it actually changes along the radial direction. Solv-
ing the above equation yields complicated solutions which
one cannot use easily to construct further subleading contri-
butions that are higher order in ω.

To circumvent the issue, we follow a different strategy.
We will analyse the flow equation successively in the near
horizon and the near boundary region.

Near horizon region : In order to analyse the flow near the
horizon, we define a new radial coordinate ρ given by

ρ = 1

r0
− r. (3.45)

In turn, the blackening factor can be written as

f = (di + z − θ)r0ρ + O(ρ2). (3.46)

Thus in the near horizon region, the flow equation can be
approximated as

∂ρζnh(ρ, ω) = −i

[
16πGN

rdi+2−z−θ
0

di + z − θ

× (1 + (di + 3 − z − θ)r0ρ)

ρ
ζnh(ρ, ω)2

− ω2

16πGN

r−di−z+θ−2
0

di + z − θ

× (1 − (di + z − θ + 1)r0ρ)

ρ

]
. (3.47)

An ansatz consistent with a hydrodynamics description may
be written as

ζnh(ρ, ω) = ζ
(0)
nh (ρ) + ωζ

(1)
nh (ρ) + ω2ζ

(2)
nh + O(ω3).

(3.48)

It is clear from (3.47) that the second term on the RHS
affects only at O(ω2). Also, the boundary condition (3.42)
implies that ζ

(0)
nh (0) = ζ

(2)
nh (0) = 0. The resulting equation

for ζ
(0)
nh (ρ) is given by,

∂ρζ
(0)
nh (ρ) = −16iπGN

rdi+2−z−θ
0

di + z − θ

× (1 + (di + 3 − z − θ)r0ρ)

ρ
ζ

(0)
nh (ρ)2. (3.49)
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Which on solving naively yields a solution of the form
− i

c1+Aρ+B log ρ
where A and B are constants depending on

r0, di , z and θ while c1 is an arbitrary constant which remains
unfixed even after imposing the relevant boundary condi-
tion for ζ

(0)
nh (ρ). This is because the very boundary condition

(3.42) is specified at a singular point of the equation. We can
however choose a cutoff surface at ρ = ε (which can be
thought of as a stretched membrane) hovering at a distance ε

outside the real horizon at 1
r0

where ζ
(0)
nh (ε) = 0 which then

implies

ζ
(0)
nh (ρ) = 0, (3.50)

identically in the near horizon region. This in turn leads to
the simple equation at O(ω) i.e.

∂ρζ
(1)
nh (ρ) = 0. (3.51)

The above along with (3.42) implies

ζ
(1)
nh (ρ) = r θ−di−2

0

16πGN
. (3.52)

Eventually, the equation at O(ω2) is given by

∂ρζ
(2)
nh (ρ) = − i(di + 2 − θ)

8πGN (di + z − θ)
r−di−z+θ−1

0 . (3.53)

The solution to the above equation consistent with the bound-
ary condition (3.42) is

ζ
(2)
nh (ρ) = − i(di + 2 − θ)

8πGN (di + z − θ)
r−di−z+θ−1

0 ρ. (3.54)

Thus in the near horizon region, we have,

ζnh(ρ, ω) ≈ ω
r θ−di−2

0

16πGN
− iω2(di + 2 − θ)

8πGN (di + z − θ)
r−di−z+θ−1

0 ρ.

(3.55)

Using (3.39) and (3.45), we see that in the near horizon
region, we can write,

χai (r, ω) ≈ r θ−di−2
0

16πGN

− iω(di + 2 − θ)

8πGN (di + z − θ)
r−di−z+θ−1

0

(
1

r0
− r

)
.

(3.56)

Clearly, χai being a constant at leading order exhibits trivial
RG flow and is thus qualitatively similar to χxi . However, one
must note that this is true only in the near horizon region.

