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Abstract This paper investigates the concept of cracking
and overturning to analyze the impact of local density per-
turbations on the stability of self-gravitating compact objects
in the framework of f (R, φ, X) theory of gravity, where R,
φ, and X denote the Ricci scalar, scalar potential, and kinetic
term, respectively. In this context, we developed the hydro-
static equilibrium equation for spherically symmetric space-
time with anisotropic matter configuration and subsequently
employed the Krori Barua technique. We then perturb the
hydrostatic equilibrium state of the configuration by employ-
ing the local density perturbation technique, while taking
into account the barotropic equation of state. To validate this
technique, we employed it on different compact stars namely,
Her X-1, SAX J1808.4-3658, 4U 1820-30, PSR J1614-2230,
Vela X-1, and Cen X-3, and found that all stars exhibit crack-
ing or overturning for a specific range of model parameters.
Conclusively, this study emphasizes that the proposed crack-
ing technique provides significant insights into the stability
analysis of self-gravitating compact objects.

1 Introduction

The accelerated cosmic expansion is a crucial area of inter-
est in cosmology and astrophysics, and various theories have
been proposed to explain its current state. This expansion
is mainly attributed to the impact of dark energy, which
accounts for a significant portion of the universe’s total
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energy and has significant negative pressure. Despite exten-
sive research, the nature of dark energy remains a significant
challenge in cosmology [1–3]. Einstein’s theory of relativ-
ity has significantly contributed to unveiling the mysteries of
the universe and revolutionized our understanding of space,
time, and gravity [4]. Despite being a fundamental concept
in modern physics, the theory of relativity has limitations
in analyzing strong gravitational fields, explaining cosmic
acceleration, and accounting for dark matter. To address these
limitations, researchers have explored modified theories of
gravity, which can provide better explanations than the clas-
sical theory in specific scenarios. Hence, it has become evi-
dent that the classical theory requires some modifications, to
investigate cosmic expansion. Consequently, numerous the-
ories have been put forth by modifying general relativity,
including the f (R) [5–8], f (G) [9,10], f (R, T ) [11–13],
f (R,G) [14], f (G, T ) [15], f (Q) [16], and f (R, φ, X)

[17–19] theories of gravity. By presenting new cosmologi-
cal perspectives and concepts, these theories not only aim to
overcome the shortcomings of classical theory but also offer
valuable insights into important issues such as dark energy
and cosmic acceleration [20–24]. Bahamonde et al. [25] pro-
posed f (R, φ, X) theory of gravity, as an extension of f (R)

gravity, which incorporates a scalar field φ and a kinetic term
X . The f (R, φ, X) gravity has been extensively studied in
recent years for its potential to explain and accelerate the
cosmic expansion while still satisfying the weak energy con-
dition [26–29].

Compact stars are the subject of extensive research in the
field of astrophysics [30–37]. Hewish et al. [38] discovered
the first pulsar by detecting a highly magnetized neutron star
emitting periodic radio waves, revolutionizing the field of
astrophysics. Consequently, this discovery of pulsars led to
a paradigm shift in our understanding of regular stars, and
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prompted researchers to investigate physical processes that
resulted in the formation of compact stars like neutron stars,
white dwarfs, and black holes. When a star consumes its
nuclear fuel, it undergoes stellar demise and forms a com-
pact star, which is characterized by a higher density, a smaller
radius, and the inability to resist gravitational collapse [39].
The discovery of anisotropic properties within the compact
structures of stars was a significant development in astro-
physics, pioneered by Ruderman [40]. In the literature [41],
the stellar structures with anisotropic pressure have been
investigated by means of the equation of state. While study-
ing compact stars, it is highly appropriate to take into account
the anisotropic form of modified gravity. Kalam et al. [42]
used the Krori and Barua metrics to address the effects of
anisotropic matter on compact objects. Bhar et al. [43] ana-
lyzed the possibility of compact stars in higher dimensions by
examining the noncommutative anisotropic stars. The nature
of compact stars can be further investigated through both
general relativity and modified theories of gravity [44–46].

The fluid with anisotropic pressure, characterized by
unequal principal stresses, has been a fundamental consider-
ation in our study. The importance of anisotropic pressure as
a starting point has been discussed, serving as a foundation
for further investigation. Recent advancements in our under-
standing, as highlighted in Reference [47], have presented a
new perspective on the justification of anisotropic pressure
in fluid configurations. The results presented in [47] demon-
strate that, even when the initial configuration is assumed to
be isotropic, physical processes fundamental to star evolu-
tion will always tend to produce pressure anisotropy, espe-
cially in relativistic contexts. This insight reinforces the fact
that anisotropic pressure is not only a plausible outcome but
an expected feature in fluid systems undergoing dynamic
changes.The important point to highlight is that equilibrium
states in fluid systems are the outcomes of dynamic stages.
Crucially, any anisotropy acquired during these dynamic
stages persists, no matter how small, as the system reaches
equilibrium. This idea is consistent with the ideas put forth in
[47], where stellar evolution-related physical processes result
in anisotropic pressure that is fundamental to the equilibrium
configuration of the system.

Stability analysis of compact stars is a crucial aspect
of modern astrophysics, providing insights into the internal
structure, evolution, and dynamics of celestial objects. The
stability of a compact star refers to its ability to maintain
a balance between inward and outward forces. Fusion pro-
cesses within compact objects generate energy, creating an
outward pressure that counters the inward forces and pre-
vents gravitational collapse. However, once the energy is
consumed, the inward forces become dominant, causing the
celestial object to collapse and leading to the formation of
compact stars. Bondi [48] made a pioneering and significant
contribution to investigating the stability of self-gravitating

spheres by employing the adiabatic criterion. Chandrasekhar
[49] employed the theoretical framework proposed by Bondi
and utilized the adiabatic index to investigate the stability of
compact objects, inspiring further research into the impact
of physical variables on the stability of compact objects.
Herrera et al. [50] investigated the effects of dissipation on
the dynamical instability of fluid with spherically symmetric
in the Newtonian and relativistic limits and concluded that
instability is increased by Newtonian correction whereas rel-
ativistic correction reduced it. Chan et al. [51] investigated the
effects of local anisotropy on the stability of compact objects
and concluded that even small anisotropies in the unperturbed
fluid can greatly impact system stability in both Newtonian
and relativistic limits. The same authors [52] examined the
impact of shearing forces and their corresponding viscosity
and demonstrated that both factors decrease fluid instability
in both the Newtonian and relativistic contexts.

One of the crucial techniques for analyzing stability in lit-
erature is perturbation analysis, which involves introducing
perturbations to the physical variables of a compact object
and analyzing their effects on its stability. The central theme
of perturbation analysis is to comprehend the impact of per-
turbations in physical parameters on the stability of a com-
pact object. This technique provides insights into the under-
lying physical processes that govern the behavior of self-
gravitating compact objects. Regge et al. [53] analyzed the
stability of relativistic objects by introducing a metric per-
turbation within the framework of general relativity and pro-
vided insights into the behavior of relativistic objects and
their stability under different conditions.

The cracking and overturning approach was developed by
Herrera [54], as an alternative approach to analyze the insta-
bilities within the configuration of compact objects. When the
equilibrium condition is disturbed, this approach aims to ana-
lyze the behavior of the fluid configuration within the object.
It explicitly addresses the point of departure from equilib-
rium, where non-zero radial forces with different signs appear
within the system. Cracking occurs when the perturbed radial
force is directed inward in the inner part of the configuration
and changes sign at a specific point

(
δ�
δρ

< 0 → δ�
δρ

> 0
)
.

