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Abstract In this paper, we perform the dynamical system
analysis of the cosmological models framed in the extended
teleparallel gravity, the f (T, B) gravity. We use the mapping,
f (T, B) → −T + f̃ (T, B), and define the dynamical vari-
ables to form the autonomous dynamical system. The critical
points are obtained in two well-motivated forms of f (T, B),
one that involves the logarithmic form of the boundary term
B, and the other one is the non-linear form of the boundary
term. The position of critical points is shown in the differ-
ent evolutionary phases of the Universe such as radiation,
matter, and de-Sitter phase. The stability condition of each
of the critical points of both the models is derived and the
behavior of each point has been obtained mathematically and
through the phase portrait. The evolution of standard density
parameters such as radiation (�r ), matter (�m), and dark
energy (�DE ) are also analyzed. Further to connect with the
present cosmological scenario, the behavior of deceleration
and equation of state parameter both in the dark energy phase
(ωDE ) and total (ωtot ) are shown from the initial condition
of the dynamical variables. The accelerating behaviour has
been obtained for both models.

1 Introduction

General Relativity (GR) has been validated by decades of
experimentation, and these experiments range from millime-
ter scale to solar system tests. These experiments are con-
sistent with the emission of binary pulsars in terms of grav-
itational waves. It is assumed that in the standard model of
cosmology, GR describes gravity at all scales. From type Ia
supernovae observations [1,2], one can find that Universe
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is expanding faster than it used to be, which has been fur-
ther supported by cosmic microwave background [3] and
the large-scale structure [4]. Though there are several candi-
dates have been proposed, dark energy (DE) and dark matter
provide some strong reasons. Hence, the effect of repulsive
gravity has been introduced to explain the DE phenomena. It
has less theoretical background and contrasts with the usual
attractive nature of gravity. Therefore, in GR, the cosmolog-
ical constant [5] has been introduced as an additional com-
ponent. But when the cosmological terms are interpreted as
a vacuum desired value, then it is encountered with the prob-
lems like fine-tuning and coincidence [6]. So, to address this,
the geometrical modification to GR has been proposed, which
may explain the unknown nature of DE.

One of the possible geometrical modifications to GR is
Teleparallel Gravity (TG), which was initially proposed by
Einstein as an alternative to GR [7]. The Lagrangian in
TG consists of the torsion scalar T term obtained through
the contractions of the torsion tensor. The variation of this
Lagrangian with respect to the tetrad gives rise to the evolu-
tion equations, which is the same as that of GR [8,9]. So,
TG is also known as the Teleparallel Equivalent of Gen-
eral Relativity (TEGR). One of the key factors that distin-
guish between GR and TEGR is the existence of tetrad fields.
The tetrad fields can be useful to establish a linear Weitzen-
böck connection [9,10], which is a kind of connection related
to torsion in the absence of curvature. Whereas, the curva-
ture is used to geometrize space-time and represent gravita-
tional interaction in GR. To be specific, in TEGR the gravi-
tational interaction is defined by torsion [9,11,12]. In recent
times, TG and its extension have gained significant attention
because of its ability to address some of the issues of the
present Universe.

The TEGR Lagrangian contains the torsion scalar T ,
which can further be generalized to f (T ) theory [13–16]. In
f (T ) gravity, the field equations are of second order whereas
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f (R) gravity is of fourth order [17–19]. In Ref. [20] it has
been demonstrated that f (T ) gravity theory and its field
equations are not invariant under local Lorentz transforma-
tions. So, f (T ) gravity can be generalised to f (T, B) gravity
[21], where B is the boundary term. The f (T, B) gravity has
been studied in bouncing cosmology [22], in thermodynam-
ical aspects [23,24], and in the cosmological evolution [25].
We discuss some of the recent work pertaining to cosmo-
logical models in f (T, B) gravity. In Noether symmetry, the
cosmological model of f (T, B) gravity has been analyzed
in Ref. [26]. The accelerating behaviour of the cosmologi-
cal model has been shown in Refs. [27,28]. Using cosmo-
logical observations, the cosmic expansion phenomena have
been shown in Refs. [29,30]. Apart from this modification,
the addition of Gauss–Bonnet invariant [31–34], the trace of
energy-momentum tensor [35,36] and scalar field [37–39] in
f (T ) gravity have shown promising results on the acceler-
ated expansion of the Universe.