Near boundary region : In this regime, we can approximate
the blackening factor f (r) ≈ 1 which simplifies (3.40) to

∂rζai (r, ω) = i

[
16πGNr

z+θ−di−3ζ 2
ai (r, ω)

+k2rdi−z−θ+1

16πGN
− ω2 r

di+z−θ+1

16πGN

]
. (3.57)

Assuming a series expansion in ω of the form

ζai (r, ω)
r→0−−→ ζ

(0)
bdy(r) + ωζ

(1)
bdy(r) + ω2ζ

(2)
bdy(r) + O(ω3),

(3.58)

we see that the leading order satisfies an equation of the form

∂rζ
(0)
bdy(r)

= i

[
16πGNr

z+θ−di−3ζ
(0)
bdy(r)

2 + k2rdi−z−θ+1

16πGN

]
,

(3.59)

whose solution is given by

ζ
(0)
bdy(r) = irdi+2−z−θ

32πGN

[
(di + 3z − θ − 2)

c1 − r−(di+3z−θ−2)

c1 + r−(di+3z−θ−2)

−(di + 2 − z − θ)
]
. (3.60)

Assuming reality of the gauge field (A.3) i.e. z > 1 the
null energy condition (A.5) implies di + z − θ > 0 which in
turn implies di + 3z − θ − 2 = (di + z − θ) + 2(z − 1) > 0.
Thus, near the boundary,

lim
r→0

(di + 3z − θ − 2)
c1 − r−(di+3z−θ−2)

c1 + r−(di+3z−θ−2)

−(di + 2 − z − θ) = −2(di + z − θ). (3.61)

Clearly, when di + 2 − z − θ > 0, ζ
(0)
bdy(r) → 0 as r →

0, however for di + 2 − z − θ < 0, we see a divergent
solution as r → 0 while it goes to a constant as r → 0 when
z = di + 2 − θ . In fact, due to the functional form of the
solution (3.60), its limit as r → 0 will be independent of
the constant c1 which will remain unfixed for any Dirichlet
condition imposed at the boundary. Hence, for z > di +2−θ

it seems such a hydrodynamic description for the gauge field
response function will simply breakdown near the boundary.

Starting with a AdSdi+3 dimensional boosted black brane,
performing a boost and taking an appropriate double scaling
limit involving the boost parameter and horizon radius yields
the so-called AdSdi+3 plane wave. Subsequently reducing
along x+ and identifying x− ≡ t yields (2.1) where the
Lifshitz exponent z and hyperscaling violating exponent θ

are related by [38]

z = di + 4

2
and θ = di

2
. (3.62)

Clearly, from the above expressions it follows that z =
di + 2 − θ . This is precisely the point in the (z, θ) parame-
ter space where we see the leading behaviour of ζai near the
boundary is a constant. From the viewpoint of the AdSdi+3

boosted black brane, this is suggestive that the hydrodynamic
analysis for such effective theories obtained as null reduc-
tions break down. However, a concrete understanding of this
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breakdown would require further detailed analysis concern-
ing the stability of such spacetimes which we plan to carry
out in subsequent works.

It is interesting to notice that this condition was recovered
in earlier works [28,34]. In particular, [34] studied QNM
modes in the black brane background given by (2.1). As
described earlier in Sect. 3, the gauge invariant combina-
tion (3.1) has a solution given by (3.2) up to first order
in the hydrodynamic expansion for z < di + 2 − θ . For
z = di+2−θ , the first order term develops a logarithmic scal-
ing while it diverges near the boundary when z > di +2−θ .
Our current analysis suggests it is the behaviour of the pertur-
bations in the background gauge field i.e. ai near the bound-
ary which is presumably the cause of this divergence. Thus,
the RG analysis seems to be suggestive of the fact that it
is the hydrodynamic expansion of ai which breaks down
causing its response function to yield an unphysical answer
when z > di + 2 − θ . Further, we should contrast this with
[26,28] which were near-horizon analysis, also led to the
same restriction on the Lifshitz exponent z. In our current
analysis, the divergence seem to occur in the boundary the-
ory as r → 0. Earlier work [22] studied hvLif solutions as
solutions to theories with higher derivative corrections. Null
energy conditions and stability criteria led to certain regions
in the (z, θ) parameter space that were identified asphysically
allowed. The criteria that we obtain above i.e. z < di +2−θ

seems to be an independent bound which cannot be obtained
by NECs or stability criteria.