On the other hand, if the force is directed inward in the inner
part and changes sign in the outer part

(
δ�
δρ

> 0 → δ�
δρ

< 0
)
,

we refer to it as overturning. The cracking technique was
elaborated on by Di Prisco et al. [55], who employed the
Raychaudhuri equation to determine the necessary limita-
tions for cracking. Herrera et al. [56] examined the effects
of variations in local anisotropy on the cracking of com-
pact objects through a Jeans instability analysis. Herrera and
Varela [57] proposed the method to analyze the cracking in
non-spherical systems by introducing axisymmetric pertur-
bations in an ideal fluid configuration. Di Prisco et al. [58]
examined the occurrence of cracking by employing perturba-
tions in local anisotropy of self-gravitating compact objects.
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Abreu et al. [59] analyzed the occurrence of cracking by per-
turbing the density and local anisotropy of compact objects
with the local and non-local equation of state. Abreu et al.
[60] studied the stability of compact objects by analyzing
the occurrence of cracking, utilizing the concept of den-
sity fluctuations and sound speeds. Azam et al. [61] inves-
tigated the effects of electromagnetic fields on the stability
of charged compact objects through the concept of cracking.
Azam et al. [62] investigated the cracking of PSR J1614-
2230 in quadratic regime in the presence of electromagnetic
fields and concluded that star exhibits cracking in the pres-
ence of charge. Sharif and Sobia [63] investigated the crack-
ing of charged anisotropic fluid configuration using poly-
tropic equation of state in the presence of electromagnetic
field. Gonzalez et al. [64,65] extended the notion of crack-
ing by assuming density-dependent physical parameters and
employing local density perturbations to both anisotropic and
isotropic matter distributions. Azam et al. [66] investigated
the impacts of density fluctuations on the stability of compact
objects using the cracking technique in a linear regime. Azam
and Mardan [67] investigated cracking in charged spherical
polytropes by perturbing the physical parameters. Azam and
Mardan [68] also analyzed the occurrence of cracking for
certain values of density and other parameters in two dis-
tinct types of charged cylindrical polytropes. Gonzalez et
al. [69] investigated the effects of density perturbations on
the stability of isotropic and anisotropic matter configuration
with barotropic equation of state in general relativity utiliz-
ing the concept of cracking. Sharif and Sobia [70] studied the
stability of charged cylindrically symmetric compact object
with anisotropic matter configuration by utilizing the con-
cept of cracking and demonstrated that the models with a
specific form of Chaplygin equation of state exhibits crack-
ing and instability increases with higher charge parameter.
Sharif and Sobia [71] investigated the cracking in anisotropic
spherically symmetric matter configurations with a poly-
tropic equation of state by employing density perturbations
in matter variables. León et al. [72] discussed the occurrence
of cracking in polytropic spherical compact objects by ana-
lyzing the effects of perturbations in energy density and local
anisotropy, with the implication for the various astrophysi-
cal scenarios. Azam et al. [73] investigated the stability of
anisotropic generalized polytropic models with charge using
the concept of cracking and concluded that all the models
retains stability when local density perturbation is applied.
Noureen et al. [74] proposed a technique to observe cracking
points by employing local density perturbation in f (R) grav-
ity and investigated the stability of self-gravitating compact
objects.

In this paper, we aim to investigate the stability of compact
stars in f (R, φ, X) gravity using the cracking technique. To
achieve this, we employ local density perturbation in spheri-
cally symmetric spacetime with anisotropic matter distribu-

tion and examine the configuration for cracking and overturn-
ing points. This paper is structured in the following manner:
In Sect. 2, we present the field equations of f (R, φ, X) theory
of gravity and formulate the expression for the hydrostatic
equilibrium equation. Within this section, we also employ
Krori Barua spacetime coefficients for the hydrostatic equi-
librium equation. In Sect. 3, we acquire the expression of the
distribution of radial forces to examine cracking within the
configuration, by perturbing all physical variables using local
density perturbation (LDP). Section 4 presents the match-
ing conditions to acquire constants resulting from the Krori
Barua approach. Section 5, presents the physical analysis via
graphical illustrations of the distribution of radial forces for
all the considered compact stars to validate the effective-
ness of our developed technique. In Sect. 6, the fundamental
physical motivation that underlies our research is discussed.
Section 7, presents our concluding remarks, as well as an
appendix and list of references.

2 Development of field equations in f (R, φ, X) gravity

The Einstein Hilbert (EH) action for f (R, φ, X) is presented
as [75–77],

S =
∫

d4x
√−g

[
1

2K 2 f (R, φ, X) + Lm

]
, (1)

here, Lm refers to the matter Lagrangian, g is the determinant
of gξη, R represents the Ricci Scalar, φ expressed as φ ≡
φ(r) and signifies the scalar field and X refers to the kinetic
term expressed as

X = −ε

2
∂ηφ∂ηφ, (2)

In this study, we employed the canonical scalar field by
assigning a value of 1 to the parameter ε, which is given
in Eq. (2) with the conditions that ε = 1 signifies the canon-
ical scalar field and ε = −1 corresponds to a non-canonical
scalar field. Varying EH in Eq. (1) with respect to gξη, we
obtain a modified set of field equations for the f (R, φ, X)

gravity, illustrated as

fR Rξη − 1

2
f gξη − ∇ξ∇η fR + gξη∇α∇α fR

−ε

2
fX (∇ξφ)(∇ηφ) = κ2Tm

ξη. (3)

To simplify the notation, we will use f ≡ f (R, φ, X), where
f is referred to as an analytic function that depends on R, φ,

and X . Additionally, we will use fR = ∂ f

∂R
, fφ = ∂ f

∂φ
, and

fX = ∂ f

∂X
. In the case of an anisotropic matter distribution,

the corresponding energy-momentum tensor is expressed as

Tm
ξη = (ρ + pt )uξuη − pt gξη + (pr − pt )υξυη, (4)
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Tm
ξη incorporates the density, tangential, and radial pressures

signified by ρ, pt , and pr respectively, and the four-velocity
vectors specified as, uξ = ea/2δ0

ξ and υη = eb/2δ1
η. However,

for dark matter in f (R, φ, X) gravity, the energy-momentum
tensor is expressed as.

T D
ξη = 1

fR

[
1

2
gξη( f − R fR) + ∇ξ∇η fR − gξη∇α∇α

+ε

2
fX (∇ξφ)(∇ηφ)

]
. (5)

For our present analysis, we will analyze a static spherically
symmetric spacetime, characterized by a line element given
by:

ds2 = ea(r)dt2 − eb(r)dr2 − r2(dθ2 + sin2θdφ2), (6)

here ea(r) and eb(r) signifies metric coefficients. An alterna-
tive formulation of the modified field equations, which incor-
porate both dark matter Eq. (5) and ordinary matter Eq. (4)
is stated as

Gξη = Rξη − 1

2
Rgξη = 1

fR

[
Tm

ξη + T D
ξη

]
. (7)

The line element Eq. (6) and the energy-momentum tensor
are used to develop the field equations, expressed as

G00 = ea

fR

[
ρ + 1

2
f − 1

2
R fR

+e−b f
′′
R + e−b

(
b

′

2
+ 2

r

)
f

′
R

]
, (8)

G11 = 1

fR

[
pr − eb

2

(
f − R fR

)

−
(
a

′

2
+ b

′ + 2

r

)
f

′
R + 1

2
fXφ

′2
]
, (9)

G22 = r2

fR

[
pt + 1

2
R fR − e−b f

′′
R

−e−b
(
a

′

2
+ b

′

2
+ 1

r

)
f

′
R

]
, (10)

G33 = r2sin2θ

fR

[
pt + 1

2
R fR − 1

2
f

−e−b f
′′
R − e−b

(
a

′

2
+ b

′

2
+ 1

r

)
f

′
R

]
. (11)

Here we considered k = 1, fR = ∂ f

∂R
, fφ = ∂ f

∂φ
, and fX =

∂ f

∂X
and used the prime symbol (′) to indicate derivatives with

respect to ”r”. After manipulating the field equations Eqs.
(8)–(11), we derived the hydrostatic equilibrium equation
expressed as,

dpr
dr

= eb fR

[
e−2b

fR

(
f − R fR

2
eb

+
(
a

′

2
+ b

′ + 2

r

)
f

′
R − fXφ

′2

2

)]

,1

−ρa
′

2
−

(
a

′

2
+ 2

r
− f

′
R R

′

f 2
Rρ

′

)
pr

+2pt
r

− e−b
(
a

′

2
+ 2

r

)
f

′′
R

+e−b
(

3

4
a

′
b

′ + a
′2

4
+ 3b

′

r
+ 2

r2 + b
′2
)
f

′
R

−b
′
(
R fR − f

2

)
− e−b

(
b

′ + a
′

2
+ 2

r

)
fXφ

′2, (12)

which leads to

� = −dpr
dr

− ρa
′

2
−

(
a

′

2
+ 2

r
− f

′
R R

′

f 2
Rρ

′

)
pr

+2pt
r

− e−b
(
a

′

2
+ 2

r

)
f

′′
R

+e−b
(

3

4
a

′
b

′ + a
′2

4
+ 3b

′

r
+ 2

r2 + b
′2
)
f

′
R

−b
′
(
R fR − f

2

)
− e−b

(
b

′ + a
′

2
+ 2

r

)
fXφ

′2

+
[
e−2b

fR

(
f − R fR

2
eb

+
(
a

′

2
+ b

′ + 2

r

)
f

′
R − fXφ

′2

2

)]

,1
. (13)

The equilibrium state of the anisotropic compact star is char-
acterized by equation Eq. (13), which we will employ to
discuss cracking and overturning by analyzing its perturbed
form. To accomplish this, we will incorporate the Krori
Barua spacetime coefficients [78,79] in Eq. (12) specified
as, a = Br2 + C and b = Ar2, where A, B, and C are
constants.