The objective of this study is to find out the stable criti-
cal points through dynamical system analysis and their cor-
responding cosmological behaviour in some well-defined
form of f (T, B). The dynamical system analysis has been
effective to study the asymptotic behavior and overall cos-
mic dynamics of the cosmological models. To note from the
phase space and stability analysis, one can bypass the non-
linearities of the cosmological equations [40–42]. Also, by
connecting the critical points to relevant evolutionary epochs,
the description of global dynamics can be obtained. The
phase of accelerated expansion at the late time generally cor-
responds to late time attractor, whereas the phase of radiation
and matter dominance corresponds to saddle points [38,43].
Some of the relevant studies in f (T, B) gravity can be seen
in Refs. [29,44,45]. Though several dynamical analysis stud-
ies are made in f (T ) gravity [46,47], we are motivated to
analyse the study with the addition of boundary term B i.e. in
f (T ) to f (T, B) gravity formalism. The paper is organised
as: the background of f (T, B) gravity and its field equations
are presented in Sect. 2. In Sect. 3 the dynamical system anal-
ysis in f (T, B) gravity has been presented with two forms of
f (T, B) leading to two models. The results and conclusions
are given in Sect. 4.

2 f (T, B) gravity field equations

The teleparallel theories of gravity can be formed through
the tetrad eaμ and its inverse, eμ

a . It replaces the metric as the
fundamental variable through the expressions,

gμν = eaμe
b
νηab, ηab = e μ

a e ν
b gμν. (1)

The Latin indices indicate the coordinates on the tangent
space and the Greek indices represent the indices on the gen-

eral manifold, which connect both the spaces and play a vital
role in raising and lowering indices between the different
spaces [14]. The tetrads with the metric adhere to the orthog-
onality conditions as,

eaμe
μ

b = δab , eaμe
ν

a = δν
μ. (2)

The flat spin connection ωa
bμ plays a role in including the

local Lorentz transformation invariance in the equations of
motion, which results from the appearance of the tangent
space indices. Through the tetrad and spin connection, the
teleparallel connection can be defined as [10,48]

�σ
νμ := e σ

a

(
∂μe

a
ν + ωa

bμe
b
ν

)
, (3)

Together, the tetrad as well as spin connection correspond to
the gravitational and local degrees of freedom of the system
and preserve the equations of motion’s diffeomorphism and
Lorentz invariance. Now, the torsion tensor can be derived
from the teleparallel connection as [49]

T σ
μν := 2�σ[νμ], (4)

where the square bracket represents an antisymmetric opera-
tor. A torsion scalar can be defined using certain contractions
of the torsion tensor [9,11,14,50],

T := 1

4
T α

μνT
μν

α + 1

2
T α

μνT
νμ

α − T α
μαT

βμ
β, (5)

Torsion scalars are fundamentally dependent only on the
teleparallel connection, as curvature scalars are dependent
only on Levi–Civita connections. The Ricci scalar van-
ishes when calculated using the teleparallel connection, i.e.,
R ≡ 0. From this background one can write an expression
that connects the regular Ricci scalar, R̊ = R̊(�̊σ

μν) (over-
circles are used throughout to denote quantities determined
using the Levi–Civita connection) and torsion scalars T as
[21,51]

R = R̊ + T − B = 0. (6)

where B represents a total divergence term and is defined as

B = 2

e
∂ρ

(
eTμ ρ

μ

)
. (7)

The determinant of the tetrad, e = det
(
eaμ

) = √−g.
Another extension of TEGR action can be written by incor-
porating an arbitrary function of both the torsion scalar T
and the boundary term B [9,21,29],

S f (T,B) =
∫

d4xeLm + 1

2κ2

∫
d4xe f (T, B), (8)

κ2 = 8πG. Varying action [ Eq. (8)] with respect to the tetrad
fields, the f (T, B) gravity field equations can be obtained as,

ea
μ� fB − ea

ν∇μ∇ν fB + 1

2
B fBea

μ − (∂ν fB + ∂ν fT ) Sa
μν
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−1

e
fT ∂ν(eSa

μν) + fT T
B

νa Sb
νμ

− fTωb
aν Sb

νμ − 1

2
f Ea

μ = κ2�a
μ (9)

The partial derivative of f (T, B) with respect to T and
B respectively denoted as fT and fB ; whereas the energy-
momentum tensor and the Levi–Civita covariant deriva-
tive with respect to the Levi–Civita connection respectively
denoted as, �

μ
a and ∇ν . We consider the tetrad for the flat

FLRW metric as,

eaμ = (1, a(t), a(t), a(t)). (10)

This choice of tetrad allows for vanishing spin connection
components, ωa

bμ = 0, the above expression also satisfies
the Weitzenböck gauge for f (T, B) gravity. Here we shall
study the cosmological aspects of f (T, B) gravity and hence
consider the flat FLRW space-time as,

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (11)

where a(t) be the expansion along spatial directions. We can
also find the Hubble parameter, H ≡ ȧ

a , with an over dot
being the derivative of the variable in cosmic time t . In flat
space-time, the torsion scalar T and the boundary term B
respectively reduce to,

T = 6H2, B = 6(3H2 + Ḣ). (12)

Now, the field equations of f (T, B) gravity (9) for the metric
(11) and tetrad (10) can be derived as,

