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Abstract We study the implementation of Polymer Quan-
tum Mechanics (PQM) to a system decomposed into a
quasi-classical background and a small quantum subsystem,
according to the original Vilenkin proposal. We develop the
whole formalism in the momentum representation that is the
only viable in the continuum limit of the polymer paradigm
and we generalize the fundamental equations of the original
Vilenkin analysis in the considered context. Then, we pro-
vide a Minisuperspace application of the theory, first consid-
ering a Bianchi I cosmology and then extending the analysis
to a Bianchi IX model in the limit of small anisotropies. In
both these cases, the quasi-classical background is identified
with an isotropic bouncing Universe whereas the small quan-
tum subsystem contains the anisotropic degrees of freedom.
When the Big Bounce scenario is considered, we obtain that
in the Bianchi I model the anisotropies standard deviation is
regular at t = 0 but still increases indefinitely, whereas in
the presence of the harmonic Bianchi IX potential such same
quantity is bounded and oscillate around a constant value. As
a consequence, we demonstrate that the picture of a semi-
classical isotropic Bounce can be extended to more general
cosmological settings if the spatial curvature becomes rele-
vant when the anisotropic degrees of freedom are still small
quantum variables.

1 Introduction

The application of the canonical quantization of gravity to
the cosmological problem in the metric approach [1–4] has
not implied the hoped-for removal of the initial singular-
ity. In fact, the Wheeler–DeWitt equation is associated to
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quasi-classical states which follow the Einsteinian classi-
cal behaviour of the corresponding cosmological solutions
[5–8]. A different situation came out from the cosmologi-
cal application of Loop Quantum Gravity [4,9], especially
for what concerns the isotropic Universe dynamics [10–13].
Actually, the quantum dynamics of an isotropic Universe
is associated to quasi-classical states which outline a clear
bouncing picture, i.e. the symmetrical re-connection of the
collapsing and expanding branches of the dynamics in cor-
respondence of a minimum Universe volume. A clear pic-
ture for a bouncing cosmology also emerges for more gen-
eral homogeneous models, as discussed in [14–16] (more in
general, for bouncing models obtained in modified gravity
theories, see for example [17–19]). However, this important
feature of replacing the initial Big Bang with a primordial
Big Bounce is affected by some criticisms [20–22] (for a
more general critique point of view on the Loop Quantum
Gravity approach see [23]). A simpler approach is provided
by the implementation of PQM [24] to the Minisuperspace
[25]. This formulation is still able to induce a bouncing cos-
mology, both in a metric and in a connection approach. For a
discussion on the emergence of the polymer quantum dynam-
ics from the Loop Quantum Cosmology paradigm see [26].
Also, see [27] and [28–32] for many interesting cosmological
scenarios in effective Loop Quantum/Polymer Cosmology
respectively.

Here we face a central theme about the real nature of the
bouncing isotropic cosmology, namely the question concern-
ing the quantum behaviour of the anisotropic degrees of free-
dom across the Big Bounce. Actually, the tendency of the
Universe anisotropies to highly increase towards the primor-
dial Bounce could affect the robustness of the picture pro-
posed by the Ashtekar School. Some attempts to overcome
this problem can be found in [33–35] that led to the formu-
lation of the so-called Ekpyrotic Cosmology [36] (see also
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[37] in which the Big Bounce is treated as a quantum rela-
tivistic scattering and no semiclassical approach is used). Our
proposal of studying the anisotropies behaviour of a quantum
Universe refers to the original Vilenkin idea, presented in [38]
(see also [39] for a review on this theme), in which the Min-
isuperspace is separated into a quasi-classical background
and a small quantum subsystem (for a precise derivation
about the physical meaning of the word “small” see [40]). The
important difference between the present study and previous
cosmological implementations of the Vilenkin idea [41–44]
consists of the semiclassical polymer dynamics of the back-
ground, which allows the emergence of a bouncing dynamics
(pioneering works in the same spirit are [45]). As a first step,
we derive the proposed formulation in its general setting with
the only assumption of dealing with a Minisuperspace sce-
nario in the polymer formulation. In this respect, we general-
ize the equations obtained in [38] by addressing the momen-
tum representation, the only viable in the construction of a
continuum limit of the theory [24]. This part of the analysis
is rather challenging from a mathematical point of view and
actually we perform it with the ansatz that all the momentum
functions are series expandable. The second part of the paper
is dedicated to the implementation of the derived formalism
to the Bianchi I and Bianchi IX models, when the anisotropic
degrees of freedom are regarded as small variables. Actually,
we deal with a semiclassical bouncing isotropic dynamics on
which small anisotropies live (freely in the case of the Bianchi
I model and subjected to a harmonic potential for the Bianchi
IX one). For the Bianchi I model, the Schrödinger equa-
tion describing the anisotropic variables dynamics resem-
bles that one of a free two-dimensional particle. However,
the bouncing dynamics enters in the definition of the time
variable and regularizes the divergences of the anisotropies
towards the singularity. Despite this, the anisotropies mean
value is not confined and the standard deviation monoton-
ically increases along the dynamics. Analogous results are
obtained even when the anisotropies are considered as dis-
crete in the polymer formulation. Therefore, in this picture
we can conclude that the anisotropies are not under control
during the Universe collapse, i.e. the semiclassical isotropic
bouncing cosmology loses its reliability. Furthermore, when
the Universe anisotropies increase enough the Vilenkin idea
can be no longer applied.

In the second case, when we analyze a Bianchi IX model
with small enough anisotropies the Schrödinger equation
acquires a harmonic potential term (due to the model spatial
curvature). Actually, in the polymer representation we deal
with a time-dependent pendulum. In this respect, according
to [38,40] the anisotropic variables phase space is small and
so we can approximate the polymer-like kinetic term with
the ordinary quadratic one, so that we get a viable time-
dependent harmonic oscillator. Then, we construct a com-
plete base of eigenfunctions for the system and we show

that in such states (including the low-energy one) the aver-
age value of the anisotropies is exactly zero with a standard
deviation that oscillates with a constant amplitude. Differ-
ently from the previous case, here we see that the anisotropic
degrees of freedom remain limited in amplitude during the
bouncing dynamics of the background. This analysis shows
that the presence of a small spatial curvature in the Bianchi
IX model at a quantum level guarantees the physical robust-
ness of a semiclassical isotropic bouncing cosmology. In
other words, if we start with a quasi-isotropic Universe in
the collapsing branch, then the quantum spatial curvature is
able to preserve the smallness of the anisotropies across the
Bounce. Since we have demonstrated the validity of this state-
ment in the case of a Bianchi IX Universe (that reduces to
a closed Robertson–Walker dynamics in the isotropic limit),
this behaviour could concern more general cosmological sce-
narios in the context of the so-called BKL conjecture [46].