� = −dpr
dr

− Brρ −
(
Br + 2

r
− f

′
R R

′

f 2
Rρ

′

)
pr + 2pt

r

−e−Ar2
(
Br + 2

r

)
f

′′
R − e−Ar2

(
Br + 2Ar + 2

r

)
fXφ

′2

−(2Ar)

(
R fR − f

2

)

+e−Ar2
(

3ABr2 + B2r2 + 6A + 4A2r2 + 2

r2

)
f

′
R

+
[
e−2Ar2

fR

(
f − R fR

2
e−Ar2

+
(
Br + 2Ar + 2

r

)
f

′
R − fXφ

′2

2

)]

,1
. (14)
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After simplifying Eq. (14), we get

� = −dpr
dr

− Brρ −
(
Br + 2

r
− f

′
R R

′

f 2
Rρ

′

)
pr + 2pt

r

+e−Ar2
(

− Br − 2

r
+ Br R

′

ρ
′ + 2Ar R

′

ρ
′ + 2R

′

rρ ′

)
f

′′
R

+
(

− ABr2e−Ar2 + B2r2e−Ar2 − 4A2r2e−Ar2

+Be−Ar2 − f R
′
fR

2 fRρ
′

)
f

′
R − e−Ar2

(
Br + 2

r

)
fXφ

′2

−
(
Br + 2Ar + 2

r

)
e−Ar2

( fR′ )2R
′

fRρ
′

+1

2

[
fφ + fX X

′ − f
′
X X

′
e−Ar2 − φ

′′
fX e

−Ar2
]
φ

′
. (15)

Equation (15) refers to the basic equation that is essential in
analyzing both the stability and instability of the system by
employing density perturbations.

3 Local density perturbation technique in f (R, φ, X)

This section outlines the basic formulation of the LDP tech-
nique in the framework of f (R, φ, X) theory of gravity
to determine the stability of an anisotropic system with
barotropic equations of state, i.e., pr = pr (ρ) and pt =
pt (ρ). LDP is employed in the system to perturb all the phys-
ical variables, which are assumed to be density-dependent in
this study. Subsequently, the configuration is disturbed from
its hydrostatic equilibrium state due to LDP resulting in the
occurrence of radial forces δ�. Our present study focuses on
analyzing the change in the signs of radial forces δ�

δρ
, where

cracking occurs due to inwardly directed radial forces chang-
ing sign from negative to positive ( δ�

δρ
< 0 → δ�

δρ
> 0),

while outwardly directed forces changing sign from positive
to negative ( δ�

δρ
> 0 → δ�

δρ
< 0) lead to overturning within

the configuration. To perturb all physical variables within the
configuration, we apply the LDP ρ → ρ + δρ, as follows

ρ(ρ + δρ) = ρ(ρ) + δρ. (16)

ρ′(ρ + δρ) = ρ′(ρ) + ρ′′

ρ′ δρ. (17)

pr (ρ + δρ) = pr (ρ) + dpr
dρ

δρ = pr (ρ) + v2
r δρ. (18)

dpr
dr

(ρ + δρ) = dpr
dr

+
[
d

dr

(
dpr
dρ

)
+ d2ρ

dr2

(
dpr
dρ

)
.
dr

dρ

]

= dpr
dr

+ v′2
r + v2

r .ρ
′′(ρ′)−1. (19)

pt (ρ + δρ) = pt (ρ) + dpt
dρ

δρ = pt (ρ) + v2
t δρ. (20)

f (ρ + δρ) =
[
R′

ρ′ fR + φ′

ρ′ fφ
]
δρ. (21)

fR(ρ + δρ) = fR(ρ) + R′

ρ′ f
′
Rδρ. (22)

f ′
R(ρ + δρ) = f ′

R(ρ) + R′

ρ′ f
′′
Rδρ. (23)

f ′′
R(ρ + δρ) = f ′′

R(ρ) + R′

ρ′ f
′′′
R δρ. (24)

fφ(ρ + δρ) = fφ(ρ) + φ′

ρ′ f
′
φδρ. (25)

fX (ρ + δρ) = fX (ρ) + f
′
X X

′
φ′

ρ′ δρ. (26)

f
′
X (ρ + δρ) = f

′
X (ρ) + f

′′
X X

′
φ′

ρ′ δρ. (27)

R′(ρ + δρ) = R′(ρ) + R′′

ρ′ δρ. (28)

φ′(ρ + δρ) = φ′(ρ) + φ′′

ρ′ δρ. (29)

φ′′(ρ + δρ) = φ′′(ρ) + φ′′′

ρ′ δρ. (30)

X
′
(ρ + δρ) = X ′(ρ) + X ′′φ′

ρ′ δρ. (31)

Expanding Eq. (15) for its perturbed form by employing LDP,
will enable us to examine the distribution of radial forces that
occur due to perturbations in the system.

� = �0

(
ρ, ρ′, pr , p′

r , pt , f, fR, f ′
R, f ′′

R , fφ, fX ,

f ′
X , X

′
(φ), R

′
, φ′, φ′′

)
+ δ�. (32)

where

δ� = ∂�

∂ρ
δρ + ∂�

∂ρ′ δρ
′ + ∂�

∂pr
δpr

+ ∂�

∂p′
r
δp′

r + ∂�

∂pt
δpt + ∂�

∂ f
δ f

+ ∂�

∂ fR
δ fR + ∂�

∂ f ′
R

δ f ′
R + ∂�

∂ f ′′
R

δ f ′′
R

+ ∂�

∂ fφ
δ fφ + ∂�

∂ fX
δ fX + ∂�

∂ f ′
X

δ f ′
X + ∂�

∂R′ δR
′

+ ∂�

∂X ′ δX
′ + ∂�

∂φ′ δφ
′ + ∂�

∂φ′′ δφ
′′. (33)

Equation (33) simplifies to

δ�

δρ
= ∂�

∂ρ
+ ∂�

∂ρ′

(
ρ′′(ρ′)−1

)
+ ∂�

∂pr

(
dpr
dρ

)

+ ∂�

∂p′
r

( (
dpr
dρ

)′

+
(
dpr
dρ

)
ρ′′(ρ′)−1

)
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+ ∂�

∂pt

(
dpt
dρ

)
+ ∂�

∂ f

(
fR R

′

ρ′ + fX X
′
φ′

ρ′ + fφφ
′

ρ′

)

+ ∂�

∂ fR

(
f ′
R R

′

ρ′

)
+ ∂�

∂ f ′
R

(
f ′′
R R

′

ρ′

)

+ ∂�

∂ f ′′
R

(
f ′′′
R R

′

ρ′

)
+ ∂�

∂ fφ

(
f ′
φ

φ
′

ρ′

)

+ ∂�

∂ fX

(
f ′
X X

′
φ′

ρ′

)
+ ∂�

∂ f ′
X

(
f ′′
X X

′
φ′

ρ′

)

+ ∂�

∂X ′

(
X

′′
φ

′

ρ′

)
+ ∂�

∂R′

(
R

′′

ρ′

)

+ ∂�

∂φ′

(
φ

′′

ρ′

)
+ ∂�

∂φ′′

(
φ

′′′

ρ′

)
. (34)

The partial derivatives in Eq. (34) are specified as,

∂�

∂ρ
= −Br. (35)

∂�

∂ρ′ = − f ′
R R

′ pr
f 2
R(ρ′)2

− e−Ar2
(−Br R

′

(ρ′)2

+2AR
′

(ρ′)2 + −2R′

(rρ′)2

)
f

′′
R +

(
f R′ fR

2 fR(ρ′)2

)
f ′
R

+e−Ar2
f

′2
R R′

fR(ρ′)2

(
2Ar + Br + 2

r

)
. (36)

∂�

∂pr
= f ′

R R
′

f 2
Rρ′ − 2

r
− Br. (37)

∂�

∂p′
r

= −1. (38)

∂�

∂pt
= 2

r
. (39)

∂�

∂ f
= − f ′

R R
′

2 fRρ
′ . (40)

∂�

∂ fR
= e−Ar2

( f ′
R)2R′

( fR)2ρ′

(
2Ar + Br + 2

r

)

+− f
′
R R

′ pr
( fR)2ρ′ + f R′ f ′

R

2( fR)2ρ′ . (41)

∂�

∂ f ′
R

= R′ pr
fRρ′ − f R

′

2 fRρ
′

+e−Ar2
(

− ABr2 + B2r2 − 4A2r2 − B

)

+2e−Ar2
f ′
R R

′

fRρ′

(
− Br − 2Ar − 2

r

)
. (42)

∂�

∂ f ′′
R

= e−Ar2
(
Br R

′

ρ
′ + 2Ar R

′

ρ
′ + 2R

′

rρ ′ − 2

r
− Br

)
.