−3H2(3 fB + 2 fT ) + 3H ḟB − 3Ḣ fB + 1

2
f (T, B) = κ2ρ

−3H2(3 fB + 2 fT ) − Ḣ(3 fB + 2 fT ) − 2H ḟT + f̈ B

+1

2
f (T, B) = −κ2 p. (13)

One of the most important properties of this theory is, that it
satisfies the continuity equation (ρ̇i + 3H(ρi + pi ) = 0) for
i = m, r, DE , that is matter, radiation, and the DE respec-
tively. To better understand the contributions of the modi-
fied Lagrangian, we consider the f (T, B) gravity Lagrangian
mapping, f (T, B) → −T + f̃ (T, B), then the Friedmann
equations can be obtained as,

3H2 = κ2 (ρ + ρDE ) , (14)

3H2 + 2Ḣ = −κ2 (p + pDE ) . (15)

Where the expression for energy density and pressure for the
DE phase can be obtained as,

3H2(3 f̃ B + 2 f̃T ) − 3H ˙̃fB + 3Ḣ f̃B

−1

2
f̃ (T, B) = κ2ρDE , (16)

−3H2(3 f̃ B + 2 f̃T ) − Ḣ(3 f̃ B + 2 f̃T ) − 2H ˙̃fT + ¨̃fB
+1

2
f̃ (T, B) = κ2 pDE . (17)

The expression of the equation of state (EoS) parameter for
the DE phase can be written as,

ωDE = −1 +
¨̃fB − 3H ˙̃fB − 2Ḣ f̃T − 2H ˙̃fT

3H2(3 f̃ B + 2 f̃T ) − 3H ˙̃fB + 3Ḣ f̃B − 1
2 f̃ (T, B)

.

(18)

Next, we shall define the dynamical variables and express the
cosmological parameters in terms of dynamical variables.
The cosmological behaviour of the models will be studied
through some functional forms of f̃ (T, B).

3 Dynamical system analysis

From the theoretical point of view, any proposed cosmologi-
cal model should contain at least part that explians “Inflation
→ Radiation → Matter → DE” [52]. To attain the afore-
mentioned suggested cosmological model, inflation must be
an unstable point in order for the Universe to have an infla-
tion exit, whereas radiation and matter points must be saddle
points in order for these eras to be long enough. The final
phase of the DE era should be a stable period of accelerated
expansion. In order to analyse this, we consider the Universe
filled with two fluids such that, ρ = ρm + ρr , where ρm and
ρr respectively be the energy density for matter and radia-
tion. In the matter dominated phase pm = 0 and hence ωm

vanishes, whereas in the radiation phase, ωr = 1
3 . With these,

we define the dynamical variables as,

X = f̃ B, Y = f̃ B
Ḣ

H2 , Z =
˙̃fB
H

, V = κ2ρr

3H2 ,

W = − f̃

6H2 . (19)

The standard density parameters expressions for matter
(�m), radiation (�r ) and DE (�DE ) phase are respectively,

�m = κ2ρm

3H2 , �r = κ2ρr

3H2 , �DE = κ2ρDE

3H2 . (20)

with

�m + �r + �DE = 1 (21)

So, the constrained equation in terms of a dynamical variable
can be written as,

�m + �r + W + 2 f̃T + Y + 3X − Z = 1 (22)

where

�DE = W + 2 f̃T + Y + 3X − Z (23)
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The total EoS parameter and DE EoS parameter are respec-
tively obtained in dynamical variables as,

ωtot = −1 − 2Y

3X
,

ωDE = − (V + 3)X + 2Y

3X (2 f̃T + W + 3X + Y − Z)
. (24)

Subsequently, we have obtained the autonomous dynamical
system as follows,

X
′ = Z ,

Y
′ = λX + Y (Z − 2Y )

X
,

Z
′ = 6 f̃T − V + 3W + 2 f̃T Y

X
− Y Z

X
− 2Y

X

+9X + 3Y + 2 f̃
′
T − 3,

V
′ = −2V (2X + Y )

X
,

W
′ = −2WY

X
− λX − 2 f̃T Y

X
− 6Y. (25)

where ′ denotes differentiation with respect to N = ln(a), to
express the autonomous dynamical system, we define the
parameter λ = Ḧ

H3 [44,53] and is treated as a constant
throughout the analysis. To note, the value of the parame-
ter λ = 8, 9

2 , connects with the radiation, matter dominated
phase respectively whereas for DE it depends on the dynami-
cal variables X and Y . Now, to study the stability analysis, we
need some form of f̃ (T, B), and hence we have considered
two forms of f̃ (T, B) that lead to two models.

