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Abstract We discuss implications of the cosmological
frame principle which states that cosmological effects of
modified gravity must be stable as solutions of each of
the corresponding sets of dynamical equations holding in
the two conformally-related frames. We show that there are
such globally stable, ‘frame-independent’ solutions describ-
ing cosmic acceleration, suggesting that they may represent
a physically relevant effect. This result highlights the impor-
tance of further investigation into the implications of the
frame principle for cosmological properties that rely on the
use of conformal frames.

1 Introduction

Modified gravity has become an essential part of theoretical
cosmology as an extension of general relativity to understand
the nature of gravitational effects in the very early and very
late universe, see e.g., [1–4] for recent reviews. The confor-
mal potential approach to modified gravity casts the theory
in an alternative form by performing a conformal transfor-
mation of the original field equations in the Jordan frame to
the conformally related Einstein frame representation of the
theory as general relativity plus a self-interacting scalar field
[5–7]. This was first introduced for the Brans–Dicke theory
[8] by Dicke in [9], for the f (R) gravity theory of [10] in
[11], and for the scalar–tensor extension in [12]; for recent
investigations cf. [13–18].

As is very common in the literature of this vast subject,
using the conformal frames one may work at will or choice
in any of the two conformally-related theories. In particu-
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lar, one suspects that even if cosmological phenomena may
look different in the two conformally related frames, yet rela-
tions between observables must be the same (of course, a
mathematical equivalence does not imply a physical one),
cf. [19–21] and related refs. therein. In these references, a
procedure of corresponding effects in the two frames is suc-
cessfully applied to a variety of deep cosmological questions,
such as the singularity problem, the isotropization issue in
anisotropic models, or the problem of matching solutions
before and after a singularity ‘crossing’. These interesting
analyses suggest that one may use the two frames in a pro-
ductive way to treat cosmological problems through field
reparametrization in a similar way as when we have different
coordinates systems in classical mechanics. These analyses
imply that conformal frames are more than just a mathemati-
cal procedure, and possibly suggest the existence of some yet-
unknown underlying physical effect taking place between the
two conformal frames.

In this paper, we suggest a more precise formulation of
this effect which we coin the cosmological frame principle,
with the following formulation:

The cosmological frame principle: All cosmological solu-
tions of modified gravity are frame-independent, that is they
should preserve their stability properties as solutions of the
two conformally-related sets of dynamical equations in the
two frames.

The notion of stability in this statement requires some dis-
cussion. We mean stability in any given well-defined, math-
ematical sense, that is Liapunov, asymptotic, orbital, asymp-
totic orbital, or structural stability of the two systems (or its
generalization to system families). Under the frame principle,
we propose to accept as a physical effect one that proves sta-
ble in any one of the above ways. Therefore a way to test the
frame principle in concrete situations is to check the stability
of solutions describing the same property in both frames (in
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the case of structural stability of families, testing the frame
principle would imply a full bifurcation analysis of the two
systems). If a particular property is proven to be stable as a
solution of the equations in some way in both frames (that
is for both systems of conformally-related dynamical equa-
tions), then it can be regarded as frame-independent in the
sense that it exists independently from which frame one uses
to study it, despite if it appears differently in the two frames.
(It is important to emphasize the use of stable solutions of the
two sets of conformally-related dynamical equations in the
statement of the frame principle, not just arbitrary functions
connected by the conformal transformation between the two
frames.)

A prime example is inflation in various contexts (cf. [22]
and also [11,12,19]), or various cosmic no-hair theorems
which give conditions under which de Sitter or quasi-de
Sitter spaces are stable in both the f (R) and the Einstein
frames, cf. [10,23–26], and also the stability of more general
Friedmann–Lemaître–Robertson–Walker (FLRW) solutions
in both frames [10,27]. Another example is the viability of
an f (R) theory, for instance, f (R) = R − μ2(n+1)/Rn ,
with μ > 0, n > 1, promoted to explain the late-time cos-
mic acceleration [28,29], for which in the Einstein frame
for FLRW models, it was shown in [30] that in the limit
n → ∞, these models are not cosmologically viable. This
fact reinforces a general feeling that models with f (R) =
R−const/Rn are cosmologically unacceptable [31]. We note
that it would be an interesting result if one could show the sta-
bility of the matching solutions found in [20,21] and related
references therein, that is show the validity of the cosmolog-
ical frame principle in the singularity crossing problem.