The paper is structured as follows. In Sect. 2 we present
PQM and in Sect. 3 we describe our original version of the
Vilenkin approach in the polymer formalism. In Sect. 4 we
apply the polymer formalism to the Bianchi IX model and
we solve the quasi-classical dynamics. Then, in Sects. 5 and
6 we perform the quantum analysis of the Bianchi I and IX
models respectively. Finally, in Sect. 7 we report the main
results and we present some concluding remarks.

2 The polymer representation of quantum mechanics

PQM is an alternative representation of quantum mechanics
introduced by Corichi in [24]. Its formalism is based on the
assumption that the configurational variables are discrete.
Hence, it results non-equivalent to the Schrödinger repre-
sentation and its main applications regard the investigation
of cut-off physics effects in quantum gravity and primordial
cosmology theories.

2.1 Polymer kinematics

PQM can be introduced without making any reference to the
standard Schrödinger representation. By considering abstract
kets |μ〉 labelled by the real parameter μ ∈ R, a generic state
in the Hilbert space Hpoly can be defined through a finite
linear combination of them, i.e.

|ψ〉 =
N∑

i=1

ai |μi 〉, (1)

where μi ∈ R, i = 1, . . . , N ∈ N. The inner product can
be chosen as

〈μ|ν〉 = δμν, (2)
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in order to guarantee the orthonormality between the basis
kets. It can be demonstrated that such a Hilbert space Hpoly

is non-separable.
The two fundamental operators on Hpoly are the symmet-

ric operator ε̂ that labels the kets and the unitary operator
ŝ(λ) with λ ∈ R that shifts them. Their action is

ε̂|μ〉 := μ|μ〉 (3)

and

ŝ(λ)|μ〉 := |μ + λ〉, (4)

respectively. Since the kets |μ〉 and |μ + λ〉 are orthogonal
∀λ, the shift operator ŝ(λ) is discontinuous in λ and therefore
no Hermitian operator can represent it by exponentiation.

To give an explicit representation of these two main opera-
tors, let us consider a one-dimensional system (q, p) in which
the configurational coordinate q has a discrete character. It is
easy to see that in the p-polarization the shift operator acts
as

ŝ(λ) · ψμ(p) = e
iλp
� e

iμp
� = e

i(μ+λ)p
� = ψμ+λ(p), (5)

so ŝ(λ) can be identified with the operator e
iλ p̂
� but p̂ cannot

be defined rigorously. On the other hand, the operator q̂ acts
as a differential operator

q̂ · ψμ(p) = −i
∂

∂p
ψμ(p) = μψμ(p) (6)

and corresponds to the label operator ε̂. We notice that the
eigenvalues of q̂ can be considered as a discrete set, since
they label kets that are orthonormal ∀λ.

2.2 Polymer dynamics

Let us consider a one-dimensional system described by the
Hamiltonian

H = p2

2m
+ V (q) (7)

in the p-polarization. In order to deal with a well-defined
dynamics, we have to find a proper definition for the phys-
ical operators p̂ and q̂ . The main point of the kinematical
analysis performed above is that we have to find an approx-
imate representation for p̂ when q̂ has a discrete character.
The standard procedure consists in the introduction of a lat-
tice with a constant spacing μ

γμ = {q ∈ R : q = nμ, ∀ n ∈ Z}. (8)

In order to remain in the lattice, the permitted states |ψ〉 =∑
n bn|μn〉 ∈ Hγμ are such that μn = nμ. The action of

the operator e
iλ p̂
� , after been restricted to the lattice, is well-

defined and can be used to define an approximate version of

p̂

p̂μ|μn〉 = �

2iμ
[e iμ p̂

� − e− iμ p̂
� ]|μn〉

= �

2iμ
(|μn+1〉 − |μn−1〉). (9)

Actually, for μp � � one gets p � sin(μp)/μ = �(e
iμp
� −

e− iμp
� )/2iμ. Accordingly, for p̂2 we obtain

p̂2
μ|μn〉 ≡ p̂μ · p̂μ|μn〉

= �
2

4μ2 [−|μn−2〉 + 2|μn〉 − |μn+2〉]

= �
2

μ2 sin2(μp)|μn〉. (10)

We remind that q̂ is well-defined, so the regularized version
of the Hamiltonian is

Ĥμ := 1

2m
p̂2
μ + V̂ (q) (11)

and represents a symmetric and well-defined operator on
Hγμ .

3 Vilenkin approach in the polymer formalism

In this section we present the procedure we developed to
reproduce the Vilenkin picture in the polymer framework.
The original Vilenkin proposal was firstly presented in [38]
and is about the probabilistic interpretation of the Universe
wave function. In the same spirit, we start by separating the
total Hamiltonian of the considered system in its classical
and quantum parts

H = H0 + Hq , H0 = pi p j H
i j (i�∂p) + V (i�∂p). (12)

The basic idea is that the concept of time, and hence a proba-
bilistic interpretation of the wave function, can be introduced
only in a system with small quantum fluctuations. So, the fun-
damental requirement is dealing with some quasi-classical
degrees of freedom and other quantum ones. In (12), H0 is
the quasi-classical part of the total Hamiltonian H and Hq

the quantum one, whereas Hi j is the Supermetric. In the case
of one-dimensional systems we get

H = H0 + Hq , H0 = p2g(i�∂p) + V (i�∂p), (13)

We note that the use of the momentum representation is
required to implement the polymer representation. Moreover,
p is multiplicative and the chosen ordering is the normal one.
However, H0 must satisfy some regularity criteria in order
the formalism to be developed. In particular, it is required
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that

g(i�∂p) =
+∞∑

n=0

an(i�)n(∂p)n (14)

and

V (i�∂p) =
+∞∑

n=0

bn(i�)n(∂p)n . (15)

Actually, every analytic function can be expanded in power
series and hence the following procedure will be valid inside
the radius of convergence.

By following the Vilenkin approach as in [38], we consider
the Universe wave function to be the product of a quantum
contribution χ(q, p) times a quasi-classical WKB one ψ(p),
i.e.