3.1 Model-I

We consider,

f̃ (T, B) = ξT + αBlog(B)

This specific form of f (T, B) has been successful in address-
ing the late time cosmic phenomena issue [54,55], Noether
symmetry [56]. Also, the critical points can be analysed in
the presence of a non-canonical scalar field and the exponen-
tial potential function in f (T, B) gravity framework [25].
In the absence of a scalar field, the cosmological aspects
through the behavior of critical points analysis may provide
some deeper insight into the evolution of the Universe in dif-
ferent evolution phases. The dynamical variable Z from Eq.

(19) can be written as, Z = α
[

6Y+Xλ
3X+Y

]
and treated as the

dependent variable. The autonomous dynamical system for
this setup can be obtained as,

X
′ = α(λX + 6Y )

3X + Y
,

Y
′ = X

(
λ − 2Y 2

X2

)
+ αY (λX + 6Y )

X (3X + Y )
,

V
′ = −2V (2X + Y )

X
,

W
′ = −2WY + λX2 + 6XY + 2ξY

X
. (26)

The standard density parameters for DE and matter can
be calculated as

�DE = 2ξ + W + 3X + Y − α(λX + 6Y )

3X + Y
,

�m = −2ξ − V − W − 3X − Y + 1 + α(λX + 6Y )

3X + Y
,

(27)

and the EoS parameter for DE is given as,

ωDE = − (V + 3)X + 2Y

3X
(

2ξ + W − α(λX+6Y )
3X+Y + 3X + Y

) .

We shall find the critical points of the dynamical system by
considering X

′ = 0,Y
′ = 0, V

′ = 0,W
′ = 0. The critical

points and their existence conditions are given in Table 1.
The eigenvalues of the Jacobian matrix at each critical

point have been obtained to analyse the stability of the crit-
ical points. The stability can be categorised as: (i) all the
eigenvalues of the Jacobian matrix are negative, stable node;
(ii) all the eigenvalues are positive, unstable node; (iii) the
eigenvalues are both positive and negative, saddle node. In
addition, at the stable spiral node, there is a negative deter-
minant for the Jacobian matrix, and the real component of all
of the eigenvalues also has a negative value. We have given
the analysis of each of the critical points below:

• Critical Point C1: The critical point C1 with λ = 8
describes the radiation-dominated era. The value of the
parameter ωtot = 1

3 , q = 1. This critical point will
describe the standard radiation-dominated era for V1 =
1, ξ = 0 at which the contribution of the standard den-
sity parameter for DE will vanish. The eigenvalues at this
critical point are presented in Table 2, which shows this
critical point is unstable in nature and the corresponding
value of the deceleration and EoS parameter is that of
radiation-dominated (Table 3). The evolution equation,
along with the exact solution, is obtained and presented
in Table 4. The exact solution obtained at this critical
point is in the power law a(t) = t0(t)h form with h = 1

2
which explains the radiation-dominated era. The behav-
ior of phase space trajectories at this critical point shows
that this critical point is the saddle point and hence unsta-
ble, as can be seen in Fig. 2.
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Table 1 The critical points
(Model-I)

Name of critical point X Y V W Exist for

C1 = (X1, Y1, V1,W1) X1 −2X1 V1 −ξ − X1 X1 �= 0, α = 0, λ = 8

C2 = (X2, Y2, V2,W2) X2 − 3
2 X2 0 W2 X2 �= 0, ξ = −W2 − 3X2 − Y2, α = 0, λ = 9

2 .

C3 = (X3, Y3, V3,W3) X3 Y3 0 −3X3 − Y3 − ξ X3 �= 0, Y3 (3X3 + 2Y3) �= 0, α = 0, λ = 2Y 2
3

X2
3

.

C4 = (X4, Y4, V4,W4) X4 0 0 W4 X4 �= 0,W4, α, ξ = arbitrary, λ = 0.

Table 2 Eigenvalues
corresponding to the critical
point (Model-I)

C. P. Eigen values

C1 {0, 0, 4, 8}
C2 {6, 3,−1, 0}
C3

{
0,−4 Y3

X3
,−2 Y3

X3
,−2 (2X3+Y3)

X3

}

C4 {0, 0, 0,−4}

Table 3 Stability condition,
EoS parameter and deceleration
parameter (Model-I)

C.P. Stability conditions q ωtot ωDE

C1 Unstable 1 1
3 − V1−1

3ξ

C2 Unstable 1
2 0 0

C3

Stable for
(X3 < 0 ∧ Y3 < 0) ∨
(X3 > 0 ∧ Y3 > 0)

− X3+Y3
X3

−1 − 2Y3
3X3

3X3+2Y3
6Y3−3ξ X3

C4 Nonhyperbolic −1 −1 − 1
2ξ+W4+3X4

• Critical Point C2: The value of the EoS parameter (ωtot )
vanishes at this critical point, hence, this critical point
represents the CDM (Cold Dark Matter) phase of the
evolution of Universe. The value of dynamical variable λ

is 9
2 . This critical point describes a non-standard CDM-

dominated era with the small contribution of the DE den-
sity parameter (Refer Table 4). The evolution equation
with the exact solution at this critical point is presented
in Table 4, the power law solution with index 2

3 indicates
that this will describe the CDM-dominated era. The exis-
tence of positive and negative eigenvalues at this critical
point, as presented in Table 2 shows that this critical point
is unstable. The phase space trajectories at this critical
point show that this critical point is a saddle point, which
can be analyzed in Fig. 2, which will support the stability
condition obtained from the sign of the eigenvalues.

