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Abstract The definition of a quantum state corresponding
to a wave packet far from a global soliton is considered. We
define an asymptotic quantum state corresponding to a local-
ized wave packet of elementary quanta far from a kink. We
demand that the state satisfies two properties. First, it must
evolve in time via a rigid translation of the wave packet, up
to the usual wave packet spreading and corrections which are
exponentially suppressed in the distance to the kink. Second,
the state must be invariant under a simultaneous translation
of the kink and the wave packet. We explicitly construct the
leading quantum corrections to an asymptotic state consisting
of a meson approaching a kink. We expect this construction
to readily generalize to elementary quanta in the presence of
any global soliton.

1 Introduction

1.1 Nonrelativistic quantum mechanics

Consider the scattering off of a localized potential in nonrel-
ativistic quantum mechanics. There are two ways to compute
the reflection coefficient. First, one may begin with a local-
ized wave packet

ψ(t = 0, x) = ψx0(x) (1.1)

arriving from the far left x0 � 0. One evolves the system
using the time-dependent Schrodinger equation

ψ(t, x) = e−i Htψ(t = 0, x). (1.2)

Then, at some sufficiently large time, one takes the inner
product of the wave packet with a basis of outgoing wave
packets on the far left. A linear combination of these inner
products is the reflection coefficient. The second approach is
to begin with a non-localized Hamiltonian eigenstate which
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has no incoming part on the far right. One then directly com-
putes the inner product of this eigenstate with the far left,
outgoing wave packets to obtain the reflection coefficient.

These two approaches both require one to define asymp-
totic, localized wave packets. In the first case, one is needed
for the initial condition and one for the basis of final states.
In the second case, only one is needed, for the final states.
These asymptotic states are necessary to calculate the reflec-
tion coefficient. They are not determined by the Hamilto-
nian eigenstates alone. The asymptotic state is not a Hamil-
tonian eigenstate, which would not evolve. However, up to
the usual wave packet spreading effects, which vanish in the
monochromatic limit, for some shape ψ(x) and velocity v

they satisfy

ψ(t, x) = ψxt (x), xt = x0 + vt,

ψy(x) = ψ(x − y). (1.3)

1.2 Kink–meson scattering

Kink–kink and kink–antikink scattering are known to be rich
subjects classically [1–7] and quantum mechanically [8–10].
However the scattering of kinks with elementary mesons has
received relatively little attention even classically [11–13]
let alone in quantum field theory [14–21]. Recently, we have
begun a systematic treatment of such processes, as an expan-
sion in the coupling g. The order O(g0) scattering, corre-
sponding to classical wave mechanics, was treated in Ref.
[22].

Next an exhaustive treatment of scattering processes with
probabilities of order O(g2) was performed. There are only
three processes, meson multiplication [23], in which the final
state consists of two mesons and a kink, and (anti)-Stokes
scattering [24], in which the final state consists of a single
meson and a kink but an internal kink excitation is toggled.
Meson multiplication was treated by evolving an incoming
wave packet in Ref. [23] and by beginning with a full Hamil-
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tonian eigenstate in Ref. [25], reflecting the two strategies in
nonrelativistic quantum mechanics described above.

In all of these studies, asymptotic wave packets were
required. However, for these leading order processes, the
quantum corrections to the asymptotic states were not impor-
tant. Nonetheless, to push our study to O(g4), where elas-
tic meson–kink scattering appears for classically reflection-
less kinks, quantum corrections to the initial and final states
are important. We expect such elastic scattering to be phe-
nomenologically rich, as, for example, one may expect to dis-
cover an infinite tower of narrow resonances in the reflection
probability corresponding to multiply excited shape modes.

1.3 Defining asymptotic states

This is the motivation for the current work. We seek to define
the quantum corrections to the asymptotic states needed to
consider kink–meson scattering. Of course, the choice of
asymptotic state is a choice, dictated by the experimental con-
ditions. Intuitively, we want the incoming asymptotic meson
wave packet to not know about the kink. Concretely, we will
define our choice to be that which satisfies two criteria. First,
similarly to Eq. (1.3), the wave packet should be character-
ized by a position and, when the wave packet is far from the
kink, time evolution should only change this position, up to
the usual spreading effects which disappear in the monochro-
matic limit. This is rather nontrivial in quantum field theory,
as the state corresponding to a single particle will contain,
for example, a superposition of pairs of off-shell particles
that naively travel at different speeds. This condition will
therefore strongly constrain the quantum corrections.

The second condition that we will impose is that the state is
annihilated by the momentum operator. This operator simul-
taneously translates the mesons and the kink. So this leads
to a superposition of states where the kink position is differ-
ent, indeed anywhere, but the kink–meson distance is fixed.
This condition is necessary if we are to use the reduced inner
product in Ref. [25] to evaluate matrix elements.

We stress that neither of these conditions is required for
consistency. For example, as was shown in Ref. [23], if one
simply drops the perturbative corrections to the initial state,
then one finds a wave packet that nonetheless propogates,
but has a subleading deformation which oscillates with time.
Thus the first condition is violated. The first condition was
also violated in Ref. [25] itself, which considered Hamilto-
nian eigenstates that do not evolve. That corresponds to a
constant, coherent meson beam, not a localized meson wave
packet as is studied here. However, the amplitudes and reflec-
tion coefficients derived are identical in the two cases, despite
the distinct physical setups. Similarly, condition two was vio-
lated in Refs. [26,27] as these concern solitons whose posi-
tion is constrained, as is often the case in condensed matter
applications and also in solitonic dark matter models.