The first order equation is given by

∂rζ
(1)
bdy(r) = 32iπGNr

z+θ−di−3ζ
(0)
bdy(r)ζ

(1)
bdy(r), (3.63)

which has a solution of the form

ζ
(1)
bdy(r) = c2

r2(di+z−θ)

(1 + c1rdi+3z−θ−2)2 . (3.64)

Owing to the null energy condition (A.5) and reality of the
gauge fields, which implies z > 1, we see that

lim
r→0

ζ
(1)
bdy(r) = 0, (3.65)

which leaves the constant c2 which remains unfixed. Finally,
the equation governing the second order contribution is given
by

∂r ζ
(2)
bdy(r) + 2[2(z − 1)c1rdi+3z−θ−2 − (di + z − θ)]

r(c1rdi+3z−θ−2 + 1)
ζ

(2)
bdy(r)

+i

(
r2z−1

16πGN
− 16πGNc

2
2

r3di+5z−3θ−3

(c1rdi+3z−θ−2 + 1)4

)
= 0,

(3.66)

whose solutions are listed in Appendix C. From (3.39), it
follows that the response function associated to ai near the

boundary is given by

χai (r, ω) ≈ irdi+2−z−θ

32πGNω

×
[
(di + 3z − θ − 2)

c1 − r−(di+3z−θ−2)

c1 + r−(di+3z−θ−2)

−(di + 2 − z − θ)

]

+c2
r2(di+z−θ)

(1 + c1rdi+3z−θ−2)2 + O(ω). (3.67)

The response function χai at leading order exhibits non-
trivial dependence on the radial coordinate and thus shows
a very distinct behaviour compared to the response function
χxi .

4 Discussion and conclusion

In this paper, we have studied and analysed the RG flow equa-
tions governing the shear response in hvLif theories from the
holographic viewpoint. The presence of U (1) gauge fields
along with a dilaton complicate the analysis significantly
since certain gauge field perturbations i.e. ai couples to the
shear tensor modes hxi and hti . Focusing on the q = 0 sector,
our central observations are:

• The shear viscosity at the leading order seems to sat-
urate the KSS bound for all values of z and θ . Earlier
works failed to make any statement about shear vis-
cosity for z > di + 2 − θ . This analysis gets around
that issue of breakdown of hydrodynamic expansion for
z > di + 2 − θ . However, for the special value of
z = di − θ , we see a very interesting logarithmic correc-
tion at the first order. This does not violate the KSS bound
but, necessitates the introduction of a UV cutoff to con-
trol potential divergences at the boundary. This particu-
lar logarithmic behaviour of the subleading correction to
shear viscosity for z = di −θ seems to be a novel feature.
Further, as discussed in previous works [40,41], dimen-
sional reduction of null deformed AdS5 results in z = 2
Lifshitz theories (they have θ = 0) and is consistent with
z = di − θ = 2. Given this observation, it is natural to
ask if such logarithmic correction for z = di − θ can be
explained from the perspective of the higher dimensional
null deformed AdS5 theory. It will be interesting to fur-
ther explore the hydrodynamics of theories dual to such
null deformed background.

• In the response function for ai , we observe non-trivial
flow even at leading order in χai . We have performed the
analysis in the near horizon and the near boundary region
with appropriate approximations. In the near horizon
region, the qualitative behaviour of χai seems to mimic
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that of χxi . However, the near boundary analysis reveals
a leading behaviour which scales as χai ∼ rdi+2−z−θ .
The response function happens to be convergent provided
z < di + 2 − θ . Thus, it seems this bound obtained in
earlier works [26,28,34] can be interpreted as a regu-
larity condition on the response function of the gauge
field perturbations ai . Earlier works constructed a linear
combination involving all the perturbation modes which
obfuscated the source of this constraint. Our present anal-
ysis seems to suggest that it is the gauge field perturba-
tions exclusively which are responsible for the constraint
z < di + 2 − θ .