• Critical Point C3 : At this critical point, the value of
q, ωDE and ωtot is dependent on the dynamical vari-
ables X,Y hence, this critical point can describe the
early as well as the late phases of the Universe evolu-
tion. The critical point will describe the de-sitter solution
at Y3 = 0 and describe accelerating expansion of the
universe at parametric range (X3 < 0 ∧ Y3 < −X3) ∨
(X3 > 0 ∧ Y3 > −X3). To get better clarity, the range of
parameters where it describes accelerating expansion and
stability is plotted in the region plot in Fig. 1. From this,
we can analyze that the value of Y3 is near 0 in stability,
existence, and in the parametric range where parameters
are capable to describe the accelerated expansion of the
Universe at critical point C3, hence this critical point is
capable of describing a DE dominated era of Universe
evolution. The phase space trajectories at this critical
point are attractors and can be analyzed in Fig. 2. This

Table 4 Evolution equations,
phase of the Universe, density
parameters (Model-I)

C. P. Evolution equations Universe phase �m �r �DE

C1 Ḣ = −2H2 a(t) = t0(2t + c2)
1
2 −ξ − V1 + 1 V1 ξ

C2 Ḣ = − 3
2 H

2 a(t) = t0(
3
2 t + c2)

2
3 W2 + 3X2

2 + 1 0 −W2 − 3X2
2

C3 Ḣ = − Y3
X3

H2 a(t) = t0(
Y3
X3

t + c2)
X3
Y3 −ξ + 2Y3

X3
+ 1 0 ξ − 2Y3

X3

C4 Ḣ = 0 a(t) = t0ec2t −2ξ − W4 − 3X4 + 1 0 2ξ + W4 + 3X4

123
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Fig. 1 Stability and acceleration region of the critical point C3 repre-
senting DE energy dominated era (Model-I)

critical point is describing the standard DE-dominated
era with �DE = 1 at ξ = 1,Y3 = 0 (Refer Table 4). The
exact solution obtained at this critical point is in the power
law a(t) = t0(t)h form with h = X3

Y3
depending upon the

value of dynamical variables X3 and Y3, the correspond-
ing phase of the Universe evolution can be analysed. The
eigenvalues at this critical point are normally hyperbolic
[57] and are stable in the parameter range as described in
Table 3.

• Critical Point C4 : The value of q = −1, ωtot = −1
at this critical point, hence this critical point explains
the de-Sitter solution. The exact cosmological solution
at this critical point is described in Table 4 which takes
the de-Sitter solution form. From this one can observe
that this critical point should explain a standard DE-
dominated era at ξ = 1

2 ,W4 = 0, X4 = 0. But due
to the presence of zero eigenvalues, this critical point is
non-hyperbolic in nature. The linear stability theory fails
to provide information regarding the stability of the crit-
ical point if the critical point contains zero eigenvalues.
Moreover, since the system equations are not satisfying
the central manifold condition (after separating from lin-
ear and non-linear parts, the non-linear part at zero is not
vanishing), therefore it fails to describe the stability of
this critical point. The 2-D phase space diagram to anal-
yse the behaviour of the phase space trajectories at this
critical point in Fig. 3 has been given, where it is observed
that the phase space trajectories are attracted towards this
critical point. Hence this critical point is an attractor.

Fig. 2 2D phase portrait for the dynamical system for λ = 0.3, ξ =
−2.4, α = 1.3 (Model-I)

Fig. 3 2D phase portrait for the dynamical system for λ = 0.3, ξ =
−2.4, α = 1.3 (Model-I)

In Fig. 1, the stability and acceleration region of the crit-
ical point C3 has been shown. Though the light blue shaded
area in the figure shows the acceleration, the stability could
not be established. The evolution plot of standard density
parameters in terms of the N = log(a) has been given in
Fig. 4, we can find the value of �r ≈ 0.019,�m ≈ 0.3 and
�DE ≈ 0.7. The vertical dashed line represents the present
time. The blue curve represents the evolution of the standard

123
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Fig. 4 Evolution of density parameters. The initial conditions: X =
−1.2 × 102.2, Y = 2.2 × 10−3.4, V = 1.02 × 102.6, W = 4.5 ×
10−8.1, λ = 0.3, ξ = −2.4, α = 1.3 (Model-I)