1.4 Constructing asymptotic states

Of course, the definition of asymptotic states in the scattering
of ordinary quanta is quite standard. One simply calculates
the Hamiltonian eigenstate corresponding to a single particle,
which is an infinite sum over various n-particle Fock states,
and folds it into a wave packet. Then two such wave packets,
which are well-separated, are tensored together. This is a
reasonable procedure, as the two particles do not interact.

In the case of a kink and a meson, or more generally any
particle and a domain wall or even an arbitrary global soliton
such as a Skyrmion [28,29], the above, standard procedure
does not apply. In a sense the kink and the meson do not
interact at a distance, as they do not exert a force on one
another. Nonetheless, the presence of the kink profoundly
influences the elementary meson, determining, for example,
the expectation value of the scalar field in the neighborhood
of the meson. Thus one cannot simply consider the kink and
meson in isolation and tensor them, as a meson in isolation
makes no sense without specifying the local vacuum, which
depends on its relative position with respect to the kink.

Our approach will therefore be quite different. We will
use the linearized perturbation theory of Refs. [30,31]. Here
one writes all states and operators in the kink frame, which
is related to the usual frame by a unitary transformation that
shifts the field by the kink solution. The Hamiltonian in this
frame is called the kink Hamiltonian. States are decomposed
into graded components depending on the number of zero
modes, which translate the kink. The gradings are nonnega-
tive integers. We refer to the zero-grading part of a state as
the primary part and the rest as the descendants.

The construction will be as follows. First, all descendants
will be fixed by demanding exact translation-invariance. This
is sufficient for translation invariance to be exact, satisfying
our second criterion. Then the primary part will be fixed by a
kind of Hamiltonian eigenvalue equation. However, the state
will be separated into a dressed meson operator acting on
a dressed kink state, where each dressing corresponds to a
cloud of virtual mesons. We keep track of which meson is
in which cloud. Then we act the kink Hamiltonian on the
dressed kink, but we instead introduce a vacuum Hamilto-
nian which is applied to the dressed meson. The vacuum
Hamiltonian is constructed from the kink Hamiltonian by
taking the limit that the distance to the kink is infinite, before
any other limit is taken.

1.5 Summary

After a long introduction in Sect. 1, we review linearized soli-
ton perturbation theory in Sect. 2. Our general construction
of asymptotic states will be presented in Sect. 3. Next we find
the leading corrections to a state with a single meson and a
single kink in Sect. 4. This result is Eq. (4.26). It justifies some
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steps that were simply asserted in Refs. [23,25]. In Sect. 5
we show that indeed the meson wave packet moves rigidly,
despite the fact that the vacuum Hamiltonian was used in its
construction, which does not commute with the translation
operator. The terms resulting from this failed commutation
vanish when folded into the wave packet. The next order
correction, which is in principle necessary for O(g4) kink–
meson scattering, is computed in Sect. 6. This allows us to fix
the parameter in our definition of the asymptotic state which
corresponds to the eigenvalue in the usual eigenvalue prob-
lem. It turns out to be the sum of the energy of the ground
state kink with the energies of the mesons in the vacuum in
which their wave packet is localized, and apparently agrees
with the total energy.

2 Review

The definition of an asymptotic state for an incoming wave
packet is nontrivial in the presence of any global soliton, be
it a Skyrmion, an extended domain wall or simply a kink,
because the soliton affects the choice of vacuum around the
wave packet. We believe that the procedure described in this
note for defining such an asymptotic state can be straightfor-
wardly applied in any of these contexts.

However, we will specialize in this paper to the case of a
scalar field theory in 1+1 dimensions. This will make the dis-
cussion more concrete and simplify matters, as all ultraviolet
divergences may be removed by the usual normal ordering
::a and also linearized kink perturbation theory is available,
which greatly simplifies computations in the one-kink sector.
In this section we will review linearized perturbation theory,
as developed in Refs. [30,31].

2.1 The classical field theory

For simplicity we consider a single scalar field φ(x) and its
conjugate momentum π(x), described by the Hamiltonian

H =
∫

dx : H(x) :a,

H(x) = π2(x)

2
+ (∂xφ(x))2

2
+ V (gφ(x))

g2 . (2.1)

We will consider a perturbative expansion in g, or equiva-
lently a semiclassical expansion in the dimensionless quan-
tity g

√
h̄. We are interested in potentials V with two degen-

erate minima, so that there are classical kink solutions
φ(x, t) = f (x) which interpolate between the minima.
We choose a single such solution f (x), breaking the man-
ifest translation-invariance. Below we will describe how
translation-invariant states may nonetheless be constructed.

We further demand that the second derivatives of the
potential V agree at the two minima

m2 = V (2)
± , V (n)

± = V (n)(g f (±∞)) (2.2)

where V (n) is the nth derivative of V (gφ(x)) with respect
to its argument gφ(x). If they do not agree, then the one-
loop corrections to the vacuum energies on the two sides of
the kink will not agree, and the kink will be a false vacuum
bubble wall which will accelerate [32]. We are interested in
kink states which are eigenstates of the Hamiltonian, and so
will not be interested in such accelerating solutions.