An aside on Markovianity index: At this point one can
ask for a more physical origin for the constraints observed in
this paper. In other words, we want to understand if the break-
down of the hydrodynamic expansion for a certain parameter
range, namely z > di + 2 − θ has a more deeper origin or is
simply a bug of these non-relativistic gravity duals. Towards
that vein one perform a Markovianity index analysis of the
perturbations in the probe limit in the spirit of [49]. To be
more elaborate, [49] studied probes couples to conserved
currents in an AdS-Schwarzschild background. The effec-
tive coupling of the probe field is characterized by a single
parameter, namely the Markovianity index M. Probe fields
withM > −1 exhibits short-lived memory and behave anal-
ogous to the massive scalar probes. Probes with M ≤ −1,
however, retain long-term memory. In the current context,
the metric perturbations we study are coupled to conserved
current i.e. the stress tensor.

More precisely, [49] starts from the effective action of a
probe scalar of the form

Se f f = −1

2

∫
dd+1x

√−grd−1−M∇ AφM∇AφM + Sbdy,

(4.1)

describing a massless Klein-Gordon field minimally φM
minimally coupled to gravity with metric being same as
(2.1) and M ∈ R being some designer parameter modu-
lating the coupling. To reiterate more concretely, With this
designer scalar the central observation of [49] is that the
scalar probe field φM is Markovian if M > −1 or else its
non-Markovian. Written in terms of the usual Fourier modes
the scalar field equation takes the form in the zero momentum
limit1

φ′′
M +

(
−M

r
+ f ′

f
+ i

2ω

r f

)
φ′
M − i

ωM
r f

φM = 0. (4.2)

1 With q 
= 0 the equation becomes

φ′′
M +

(
−M

r
+ f ′

f
+ i

2ω

r f

)
φ′
M −

(
q2

f
+ i

ωM
r f

)
φM = 0.

Comparing (4.2) with (2.6) in the limit ω → 0 one can check
that in this case the designer parameter turns out to be

M = di + z − θ − 1.

Interestingly, this implies that constraining the perturbations
to be Markovian also forces the probe to obey the null energy
condition (A.5). In other words

M > −1 �⇒ di + z − θ ≥ 0.

The situation with (2.5) or (2.8) is much more complicated
due to the coupling between the fields. One can simplify the
situation by considering the near boundary region for (2.5)
where f (r) ∼ 1. In this regime, a comparison between (4.2)
and (2.5) in the limit ω → 0 reveals2

M = di − z − θ + 1.

Again imposing the Markovianity condition M > −1, we
interestingly have

z < di + 2 − θ,

which is exactly the limit that we have obtained through the
gauge field perturbations. Therefore the regularity condition
of z < di +2−θ., analysed explicitly in the present analysis
and observed earlier in [26,28,34] can also be attributed to
the fact of the probes being Markovian. The above calcu-
lations although rudimentary seems to be hinting towards a
connection between Markovianity index of the fluctuations
and the breakdown of hydrodynamic expansion. An elabo-
rate investigation of this issue is beyond the scope of this
paper, which we hope to address in future works.

Our strategy of analysing the near horizon and near bound-
ary regions separately opens up some possible new direc-
tions in the hydrodynamics of hvLif theories. Our analysis
is restrictive in the sense that we analysed the q = 0 sector
only. A natural extension will be to understand the q 
= 0
sector and check if one recovers any new transport coeffi-
cient at linear order in q. Another interesting question will
be to explore if regularity conditions imposed on response
functions of higher order transport coefficients leads to any
further constraint on the Lifshitz exponent z. We are look-
ing forward to analysing the flow equations both analytically
and numerically to comment on higher order transport coef-
ficients which are yet unexplored in the literature. We subse-
quently plan on studying the RG flow of response functions
that arise in the sound channel and scalar channel.

2 Near the boundary with ω → 0 and q → 0 Eq. (2.5) becomes

H ′′
ti + z + θ − di − 1

r
H ′
ti = 0,

where the term containing a′
i gets dropped due to (3.3).
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Appendix A: Reviewing hyperscaling violating Lifshitz
spacetimes

The metric (2.1) is a solution to the Einstein–Maxwell-
dilaton action

S = − 1

16πG(d+1)
N

∫
dd+1x

√−G

×
[
R − 1

2
∂μφ∂μφ − Z(φ)

4
FμνF

μν + V (φ)

]
, (A.1)

where the various fields and parameters appearing in the
action are listed as follows:

φ = √
2(di − θ)(z − θ/di − 1) log r, (A.2)

At = α f (r)

rdi+z−θ
, α = −

√
2(z − 1)

di + z − θ
, Ai = 0. (A.3)

V (φ) = (di + z − θ)(di + z − θ − 1)r
− 2θ

di ;
Z(φ) = r

2θ
di

+2di−2θ = eλφ. (A.4)

The null energy conditions following from (2.1) give con-
straints on the Lifshitz z and hyperscaling violating θ expo-
nents

(z − 1)(di + z − θ) ≥ 0, (di − θ)(di (z − 1) − θ) ≥ 0.

(A.5)

Varying with ḡμν , Āμ and φ̄, we obtain the following equa-
tions of motion,

R̄μν = 1

2
∂μφ̄∂ν φ̄ − ḡμν

V (φ̄)

d − 1

+ Z(φ̄)

2
ḡρσ F̄ρμ F̄σν − Z(φ̄)

4(d − 1)
ḡμν F̄ρσ F̄

ρσ , (A.6)

∇μ(Z(φ̄)F̄μν) = 0, (A.7)

1√−ḡ
∂μ(

√−ḡḡμν∂νφ̄) + ∂V (φ̄)

∂φ̄
− 1

4

∂Z(φ̄)

∂φ̄
F̄ρσ F̄

ρσ = 0.

(A.8)

Note that from (A.6) it follows that:

R̄ = R̄μν ḡ
μν = 1

2
∂ρφ̄∂ρφ̄ − d + 1

d − 1
V (φ̄)

+ Z(φ̄)

2
ḡρσ F̄ λ

ρ F̄σλ − Z(φ̄)(d + 1)

4(d − 1)
F̄2. (A.9)

Alternatively, we can write (A.6) as:

R̄μν − 1

2
ḡμν R̄ = 1

2
∂μφ̄∂νφ̄ − ḡμν

V (φ̄)

d − 1

+ Z(φ̄)

2
ḡρσ F̄ρμ F̄σν − Z(φ̄)

4(d − 1)
ḡμν F̄ρσ F̄

ρσ

−1

2
ḡμν

[
1

2
∂ρφ̄∂ρφ̄ − d + 1

d − 1
V (φ̄)

+ Z(φ̄)

2
ḡρσ F̄ λ

ρ F̄σλ − Z(φ̄)(d + 1)

4(d − 1)
F̄2

]

⇒ R̄μν − 1

2
ḡμν R̄ = 1

2
∂μφ̄∂νφ̄ − 1

4
ḡμν∂ρφ̄∂ρφ̄

+ Z(φ̄)

2
F̄ρμ F̄

ρ
ν − Z(φ̄)

8
ḡμν F̄

2 + V (φ̄)

2
ḡμν. (A.10)

Appendix B: Perturbations to hvLif spacetimes

The perturbed action up to second order terms is given by

S(2) = −1

16πGN

∫
dr ddk

[
A(r)h′′

ti hti + Ã(r)h′′
xi hxi

+B(r)h
′2
ti + B̃(r)h

′2
xi + C(r)hti h

′
ti

+C̃(r)hxi h
′
xi + D(r)h2

ti + D̃(r)h2
xi

−g(r)hti a
′
i + H(r, q)h2

ti + H̃(r, ω)h2
xi

+2J (r, q, ω)hti hxi + M(r)a′2
i + N (r, q, ω)a2

i

]
,

(B.1)

where the various functions appearing in the action is given
by:

A(r) = −2r
3−di+z+ θ

di
(di−4); Ã(r) = 2 f r

5−di−z+ θ
di

(di−4)

B(r) = −3

2
r

3−di+z+ θ
di

(di−4); B̃(r) = 3

2
f r

5−di−z+ θ
di

(di−4)

C(r) =
[

3di − 8 − 3z + 12θ

di
− 3θ − di + z − θ

f

]
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×r
2−di+z+ θ

di
(di−4)

C̃(r) =
[
−2di − 2z + 2θ + 14 f − 12θ

di
f

]
r

4−di−z+ θ
di

(di−4)