Fig. 5 Deceleration parameter (q) for the initial conditions X =
−1.2 × 102.2, Y = 2.2 × 10−3.4, V = 1.02 × 102.6, W = 4.5 ×
10−8.1, λ = 0.3, ξ = −2.4, α = 1.3 (Model-I)

density parameter for radiation, and it can be observed that
this curve dominates the other two curves at the early evolu-
tion and decreases gradually from early to late time and tend
to zero at late times. The behavior of q and Eos for ωtot , ωDE

can be analyzed in Figs. 5 and 6 respectively. Since the plot
of q lies in the negative region, hence it is capable to describe
the current accelerated expansion of the Universe. The value
of q at the present time is −1.387 which is approximately
the same as the current observation study [58]. The plot of
ωtot at present value takes the value −1.233 which agrees
with ω0 = −1.29+0.15

−0.12 [59].

3.2 Model-II

We consider,

f̃ (T, B) = ζT + β(−B)p

where f̃2(B) = β(−B)p in specifically, is nonlinear and
capable of studying observational tests for the theory by refer-
ring to the most recent SN-Ia data [15]. This is a prominent
form of f̃ (T, B) gravity due to its usefulness in explaining
the present cosmic expansion and H0 tension [30]. Similar to

Fig. 6 EoS parametersωDE ,ωtot for the initial conditions X = −1.2×
102.2, Y = 2.2 × 10−3.4, V = 1.02 × 102.6, W = 4.5 × 10−8.1, λ =
0.3, ξ = −2.4, α = 1.3 (Model-I)

the first model, we get a relationship for the dynamical vari-

able Z =
[

(p−1)X (λX+6Y )
3X+Y

]
, hence the dynamical variable

Z is treated as a dependent and the others are independent.
The terms f̃T = ζ and f̃

′
T = 0 will convert the general

dynamical system in Eq. (25) into an autonomous form as
follows,

X
′ = (p − 1)X (λX + 6Y )

3X + Y
,

Y
′ = (p − 1)Y (λX + 6Y )

3X + Y
+ X

(
λ − 2Y 2

X2

)
,

V
′ = −2V (2X + Y )

X

W
′ = −2WY + λX2 + 6XY + 2ζY

X
. (28)

The standard density parameter for DE and matter can be
given as,

�DE = 2ζ − (p − 1)X (λX + 6Y )

3X + Y
+ W + 3X + Y ,

�m = −2ζ + (p − 1)X (λX + 6Y )

3X + Y
− V − W

− 3X − Y + 1 . (29)

The EoS parameter for DE can be written as.

ωDE = − (V + 3)X + 2Y

3X
(

2ζ − (p−1)X (λX+6Y )
3X+Y + W + 3X + Y

) .

Next, we have calculated and presented the critical points for
this dynamical system in Table 5.

To study the stability of each critical point, the eigenvalues
at each critical point of the Jacobian matrix are calculated and
presented in Table 6.
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Table 5 The critical points
(Model-II)

Name of critical point x y v w Exists for

P1 = (x1, y1, v1, w1) x1 −2x1 v1 −ζ − x1 x1 �= 0, p = 1, λ = 8.

P2 = (x2, y2, v2, w2) x2 − 3x2
2 0 w2 x2 �= 0, ζ = −w2 − 3x2

2 , p = 1, λ = 9
2 .

P3 = (x3, y3, v3, w3) x3

√
λ
2 x3 0 −ζ − 1

2

(√
2λ + 6

)
x3 3x3 + y3 �= 0, p = 1, λ = arbitrary.

P4 = (x4, y4, v4, w4) x4 0 0 0 p = arbitrary, x4 �= 0, λ = 0.

Table 6 Eigenvalues corresponding to each critical point (Model-II)

C.P. Eigenvalues

P1 {0, 0, 4, 8}
P2 {0,−1, 3, 6}
P3

{
0,−4 − √

2λ,−2
√

2λ,−√
2λ

}

P4 {0, 0, 0,−4}

Depending upon the sign of the eigenvalues, the stability
of the critical point can be concluded. The stability condi-
tions for each critical point, along with the values of q, ωtot

and ωDE are presented in Table 7 along with the detailed
descriptions.

To identify the phase of the evolution of the Universe and
the exact cosmological solutions at the critical points are
calculated and presented in Table 8.

• Critical Point P1: The value of parameter λ is 8 at P1,
hence this critical point represents radiation-dominated
era with ωtot = 1

3 . This critical point is in the standard
radiation-dominated era at V1 = 1, ζ = 0, where �r = 1
and �m = �DE = 0 can be observed from Table 8.
The exact solution retraced at this critical point is in the
power law a(t) = t0(t)h form with h = 1

2 which iden-
tifies the radiation-dominated era. According to the sign
of the eigenvalues presented in Table 6, this critical point
remains as a saddle point and hence is unstable. The same
behaviour can be confirmed from the phase space trajec-
tories (Fig. 7). The exact cosmological solution at this
critical point is shown in Table 8.