(43)
∂�

∂ f (φ)
= φ′

2
. (44)

∂�

∂ fX
= 1

2

(
X

′ − φ
′′
e−Ar2

)
φ

′ − e−Ar2
(
Br + 2

r

)
φ

′2.

(45)
∂�

∂ f
′
X

= −1

2

(
X

′
e−Ar2

)
φ

′
. (46)

∂�

∂X ′ = 1

2

(
fX − f

′
Xe

−Ar2
)

φ
′
. (47)

∂�

∂R′ = pr f ′
R

( fR)2ρ′ − f f ′
R

2 fRρ
′

+e−Ar2
(
Br

ρ
′ + 2Ar

ρ
′ + 2

rρ ′

)
f

′′
R

−e−Ar2
( f ′

R)2

fRρ′

(
2Ar + Br + 2

r

)
. (48)

∂�

∂φ′ = 2e−Ar2
(

− Br − 2

r

)
φ′φ′′ fX

+1

2

(
fφ + fX X

′ − f ′
X X

′e−Ar2 − φ′′ fX e−Ar2
)

.

(49)
∂�

∂φ′′ = −1

2
fX e

−Ar2
φ′. (50)

Equtions (A1)–(A25) in the Appendix presents the values of
the remaining parameters expressed in Eq. (34).

4 Matching conditions

In this section, we aim to estimate the numerical values
of constants A and B involved in solution set, which have
obtained in the previous section. There are many choices
for the matching conditions but we consider Schwarzschild
exterior solution for the present work [80–82]. Therefore, the
Schwarzschild metric is presented as

ds2 =
(

1 − 2M

r

)
dt2 − 1

1 − 2M

r

dr2

− r2(dθ2 + sin2θdφ2).

(51)

Now for solving the field equations at r = R, the interior
metric Eq. (6) requires these matching conditions

g−
t t = g+

t t , g−
rr = g+

rr ,
∂g−

t t

∂r
= ∂g+

t t

∂r
. (52)

where (+) and (-) represent the exterior and interior solutions,
respectively. Now by comparing both interior and exterior
spacetime metrics, we get the constants A, B and C as

A = ln

(
1 − 2M

R

)(−1/R2)

, (53)

B = M

R3 − 2M2

R4 , (54)
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Table 1 Calculated values of A, B, M and R of compact stars

Compact stars M(M�) R (km) M/R A (km−2) B( km−2)

Her-XI 0.88 M� 7.7 0.168 0.010906441192 0.0042673646183

SAXJ1808.4-3658 1.435 M� 7.07 0.299 0.01823156974 0.014880115692

4U 1820-30 2.25 M� 10.0 0.332 0.010906441192 0.0098809523811

PSR J 1614 2230 1.97 M� 10.977 0.1795 0.003689961987 0.002323332389

Vela X-1 1.77 M� 10.654 0.1661 0.003558090580 0.002191967045

Cen X-3 1.49 M� 10.136 0.1471 0.003388625404 0.002026668572

C = ln

(
1 − 2M

R

)
−

(
M

R
− 2M2

R2

)
(55)

where R is the Schwarzschild radius and M is the Schwarzschild
mass. Thus using the above expressions, the numerical val-
ues of A and B are given in Table 1 for different compact
stars.

5 Discussion

This section discusses the occurrence of cracking and over-
turning by analyzing the effects of LDP in the framework
of f (R, φ, X). Equation (34) signifies the perturbed state of
the configuration and will be used to examine the effects of
LDP. We will investigate cracking and overturning points by
observing the change in signs of this perturbed state after
employing LDP. To accomplish this, we consider the follow-
ing already developed physical viable model [83].

f (R, φ, X) = R + αR2 − V (φ) + X (φ), (56)

We assume V (φ) = V0φ
m and φ = rβ , where α, β andm are

arbitrary constants. We will analyze the cracking and over-
turning of Her-XI, SAXJ1808.4-3658, 4U 1820-30, PSR J
1614 2230, Vela X-1, and Cen X-3 by plotting the distribution

of forces
δ�

δρ
. The mass, radii, and values of other constants

for all stars are listed in Table 1. The graphical analysis of
cracking and overturning for each star corresponding to dif-
ferent values of the model parameter β is illustrated by Figs.
1, 2, 3, 4, 5 and 6 in the subsequent subsections. A significant
point to mention is that we carried out our current analysis
using the software MATHEMATICA.

5.1 Star 1: Her X-1

Her XI is a pulsating X-ray source that was initially observed
by Tanabaum et al. [84], pulsates every 1.24 s and has an
orbital period of 1 day. Deeter et al. [85] analyzed the pulse
period of Her XI by examining the observational data of 7
years. To comprehend the neutron star’s development, Taam
et al. [86] analyzed the gradual dissipation of magnetic field

strength on the surface of a neutron star. Soong et al. [87]
investigated the beaming pattern of the Her X-1 by analyzing
the radiation emitted by it over a wide range of frequencies.
The mass-radius ratio of Her X1 was theoretically calculated
by Li et al. [88], who concluded that it matched the observa-
tional data of Her X-1. Kuster et al. [89] observed the inten-
sity and distribution of X-ray photons emitted by Her X-1 to
investigate its evolution over time. Maurya and collaborators
[90] contributed to enhance the understanding by developing
an anisotropic theoretical framework and refining the previ-
ously known parameters. The distribution of radial forces
δ�

δρ
is plotted versus radius for Her X-1 with the parame-

ter β varied and the remaining parameters fixed as shown
in Fig. 1. Figure 1a–k demonstrates that star exhibit crack-
ing within the interval β ∈ (0, 2.90), while Fig. 1b–f, i–k
depicts that star experiences overturning within the intervals
β ∈ (0.59, 1.3) and β ∈ (1.63, 2.30), respectively causing
instability in the configuration. Additionally, Fig. 1l illus-
trates that a star maintains stability for noticeably large values
of parameter β starting at β = 2.90 and continuing upwards.
Table 2 presents a concise summary of Fig. 1a–l, highlighting
the precise values at which the Her X-1 become unstable.

5.2 Star 2: SAXJ1808.4-3658

SAXJ1808.4-3658 is a low-mass X-ray binary star with an
orbital period of 2 h. It was initially observed by Zand et al.
[91] who reported it as an X-ray transient. Li et al. [92] ana-
lyzed the mass-radius relation of SAXJ1808.4 3658 relative
to the mass-radius relation of neutron stars and suggested
that it is likely a strange star. Recently, Peter et al. [93] inves-
tigated the thermal evolution of SAXJ1808.4-3658 by ana-
lyzing data from an X-ray telescope.

The graphical analysis of
δ�

δρ
for SAXJ1808.4-3658 with

the other parameters of model held constant and param-

eter β varied, is illustrated in Fig. 2. The graphs of
δ�

δρ
for SAXJ1808.43658 demonstrate that cracking appears for
β ∈ (0, 3.1), as seen in Fig. 2a–k. Moreover, Fig. 2b–f, i–k
depict that star undergo overturning at β ∈ (0.60, 1.25) and
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Fig. 1 Plots of
δ�

δρ
for Her X-1: A = 0.0069062764281 km−2, B = 0.0042673646183 km−2, V0 = −0.5, m = −1

β ∈ (1.6, 2.5), leading to instability in the configuration.
Figure 2l, further demonstrates that the star retains stability
for substantially large values of the parameter β, starting at
β = 3.1 and increasing upward. Table 3 summarizes Fig.
2a–l concisely, highlighting the specific values at which the
SAXJ1808.4-3658 becomes unstable.

5.3 Star 3: 4U 1820-30

The 4U 1820 30, exhibiting significant luminosity variability
and an extremely short orbital period of 685 s, is a unique
compact X-ray binary in the globular cluster NGC 6624.
Guver et al. [94] estimated the radius and mass of 4U 1820-
30 to be 9.11 ± 0.40 km and 1.58 ± 0.06 M�, respectively
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Fig. 2 Plots of
δ�

δρ
for SAXJ1808.4-3658: A = 0.018231569740 km−2, B = 0.014880115692 km−2, V0 = −0.5, m = −1
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Fig. 3 Plots of
δ�

δρ
for 4U 1820-30: A = 0.010906441192 km−2, B = 0.0098809, 523, 811 km−2, m = −1, V0 = −0.5

by analyzing its spectral data obtained from thermonuclear
bursts. Recently, Suvorov et al. [95] observed the thermonu-
clear bursts of 4U 1820-30 and employed numerical simu-
lations, revealing significant details about the dynamics of a
neutron star.