(p, q) = ψ(p)χ(p, q) = Ak(p)e
−i/�Sk (p)χ(p, q), (16)

in which we consider p as a quasi-classical variable and q as
a quantum one. In order to guarantee that the quantum effects
on the quasi-classical system are negligible, we impose

〈Hq〉
〈H0〉 = o(�), (17)

i.e. we consider the case in which H0 has a larger expectation
value (in absolute terms) with respect to Hq . This means that
the quantum degrees of freedom constitute a small subsys-
tem compared to the quasi-classical phase space. In addition,
we make a Born–Oppenheimer hypothesis by considering
the dependence of χ(p, q) from p as parametric. Thanks to
these hypotheses, we can derive the Vilenkin equations in the
momentum space and demonstrate that the quasi-classical
dynamics is completely described by a Hamilton-Jacobi
together with a continuity equation and that a Schrödinger
equation emerges at a quantum level.

We remark that in this scheme the semiclassical polymer
substitution p → sin (μp)/μ can be easily implemented
since the variable p acts multiplicatively on the left in (12).
Hence, the expression of the polymer-modified Hamiltonian
becomes

H pol = H pol
0 + Hq , H

pol
0 = 1

μ2 sin2(μp)g(i�∂p)

+V (i�∂p). (18)

The first polymer Vilenkin equation represents the annihi-
lation of the quasi-classical Hamiltonian H pol

0 on the quasi-
classical part of the Universe wave function ψ , i.e.

H pol
0 ψ(p) = H pol

0 A(p)e−i/�S(p) = 0. (19)

By using (14), at the lowest order in � we have

sin2(μp)

μ2

∑

n

an

(
∂S(p)

∂p

)n

A(p)e−i/�S(p)

+ V (i�∂p)A(p)e−i/�S(p) = 0 (20)

and after summing the series we get

H pol
0

(
p,

∂S

∂p

)
= sin2(μp)

μ2 g

(
∂S

∂p

)
+ V (i�∂p) = 0, (21)

i.e. the Hamilton-Jacobi equation. At the next order we obtain

sin2(μp)

μ2

∑

n

ani�
∂

∂p

[
n A(p)

(
∂S(p)

∂p

)n−1]
e−i/�S(p) = 0

(22)

and by using (21) we get

∑

n

an
∂

∂p

[
n A(p)

(
∂S(p)

∂p

)n−1]
= 0 (23)

that corresponds to the continuity equation. By solving both
(21) and (23) we can derive the quasi-classical action S(p)
and the amplitude A(p) and then characterize the quasi-
classical contribution to the Universe wave function ψ(p)
in the polymer scheme.

The second polymer Vilenkin equation leads to the emer-
gence of a Schrödinger dynamics at the first order in � and
hence to the definition of a time variable for the system. In
particular, it represents the annihilation of the total Hamilto-
nian H pol on the Universe wave function 
(p, q), i.e.

H polψ(p)χ(p, q)

= (H pol
0 + Hq)A(p)e−i/�S(p)χ(p, q) = 0. (24)

Thanks to the Born–Oppenheimer assumption we neglect the
action of Hq on p, so by using (14) we can write

sin2(μp)

μ2

∑

n

an(i�)n(∂p)n[A(p)e−i/�S(p)χ(q, p)]

= −A(p)e−i/�S(p)Hqχ(q, p) (25)

and at the first order in � we obtain

sin2(μp)

μ2

∑

n

ani� n

(
∂S

∂p

)n−1
∂χ

∂p
= −Hqχ(q, p) (26)

in which we have used (21) and (23). Now, we can rewrite
the l.h.s of (26) as

sin2(μp)

μ2

∑

n

ani� n
∂χ

∂p

(
∂S

∂p

)n−1

= ∂

∂S
∂p

∑

n

ani�
∂χ

∂p

(
∂S

∂p

)n

= i�
∂χ

∂p

∂

∂S
∂p

H pol
0

(
∂S

∂p

)
,

(27)
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thus obtaining

i�
∂χ

∂p

∂

∂S
∂p

H pol
0

(
∂S

∂p

)
= −Hqχ. (28)

We also remind that q = ∂S/∂p, so by definition we have

∂H pol
0

∂S
∂p

= ∂H pol
0

∂q
= − ṗ/N (29)

where N is the lapse function, and therefore we can rewrite
(26) as

i�
∂χ

∂p

∂p

∂t
= NHqχ. (30)

Hence, we have recovered a Schrödinger equation for the
system, i.e.

i�
∂χ

∂t
= NHqχ. (31)

It is worth noting that both H0 and Hq form the Hamilto-
nian constraint, i.e. the Wheeler–DeWitt equation for the
system. However, according to the original analysis in [38],
we imposed the WKB-expanded Wheeler–DeWitt equation
for the quasi-classical component separately (for a physical
justification see [47]). In practice, the quantum Hamiltonian
form a constraint with the � contribution of the quasi-classical
dynamics, thus giving consistency to the hypothesis (17).
Then, the only remnant of the background physics entering
the quantum constraint is the time derivative: this term comes
out from the application of the background Hamiltonian on
the product of the two wavefunctions.

4 Formulation for a Bianchi IX model

Our aim is to investigate the quantum behaviour of the
anisotropies when PQM is implemented to a quasi-classical
cosmological setting and hence a semiclassical Big Bounce
emerges. In order to describe the primordial Universe as accu-
rately as possible, let us consider a Bianchi IX model with a
free scalar field φ. In this respect, we consider the regime of
small anisotropies far from the Bounce, in order to describe
them as the quantum subsystem in the Vilenkin approach.

Let us start with the Bianchi IX Hamiltonian in the semi-
classical polymer formulation1

H pol
I X = A−3/2

√
2

2

[
− 2

3
√

2(4π)2

A2 sin2(μpA)

μ2 + p2
φ

+ p2+ + p2− + A2(β2+ + β2−)

]
, (32)

1 In the following we have set � = 1 in order to make all the physical
quantities dimensionless.

where β+, β− are the anisotropies and A = e2α (α being the
isotropic Misner variable) is the degree of freedom related
to the Universe area and chosen as discrete in the polymer
framework. We remark that in (32) the Bianchi IX potential
has been expanded up to the second order in the anisotropies
[48] thanks to the Vilenkin hypothesis β+, β− � 1. We also
note that 8πG = 1 and some irrelevant constants have been
taken out by canonically redefining the coordinates.