• Critical Point P2: This critical point is representing the
CDM-dominated era, where ωtot = 0. This can be
observed from the exact cosmological solution obtained
at this critical point with a(t) = t0(t)h , where h = 2

3
as presented in Table 8. The value of �m at this criti-
cal point is 1 for ζ = 0 and hence represents a standard
CDM-dominated era. Since there is an eigenvalue at the
Jacobian matrix with a positive sign, this critical point is
a saddle point, Ref. Table 6. From Fig. 7, the phase space
trajectories at this critical point are moving away from it,

hence unstable in behaviour. The parameter λ will take
the value 9

2 .
• Critical Point P3: The value of q and ωtot at this critical

point are λ dependent. Since the value of �DE = 1, this
critical point will represent a standard DE-dominated era
and will describe accelerated expansion within the range
x3 ∈ R ∧ λ ≥ 0. The stability conditions at this critical
point are presented in Table 7. For clear visualisation of
the parametric range where critical point P3 is stable and
describes accelerating behaviour, we have plotted region
plot for parameters λ and x3 and is presented in Fig. 8.
This plot lies in the upper half plane and with the inclusion
of x3-axis due to the acceleration range of parameter λ.
We observed that this critical point can describe the de-
Sitter solution at λ = 0 and shows stability at the points
near λ = 0. The eigenvalues at these critical points are
normally hyperbolic and show stability as described in
Table 7. This critical point is a late time attractor and the
same can be visualized from the behavior of phase space
trajectories from Fig. 7. The exact solution obtained at
this critical point is in the power law a(t) = t0(t)h form

with h =
√

2
λ

which can explains the different epochs of
the Universe evolution depending upon value of λ.

• Critical PointsP4: This critical point is the de-Sitter solu-
tion with q = ωtot = −1. The de-Sitter solution at this
critical point is obtained and presented in Table 8. The
standard DE-dominated era can be described by this criti-
cal point at ζ = 1

2 , w4 = 0, x4 = 0. From the eigenvalues
one can see that there are three zeros and one negative
eigenvalue, hence linear stability theory will fail to con-
firm the stability at this point. Therefore, we have moved
forward to obtain stability using central manifold the-
ory (CMT). But in this case, while applying CMT we
have observed that after co-ordinates shift to the center,
this system will not satisfy the CMT condition (after we
separated the linear and non-linear parts of the system
equations, the nonlinear part is not vanish as same in
Model-I critical point C4). We have plotted and analysed
the 2 − d phase portrait at this critical point presented in
Fig. 7. The phase space trajectories are attracting towards
this critical point, hence this critical point is a late time
attractor.

123



Eur. Phys. J. C (2023) 83 :809 Page 9 of 12 809

Table 7 Stability condition,
EoS and deceleration
parameters (Model-II)

C.P. Stability conditions q ωtot ωDE

P1 Unstable 1 1
3 − v1−1

3ζ

P2 Unstable 1
2 0 0

P3
Stable for

x3 ∈ R ∧ λ > 0
−1 −

√
λ
2 −1 −

√
2λ
3 − 1

ζ
+

√
2λ

3ζ

P4 Nonhyperbolic −1 −1 − 1
2ζ+w4+3x4

Table 8 Phase of the universe,
density parameters (Model-II)

C. P. Evolution equations Universe phase �m �r �DE

P1 Ḣ = −2H2 a(t) = t0(2t + c2)
1
2 1 − ζ − v1 v1 ζ

P2 Ḣ = − 3
2 H

2 a(t) = t0(
3
2 t + c2)

2
3 1 − ζ 0 ζ

P3 Ḣ =
√

λ
2 H

2 a(t) = t0(−
√

λ
2 t + c2)

√
2
λ 0 0 1

P4 Ḣ = 0 a(t) = t0ec2t 1 − 2ζ − w4 − 3x4 0 2ζ + w4 + 3x4

Fig. 7 2D phase portrait for the dynamical system for λ = 0.3, ζ =
1.0001, p = −1 (Model-II)

Graphically we have presented �DE ,�m,�r in Fig. 9
with the initial condition: X = 1.2 × 102.2,Y = 2.2 ×
10−3.4, V = 1.02 × 102.6,W = 4.5 × 10−8.1. It has been
observed that the value of �m ≈ 0.3 and �DE ≈ 0.7 at
the present time. The plot for �r vanishes throughout the
evolution. The plot for �DE dominates both �r , �m at the
late phase of cosmic evolution. The plots for q, ωDE , ωtot

is presented in Fig. 10. The value of q at the present time

Fig. 8 Stability and the range of parameter λ and x3 defining acceler-
ation of the Universe for the critical point P3(Model-II)

is −1.387 which is approximately the same as the current
observation study [58]. The plot of ωtot at present takes the
value −1.255 which agrees with [60].