The plots of
δ�

δρ
4U 1820-30 for a range of model parame-

ters are illustrated in Fig. 3. For 4U 1820-30, cracking appears

at β ∈ (0, 0.285), as seen in Fig. 3a–k, whereas overturning
appears at β ∈ (0.59, 1.5) and β ∈ (1.7, 2.65), illustrated
in Fig. 3c–g, i–k, resulting in instability within the configu-
ration. Notably, Fig. 3l illustrates that no cracking or over-
turning appears at β = 2.85 suggesting that the star retains
stability for relatively large values of β. Table 4 presents a
concise summary of Fig. 3a–l, highlighting the specific val-
ues at which the 4U 1820-30 becomes unstable.
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Fig. 4 Plots of
δ�

δρ
for PSR J 1614-2230: A = 0.003689961987 km−2, B = 0.002323332389 km−2, V0 = −0.5, m = −1

5.4 Star 4: PSR J 1614-2230

PSR J1614-2230 is a highly magnetized dense pulsar with a
spin period of 3.15 milliseconds and was initially discovered
through Parkes telescope [96]. Demorest et al. [97] inves-
tigated the physical properties of PSR J1614-2230 using

the Green Bank Telescope and determined its mass to be
1.97 ± 0.04M�. Moreover, Takisa et al. [98] investigated its
physical properties by developing a model using a quadratic

equation of state. The graphs representing
δ�

δρ
for PSR

J1614-2230 illustrate that the star undergoes cracking and
overturning for a specific range of parameter β as shown in
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Fig. 5 Plots of
δ�

δρ
for Vela X-1: A = 0.003558090580 km−2, B = 0.002191967045 km−2, V0 = −0.5, m = −1

Fig. 4. PSR J1614-2230 exhibit cracking at β ∈ (0, 3.56),
as shown in Fig. 4a–l, whereas overturning occurs at β ∈
(0.59, 1.6) and β ∈ (1.65, 2.45) as illustrated in Fig. 4b–
f, h–k respectively. Additionally, Fig. 4l illustrates that the
star retains stability for the relatively large values of param-
eter β, starting at β = 3.56 and continuing upwards. Table
5 presents a concise summary of Fig. 4a–l, highlighting the

precise values at which the PSR J 1614 2230 becomes unsta-
ble.

5.5 Star 5: Vela X-1

Vela X-1 is a massive X-ray binary star that constitutes an
orbital period of 8.964 days and was initially discovered by

123



Eur. Phys. J. C (2023) 83 :765 Page 13 of 22 765

Fig. 6 Plots of
δ�

δρ
for Cen X-3: A = 0.003388625404 km−2, B = 0.002026668572 km−2, V0 = −0.5 and m = −1

Gursky et al. [99] in the Vela constellation. Nagase et al.
[100] investigated the physical characteristics of Vela X-
1 and determined that it constitutes an elliptical orbit and
pulsates every 283.4 s. The mass and radius of Vela X-1
were initially estimated by Quaintrell et al. [101] through
Doppler spectroscopy and spectroscopic data of nearby orbit-
ing stars. Later, Kalam et al. [102] used the stiff equation of
state and precisely determined the radius of Vela X-1 to be

(9.92 − 10.31) km. The plots Fig. 5 illustrating perturbed

force
δ�

δρ
for Vela X-1 demonstrate that cracking and over-

turning appear for a particular range of parameter β, sug-
gesting instability within the configuration. The cracking for
Vela X-1 is observed at β ∈ (0, 3) as illustrated in Fig. 5a–
l, whereas overturning is observed at β ∈ (0.59, 1.57) and
β ∈ (1.8, 2.5) as illustrated in Fig. 5b–g, i, j respectively.
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However, the star retains stability at a considerably large
values of β starting at β = 2.5. Table 6 presents a concise
summary of Fig. 5a–l, illustrating the specific values at which
the Vela X-1 becomes unstable.

5.6 Star 6: Cen X-3

Cen X-3 is a massive X-ray binary star comprised of an
intensely magnetized neutron star with an orbital period of
2.087 days. Cen X-3 was initially observed by Chodil et
al. [103], in 1967 during the analysis of the X-ray profile
obtained by sound rocket. Giacconi et al. [104] made further
observations in this context and discovered that it pulsates
every 4.84 s. The plots Fig. 6 demonstrate the behavior of

radial forces
δ�

δρ
for specific values of model parameters.

Figure 6a–k demonstrates that Cen X-3 undergoes crack-
ing at β ∈ (0, 2.85), whereas overturning is observed at
β ∈ (0.58, 1.52) and β ∈ (1.7, 2.5) as depicted in Fig.
6b–f, i, j respectively. Notably, no cracking or overturning
is observed for relatively large values of parameter starting
at β = 2.85, implying stability within the configuration as
shown in Fig. 6l. Table 6 presents a concise summary of Fig.
6a–l, illustrating the specific values at which the configura-
tion becomes unstable.

6 Physical motivation

In this work, we have analyzed the stability of anisotropic
compact stars characterized by a barotropic equation of state,
by employing the concept of cracking introduced by Herrera
[54]. The cracking technique is a quite useful stability analy-
sis technique, as this technique enhances our understanding
of the stability properties of compact objects and facilitates
to identify cracking and overturning points within the con-
figuration by permitting a more thorough stability analysis
of the configuration. It is important to investigate how crack-
ing relates to the perturbation framework and the conditions
under which these critical points can change and impact the
stability and structure of compact stars.

We analyze the impact of LDP on the stability of compact
objects in the framework of f (R, φ, X) gravity, by perturb-
ing the Ricci scalar, scalar potential function, kinetic term,
and other physical parameters within the configuration. We
have considered the changes in curvature, dynamics of the
scalar field, and variations in kinetic energy by perturbing the
Ricci scalar, scalar potential function, and kinetic term. The
distribution of forces within the object is influenced by the
perturbations in the Ricci scalar, which presents the changes

in spacetime curvature. The perturbations in the scalar poten-
tial function demonstrate the changes in the dynamics of the
scalar field, ultimately affecting the equilibrium and radial
forces. Similarly, the perturbation in the kinetic term accounts
for the changes in the kinetic energy of the scalar field and
its impact on the total forces. By taking into account these
perturbations, together with the perturbation in the physical
parameters, and getting equations for the radial forces, we
identified the cracking and overturning points by studying
changes in the sign of radial forces. The numerical values of
cracking and overturning points presented in Tables 2,3, 4,
5, 6 and 7 demonstrate the stable and unstable regions within
the configuration of considered compact stars.

The current stability analysis demonstrates the sensitiv-
ity of radial forces to local density perturbations that could
cause gravitational collapse. In addition, this study offers
important insights into how changes in the kinetic term, Ricci
scalar, scalar potential function, and other physical parame-
ters might affect the stability of the compact object. This tech-
nique enables us to comprehend the effects of the f (R, φ, X)

theory on the stability characteristics of the compact object
more thoroughly. To conclude our study, we would like to
speculate on scenarios in which cracking might occur, influ-
encing the evolution of the system. The implosion of a super-
massive star might be one of these circumstances. In some
situations, the conditions for the expulsion of the outer mantle
in a supernova event would probably change as a result of the
inner core cracking. In certain cases, this effect will hold true
for both the prompt mechanism as mentioned in [105,106]
and the long-term mechanism as mentioned in [107–109].
Furthermore, the cracking phenomenon is considered to be
a viable explanation for the occurrence of quakes in neutron
stars [110–112]. In particular, it has been intensively inves-
tigated how the cracking of crust in neutron stars on a large
scale affects the occurrence of glitches, X-ray bursts, and
gamma-ray bursts [113].

However, it is crucial to emphasize that our goal here is
not to extensively model any of the above-mentioned scenar-
ios. Instead, we want to emphasize the occurrence of crack-
ing and how it is related to local density perturbations in the
framework of f (R, φ, X). However, it should be obvious that
the existence of these occurrences could significantly impact
the evolution of the system. The current study offers valu-
able insights into how perturbations in the kinetic term, Ricci
scalar, scalar potential function, and other physical param-
eters can affect the stability or instability of the compact
object. Using this method, we gain a deeper understanding
of the stability of self-gravitating systems in the context of
f (R, φ, X) gravity and make a significant contribution to
a more thorough explanation of the behaviors exhibited by
modified theories of gravity.
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Table 2 Cracking and
overturning points in Her X-1