It is important to stress that a change of configurational
variables is a really subtle question in PQM because it is
not immediate to generalize the concept of canonical trans-
formations and find a class of equivalence (for a detailed
discussion see [29]). Moreover, it is worth stressing that no
privileged variables can be assigned in PQM. This problem
also concerns the Loop Quantum Cosmology analyses [13]
to some extent. In particular, the difficulty of giving a phys-
ical ground to the choice of a preferred configurational vari-
able comes from the fact that the Ashtekar–Barbero–Immirzi
connection is associated to the non-Abelian SU (2) group
in Loop Quantum Gravity [1,9]. This symmetry cannot be
implemented in the Minisuperspace both for diagonal and
non-diagonal Bianchi models [21,22,49,50], since in Loop
Quantum Cosmology (as well as in PQM) the underlying
group of symmetry is an Abelian U (1) one. As a conse-
quence, implementing the original SU (2) connection in the
Minisuperspace is a prescription for a privileged representa-
tion, but it can not be a physical requirement. In particular,
in [29] the relation between the two Loop Quantum Cosmol-
ogy schemes (the original μ0 formulation and the improved
μ̄ one) is deeply analyzed, mainly focusing on their physi-
cal meaning for the isotropic Universe in PQM. Basically, in
[29] it is shown that the two schemes mentioned above simply
correspond to which configurational variable is polymerized.
Therefore, since PQM is isomorphic to Loop Quantum Cos-
mology (except for the inverse triad effect [51]), the area vari-
able A we consider here can be considered as related to the
Ashtekar–Barbero–Immirzi connection and hence our con-
figurational space for the quasi-classical system as a viable
choice. Moreover, its capability to describe a bouncing pic-
ture (see [32]) is a sufficient property to consider our for-
mulation properly assessed, although not the only possible
choice.

A certain degree of ambiguity also concerns the anisotropic
variables, but it has a minor physical impact in the present
context since β± are here not involved in the Bounce picture
directly. Their choice is rather natural in a Hamiltonian for-
mulation of the Bianchi models and their identification as the
real gravitational degrees of freedom gives them a meaning-
ful nature.

By following the Vilenkin approach of Sect. 3, we con-
sider A, φ as the classical degrees of freedom and β+, β− as
the quantum ones. Therefore, the classical evolution will be

123



752 Page 6 of 15 Eur. Phys. J. C (2023) 83 :752

dictated by

H pol
0 = − 2

3
√

2(4π)2

A2 sin2(μpA)

μ2 + p2
φ (33)

and the quantum evolution by

H pol
q = p2+ + p2− + A2(β2+ + β2−). (34)

The classical dynamics can be obtained by integrating the
Hamilton equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ȧ = N
∂H pol

0

∂pA
= − 1√

288π2

A2

μ
sin (μpA) cos (μpA)

ṗA = −N
∂H pol

0

∂A
= 1√

288π2

A sin2(μpA)

μ2

(35)

in which the time gauge has been fixed by choosing N =
2A3/2/

√
2. The analytical solutions for (A, PA) are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(τ ) = cosh

(
sin(

3μπ
2 )τ√

288π2μ

)
− cos

(
3μπ

2

)
sinh

(
sin(

3μπ
2 )τ√

288π2μ

)

pA(τ ) = 2

μ
arccot

[
exp

(
− sin(

3μπ
2 )τ√

288π2μ

)
cot

(
3μπ

4

)]

(36)

with initial conditions A(0) = 1, pA(0) = 3π/2. As
expected, the Universe evolution traces a bouncing one, as
shown in Fig. 1. We notice that this result would not have
been obtained by simply polymerizing the isotropic Misner
variable α [30,52]. Moreover, by analyzing the Friedmann
equation

(
Ȧ

2A

)2

=
√

2

24π2 A
3ρφ

(
1 − ρφ

Aρc

)
, (37)

ρφ = p2
φ

2A3 , ρc = 1

3
√

2(4π)2μ2
(38)

we can see that the critical point depends only on the variable
A and not on the initial conditions on the scalar field. There-
fore, the existence of the Bounce is ensured for all the initial
configurations that avoid nonphysical cosmological predic-
tions (e.g. too large values of A(0) or A(0) = 0). We remark
that the presence of A in (37) does not violate the rescaling
symmetry of the line element, since the polymer parameter
scales as a length and hence A/μ2 is an invariant (see [29]
for a discussion on the meaning of the polymer parameter in
relation to the two LQC schemes).

Now, let us derive the Vilenkin equations for the con-
sidered model. As discussed in Sect. 3, regarding the first
Vilenkin equation (19) at the zero order we recover the
Hamilton-Jacobi equation

− 2

3
√

2(4π)2

sin2(μpA)

μ2

(
∂S

∂pA

)2

+ p2
φ = 0, (39)

Fig. 1 Plot of the bouncing solution A(τ ) for μ = 1/3

whereas at the first order we have

i
∂

∂pA

(
A

∂S

∂pA

)
= 0, (40)

i.e. the continuity equation. Then, by solving (39) and (40)
we get the analytical expressions of the action S and the
amplitude A, i.e.

⎧
⎪⎨

⎪⎩

S(pA, pφ) = ± ln (tan(μpA/2)2πμpφ

√
6
√

2)

A(pA, pφ) = sin(μpA)

2πμpφ

√
6
√

2

(41)

Hence, for the portion of the phase space in which ∂S/∂pA >

0 the classical part of the Universe wave function results to
be

ψ(pA, pφ) = sin(μpA)e−i ln (tan(
μpA

2 )
2πμpφ

√
6
√

2
)

2πμpφ

√
6
√

2
(42)

in which it is encoded all the information on the quasi-
classical phase space dynamics.

In order to obtain the full description of the Universe, we
have to solve the second Vilenkin equation (24). In particular,
at the first order it emerges a Schrödinger evolution

[
p2+ + p2− − A2(τ )

(
∂2

∂p2+
+ ∂2

∂p2−

)]
χ(p±, τ )

= i
∂χ(p±, τ )

∂τ
(43)

that resembles a time-dependent quantum harmonic oscilla-
tor in which the time parameter is defined through the relation

∂

∂τ
= N

∂

∂t
= 2A3/2

√
2

∂

∂t
. (44)

To be accurate, the anisotropies are the real quantum degrees
of freedom and therefore should be affected by the polymer
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modifications. In that case, (43) would be

[
1 − cos (μp+)

μ2+
+ 1 − cos (μp−)

μ2−
+ (45)

− A2(τ )

(
∂2

∂p2+
+ ∂2

∂p2−

)]
χ(p±, τ ) = i

∂χ(p±, τ )

∂τ
, (46)

i.e. a time-dependent quantum pendulum. However, the
hypothesis β+, β− � 1 makes it possible to consider the
regime of small oscillations in the pendulum dynamics, i.e.
the aforementioned harmonic oscillator. Regarding the sen-
sitive issue of the continuum limit, in [53] it is widely inves-
tigated the issue of recovering the Schrödinger quantum pic-
ture from the polymer one for the polymer harmonic oscilla-
tor, i.e. a quantum pendulum.