4 Conclusion

The dynamical system analysis plays an important role in the
description of the dynamics of the Universe. The indepen-
dence of the initial conditions and connecting critical points
to the particular evolutionary epochs are important. Hence
to analyse the different phases of the Universe’s evolution,
we have performed the dynamical system analysis for two
prominent models in the f (T, B) gravitational theory with
the use of the mapping f (T, B) → −T + f̃ (T, B). We
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Fig. 9 Evolution of the density parameters, with the initial conditions
X = 1.2 × 102.2, Y = 2.2 × 10−3.4, V = 1.02 × 102.6,W = 4.5 ×
10−8.1, λ = 0.3, ζ = 1.0001, p = −1 (Model-II)

Fig. 10 Deceleration (q) and EoS parameters ωDE ,ωtot with the initial
conditions X = 1.2×102.2, Y = 2.2×10−3.4, V = 1.02×102.6,W =
4.5 × 10−8.1, λ = 0.3, ζ = 1.0001, p = −1 (Model-II)

present a detailed description of critical points represent-
ing all epochs of the evolution of the Universe, the matter-
dominated, radiation-dominated, and DE eras. The general
dynamical system which is dependent on the form of f̃ (T, B)

is presented in Eq. (25).
In Sect. 3.1, the form of f̃ is the linear term of the tor-

sion scalar T along with the logarithmic form of the boundary
term B. This model is capable of converting a general dynam-
ical system into an autonomous form and is presented in Eq.
(26). The critical points along with the existing condition are
presented in Table 1. The stability of each critical point is

estimated on the basis of the sign of the eigenvalues of the
Jacobian matrix at each critical point. The stability condi-
tions for Model-I are presented in Table 3. To identify the
evolutionary epoch at each critical point, the values of stan-
dard density parameters are also calculated and presented
in Table 4. From this, it has been observed that for Model-I,
the critical pointC1 representing the radiation-dominated era
and the critical point C2 representing the matter-dominated
era show saddle points and hence are unstable. The same can
be verified by analyzing the behavior of phase space trajec-
tories presented in Figs. 2 and 3. At the critical point C3, the
value of ωDE and ωtot which are dependent on the coordinate
X,Y , we can study the DE phase of the Universe evolution.
For better visibility, the existence and stability region for a
critical point C3 is plotted and presented in Fig. 1. To ana-
lyze the behavior of standard density parameters, the plot
for �DE ,�r and �m in terms of the redshift is presented
in Fig. 4. From this plot, we can conclude that the density
parameter for radiation and matter goes on decreasing and
vanishes at a late time, whereas the plot for DE is increas-
ing from an early to a late time of cosmic expansion. The
plot for q and ωDE , ωtot are also presented in Figs. 5 and 6
respectively, which show compatibility with the observation
study made in [58,59]. One of the important findings of the
addition of boundary term is that, the logarithmic form of
boundary term is capable to describe a critical point in all
the evolutionary phases of the Universe., which might not be
possible in the context of f (T ) gravity formalism..

Further, we have another form of f̃ with general index p
of the negative of the boundary term B. This case enables
us to analyse the role of boundary term more clearly in the
extended teleparallel gravity and we present the analysis in
Sect. 3.2. This form has been widely studied in the liter-
ature [15,30], hence it is interesting to investigate in the
higher order gravity. The autonomous dynamical system is
presented in Eq. (28) and to analyse the different phases of the
Universe’s evolution, we obtained the critical points which
are presented in Table 5. The critical point P3, the decel-
eration parameter, and ωtot show dependence on parame-
ter λ whose value contributes to the identification of dif-
ferent phases of the evolution of the Universe. This critical
point made a difference in the description of both models
to describe the DE-dominated era. The stability conditions
are obtained from the eigenvalues and presented in Table 7
along with the values of q, ωtot , ωDE . The stability behaviour
has been also confirmed with the behaviour of phase space
trajectories presented in Fig. 7. In this case, the exact cos-
mological solutions and the value of �DE , �r , �m at each
critical point have been derived and are presented in Table 8.
From this study, we have concluded that this form is capable
to represent and describe all three important phases of the
evolution of the Universe.
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Both the cosmological models show compatibility in
explaining the evolutionary behavior from early to late time.
The analysis of the models follow the argument regarding
the explanation of the unstable critical points explaining
early epochs such as the matter- dominated and radiation-
dominated era and the stable behaviour in certain parametric
ranges in the de-Sitter phase. The detailed mathematical anal-
ysis along with the region of stability is presented with the
help of region plots for both models. For a deeper under-
standing of these critical points and freedom on the model
parameter, one may link them with cosmological observa-
tions. Also, the models may allow us to differentiate between
viable parameter ranges while probing the issues of the early
Universe.
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