β Cracking points (r (km)) Overturning points (r (km)) Stability

0.15 r = 1.1540740 No overturning occurs Unstable

0.63 r = 0.8474690 r = 4.4834041 Unstable

0.79 r = 1.6728449 r = 2.2470229 Unstable

1 r = 0.8622075 r = 3.7230230 Unstable

1.12 r = 0.3032670 r = 4.9754989 Unstable

1.29 r = 0.2775600 r = 7.2371871 Unstable

1.3 r = 0.2777721 No overturning occurs Unstable

1.51 r = 0.2829299 No overturning occurs Unstable

1.85 r = 0.2829299 and r = 4.7117694 r = 1.0076487 Unstable

2 r = 0.3737558 and r = 5.7548795 r = 0.9201468 Unstable

2.30 r = 0.44715314 and r = 7.4862368 r = 0.7678787 Unstable

2.6 No cracking occurs No overturning occurs Stable

Table 3 Cracking and
overturning points in
SAXJ1808.4-3658

β Cracking points (r (km)) Overturning points (r (km)) Stability

0.05 r = 2.6003979 No overturning occurs Unstable

0.25 r = 1.0145149 No overturning occurs Unstable

0.65 r = 0.8464630 r = 3.3918910 Unstable

0.8 r = 1.9220985 r = 2.1991504 Unstable

1 r = 0.9858544 r = 3.67994470 Unstable

1.24 r = 0.2787062 r = 6.5618511 Unstable

1.25 r = 0.1020274 No overturning occurs Unstable

1.55 r = 0.2881688 No overturning occurs Unstable

1.75 r = 0.3279732 and r = 3.9309930 r = 1.1337117 Unstable

1.95 r = 0.3735810 and r = 5.4056467 r = 0.9512804 Unstable

2.2 r = 0.4260671 and r = 6.9202240 r = 0.8135466 Unstable

3.1 No cracking occurs No overturning occurs Stable

Table 4 Cracking and
overturning points in 4U
1820-30

β Cracking points (r (km)) Overturning points (r (km)) Stability

0.05 r = 2.4936815 No overturning occurs Unstable

0.10 r = 1.2924111 No overturning occurs Unstable

0.63 r = 0.8502002 r = 4.5347863 Unstable

0.65 r = 0.8509480 r = 3.4528100 Unstable

1 r = 0.8909030 r = 3.8652438 Unstable

1.33 r = 0.2703672 r = 7.4093605 Unstable

1.49 r = 0.2918702 r = 9.4951508 Unstable

1.51 r = 0.2703672 No overturning occurs Unstable

1.89 r = 0.3395718 and r = 5.0309783 r = 0.9314777 Unstable

2.15 r = 0.4053386 and r = 6.6313181 r = 0.9314777 Unstable

2.8 r = 9.9586620 No overturning occurs Unstable

2.85 No cracking occurs No overturning occurs Stable
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Table 5 Cracking and overturning points in PSR J 1614-2230

β Cracking points (r (km)) Overturning points (r (km)) Stability

0.11 r = 1.2591063 No overturning occurs Unstable

0.64 r = 0.8428670 r = 3.9485681 Unstable

1.15 r = 0.2850842 r = 5.4734316 Unstable

1.35 r = 0.2531769 r = 7.66361568 Unstable

1.45 r = 0.2531769 r = 8.6071198 Unstable

1.59 r = 0.32038597 r = 10.5880538 Unstable

1.6 r = 0.2495744 No overturning occurs Unstable

1.95 r = 0.3486831 and r = 5.3059263 r = 1.0224831 Unstable

2.1 r = 0.3968117 and r = 6.3406907 r = 0.9984188 Unstable

2.21 r = 0.3968116 and r = 6.9422978 r = 1.0224831 Unstable

2.99 r = 10.8239604 No overturning occurs Unstable

3.56 No cracking occurs No overturning occurs Stable

Table 6 Cracking and overturning points in Vela X-1

β Cracking points (r (km)) Overturning points (r (km)) Stability

0.09 r = 1.3904380 No overturning occurs Unstable

0.65 r = 0.8378722 r = 3.4495309 Unstable

0.81 r = 2.1288177 r = 2.1982088 Unstable

1 r = 0.9260376 r = 3.932987 Unstable

1.25 r = 0.2880493 r = 6.5881033 Unstable

1.36 r = 0.2651400 r = 7.7335677 Unstable

1.56 r = 0.2880493 r = 10.4368636 Unstable

1.57 r = 0.2880492 No overturning occurs Unstable

1.85 r = 0.3384230 and r = 4.6826747 r = 1.2960269 Unstable

2 r = 0.3150668 and r = 5.8037719 r = 1.2026021 Unstable

2.93 r = 10.5384959 No overturning occurs Unstable

3 No cracking occurs No overturning occurs Stable

Table 7 Cracking and overturning points in Cen X-3

β Cracking points (r (km)) Overturning points (r (km)) Stability

0.07 r = 1.9443802 No overturning occurs Unstable

0.66 r = 0.8625209 r = 3.0856550 Unstable

1.01 r = 0.5141292 r = 3.9370220 Unstable

1.27 r = 0.2634864 r = 6.7901403 Unstable

1.39 r = 0.2816160 r = 8.0048231 Unstable

1.5 r = 0.2634864 r = 9.4914498 Unstable

1.52 r = 0.2816160 No overturning occurs Unstable

1.6 r = 0.2740442 No overturning occurs Unstable

1.85 r = 0.3664100 and r = 4.7660905 r = 1.0108076 Unstable

2.15 r = 0.3886306 and r = 6.5881804 r = 0.8774840 Unstable

2.75 r = 9.7314965 No overturning occurs Unstable

2.85 No cracking occurs No overturning occurs Stable
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7 Conclusion

In this manuscript, we analyzed the stability of anisotropic
compact stars with a barotropic equation of state in the frame-
work f (R, φ, X) gravity, by employing cracking technique
introduced by Herrera [54]. For this, we formulated the field
equations Eqs. (8)–(11) for anisotropic matter distribution
with spherically symmetric spacetime in the framework of
the f (R, φ, X) theory of gravity. Further, in this context,
we developed the hydrostatic equilibrium equation Eq. (13)
by employing energy conservation law and subsequently
employed Krori and Barua metric potentials [78,79]. We
then perturb the configuration from its hydrostatic equilib-
rium state by employing LDP on all the physical variables
within the configuration, which are assumed to be density-
dependent in this study. Subsequently, we analyzed the per-
turbed state of configuration Eq. (35), to identify cracking or
overturning points by investigating the changes in the signs of
radial forces at perturbed state. Specifically, we observed the
cracking of Her X-1, SAXJ1808.4-3658, 4U 1820-30, PSR J
1614-2230, Vela X-1and Cen X-3. For this, we consider the
following model: f (R, φ, X) = R + R2α − V (φ) + X (φ).

We plotted the distribution of radial forces
δ�

δρ
at perturbed

state to analyze cracking for each star corresponding to dif-
ferent values of the model parameter illustrated by Figs. 1,
2, 3, 4, 5 and 6 in the preceding section. Tables 2,3, 4, 5, 6
and 7 presents a concise summary of Figs. 1, 2, 3, 4, 5 and
6, highlighting the precise values of the model parameters at
which cracking and overturning is observed for each star. In
brief, we summarize our analysis as

• For Her X-I, cracking is observed at β ∈ (0, 2.90) and
overturning at β ∈ (0.59, 1.3) and β ∈ (1.63, 2.30),
resulting in instability within the configuration. However,
stars retain stability at β = 2.90 as illustrated in Fig. 1.

• SAXJ1808.4-3658 undergoes cracking at β ∈ (0, 3.1),
while overturning occurs at β ∈ (0.60, 1.25) and β ∈
(1.6, 3.1), leading to unstable configuration for certain
range of model parameter β. Nonetheless, at β = 3.1 the
configuration remains stable as shown in Fig. 2.

• For 4U 1820-30, cracking occurs at β ∈ (0, 2.85),
although overturning occurs at β ∈ (0.59, 1.5) and
β ∈ (1.7, 2.65), causing instability within the config-
uration. Nonetheless, at β = 2.85 star exhibits stable
behavior as illustrated in Fig. 3.

• PSR J 1614-2230 exhibits cracking at β ∈ (0, 3.56) and
overturning at β ∈ (0.59, 1.6) and β ∈ (1.65, 2.45),
while retains stability at at β = 3.56 as shown in Fig. 4.

• Vela X-1 exhibits cracking at β ∈ (0, 3) and overturning
at β ∈ (0.59, 1.57) and β ∈ (1.8, 2.5), however at β = 3
configuration retains stability as illustrated in Fig. 5.

• For Cen X-3, the instability is observed within configura-
tion caused by cracking at β ∈ (0, 2.85), whereas over-
turning occurs at β ∈ (0.58, 1.52) and β ∈ (1.7, 2.5).
However, at β = 2.85 the configuration remains stable
as illustrated in Fig. 6.