Now, we have to shed light on one of the basic assump-
tion in the original formulation [38] and on how it impacts
our study. Actually, the separation of the dynamics into a
quasi-classical sector and a quantum one strictly relies on
the “smallness” of the phase space of the quantum system
with respect to that one of the classical component (see
the analysis in [40] for a validation of this statement). This
assumption is not valid for both a Bianchi I and a Bianchi
IX model in general, since the anisotropic degrees of free-
dom can approach arbitrarily large values near the singular-
ity. However, the situation in which the Universe anisotropic
variables are small, i.e. |β±| � 1, and the spatial curvature
term can be expanded in Taylor series turns to be appropri-
ate to our study. In fact, we are interested in investigating the
behaviour of the anisotropies near the quasi-isotropic config-
uration of the Universe, in order to verify if such approxima-
tion remains valid across the Big Bounce. By other words,
we study the emergence of the Universe anisotropies as a
natural tendency of the isotropic Universe during the col-
lapse and hence the implementation of the ideas in [38] are
well-grounded. We will show that such a scheme is a well-
established dynamical picture, under certain conditions, and
that the anisotropies do not arbitrarily increase throughout the
minimal volume configuration, when a Bianchi IX model is
considered by virtue of the presence of a harmonic potential.
In the case of a Bianchi I model it is also true that the Uni-
verse anisotropies can freely develop and sooner or later the
proposed quasi-classical vs quantum decomposition is going
to fail.

5 Quantum behaviour of the anisotropies for the
Bianchi I model

In this section we first analyze the anisotropies quantum
behaviour by neglecting the quadratic potential, i.e. by
restricting the cosmology to the simpler Bianchi I model.
In this case, the Schrödinger equation in the coordinate rep-

resentation reduces to

−
(

∂2

∂β2+
+ ∂2

∂β2−

)
χ(β±, τ ) = i

∂χ(β±, τ )

∂τ
(47)

whose solution can be written as a linear combination of

ϕ(β±, τ ) = eik+β+eik−β−e−i(k2++k2−)τ (48)

Then, we construct a Gaussian wave packet (N is the nor-
malization constant)

χ(β±, τ ) = 1

N
∫∫ +∞

−∞
e
− (k+−k̄+)2

2σ2+ e
− (k−−k̄−)2

2σ2−

× eik+β+eik−β−e−i(k2++k2−)τdk+ dk− (49)

and we study the evolution of the probability density distri-
bution |χ |2 = χ(β±, τ )χ∗(β±, τ ). Actually, the position of
the peak and the width of the probability function give the
information about the quantum behaviour of the anisotropies,
i.e. their mean values and standard deviation.

We notice that the presence of the Bounce enters in the
definition of the time variable, since the relation between
the synchronous time t and the time variable τ is fixed by
the choice of the lapse function N = 2A3/2/

√
2 and hence

it depends on how the Universe volume evolves with time.
Thus, polymer effects on the anisotropies can appear when
returning to the synchronous time picture. In particular, in
the bouncing picture we have (see (36))

V pol(τ ) = A(τ )3/2, (50)

whereas in the absence of the semiclassical polymer scenario
we get the two singular trajectories (depending on the sign
of the initial condition on pA)

V±(τ ) = A±(τ )3/2 = (
e
± |pA(0)|τ√

288π2
)3/2 (51)

that can be obtained by taking the limit of the polymer solu-
tion (50) for μ → 0. Therefore, by using the relation (44)
we have

t =
∫

2V pol(τ )√
2

dτ (52)

in the polymer case and

t =
∫

2V±(τ )√
2

dτ (53)

for the two singular branches. Thus, after computing the inte-
grals, the obtained functions can be inverted to find the rela-
tion between τ and t in the two cases.

In order to provide a generic bouncing scenario, here the
initial conditions are such that the Bounce occurs at φ = 1
(see Fig. 2). Actually, the trajectory for the Universe volume
is formally equivalent to the translation of (50) for τ → τ−1.
We note that the exponential behaviour of the classical limit is
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Fig. 2 Plot of the bouncing trajectory for the Universe volume in func-
tion of τ (green line), together with the trajectories for the classical limits
τ → ±∞ (orange and blue lines)

Fig. 3 Plot of τ(t) for the three relevant cases: τ pol (t) (green line) for
the bouncing trajectory, τ+(t) (orange line) for the expanding branch
and τ−(t) (blue line) for the collapsing one

recovered for large times. Then, by means of numerical and
analytical methods respectively we have found the inverse
functions τ pol(t) and τ±(t). In particular, from Fig. 3 we
point out that the divergence of τ±(t) in correspondence of
the singularity t = 0 is regularized in the bouncing trajectory
τ pol(t). Moreover, τ+(t) is not simply the reflection of τ−(t)
with respect to the bisector τ = t since the Bounce does not
occur at φ = 0.

For the sake of completeness, we also report the Universe
volume trajectory in the synchronous time obtained by using
the numerical solution τ pol(t) (see Fig. 4). We notice that the
Bounce occurs for t = 0 and that the linear behaviour of the
classical solution is recovered for large times.

Now, by using τ pol(t) and τ±(t) in (49) we have studied
the two different evolution of the probability density func-
tion |χ(β±, t |2 in the synchronous time, thus recovering the
quantum information on the anisotropies in the bouncing pic-
ture and in the singular one respectively. Actually, it is well-
known that the Schrödinger solutions are characterized by a

Fig. 4 Plot of the bouncing trajectory for the Universe volume in func-
tion of t (green line), together with the trajectories for the classical limits
t → ±∞ (orange and blue lines)

spreading behaviour and, restricting to the one-dimensional
picture, it can be easily demonstrated that the Gaussian stan-
dard deviation grows linearly with time. Since (47) is sepa-
rable, the total Universe wave function (49) is factorized as
χ(β±, t) = χ+(β+, t)χ−(β−, t) in which

χ+(β+, t) = 1

N+

∫ +∞

−∞
e
− (k+−k̄+)2

2σ2+ eik+β+e−ik2+t dk+ (54)

and

χ−(β−, t) = 1

N−

∫ +∞

−∞
e
− (k−−k̄−)2

2σ2− eik−β−e−ik2−t dk−. (55)

Hence, we can restrict the analysis to a single anisotropic
degree of freedom and same considerations will be valid for
the other one. Thus, if we consider the anisotropy β+ we have
that the standard deviation of the Universe wave function
χ+(β+, t) goes linearly with τ(t) and therefore in the sin-
gular picture it diverges towards the singularity t → 0 (that
corresponds to the initial Big Bang in the singular expanding
branch and to the future Big Crunch in the singular collapsing
one). On the other hand, in the bouncing picture the diver-
gence is regularized at the Bounce t = 0 in which the two
branches are symmetrically reconnected. However, the Uni-
verse wave packet is still affected by the spreading behaviour
and the anisotropic standard deviation is not confined but it
grows along the dynamics, even if the Universe initial state
is sufficiently localized before the bouncing point.