In this paper, we provide a further example of the use of
the frame principle in cosmology, namely, the independence
of the property of future acceleration on the choice of frame.
We study cosmic acceleration using the frame principle as a
guide, and stability analysis in both the Jordan and Einstein
frames for flat FLRW universes in the setup of a quadratic
Lagrangian gravity theory with a cosmological constant. To
this end, in the following two sections we investigate the
evolution of FLRW flat models in the quadratic theory with
a non-zero cosmological constant of the form R+ εR2 −2�

firstly in the Jordan frame (next section) and then in the Ein-
stein frame (Sect. 3). We prove rigorously that acceleration is
a stable property in both frames, and comment on the validity
of recollapsing universes with a negative cosmological con-
stant independently of the frame chosen. For simplicity we
restrict our analysis to vacuum models, and leave for subse-
quent work the inclusion of a perfect fluid given its further
mathematical intricacies. Our stability proof in this paper
reinforces the view that future acceleration is a typical prop-
erty for these models, and it adds to the physical plausibility
of dark energy.

2 Acceleration in the Jordan frame

We adopt the metric and curvature conventions of [32], and
choose units so that c = 1 = 8πG. For the quadratic theory,
R + εR2 − 2� in a flat FLRW model, the 00 equation is,

H2 + 2ε

(
RH2 + H Ṙ − R2

12

)
= �

3
, (1)

while the evolution equation for H takes the form,

Ḣ = 1

6
R − 2H2. (2)

We shall also make use of the trace equation which reads,

R̈ + 3H Ṙ + 1

6ε
R = 2�

3ε
. (3)

With the variables R and Ṙ, Eqs. (3) and (2) constitute a
three-dimensional system. In the following we shall assume
that ε > 0. The non-zero constant ε may be used to define
dimensionless variables by the rescaling,

R = 2

ε
x1, Ṙ =

√
2

3ε3 x2, H = h√
6ε

, t = √
6ε τ, (4)

and our system becomes,

ẋ1 = x2,

ẋ2 = −x1 − 3x2h + λ

4
, (5)

ḣ = 2x1 − 2h2,

where the dot denotes differentiation with respect to τ and
λ = 8ε�. The constraint (1) takes the form,

h2 + 4x1h
2 + 4hx2 − 4x2

1 = λ/4. (6)

The only feasible equilibrium point of (5) is

q =
(
x1 = λ/4, x2 = 0, h = √

λ/2
)

, (7)

and corresponds to a late accelerating universe.
It turns out that all of the eigenvalues of the Jacobian

matrix of (5) at q have negative real parts, therefore q is
locally asymptotically stable and attracts all nearby solu-
tions. In Fig. 1, the solutions x1 (t), x2 (t) and h (t), are shown
approaching their limiting values 1/8, 0 and

√
1/2/2 respec-

tively.

3 Acceleration in the Einstein frame

We now consider the quadratic theory R + εR2 − 2� in
the conformal frame. The contents of this section follow the
path of ideas in [33], but for the sake of completeness we give
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Fig. 1 Solutions of (5) for
λ = 1/2. The initial values are
chosen so that they respect the
constraint (6)

a brief presentation. The evolution of flat FLRW models is
described by the Friedmann equation,

H2 = 1

3

(
1

2
φ̇2 + V (φ)

)
, (8)

the Raychaudhuri equation,

Ḣ = −H2 − 1

3
φ̇2 + V

3
, (9)

and the equation of motion of the scalar field,

φ̈ + 3H φ̇ + V ′ (φ) = 0. (10)

Here V (φ) is the potential energy of the scalar field associ-
ated with the conformal transformation and V ′ = dV/dφ.

We assume that the universe is initially expanding, i.e.
H (0) > 0. Then one can show by standard arguments, [34,
35], that the universe remains ever-expanding, i.e. H(t) ≥ 0
for all t ≥ 0. Using the constraint equation (8), the evolution
equation for H simplifies to

Ḣ = −1

2
φ̇2. (11)

Equation (11) implies that H is a decreasing function of time
t and is bounded from below either by 0 or

√
V (φ∗)/3) where

V ′(φ∗) = 0.
For the quadratic theory R+εR2 −2� the corresponding

family of potentials in the Einstein frame is

V� (φ) = V∞
(

1 − e−√
2/3φ

)2 + �e−2
√

2/3φ, (12)

with V∞ = 1/8ε. For all � > 0, the functions V� (φ) have a
positive minimum Vmin at some φm > 0, but otherwise share
the same qualitative behaviour as if this term were absent,
see Fig. 2.