Our perturbative expansion will correspond to small per-
turbations about the kink solution. Such perturbations may be
decomposed into normal modes g(x) of frequency ω which
satisfy the Sturm–Liouville equation

V (2)(g f (x))g(x) = ω2g(x) + g′′(x),
φ(x, t) = f (x) + e−iωtg(x). (2.3)

There is always a single zero modegB(x) with ωB = 0. There
may be discrete shape modes gS(x) with 0 < ωS < m, which
we take to be real. Finally, there are continuum modes gk(x)
for all real k with

ωk =
√
m2 + k2. (2.4)

Although the generalization is straightforward [22], in this
paper we consider classically reflectionless kinks, such as
those in the Sine-Gordon and φ4 double-well models, for
concreteness. For these, we fix the sign of k such that g∗

k(x) =
g−k(x) and, for |x | � 0, gk(x) is proportional to e−ikx . We
fix the sign of gB via

gB(x) = − f ′(x)√
Q0

(2.5)

where Q0 is the energy of the classical kink. When we pass
to the quantum theory, we will define Qi to be the order
O(g2i−2) correction to the energy of the kink ground state.

As Eq. (2.3) is of Sturm–Liouville type, the normal modes
are a basis of bounded functions. As a result, the normaliza-
tion conditions∫

dx |gB(x)|2 = 1,

∫
dxgk1(x)g

∗
k2

(x)

= 2πδ(k1 − k2),

∫
dxgS1(x)g

∗
S2

(x) = δS1S2 (2.6)

lead to the completeness relation

gB(x)gB(y) +
∫∑ dk

2π
gk(x)g−k(y) = δ(x − y),

∫∑ dk

2π
=

∫
dk

2π
+

∑
S

. (2.7)
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2.2 Quantization

We will quantize this field theory in the Schrodinger picture
by imposing the canonical commutation relations

[φ(x), π(y)] = iδ(x − y). (2.8)

This paper will be entirely in the Schrodinger picture. As the
normal modes are a basis of functions of x , and Schrodinger
picture operators are independent of t , we may decompose
them in terms of normal modes [33]

φ(x) = φ0gB(x) +
∫∑ dk

2π

(
B‡
k + B−k

2ωk

)
gk(x),

B‡
k = B†

k

2ωk
, B‡

S = B†
S

2ωS

π(x) = π0gB(x) + i
∫∑ dk

2π

(
ωk B

‡
k − B−k

2

)
gk(x),

BS = B−S . (2.9)

This decomposition is invertible, and so one can use Eq. (2.8)
to show that the basis of operators φ0, π0, B‡

S, BS, B‡
k and

Bk satisfies the algebra

[φ0, π0] = i,
[
BS1 , B

‡
S2

]
= δS1S2 ,[

Bk1 , B
‡
k2

]
= 2πδ (k1 − k2) . (2.10)

We will see in Eq. (4.22) that the zero-mode operator φ0 is
proportional to the kink position, and π0 to its momentum.
Note that φ0 only agrees with the collective coordinate of
Refs. [34,35] at linear order, as gB(x) in Eq. (2.5) implies
that f (x)+φ0gB(x) is a linear truncation of the shifted kink
solution f (x − φ0/

√
Q0). B‡

S and B‡
k create perturbative

shape modes and continuum modes respectively, while BS

and Bk destroy them.
We have defined the Hamiltonian in terms of the usual nor-

mal ordering ::a in which operators are expanded in plane
waves with coefficients a† and a, and all a† are placed
on the left. We will call this plane-wave normal order-
ing. However, all operators can also be written in the basis
φ0, π0, B‡

S, BS, B‡
k and Bk . In this basis, another normal

ordering prescription, called normal-mode normal ordering,
will be more convenient. This is defined by placing all B and
π0 on the right. We will denote this prescription by ::b. The
two normal ordering prescriptions are related by a Wick’s
theorem [36]

: φ j (x) :a =
� j

2 	∑
m=0

j !
2mm!( j − 2m)!I

m(x) : φ j−2m(x) :b

I(x) =
∫

dk

2π

|gk(x)|2 − 1

2ωk
+

∑
S

|gS(x)|2
2ωS

. (2.11)

We will always consider asymptotic expansions about zero
coupling. Here the Hilbert space of states can be decomposed
into sectors corresponding to different numbers of kinks. The
vacuum lies in the zero-kink sector. More precisely, there
is a vacuum sector for each minimum of V . In this paper
we will be interested in the one-kink sector. States in this
sector consist of a single kink plus the Fock space of a finite
number of perturbative excitations, which we call mesons.
Sometimes we will distinguish excitations which are bound
to the kink from continuum excitations, referring to the bound
excitations as shape modes.

2.3 The kink frame

The standard perturbative expansion treats the higher powers
of φ in the Hamiltonian as small perturbations. This is rea-
sonable if φ is in some sense small. In classical field theory, it
is an expansion about φ = 0. In quantum field theory, corre-
spondingly, it can only provide a reasonable approximation
if the expectation values of powers of φ are close to zero.

On the other hand, in the one-kink sector, the expectation
value of φ is equal to f (x) plus corrections suppressed by a
power of g. We are therefore interested in an expansion about
φ(x) = f (x). In classical field theory, this would be easy to
arrange. One would simply define η(x, t) = φ(x, t) − f (x)
and perturbatively treat η(x, t). In the quantum theory, such
a naive treatment sometimes leads to errors [37] because it
does not necessarily respect the regularization, and this error
does not always vanish when the regulator is taken to infinity.

The key step in linearized perturbation theory is that we
solve this problem by working in a different frame, called the
kink frame, for all operators and states. These two frames are
related by the unitary operator

D f = exp

(
−i

∫
dx f (x)π(x)

)
(2.12)

which, as desired, transforms the quantum field φ(x) by

D†
f φ(x)D f = φ(x) − f (x). (2.13)

Furthermore, it commutes with normal ordering, greatly sim-
plifying calculations. We transform the Hamiltonian to the
kink frame after it is regularized, and so compatibility is
assured.