In Fig. 5 we can see the behaviour of the Universe wave
packet along the expanding branch (left side) and collaps-
ing one (right side) that shows the spreading behaviour
towards the singularities. From the position of the peak we
can infer that the more the wave packet spreads the higher
the anisotropy mean value is (in absolute value). Even if
the quantum behaviour is regularized at the Bounce, the
anisotropic standard deviation grows indefinitely for t →
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Fig. 5 Left side: Evolution of |χ+(β+, τ+(t))|2 in function of the
anisotropyβ+ from the initial singularity for t = 10−180, 10−120, 10−60

(blue, orange and green lines respectively). Right side: Evolution of
|χ+(β+, τ−(t))|2 in function of the anisotropy β+ towards the future
singularity for the corresponding symmetric values of time (yellow,
light-blue and red lines respectively). The purple graph corresponds
to |χ+(β+, 0)|2 and is in common to the expanding and collapsing
branches

Fig. 6 Evolution of |χ+(β+, τ pol (t))|2 in function of the anisotropy
β+ in the bouncing scenario for t = −105, 0, 1015, 1060, 1090 (left-to-
right)

+∞ (see Fig. 6). In particular, states with higher anisotropic
standard deviation are associated to higher (absolute) mean
values for the anisotropy. The only difference is that the
Universe wave packet spreads slowly when considering the
bouncing evolution for the semiclassical sector (see Fig. 7)
and therefore the anisotropic standard deviation can remain
confined for a finite time interval if the initial Universe wave
packet is sufficiently localized. However, even if the quan-
tum behaviour is regularized at the Bounce the anisotropic
standard deviation grows indefinitely for t → +∞ (see Fig.
6). In particular, states with higher anisotropic standard devi-
ation are associated to higher (absolute) mean values for the
anisotropy. Finally, we repeat the analysis above consider-
ing the anisotropies as discrete. Accordingly, the Schödinger

equation in the semiclassical polymer framework writes as
[

sin2(μ+ p+)

μ2+
+ sin2(μ− p−)

μ2−

]
χpol(p±, τ )

= i
∂χpol(p±, τ )

∂τ
, (56)

in which we have recovered the momentum representation.
Thus, after a Fourier transformation the solution can be writ-
ten as a factorized Gaussian superposition of plane waves

χpol(β±, τ ) = χ+
pol(β+, t)χ−

pol(β−, t)

= 1

N
∫∫ +∞

−∞
e
− (k+−k̄+)2

2σ2+ e
− (k−−k̄−)2

2σ2−

× eik+β+eik−β−e−i
[
(kμ

+)2+(kμ
−)2

]
τdk+ dk−

(57)

in which N sets the norm and kμ
± = sin(μ±k±)/μ± (Fig. 7).

Now we can study the evolution of the probability density
|χ+

pol(β+, t)|2 as before, and analyze the different behaviour
in the singular or bouncing background picture by respec-
tively considering τ±(t) or τ pol(t). In particular, in Fig. 8
we can see the behaviour of the Universe wave packet along
the expanding branch (left side) and the bouncing one (red
lines), whose evolution in the latter case is not appreciable
at these time scales. More specifically, in Fig. 9 it is high-
lighted the slower, but still present, spreading behaviour of
the bouncing case too. Thus, the unlimited growth of the
anisotropies standard deviation is not prevented even when
they are represented in the polymer formalism.

6 Quantum behaviour of the anisotropies for the
Bianchi IX model

In this section we analyze the anisotropies quantum behaviour
in the full model, i.e. by including the harmonic potential
A2(τ )(β2+ + β2−). The analytical method to solve the time-
dependent quantum oscillator (see (43)) is widely described
in [54]. In particular, by means of the exact invariant method
it can be demonstrated that the normalized eigenfunctions of
the Hamiltonian can be written as

χn(β+, β−, τ ) = χ+
n (β+, τ )χ−

n (β−, τ ) (58)

with

χ±
n (β±, τ ) = eiγn(τ )

√√
πn!2nρH

(
β±
ρ

)
e

i
4 (

ρ̇
ρ
+ 2i

ρ2 )β2± (59)

in whichH are the usual Hermite polynomials, the γ function
is defined as

γn(τ ) = −
(
n + 1

2

)∫ τ

0

2

ρ2 dτ ′ (60)
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Fig. 7 Evolution of |χ+(β+, τ+(t))|2 in function of the anisotropy
β+ along the expanding branch for t = 10−180, 10−120, 10−60

(blue, orange and green lines respectively) compared with that of
|χ+(β+, τ pol (t))|2 in function of the anisotropy β+ along the bouncing

trajectory for t = 10−180, 10−120, 10−60 (red lines). The evolution of
the Universe wave packet in the bouncing scenario is not appreciable at
these time scales. For the Gaussian coefficients we have set σ+ = 1/

√
2,

k̄+ = +5 in the left figure and k̄+ = −5 in the right figure

Fig. 8 Evolution of |χ+
pol (β+, τ+(t))|2 in function of the anisotropy

β+ along the expanding branch for t = 10−180, 10−120, 10−60

(blue, orange and green lines respectively) compared with that of
|χ+

pol (β+, τ pol (t))|2 in function of the anisotropy β+ along the bounc-

ing trajectory (red lines) for t = 10−180, 10−120, 10−60 (we set σ+ =
1/

√
2, k̄+ = −5)

and ρ solves the differential equation

ρ̈ + 4A(τ )2ρ = 0. (61)

Actually, in our model the role of the time-dependent fre-
quency is played by the solution for the Universe area A(τ ).
Thus, the semiclassical behaviour of the model directly enters
in the quantum dynamics thanks to the presence of the
Bianchi IX potential.