These results imply that all the considered stars exhibit crack-
ing and overturning for a certain range of model parame-
ters, resulting in instability within the configuration. Notably,
the current stability analysis demonstrates the sensitivity of
radial forces to local density perturbations that could cause
gravitational collapse. In addition, this study offers impor-
tant insights into how perturbations in the kinetic term, Ricci
scalar, scalar potential function, and other physical param-
eters might affect the stability of the compact object. This
technique is therefore quite suitable for refining physically
viable compact star models as it effectively identifies the sta-
ble and unstable regions within the configuration.
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Appendix

ρ = 1

2r4 e
−2Ar2

(e2Ar2
(2r2 + r4(rβ)mV0 − 4α)

+ 4(−5 + 4Ar2 − 32A2r4 + 8A3r6 − B4(−2 + r)r7

+ 2B3r5(4 − r − 2Ar2 + Ar3)

+ B2r3(8 − 11r − 12Ar2 + 30Ar3 + 2A2r4 − 5A2r5)

123
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+ 2Br(1 − r − 3Ar2 + 27Ar3

+ 2A2r4 − 20A2r5 + 2A3r7))α

+ eAr
2
(2B(−A + B)r5 + 2(A − B)Br6 + 24α − 8Brα

+ r2+2ββ2 + 2Br3(1 + 4Aα − 4Bα)

+ r2(−2 − 32Aα + 8Bα)

− 2r4(−2A + B + 4ABα − 4B2α)). (A1)

ρ′ = 1

2r5
e−2Ar2

(−8(B4r7(−3 + 2r + 4Ar2 − 2Ar3)

+ 2B3r5(−2 + r + 11Ar2 − 4Ar3 − 4A2r4 + 2A2r5)

+ 2(−5 − 3Ar2 + 4A2r4 − 36A3r6 + 8A4r8)

+ Br(3 − 2r + Ar2 − 4Ar3 − 14A2r4

+ 148A2r5 + 8A3r6 − 88A3r7 + 8A4r9)

+ B2r3(4 + 2A(11 − 26r)r2 + 2A3(2 − 5r)r6

+ A2r4(−27 + 70r)))α + e2Ar2
(−4r2

+ 16α + mr4(rβ)mV0β) − 2eAr
2
(2AB(−A + B)r7

+ 2A(A − B)Br8 + 48α − 12Brα + Br3(1 − 4Aα

− 4Bα) − 2Ar4(1 + 16Aα − 4Bα)

+ r2(−2 − 8Aα + 8Bα)

+ r6(2B2 + A2(4 − 8Bα) + 4AB(−1 + 2Bα))

− Br5(B − 8A2α + A(−3 + 8Bα))

+ Ar4+2ββ2 − r2+2β(−1 + β)β2))). (A2)

ρ′′ = 1

2r6 (12r2 − 80α + 16e−2Ar2
(−25 − 29Ar2 − 8A2r4

+ 52A3r6 − 168A4r8 + 32A5r10 + B4r7(3 − 3r

− 14Ar2 + 9Ar3 + 8A2r4 − 4A2r5)

+ Br(6 − 3r + 7Ar2 − 6Ar3 + 2A2r4

− 82A2r5 − 36A3r6 + 428A3r7

+ 16A4r8 − 196A4r9 + 16A5r11)

+ B3r6(−1 + 2A2(30 − 13r)r3

+ 8A3(−2 + r)r5 + 2Ar(−15 + 8r))

+ B2r3(4 + A2(71 − 209r)r4 + 4A4(2 − 5r)r8

+ 2Ar2(4 + 13r) + A3r6(−62 + 165r)))α − 2e−Ar2

(48Brα + 4A2(A − B)Br9 + 4A2B(−A + B)r10 − 240α

+ 48Brα + 6Ar4(1 + 8Aα − 4Bα)

+ 2ABr5(−1 + 4Aα + 4Bα)

− 6r2(−1 + 12Aα + 4Bα)

+ 2Br3(−1 + 16Aα + 4Bα)

− 2ABr7(−3B + 8A2α + A(5 − 8Bα))

+ 2r6(B2 + 32A3α + A2(4 − 12Bα)

+ 2AB(−1 + 2Bα))

+ mr4(rβ)mV0β(−1 + mβ) + 2Ar8(−5B2

+ AB(7 − 8Bα) + A2(−4 + 8Bα)) − 2A2r6+2ββ2

+ Ar4+2ββ2(−3 + 4β) − r2+2ββ2(3 − 5β + 2β2))). (A3)

pr = 1

4r4 (−4e−Ar2
r2(−1 + eAr

2 − 3Br2 − B2r4

+ Ar2(2 + Br2)) − 2r4(rβ)mV0 + 8e−2Ar2
(−1 + eAr

2

− 3Br2 − B2r4 + Ar2(2 + Br2))2α

+ 32e−2Ar2
(2 + 2Ar2 + Br2)(−1 + eAr

2

+ B2r4 + A2r4(2 + Br2)

− A(r2 + 4Br4 + B2r6))α + 4e−2Ar2
r(−B(1 + Br2)

+ A(2 + Br2))(eAr
2
(r2 − 4α) + 4(1 + 3Br2 + B2r4

− Ar2(2 + Br2))α) − 2e−Ar2
r2+2ββ2

+ 2e−Ar2
r2β(−1 + β)2β2)). (A4)

p′
r = − 1

2r5
(−4r2 + 16α + 8e−2Ar2

(−14 − 4B2r3

+ 2B3(2 − 5r)r5 + B4(3 − 2r)r7 + Br(−3 + 2r)

+ 16A4r8(2 + Br2) − 2A3r5(8 − 4r + 8Br2

+ 20Br3 + 2B2r4 + 3B2r5)

+ A2r3(4 − 40r + 40Br2 − 88Br3

+ 35B2r4 − 46B2r5 + 8B3r6 − 12B3r7)

+ Ar(6 − 34r + 5Br2 + 4Br3 − 24B2r4

+ 64B2r5 − 22B3r6

+ 32B3r7 − B4r8 + 2B4r9))α + mr4(rβ)mV0β

− 2e−Ar2
(2AB(−A + B)r7 + 2A(A − B)Br8 − 48α

+ 12(2A − B)rα − 2Ar4(1 + 24Aα − 4Bα)

+ r2(−2 − 72Aα + 8Bα)

+ r6(2B2 + A2(4 − 8Bα) + 8AB(−1

+ Bα)) + r3(B + 16A2α − 4B2α − 2A(1 + 2Bα))

+ r5(−B2 + AB(3 − 8Bα)

+ A2(−4 + 8Bα)) + Ar4+2ββ2

− r2+2β(1 + A(−1 + β))(−1 + β)β2

+ r2β(−2 + β)(−1 + β)2β2)). (A5)

pt = 1

2r4 e
−3Ar2

(−e3Ar2
(2r2 + r4(rβ)mV0 − 4α)

+ 8(1 + 3Br2 + B2r4 − Ar2(2 + Br2))α

+ 2eAr
2
(−38α + 4(A − B)rα

− 4(2A2 − 5AB + 3B2)r3α

− 2(8A2 + 16AB − 9B2)r4α − 4(A − B)2Br5α

+ 4(12A3 − 22A2B − 3AB2 + 5B3)r6α

+ 2B(12A3 − 7A2B − 6AB2 + B3)r8α

+ r2(1 − 40Aα − 8Bα))

+ e2Ar2
(64α + 2Br(−r2 + 3r3 + 4α − 4rα)

+ 2B2(r6 − 4r4α) + 2Ar(r2 − Br5 − 4α

+ 16rα + r3(−2 + 4Bα))

− r2+2ββ2)). (A6)
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dpr
dρ

= −8(−14 − 4B2r3 + 2B3(2 − 5r)r5 + B4(3 − 2r)r7

+ Br(−3 + 2r) + 16A4r8(2 + Br2) − 2A3r5(8 − 4r

+ 8Br2 + 20Br3 + 2B2r4 + 3B2r5) + A2r3(4 − 40r

+ 40Br2 − 88Br3 + 35B2r4 − 46B2r5 + 8B3r6

− 12B3r7) + Ar(6 − 34r + 5Br2 + 4Br3 − 24B2r4

+ 64B2r5 − 22B3r6 + 32B3r7 − 4B4r8 + 2B4r9))α

− e2Ar2
(−4r2 + 16α + mr4(rβ)mV0β)

+ 2eAr
2
(2AB(−A + B)r7 + 2A(A − B)Br8

− 48α + 12(2A − B)rα

− 2Ar4(1 + 24Aα − 4Bα) + r2(−2 − 72Aα

+ 8Bα) + r6(2B2 + A2(4 − 8Bα) + 8AB(−1 + Bα))

+ r3(B + 16A2α − 4B2α − 2A(1 + 2Bα))

+ r5(−B2 + AB(3 − 8Bα)

+ A2(−4 + 8Bα)) + Ar4+2ββ2

− r2+2β(1 + A(−1 + β))(−1 + β)β2

+ r2β(−2 + β)(−1 + β)2β2))/

(−8(B4r7(−3 + 2r + 4Ar2 − 2Ar3)

+ 2B3r5(−2 + r + 11Ar2 − 4Ar3 − 4A2r4 + 2A2r5)