The operator D f maps any zero-kink state to a one-kink
state. That is its usual interpretation as an active transfor-
mation. However, we will instead use it as a passive trans-
formation, to define the kink frame of the Hilbert space, as
follows.

We will refer to the usual identification of the Hilbert space
elements with the states as the defining frame. To make this
explicit, we introduce the notation F for a function which
takes an element |ψ〉 in the Hilbert space and yields the
physical state F(|ψ〉) corresponding to its ray. Every quan-
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tum theory comes with its definition of the function F which
identifies rays with states. Then the kink frame is defined by a
second function FK which provides a different identification
of the Hilbert space with the physical states defined by

FK (|ψ〉) = F(D f |ψ〉). (2.14)

Recall that the Hamiltonian H acts on these by generating
time evolution, while the momentum

P = −
∫

dxπ(x)∂xφ(x) (2.15)

acts on them by generating spatial translations. As usual, pas-
sive transformations also act on the operators, so that in the
kink frame H ′ and P ′ generate temporal and spatial transla-
tions in the kink frame, where

H ′ = D†
f HD f , P ′ = D†

f PD f = P + √
Q0π0. (2.16)

In particular, as D f is unitary, in the kink frame, the time
evolution operator is e−i H ′t . The form of P ′ in (2.16) is easy
to interpret. The P is the momentum stored in all of the
mesons, while

√
Q0π0 term is the kink momentum operator.

This is consistent with the observation above that φ0/
√
Q0

is, at linear order, the kink position operator.
What have we gained? Now the Hamiltonian eigenstates

in the one-kink sector are D f |ψ〉 where |ψ〉 is defined to be
a solution to the eigenvalue problem

H ′|ψ〉 = E |ψ〉. (2.17)

To see this, from Eqs. (2.16) and (2.17) one easily derives

HD f |ψ〉 = ED f |ψ〉. (2.18)

The Eq. (2.17), unlike the original Eq. (2.18), can be solved
in ordinary perturbation theory, despite the fact that the state
D f |ψ〉 is in the one-kink sector. Thus our procedure for find-
ing Hamiltonian eigenstates is as follows. First one solves the
Eq. (2.17) in perturbation theory. Then one acts on the answer
with the nonperturbative operator D f which adds a kink, and
finally one identifies this vector with a state using the defining
frame F .

2.4 Perturbation theory

Now, everything will be expanded in powers of the coupling
g. For example, the kink Hamiltonian is expanded

H ′ =
∞∑
i=0

H ′
i (2.19)

where H ′
i consists of terms in the kink Hamiltonian with i

powers of the fields when plane-wave normal ordered and a
coefficient of order O(gi−2). Similarly the ground state kink
energy Q is expanded Q = ∑

i Qi .

Using Eqs. (2.16) and (2.10) one finds [30]

H ′
0 = Q0, H ′

1 = 0,

H ′
2 = Q1 + π2

0

2
+

∫∑ dk

2π
ωk B

‡
k Bk

H ′
n>2 = gn−2

n!
∫

dxV (n)(g f (x)) : φn(x) :a . (2.20)

As H ′
0 is a constant, the perturbation theory begins by con-

sidering the eigenstates of H ′
2. These are easily found, as H ′

2
is the sum of three terms. The first, Q1, is a constant. It is
the one-loop correction to the kink mass [30,33]. The sec-
ond term is the kinetic energy of a particle of mass Q0 and
momentum

√
Q0π0. As an operator, it corresponds to the

quantum mechanics of a free particle, which is simply the
center of mass of the kink. The last is the kinetic energy of
all of the mesons, and is simply a sum of quantum harmonic
oscillators, representing the various shape and continuum
modes.

The ground state |0〉0 of H ′
2 is therefore just the ground

state of each of these commuting terms

π0|0〉0 = Bk |0〉0 = BS|0〉0 = 0. (2.21)

The excited H ′
2 eigenstates are generated by B‡ operators,

which excite the various harmonic oscillators, together with
boosts. We will work in the center of mass frame and so
will not need the boosts. For example, one may define the
n-meson states

|k1 · · · kn〉0 = B‡
k1

· · · B‡
kn

|0〉0. (2.22)

Now that the spectrum of H ′
2 is known, an arbitrary eigen-

vector |ψ〉 of H ′ can be constructed. One first decomposes
the state following our perturbative expansion

|ψ〉 =
∞∑
i=0

|ψ〉i (2.23)

where now each i corresponds to a single power of g and
|ψ〉0 is the corresponding eigenvector of H ′

2. At this point,
one might attempt to use standard perturbation theory to solve
the eigenvalue Eq. (2.17). However, one encounters the stan-
dard infrared problem arising from the continuous spectrum
that in turn is a consequence of the zero mode. There are
many solutions to this problem, such as promoting the zero
mode to a collective coordinate [35]. This approach is rather
cumbersome, as it introduces an infinite number of terms to
the Hamiltonian already in the classical theory, which needs
to be augmented by another infinite number in the quantum
theory [38].

Linearized soliton perturbation theory instead uses a sim-
pler approach. Imagine that we know |ψ〉i up to some value
of i . First, we decompose the state at each order into sectors
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with different numbers of zero modes

|ψ〉i =
∞∑
n=0

|ψ〉ni (2.24)

where |ψ〉ni contains φn
0 when normal-mode normal ordered.