By solving (61) (in which for A(τ ) we have used the
expression in (36) with μ = 1/3) we get

ρ(τ) = c1MC

(
− 1

288
,

1

576
, 24iτ

)

Fig. 9 Evolution of |χ+
pol (β+, τ pol (t))|2 in function of the anisotropy

β+ in the bouncing scenario for t = −105, 0, 1015, 1060, 1090 (left-to-
right)

−c2MS

(
− 1

288
,

1

576
, 24iτ

)
, (62)

where c1, c2 are constants and MC and MS are the Mathieu
functions, i.e. elliptic cosine and the elliptic sine respectively.
Then, we have constructed a basis of real solutions and per-
formed an expansion of the elliptic functions up to the first
order, i.e.

MC

(
− 1

288
,

1

576
, 24iτ

)
∼ cos

(√
− 1

288
24iτ

)
, (63)

MS

(
− 1

288
,

1

576
, 24iτ

)
∼ sin

(√
− 1

288
24iτ

)
. (64)

This approximation is justified since the second argument of
MC,S tends to zero in the continuum limit, i.e. for μ � 1.
We remark that it also remains valid arbitrarily close to the
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Fig. 10 Plot of ε1,2 in function of t for two different initial conditions
(the continuous lines are referred to (63) and (64)). The relative error
goes to zero as λ2 → 0

Bounce, since a bouncing dynamics emerges for any positive
value of the polymer parameter, however small. Moreover,
this case is very different from that one in which the singular
solution for the Universe area is considered in (61), as we
will see below.

In particular, in Fig. 10 it can be noticed that the relative
errors

ε1 =
∣∣∣∣
MC (λ1, λ2, x) − cos(

√
λ2x)

cos(
√

λ2x)

∣∣∣∣ , (65)

ε2 =
∣∣∣∣
MS(λ1, λ2, x) − sin(

√
λ2x)

sin(
√

λ2x)

∣∣∣∣ (66)

decrease towards the Bounce and can be made smaller than
one for a time interval depending on the initial conditions.

Thanks to the expansions (63) and (64) we are able to
analytically compute the integral in (60). Thus, we have an
explicit expression for the eigenstates χn(β+, β−, τ ) through
which computing the mean value and the standard deviation
of the anisotropies β±.

Fig. 11 Plot of |χ(β+, 0)|2 for n = 0 (blue line), n = 1 (orange line)
and n = 2 (green line)

In Fig. 11 we show the probability density distribu-
tion |χ+

n (β+, 0)|2 for the obtained eigenfunctions in the
anisotropy β+ with n = 0, 1, 2. In order to compute the
expectation value of the anisotropies and their standard devi-
ation, we write β̂± by means of the creation and annihilation
operators â+± and â± for the time-dependent harmonic oscil-
lator (see [55]), i.e.

β̂± = ρ√
2
(â± + â+±), (67)

p̂± = − i√
2

[(
1

ρ
+ i ρ̇

)
â± −

(
1

ρ
− i ρ̇

)
â+±

]
, (68)

in which ρ is the solution of (61). Now we are able to easily
write the action of the operators β̂± on the eigenstates |n〉. In
particular, the anisotropies expectation value is equal to zero
since

β̂±|n〉 = ρ√
2
(
√
n|n − 1〉 + √

n|n + 1〉), (69)

while their standard deviation results to be

Δβ± =
√

〈β̂2±〉 − 〈β̂±〉2 =
(
n + 1

2

)
ρ2. (70)

In Fig. 12 it is highlighted the confined character of Δβ+ in
function of the time variable τ . In particular, Δβ+ oscillates
around a constant values that grows with n (together with
the amplitude) but remains one order of magnitude smaller
than σ+ in the case of the two-dimensional free particle, i.e.
Bianchi I (see Fig. 7 in which both the singular and the bounc-
ing pictures are reported). Thus, the presence of the harmonic
potential maintains the anisotropies small, differently from
the previous case (see Sect. 5). Obviously, all the analysis is
analogous if performed for β−.

In order to strengthen this result, we also compute both
the expectation value and the standard deviation of the shear,
i.e. the geometrical quantity

Q = (H1 − H2)
2 + (H2 − H3)

2 + (H3 − H1)
2 (71)

representing the anisotropic term in the Bianchi I Fried-
mann equation (here Hi is the Hubble parameter along the
i-direction). It can be demonstrated that in the Misner vari-
ables the shear writes as [8,48]

Q = 18(β̇+
2 + β̇−

2
) = 72(p2+ + p2−), (72)

in which we have used the Hamilton equations β̇± = 2p±.
Hence, by using (68) we can compute the shear expectation
value

〈Q̂〉 = 144

(
1

ρ2 + ρ̇2
)

(73)

and its standard deviation

ΔQ̂ =
√

〈Q̂2〉 − 〈Q̂〉2 = 144

√
n2 + n + 1

2

(
1

ρ2 + ρ̇2
)
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Fig. 12 Left figure: Behaviour of Δβ+ in function of τ for n = 0, 1, 2, 3, 4, 5 (bottom-up) in the semiclassical bouncing picture. Right figure:
Behaviour of Δβ+ in function of τ for n = 0 in the bouncing picture

Fig. 13 Left figure: Behaviour of 〈Q̂〉 in function of τ for n = 0, 1, 2, 3, 4, 5 (bottom-up) in the semiclassical bouncing picture. Right figure:
Behaviour of ΔQ̂ in function of τ for n = 0, 1, 2, 3, 4, 5 (bottom-up) in the semiclassical bouncing picture

(74)

on the eigenstates |n〉. In Fig. 13 it is evident that they both
oscillate around a constant value that grows with n (together
with the amplitude), as it happens for the anisotropies stan-
dard deviation (see Fig. 12). Thus, we can conclude that the
oscillatory and confined character of the anisotropies is a
robust result of the present analysis.

We finally notice that, differently from the case of the
Bianchi I model, here it is not necessary to construct a wave
packet in order to demonstrate that the anisotropic degrees
of freedom (as well as the shear) remain small in their mean
value with a correspondingly small standard deviation. In
fact, since the fundamental states we construct for the time-
dependent harmonic oscillator have these both features, the
superposition principle (that stems from the linear nature of
the time-dependent Schrödinger equation) ensures that any
generic state for the anisotropies has a localized and oscilla-
tory structure.