+ 2(−5 − 3Ar2 + 4A2r4 − 36A3r6 + 8A4r8)

+ Br(3 − 2r + Ar2

− 4Ar3 − 14A2r4 + 148A2r5 + 8A3r6

+ 8A4r9) + B2r3(4 + 2A(11 − 26r)r2 + 2A3(2 − 5r)r6

+ A2r4(−27 + 70r)))α − 2eAr
2
(2AB(−A + B)r7

+ 2A(A − B)Br8 + 48α − 12Brα

+ Br3(1 − 4Aα − 4Bα)

− 2Ar4(1 + 16Aα − 4Bα) + r2(−2 − 8Aα + 8Bα)

+ r6(2B2 + A2(4 − 8Bα) + 4AB(−1 + 2Bα))

− Br5(B − 8A2α + A(−3 + 8Bα))

+ Ar4+2ββ2 − r2+2β(−1 + β)β2)) + e2Ar2
(−4r2

+ 16α + mr4(rβ)mV0β). (A7)
dpt
dρ

= e−Ar2
(16(−2 − 3Br2 + 3A2r4(2 + Br2)

− A(r2 + 9Br4 + 3B2r6))α − 4eAr
2
(−76α + 6(A − B)rα

+ 2(2A2 + AB − 3B2)r3α

+ 2(−8A3 + 21A2B − 14AB2 + B3)r5α

− 4(20A3 − 6A2B − 12AB2 + 5B3)r6α

− 8A(A − B)2Br7α + 4(24A4 − 56A3B + A2B2

+ 16AB3 − B4)r8α

+ 4AB(12A3 − 7A2B − 6AB2 + B3)r10α

+ r2(1 − 116Aα − 8Bα) − 2Ar4(−1 + 40Aα + 8Bα))

− e3Ar2
(−4r2 + 16α + mr4(rβ)mV0β)

+ 2e2Ar2
(2B2r6

− 128α + Br(r2 − 12α + 8rα) + 2A2r3(−r2 + Br5 + 4α

− 16rα + r3(2 − 4Bα)) + r2+2ββ2 − r2+2ββ3

− Ar(−2Br4 + 2B2r7 − 12α + 96rα − 8Br3α

− 8Br5(−1 + Bα) + r2(1 + 8Bα) − r3+2ββ2)))/

(−8(B4r7(−3 + 2r + 4Ar2 − 2Ar3)

+ 2B3r5(−2 + r + 11Ar2

− 4Ar3 − 4A2r4 + 2A2r5) + 2(−5 − 3Ar2

+ 4A2r4 − 36A3r6 + 8A4r8)

+ Br(3 − 2r + Ar2 − 4Ar3 − 14A2r4

+ 148A2r5 + 8A3r6 − 88A3r7 + 8A4r9)

+ B2r3(4 + 2A(11 − 26r)r2

+ 2A3(2 − 5r)r6 + A2r4(−27 + 70r)))α

+ e2Ar2
(−4r2 + 16α + mr4(rβ)mV0β)

− 2eAr
2
(2AB(−A + B)r7 + 2A(A − B)Br8

+ 48α − 12Brα + Br3(1 − 4Aα − 4Bα)

− 2Ar4(1 + 16Aα − 4Bα) + r2(−2 − 8Aα + 8Bα)

+ r6(2B2 + A2(4 − 8Bα) + 4AB(−1 + 2Bα))

− Br5(B − 8A2α + A(−3 + 8Bα)) + Ar4+2ββ2

− r2+2β(−1 + β)β2)). (A8)

f = −2r−2e−Ar2
(−1 + eAr

2 − 3Br2 − B2r4

+ Ar2(2 + Br2))

+ 4r−4e−2Ar2
(−1 + eAr

2 − 3Br2 − B2r4

+ Ar2(2 + Br2))2α − (rβ)mV0 − e−Ar2
r−2+2ββ2. (A9)

f ′ = 1

r5
e−2Ar2

(−16(1 + 3Br2 − 3B3r6 − B4r8

+ A3r6(2 + Br2)2 − A2r4(4 + 16Br2

+ 11B2r4 + 2B3r6)

+ Ar2(−1 + 6Br2 + 16B2r4 + 8B3r6 + B4r8))α

− e2Ar2
(−4r2 + 16α + mr4(rβ)mV0β)

+ 2eAr
2
(2A(A − B)Br8 + 16α

− 2Ar4(1 + 8Aα − 12Bα)

+ r2(−2 − 8Aα + 24Bα) + r6(2B2 + A2(4 − 8Bα)

+ 8AB(−1 + Bα)) + Ar4+2ββ2

− r2+2β(−1 + β)β2)). (A10)

f ′′ = 1

r6 e
−2Ar2

(16(5 + 9Br2 + 3B3r6 + 3B4r8

+ 4A4r8(2 + Br2)2 − A3r6(20

+ 76Br2 + 49B2r4 + 8B3r6)

+ A2r4(−8 + 40Br2 + 97B2r4 + 42B3r6 + 4B4r8)

+ A(r2 + 18Br4 − 16B2r6 − 36B3r8 − 9B4r10))α

+ e2Ar2
(−12r2 + 80α − mr4(rβ)mV0β(−1 + mβ))

123
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− 2eAr
2
(4A2(A − B)Br10 + 80α − 2Ar4(3 + 16Aα

− 36Bα) + r2(−6 + 8Aα + 72Bα) − 2r6(B2 + 16A3α

+ A2(4 − 28Bα) + 4AB(−1 + Bα)) − 2Ar8(−5B2

+ AB(11 + 8Bα) + A2(−4 + 8Bα))

+ 2A2r6+2ββ2 − Ar4+2ββ2(−3 + 4β)

+ r2+2ββ2(3 − 5β + 2β2)). (A11)

R = e−Ar2
(4 − 4eAr

2 − 8Ar2 + 12Br2 − 4ABr4 + 4B2r4)

2r2 .

(A12)

R′ = 4e−Ar2
(−1+eAr

2 +B2r4+A2r4(2+Br2)−A(r2+4Br4+B2r6))

r3 .

(A13)

R′′ = − 1

r4 4e−Ar2
(−3 + 3eAr

2 − B2r4 + 2A3r6(2 + Br2)

− A2r4(4 + 11Br2 + 2B2r4)

+ Ar2(−3 + 4Br2 + 5B2r4)). (A14)

R′′′ = 1

r5
8e−Ar2

(−6 + 6eAr
2 + 2A4r8(2 + Br2)

− A3r6(8 + 15Br2 + 2B2r4) + 3A2r4(−1 + 5Br2 + 3B2r4)

− 6A(r2 + B2r6)). (A15)

X = e−Ar2
r−2+2ββ2. (A16)

X ′ = −2Ae−Ar2
r−1+2ββ2

+ e−Ar2
r−3+2ββ2(−2 + 2β). (A17)

X ′′ = 4A2e−Ar2
r2ββ2 − 2Ae−Ar2

r−2+2ββ2(−2 + 2β)

+ e−Ar2
r−4+2ββ2(−3 + 2β)(−2 + 2β)

− 2Ae−Ar2
r−2+2ββ2(−1 + 2β). (A18)

fR = 1 + e−Ar2
(4 − 4eAr

2 − 8Ar2 + 12Br2 − 4ABr4 + 4B2r4)α

r2 .

(A19)

f ′
R = 8e−Ar2

(−1+eAr
2 +B2r4+A2r4(2+Br2)−A(r2+4Br4+B2r6))α

r3 .

(A20)

f ′′
R = − 1

r4 8e−Ar2
(−3 + 3eAr

2 − B2r4 + 2A3r6(2 + Br2)

− A2r4(4 + 11Br2 + 2B2r4)

+ Ar2(−3 + 4Br2 + 5B2r4))α. (A21)

f ′′′
R = 1

r5
16e−Ar2

(−6 + 6eAr
2 + 2A4r8(2 + Br2)

− A3r6(8 + 15Br2 + 2B2r4)

+ 3A2r4(−1 + 5Br2 + 3B2r4)

− 6A(r2 + B2r6))α. (A22)

fφ = −m(rβ)−1+mV0

+ 2e−Ar2
r−3+2β(1 + Ar2 − β)β2. (A23)

f ′
φ = r−4−ββ(−(−1 + m)mr3(rβ)mV0)

− 2e−Ar2
r3ββ(3 + 2A2r4 + Ar2(3 − 4β)

− 5β + 2β2)). (A24)

f ′′
φ = r−5−ββ(−((−1 + m)mr3(rβ)m

V0(−1 + (−1 + m)β))

− 4e−Ar2
r3ββ(−6 − 2A3r6 − 6Ar2(−1 + β)2

+ 13β − 9β2 + 2β3 + 3A2r4(−1 + 2β))). (A25)
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