We refer to |ψ〉0
i as the primary component and the rest of

the sum as the descendants.
Next, we impose

P ′|ψ〉 = 0. (2.25)

Using (2.16) and the fact that Q0 is of order O(g−2), this
reduces to the recursion relation

π0|ψ〉i+1 = − 1√
Q0

P|ψ〉i (2.26)

which fixes |ψ〉i+1 up to terms in the kernel of π0. This kernel
consists of the primaries, and so translation-invariance (2.26)
fixes the descendant part of |ψ〉i+1. Once this is fixed, then
the primary part |ψ〉0

i+1 can be found using (2.17), as in usual
perturbation theory.

2.5 Leading correction to the kink ground state

Let us now review the construction of the leading correction
|0〉1 to the kink ground state |0〉, following the steps in the
previous subsection. Expanding Eq. (2.15) using the decom-
position (2.9) one finds

P =
∫∑ dk

2π
	kB

[
iφ0

(
−ωk B

‡
k + B−k

2

)
+ π0

(
B‡
k + B−k

2ωk

)]

+i
∫∑ d2k

(2π)2 	k1k2

(
−ωk1 B

‡
k1
B‡
k2

+ B−k1 B−k2

4ωk2

−1

2

(
1 + ωk1

ωk2

)
B‡
k1
B−k2

)
(2.27)

where we have defined the shorthand antisymmetric symbol

	i j =
∫

dxgi (x)∂xg j (x). (2.28)

Using Eq. (2.21), the right hand ride of the recursion relation
(2.26) is

P|0〉0 = −iφ0

∫∑ dk

2π
	kBωk |k〉0

+ i

2

∫∑ d2k

(2π)2 	k1k2(ωk2 − ωk1)|k1k2〉0. (2.29)

The recursion relation (2.26) then yields the descendant terms
in |0〉1

|0〉1 = |0〉0
1 − φ2

0

2
√
Q0

∫∑ dk

2π
	kBωk |k〉0

+ iφ0

2
√
Q0

∫∑ d2k

(2π)2 	k1k2(ωk2 − ωk1)|k1k2〉0.

(2.30)

The primary part |0〉0
1 can be found using the eigenvalue

equation

(H ′
2 − Q1)|0〉1 + H ′

3|0〉0 = 0 (2.31)

and restricting to the primary subspace of the Hilbert space.
Applying Wick’s theorem (2.11) to the decomposition of H ′
in Eq. (2.20), one finds the terms in H ′

3 that contribute to the
primary part

H ′
3 = g

6

∫
dxV (3)(g f (x)) : φ3(x) :b

+g

2

∫
dxV (3)(g f (x))I(x)φ(x)

⊃ g

6

∫∑ d3k

(2π)3 Vk1k2k3 B
‡
k1
B‡
k2
B‡
k3

+g

2

∫∑ dk

2π
VIk B‡

k

where we have defined the shorthand symmetric symbol

VI j···I,i1···in
=

∫
V (n+2 j)(g f (x))dxgi1(x) · · · gin (x)I j (x).

(2.32)

Acting this on |0〉0 yields

H ′
3|0〉0 = g

6

∫∑ d3k

(2π)3 Vk1k2k3 |k1k2k3〉0 + g

2

∫∑ dk

2π
VIk |k〉0.

(2.33)

By Eq. (2.31) this must cancel

(H ′
2 − Q1)|0〉1 = π2

0

2
|0〉2

1 +
∫∑ dk

2π
ωk B

‡
k Bk |0〉0

1

= 1

2
√
Q0

∫∑ dk

2π
	kBωk |k〉0

+
∫∑ dk

2π
ωk B

‡
k Bk |0〉0

1. (2.34)

Inverting the operator
∫∑

ωk B
‡
k Bk , one obtains

|0〉0
1 = −g

6

∫∑ d3k

(2π)3

Vk1k2k3

ωk1 + ωk2 + ωk3

|k1k2k3〉0

−g

2

∫∑ dk

2π

(
VIk
ωk

+ 	kB

g
√
Q0

)
|k〉0. (2.35)

Note that the operator cannot be inverted on the zero-meson
part of |0〉0

1, which is proportional to |0〉0. This is just the
freedom to normalize the state |0〉. We fix this freedom by
setting to zero all higher order corrections proportional to
|0〉0.
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3 Construction of an asymptotic state

3.1 The wave packet

In this section we will construct an asymptotic state |
x0(t =
0)〉 corresponding to a localized meson wave packet a dis-
tance |x0| to the left of a kink. More precisely, if x = 0 is
the location of the center of the kink, then our meson wave
packet will correspond to the wave function

�(x) = Exp

[
− (x − x0)

2

4σ 2 + i xk0

]
,

x0 � − 1

m
,

1

k0
,

1

m
� σ � |x0| . (3.1)

Here k0 is the peak momentum. We will often be interested
in the simultaneous limits mσ → ∞ and m|x0| → ∞ with
σ/x0 → 0, in which the wave packet becomes monochro-
matic with momentum k0.

We will need to transform this wave packet with respect
to the normal mode basis

αK =
∫

dx�(x)gK(x). (3.2)

In the above limit, the discrete modes vanish and the contin-
uum modes tend to

gk(x) =
{Bke−ikx if x � −1/m
Dke−ikx if x � 1/m

|Bk |2 = |Dk |2 = 1, B∗
k = B−k, D∗

k = D−k . (3.3)

In this case one easily evaluates (3.4)

αK = 2σ
√

πBKe
−σ 2(K−k0)2

ei(k0−K)x0 . (3.4)

Our asymptotic state is defined to be

|�x0(t = 0)〉 =
∫

dK

2π
αK|K〉(L). (3.5)

Here |K〉(L) is the monochromatic state, which we will now
construct. While we will present a particular construction,
we note that there are different choices of construction that
would lead to the same asymptotic state as the difference
between the monochromatic states is annihilated by folding
into the wave packet (3.5).