We simplify the system by rescaling the variables as fol-
lows,

φ → √
3/2 φ, φ̇ = √

2V∞ y,

H =
√

4V∞
3

h, t =
√

3

4V∞
τ. (13)

Fig. 2 The family of potentials (12) for V∞ = 1 and � taking values
0, 0.3, 0.6, 0.9

Furthermore, in order to take account of the equilibrium point
corresponding to the point at “infinity” and to remove the
transcendental functions, it is convenient to introduce the
variable u defined by,

u := e−φ, (14)

and the system (9)–(10) finally becomes,

u̇ = −uy,

ẏ = −u + (1 + λ) u2 − 3hy, (15)

ḣ = −h2 − 1

2
y2 + 1

4
(1 − u)2 + 1

4
λu2,

where the dot denotes differentiation with respect to τ and
λ = �/V∞ ≡ 8ε�. Note that under the transformation
(14), the resulted three-dimensional dynamical system (15)
is quadratic. The constraint (8) takes the form

h2 = 1

4

(
y2 + (1 − u)2 + λu2

)
. (16)

In the study of the equilibrium points we note that u = 1
corresponds to φ = 0 and u = 0 corresponds to φ = ∞, i.e.
to the flat plateau of the potential. There are two equilibrium
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Fig. 3 Solutions of (15) for
λ = 1/2. The initial values are
chosen so that they respect the
constraint (16). Note that u (t)
and y (t) exhibit damped
oscillations

points of (15):

EQ1 :
(
u = 0, y = 0, h = 1

2

)
.

This corresponds to the de Sitter universe with a cosmological
constant equal to

√
V∞/3, i.e. the scalar field stays at the

flat plateau of the potential. A necessary condition for the
existence of this equilibrium, is that the scalar field reaches
the flat plateau, which is impossible if we restrict ourselves
to initial values of H smaller than

√
V∞/3.

EQ2 :
(
u = 1

λ + 1
, y = 0, h = 1

2

√
λ

λ + 1

)
. (17)

This corresponds to a late accelerating universe while the
scalar field reaches the value φm = ln (1 + λ), corresponding
to the minimum of the potential.

EQ2 is the most interesting case because, if one could
prove that it is stable, this would imply that the late acceler-
ating expansion solution, attracts all nearby solutions. In fact,
it is easy to see that the eigenvalues of the Jacobian matrix
of (15) at EQ2 are two complex conjugate with negative real
parts and one real and negative. Therefore the equilibrium
point (17) of (15) is locally asymptotically stable.

In Fig. 3, the solutions u (t), y (t) and h (t) approach

their limiting values 2/3, 0 and 1/
(

2
√

3
)

respectively. These

results mean that near the equilibrium EQ2, the dumped oscil-
lations of the scalar field settle down to its minimum value
while the Hubble function achieves its constant limiting value√
V (φmin)/3.

4 Discussion

We have analyzed different aspects of the cosmological frame
principle and its possible effects in cosmological settings.
In the first section, we have introduced a new statement of
the principle based on possible stability properties of the

conformally-related solutions in the two frames. This state-
ment is useful because it provides a practical way to test
the possible physical relevance of a cosmological solution of
modified gravity.

In Sects. 2 and 3 we have shown that cosmic acceleration
is a property that respects the frame principle by providing a
dynamical systems analysis of the stability of the solutions
of quadratic gravity with a cosmological constant in both the
Jordan and the Einstein frames. Once one establishes that
future acceleration is possible in the Jordan frame, then the
frame principle dictates to also expect it in the Einstein frame.

We note that in both frames, late acceleration is provided
by the cosmological term, cf. Eqs. (7) and (17). As several
authors remark (see for example [31,36]), f (R) gravity mod-
els can be viable in different contexts. A characteristic exam-
ple is the R + εR2 theory with the R2 term producing an
accelerated stage in the early universe preceding the usual
radiation and matter stages [22–24]. A late-time acceleration
in this theory (after the matter-dominated stage), however,
requires a positive cosmological constant in which case the
R2 term is no longer responsible for the late-time accelera-
tion.

For � < 0, the potentials (12) have a negative local min-
imum, hence they belong to the class A of the classification
in [37]. Then, although flat, these universes recollapse in the
Einstein frame according to Theorem 2 in [37]. We conclude
that � = 0 in (12) is a bifurcation value for flat models
that recollapse or not. Arguments in [22] imply that in the
Jordan frame, flat models eventually recollapse as dust-like
models with negative � in general relativity. A firm belief in
the frame principle thus allows us to transfer back to the Jor-
dan frame our earlier result valid in the Einstein frame, and
therefore confirm the expectation that in the Jordan frame the
Starobinsky result complies with our present calculations.

Our formulation of the frame principle as given in this
paper allows for a number of known solutions of modified
gravity to be tested for stability in the present context in an
effort to decide whether or not they preserve their ‘physi-
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cality’ when passing between frames. This in principle may
be applied not only to cosmology but also to other gravi-
tational frameworks, such as black holes or gravity waves,
etc. A more elaborate analysis of these problems necessarily
involves the further consideration of structural stability prob-
lems associated with the two-conformally-related frames.
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