The corresponding behaviour of Δβ+ in the absence of the
regularized semiclassical bouncing evolution is represented
in Fig. 14. In this case, we have considered A−(τ ) (see (51))

as the time-dependent frequency of the harmonic oscillator
in (43), i.e. the collapsing singular solution obtained from the
considered bouncing solution A(τ ) in the limit μ → 0. Then,
by following the same procedure explained above we have
found the complete set of eigenstates of the corresponding

Fig. 14 Behaviour of Δβ+ in function of τ for n = 0 along the col-
lapsing (singular) branch
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Hamiltonian. In particular, (61) turn to be a Bessel-type one
and therefore we can write

ρ(τ) = c1BJ (0, A−(τ )/6π) + c22BY (0, A−(τ )/6π), (75)

in which BJ and BY are the Bessel functions of the first and
second kind respectively. Therefore, Δβ+ loses its oscillatory
and confined character and grows monotonically towards the
singularity (see Fig. 14). As a consequence, because of the
divergence of Δβ+ the quantum behaviour of the shear (72)
is not crucial here. Thus, we can conclude that the only pres-
ence of the harmonic potential is not sufficient to confine the
trajectory of the anisotropies but it is necessary to introduce
the regularizing polymer effects and remove the divergences
in the semiclassical background.

To summarize, here the general formulation of the idea
proposed in [38] has been implemented to a Minisuperspace
regulated by PQM on a very general ground. In fact, we
considered as “polymerized” both the quasi-classical and
the quantum generalized coordinates. In this respect, it is
worth noting that the major impact of a polymer approach
is clearly on the quasi-classical setting, since a Bounce can
emerge and replace the cosmological singularity. This fea-
ture affects the dynamics of the quantum variables on a basic
level, with respect to the modifications introduced by poly-
merizing their own Hilbert space that mainly concern the
nature of the obtained spectrum (see [24,53]). More specif-
ically, we analyzed the Bianchi I model coherently with the
general prescriptions, i.e. both the surface-like variable and
the small anisotropies are treated via a polymer approach.
When studying the Bianchi IX model we polymerize the
background setting only, while the quantum dynamics of the
anisotropies is treated via standard quantum mechanics. In
practice, this corresponds to approximate the quantum equa-
tion of a pendulum with the corresponding one of a harmonic
oscillator, in order to provide an explicit (and otherwise pre-
vented) analytical solution. This kind of harmonic reduction
is well-known also in fundamental classical physics and it is
commonly justified via the so-called “regime of small oscil-
lations” in the pendulum dynamics. When transferred to our
polymer model, this typical assumption is well-grounded,
since the idea in [38] is applicable only when the phase-
space of the quantum system is “small”. Actually, when the
range of the momentum variables is intrinsically restricted
the sine function is well-approximated by its argument and
the harmonic oscillator becomes a reliable a good approxi-
mation. The possibility of passing from the eigenfunctions
of the polymer (time-independent) harmonic oscillator (the
facto a quantum pendulum) to a standard theory, in the limit
discussed above, is satisfactory described in [53]. Further-
more, we stress that if our approximation fails, it also breaks
down the idea itself of the present study and of the analy-
sis in [40]. Such an eventuality could concern the Bianchi I
dynamics only. In fact, in our model the Bianchi IX quan-

tum dynamics is assumed to be close to that of an isotropic
Universe and the anisotropies growth is somehow “frozen”
thanks to the presence of a potential.

7 Concluding remarks

In this work we consider a new theoretical paradigm to inves-
tigate the decoupling of a quantum gravity system into a
quasi-classical background and a small quantum subsystem.
In particular, we generalize the original idea in [38] in the
case of a polymer quantum formulation of the Minisuper-
space [24,25]. The main goal of the present analysis is the
quantum characterization of the Universe anisotropic degrees
of freedom across a Big Bounce configuration [13,32].

The first part of the manuscript is dedicated to the chal-
lenging question of reformulating the Vilenkin idea in the
momentum representation, i.e. the only viable to semiclassi-
cally implement the polymer formulation. In fact, the Hamil-
tonian kinetic term is always quadratic in the momenta and
hence in the standard Vilenkin approach it transforms into
a second derivative in the coordinate representation. On the
other hand, the potential term has a generic form and so in
the momentum representation we have to deal with non-local
differential operators. Nonetheless, we manage this difficulty
by requiring that all the functions of the momenta be series
expandable.

In the second part of this study we apply the derived theo-
retical paradigm to the description of the quantum behaviour
of small Universe anisotropies during a semiclassical bounc-
ing picture. In particular, we first consider a Bianchi I model
(to be thought as the limit of any Bianchi Universe when the
spatial curvature is neglected [56,57]), whose background
corresponds to a flat isotropic Universe. Then, we consider
the evolution of a Bianchi IX model in the limit of small
anisotropies, whose quantum potential contains the positive
spatial curvature contribution.

In the first case, we see that thanks to the presence of the
Bounce the anisotropies quantum standard deviation grows
slowly without diverging at t = 0 (differently from what
happens along the singular trajectories) but it still monotoni-
cally increases. So, the concept of a quasi-isotropic Universe
(as well as the Vilenkin approximation scheme) is essentially
lost since the anisotropies are not under control, even when
represented on the polymer lattice.

In the second case, the resulting Schrödinger equation for
the anisotropic variables in the polymer formalism would
correspond to a time-dependent quantum pendulum, reduced
to a simpler and treatable time-dependent harmonic oscilla-
tor by virtue of the fundamental assumption of the present
Vilenkin analysis, i.e. the smallness of the anisotropic phase
space. The important result is that the anisotropies standard
deviation of the Hamiltonian eigenstates is no longer mono-
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tonically increasing across the Bounce, but it oscillates with
a constant amplitude. The main difference between the two
cases is that the polymer bouncing effect alone is not able to
maintain the smallness of the anisotropies (both of their mean
value and standard deviation), whereas the quantum emer-
gence of a small positive curvature confines the anisotropies
standard deviation if the quasi-classical background is regu-
larized at the singularity.

Thus, by limiting the anisotropies to a small quantum
effect we have demonstrated that the bouncing evolution pre-
serves the quasi-isotropic nature of the classical background,
thanks to the presence of a spatial curvature term that induces
a localizing potential. We remark that the anisotropic mean
values on the Hamiltonian eigenstates is zero, hence our anal-
ysis is consistent with the quasi-isotropic ansatz. By conclud-
ing, since the Bianchi IX model is the prototype for construct-
ing the dynamics of a generic inhomogeneous cosmological
model [46,58–60] we can infer the general validity of the
present analysis.
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