3.2 The monochromatic state

Recall that we demand that our asymptotic states are trans-
lation invariant

P ′|�x0(t = 0)〉 = 0. (3.6)

We achieve this by demanding the stronger condition

P ′|K〉(L) = 0. (3.7)

As reviewed above, this condition fixes all of the descen-
dants in |K〉(L). However, the primary terms |K〉(L)0

i are not
constrained.

We fix these as follows. First, at leading order, the
monochromatic state should be the bare state defined in
Eq. (2.22)

|K〉(L)
0 = |K〉0. (3.8)

Each correction |K〉i consists of a kink dressed with a
cloud of virtual mesons and a meson wave packet dressed
with another cloud of virtual mesons. The key to our con-
struction is that, when mx0 is large, each virtual meson can
be associated with either the dressed kink or with the dressed
meson wave packet. We will write states to make this dis-
tinction manifest. In particular, an n-meson state

|k1 · · · k j ; k j+1 · · · kn〉0 = B‡
k1

· · · B‡
kn

|0〉0 (3.9)

consists of j mesons localized about the wave packet and
n − j localized about the kink.

Roughly, we wish to demand that |K〉(L) is an eigenvalue
of H ′. However, instead of H ′ acting on the wave packet,
we want to act on it with the left vacuum Hamiltonian H (L)

defined by

H (L)
n≤2 = H ′

n,

H (L)
n>2 = gn−2V (n)

−
n!

∫
dx : φ(L)n(x) :a . (3.10)

Here the left vacuum field is defined by

φ(L)(x) =
∫

dk

2π
g
(L)
k (x)

(
B‡
k + B−k

2ωk

)
(3.11)

where g(L)(x) is the asymptotic form of the normal mode
on the far left, which in the case of a reflectionless kink is
given by the first line in Eq. (3.3). One may wonder whether
it is really necessary to replace the ordinary field with the
somewhat awkward left vacuum field. To answer this ques-
tion, below, we will systematically not replace the φ(x) in
H ′ with the φ(L) in H (L), as it is easily added later. We will
see that the difference between the two is often removed by
folding into a wave packet, but that this fails at certain poles
corresponding to on-shell processes. There we will see just
what role is played by the vacuum field. We stress that as
a result the intermediate steps below are technically incor-
rect and should be fixed by replacing g with g(L) in H (L).
However, the incorrect part vanishes when folded into the
wave packet nearly everywhere, except for a few cases cor-
responding to contributions of degenerate eigenstates of the
kink Hamiltonian which we will discuss when we get to them.
In particular, our final result, Eq. (4.26), will be correct.

In other words, one uses the kink Hamiltonian but replaces
V (n)(g f (x)) with the asymptotic value V (n)

− , so that the
meson wave packet does not know about the kink. This is
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the guiding principle behind our construction. An incoming
meson wave packet must somehow be the same as a wave
packet in the absence of a kink.

Concretely the term H ′|ψ〉 in Eq. (2.17) is replaced by the
following action on each basis vector |k1 · · · k j ; k j+1 · · · kn〉0

in |K〉(L)

[H (L), B‡
k1

· · · B‡
k j

]B‡
k j+1

· · · B‡
kn

|0〉0

+B‡
k1

· · · B‡
k j
H ′B‡

k j+1
· · · B‡

kn
|0〉0 (3.12)

so that if

|K〉(L) =
∑

βk1···k j ;k j+1···kn |k1 · · · k j ; k j+1 · · · kn〉0 (3.13)

then our master definition reads

E |K〉(L) =
∑

βk1···k j ;k j+1···kn
(
[H (L), B‡

k1
· · · B‡

k j
]

+B‡
k1

· · · B‡
k j
H ′) B‡

k j+1
· · · B‡

kn
|0〉0. (3.14)

It is understood that the right and left hand sides are restricted
to the primary states, so that it defines |K〉(L)0. Were it
imposed on the descendants, it would violate (3.8), although
translation-invariance might be restored by folding into the
wave packet.

3.3 Consistency

The variable E is not assumed to be an eigenvalue of any
operator. We will see that it is the sum of the energy of the
ground state kink plus the vacuum energy of a moving meson
that would be evaluated in the vacuum sector. The Eq. (3.14)
defines |K〉(L)0

i+1 given |K〉i . However, one also needs to assign
each meson to either the meson wave packet or the kink.
Clearly if the meson at order i +1 arose from H (L) acting on
wave packet mesons, or H ′ acting on the mesons in the kink’s
cloud at order i , then the order i+1 meson should be assigned
to the wave packet or the kink cloud respectively. However,
it may be that it arises from the commutator of H (L) with
the wave packet creation operators which then is contracted
with a meson in the dressed kink. It is an important check of
the consistency of this prescription that such mesons vanish
when folded into the wave packet, and so do not contribute
to our asymptotic state. Below we will see that this is indeed
the case.

Also, we need to check that this definition has the prop-
erties stated in the introduction. In particular, we want the
asymptotic state to evolve via a rigid translation of the entire
meson wave packet with respect to the kink. This is nontrivial,
as the wave packet is constructed via a hybrid of H (L) and H ′
whereas temporal evolution is generated by H ′ alone. Again,
it is necessary that the mismatch between the two Hamiltoni-
ans be annihilated when |K〉(L) is folded into the wave packet.
We will also see that this is the case, and the above prescrip-

tion indeed leads to a wave packet which moves rigidly when
evolved with respect to H ′.