D(r) =
[
−2 + 3di − d2

i
2

+ (di − 3)z − z2

2

+5 − di
di

zθ +
(

−8 + 10

di
+ di

)
θ

+
(

5

di
− 10

d2
i

− 1

2

)
θ2 + 1

f
((di − 1)(di + z)

+2 − di
di

zθ − 2 − di
di

θ2 + (3 − 2di )θ

)

+ 1

f 2

(
−d2

i
2

− zdi − z2

2
+ zθ + di θ − θ2

2

)]

×r
1−di+z+ θ

di
(di−4)

D̃(r) =
[
−3di − 3z + 6θ + 3zθ

di
− 3θ2

di

+10 f − 20θ

di
f + 10θ2

d2
i

f

]
r

3−di−z+ θ
di

(di−4)

g(r) = (di + z − θ)αr
2− 2θ

di ;

H(r, q, ω) = q2

2

r
3−di+z+ θ

di
(di−4)

f
;

H̃(r, q, ω) = ω2

2

r
3−di+z+ θ

di
(di−4)

f

J (r, q, ω) = ωq

2

r
3−di+z+ θ

di
(di−4)

f
;

M(r) = −1

2
f rdi+3−z−θ

N (r, q, ω) = ω2

2

rdi+1+z−θ

f
− q2

2
rdi+3−z−θ .

The modes hti (t, r, x), hxi (t, r, x) and ai (t, r, x) form a
decoupled set of equations along with a constraint equa-
tion which can be solved perturbatively for every xi ∈
{x2, . . . , xdi } and x ≡ x1.

Appendix C: Solution of ζai at second order near bound-
ary

As demonstrated earlier, the equation governing the second
order correction to ζai near the boundary is given by (3.66).
The generic solution to this equation is given by

ζ
(2)
bdy(r) = c3

r2(di+z−θ)

(1 + c1rdi+3z−θ−2)2 − i
5rdi+z−θ+2

16πGN (di + z − θ − 2)(1 + c1rdi+3z−θ−2)2

−ic1
r2(di+2z−θ)((di + 5z − θ − 2) + c1zrdi+3z−θ−2)

16πGN z(di + 5z − θ − 2)(1 + c1rdi+3z−θ−2)2 + i
r2(di+z−θ)

[
3r2 − 3c2

1r
2(di+3z−θ−1) + 128π2G2

N c2
2r

2(di+2z−θ−1)
]

8πGN (di + 3z − θ − 2)(1 + c1rdi+3z−θ−2)3

+ 6i

8πGN

zrdi+z−θ+2
2F1[1,

2+θ−di−z
di+3z−θ−2 ; 2z

di+3z−θ−2 ;−c1rdi+3z−θ−2]
(di + z − θ − 2)(di + 3z − θ − 2)(1 + c2rdi+3z−θ−2)2

+ 3i

8πGN

2zc2
1

(di + 3z − θ − 2)(di + 5z − θ − 2)

r3di+7z−3θ−2

(1 + c1rdi+3z−θ−2)2 2F1

[
1,

di + 5z − θ − 2

di + 3z − θ − 2
; 2(di + 4z − θ − 2)

di + 3z − θ − 2
;−c1r

di+3z−θ−2
]

,

(C.1)

which is valid when di + z − θ 
= 2.
When di + z − θ = 2 and z 
= 2, we have the

solution

ζ
(2)
bdy(r)

=
r4

⎛
⎝− 256iπGN c2

2
c2

1 zr
2z+c1z

−
ir2z−4

(
c1r2z

(
c1r

2z

3z−2 + 1
z−1

)
+ 1

z−2

)

πGN
+ 32κ1

⎞
⎠

32
(
c1r2z + 1

)2 .

(C.2)

When z = 2 and di = θ , we recover the solution

ζ
(2)
bdy(r) =

r4

⎛
⎝16κ2 −

i

(
64π2G2

N c2
2

c2
1r

4+c1
+ c2

1r
8

8 + c1r
4

2 +log(r)

)

πGN

⎞
⎠

16
(
c1r4 + 1

)2 .

(C.3)

All of them vanish in the limit r → 0 (near boundary) thus
leaving the constants c3, κ1 and κ2 unfixed.
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