4 Leading correction to the one-meson asymptotic state

In this section we will construct the leading quantum correc-
tion |K〉(L)

1 to the monochromatic part |K〉(L) of an asymptotic
state consisting of a kink and a nearly-monochromatic meson
wave packet far to its left. Recall that the state is expanded
in powers of g with the first power being the corresponding
eigenstate |K〉0 of H ′

2

|K〉(L) =
∞∑
i=0

|K〉(L)
i , |K〉(L)

0 = |K〉0. (4.1)

4.1 The descendants from translation invariance

Following our construction in Sect. 3, the descendant part of
the state, the part with powers of φ0, is fixed by demanding
translation invariance

P ′|K〉(L) = 0. (4.2)

This is equivalent to the recursion relation

P|K〉(L)
i = −√

Q0π0|K〉(L)
i+1 (4.3)

whose left hand side is

P|K〉(L)
0 = P|K〉0 = −iφ0

∫∑ dk

2π
	kBωk |K; k〉0

+ i

2

∫∑ d2k

(2π)2 	k1k2(ωk2 − ωk1)|K; k1k2〉0

+ iφ0

2
	−K,B |0〉0

+ i

2

∫∑ dk

2π
	−K,k

(
1 + ωk

ωK

)
|k〉0. (4.4)

Inverting the π0 we find the descendants

|K〉(L)
1 = |K〉(L)0

1 − φ2
0

2
√
Q0

∫∑ dk

2π
	kBωk |K; k〉0

+ φ0

2
√
Q0

∫∑ d2k

(2π)2 	k1k2(ωk2 − ωk1)|K; k1k2〉0

+ φ2
0

4
√
Q0

	−K,B |0〉0

+ φ0

2
√
Q0

∫∑ dk

2π
	−K,k

(
1 + ωk

ωK

)
|k〉0. (4.5)

4.2 The primaries

Next we find the primary part |K〉(L)0
1 , using our master for-

mula (3.14) which at leading order is just

(H ′
2 − Q1 − ωK)|K〉(L)

1
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+
[
H (L)

3 , B†
K

]
|0〉0 + B†

KH
′
3|0〉0 = 0 (4.6)

where the vacuum Hamiltonian is

H (L)
3 = g

6

∫
dxV (3)

− : φ3(x) :a

= gV (3)
−
6

∫
dx

[
: φ3(x) :b +3I(x)φ(x)

]
. (4.7)

We remind the reader that the vacuum Hamiltonian, as
defined in Eq. (3.10), should contain the vacuum field φ(L)(x)
and not φ(x), but that we are intentionally using the wrong
form in our derivation to see where the vacuum field will be
necessary.

The third term in (4.6) is then

B†
KH

′
3|0〉0

∣∣∣
m=0

= g

6

∫∑ d3k

(2π)3 Vk1k2k3 |K; k1k2k3〉0

+g

2

∫∑ dk

2π
VIk |K; k〉0. (4.8)

The only term in the vacuum Hamiltonian which will con-
tribute to |K〉(L)0

1 is

H (L)
3 ⊃ gV (3)

−
4

∫
dx

[ ∫∑ d3k

(2π)3

gk1 (x)gk2 (x)gk3 (x)

ωk3

B‡
k1
B‡
k2
B−k3

+I(x)
∫∑ dk

2π

gk(x)

ωk
B−k

]
. (4.9)

As a result the second term in (4.6) is

[
H (L)

3 , B†
K

]
|0〉0 = gV (3)

−
4ωK

∫
dx

[
I(x)g−K(x)|0〉0

+
∫∑ d2k

(2π)2 gk1(x)gk2(x)g−K(x)|k1k2〉0

]
. (4.10)

Finally, the first term is

(H ′
2 − Q1 − ωK)|K〉(L)

1

=
( ∫∑ dk

2π
ωk B

†
k Bk − ωK

)
|K〉(L)0

1 + π2
0

2
|K〉(L)2

1

=
( ∫∑ dk

2π
ωk B

†
k Bk − ωK

)
|K〉(L)0

1

+ 1

2
√
Q0

∫∑ dk

2π
	kBωk |K; k〉0

− 1

4
√
Q0

	−K,B |0〉0. (4.11)

Combining these terms, Eq. (4.6) reduces to( ∫∑ dk

2π
ωk B

†
k Bk − ωK

)
|K〉(L)0

1

=
[

	−K,B

4
√
Q0

− gV (3)
−

4ωK

∫
dxI(x)g−K(x)

]
|0〉0

−g

6

∫∑ d3k

(2π)3 Vk1k2k3 |K; k1k2k3〉0

−g

2

∫∑ dk

2π

[
VIk + 	kBωk

g
√
Q0

]
|K; k〉0

−gV (3)
−

4ωK

∫
dx

∫∑ d2k

(2π)2 gk1(x)gk2(x)g−K(x)|k1k2〉0.

(4.12)

The kernel of the operator on the left consists of states with
an on-shell energy of ωK . Indeed, our definition of the state is
ambiguous in that one may add |K〉0, reflecting the freedom
to change the normalization, and also degenerate eigenstates
such as |−K〉 or those with multiple on-shell mesons. These
on-shell meson states will travel at different velocities, and
so we do not include them. This choice of inverse arises at
each order and should be considered an integral part of our
construction of the monochromatic state.

We therefore choose the following inverse

|K〉(L)0
1 =

[
− 	−K,B

4
√
Q0ωK

+ gV (3)
−

4ω2
K

∫
dxI(x)g−K(x)

]
|0〉0

−g

2

∫∑ dk

2π

[
VIk
ωk

+ 	kB

g
√
Q0

]
|K; k〉0

−g

6

∫∑ d3k

(2π)3

Vk1k2k3

ωk1 + ωk2 + ωk3

|K; k1k2k3〉0

+gV (3)
−

4ωK

∫
dx

∫∑ d2k

(2π)2

gk1(x)gk2(x)g−K(x)

ωK − ωk1 − ωk2

|k1k2〉0.

(4.13)

This completes our computation of the leading order correc-
tion |K〉(L)

1 to |K〉(L).

4.3 Folding |K〉(L) into a wave packet

To obtain the asymptotic state, we must fold |K〉(L) into the
wave packet (3.5). We will further decompose all states |ψ〉
as

|ψ〉mi =
∞∑
n=0

|ψ〉mn
i (4.14)

where |ψ〉mn
i is the part of the i th order term proportional to

φm
0 with n mesons, or more precisely, with n B‡ operators

acting on |0〉0. We will now decompose our monochromatic
asymptotic state in Eqs. (4.5) and (4.13) into sectors with
various numbers of mesons, and fold them into (3.5) one at
a time.

4.3.1 The zero-meson sector

The zero-meson part of Eq. (4.5) with two zero modes is

|K〉(L)20
1 = φ2

0

4
√
Q0

	−K,B |0〉0. (4.15)
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Folding it into the wave packet (3.5) one arrives at

∫
dK

2π
αK|K〉(L)20

1

=
∫

dK

2π
2σ

√
πBKe

−σ 2(K−k0)2
ei(k0−K)x0

φ2
0

4
√
Q0

	−K,B |0〉0 = 2σ
√

πφ2
0

4
√
Q0

eik0x0 |0〉0

∫
dxg′

B(x)
∫

dK

2π
g−K(x)BKe

−σ 2(K−k0)2
e−iKx0 .

(4.16)

As |x0| is much larger than both σ and also 1/m, the only
length scale which appears in g−k(x), the argument of the
e−iKx0 changes more quickly in K than any other term unless
x ∼ x0, in which case the argument of g−k(x) changes at
the opposite rate. Thus, the K integral is exponentially sup-
pressed in (x − x0). As a result, all but an exponentially
small portion of this quantity arises from x ∼ x0, where
gB(x) is itself exponentially suppressed in mx0. Thus, in the
mx0 → ∞ limit, we conclude that |K〉(L)20

1 vanishes when
folded into the wave packet (3.5).

The zero-meson part of Eq. (4.5) with no zero modes is

|K〉(L)00
1 =

[
− 	−K,B

4
√
Q0ωK

+gV (3)
−

2ω2
K

∫
dxI(x)g−K(x)

]
|0〉0.

(4.17)

As ωK is essentially constant in the support of the Gaussian

e−σ 2(K−k0)2
, it may be replaced with ωk0 and be pulled out

of the K integral. Then, the same argument as above shows
that the first term in |K〉(L)00

1 does not contribute to the wave
packet.

What about the second term?

∫
dK

2π
αK

[
gV (3)

−
2ω2

K

∫
dxI(x)g−K(x)|0〉0

]

= σ
√

πgV (3)
−

∫
dxI(x)

∫
dK

2π

g−K(x)

ω2
K

BKe
−σ 2(K−k0)2

ei(k0−K)x0

= σ
√

πgV (3)
− Bk0e

ik0x0

ω2
k0∫

dxI(x)
∫

dK

2π
g−K(x)e−σ 2(K−k0)2

e−iKx0 . (4.18)

Again the K integral has support at x ∼ x0 where I(x) is
exponentially suppressed in mx0. As a result, this last con-
tribution to the zero-meson sector also vanishes when folded
into the wave packet.

4.3.2 The one-meson sector

There is only a single term in |K〉(L)
1 in the one-meson sector

|K〉(L)11
1 = φ0

2
√
Q0

∫∑ dk

2π
	−K,k

(
1 + ωk

ωK

)
|k〉0. (4.19)

Folding this into the wave packet one obtains

∫
dK

2π
αK|K〉(L)11

1

= σ
√

πφ0√
Q0

∫
dK

2π
BKe

−σ 2(K−k0)2
ei(k0−K)x0

∫∑ dk

2π
	−K,k

(
1 + ωk

ωK

)
|k〉0

= σ
√

πφ0√
Q0

∫
dx

∫∑ dk

2π
g′
k(x)

∫
dK

2π
g−K(x)BKe

−σ 2(K−k0)2

ei(k0−K)x0

(
1 + ωk

ωK

)
|k〉0 (4.20)

Again the K integral is only supported at x ∼ x0 where we
can approximate the normal modes g by plane waves (3.3),
leading to
∫

dK

2π
αK|K〉(L)11

1 = − iσ
√

πφ0√
Q0

∫
dk

2π
kBk

×
∫

dK

2π
e−σ 2(K−k0)2

ei(k0−K)x0

(
1 + ωk

ωK

) [∫
dxei(K−k)x

]
|k〉0

= −2iσ
√

πφ0√
Q0

∫
dK

2π
KBKe

−σ 2(K−k0)2
ei(k0−K)x0 |K〉0

=
∫

dK

2π
αK|K〉(L)P

1 , |K〉(L)P
1 = − iKφ0√

Q0
|K〉0.

(4.21)

In other words, when folded into the wave packet, |K〉(L)11
1

and |K〉(L)P
1 are equal. However, we will now see that the

later has a simple, physical interpretation.
Consider the expectation value of φ(x) in the leading order

vacuum frame kink ground state D f |0〉0

0〈0|D†
f φ(x)D f |0〉0

= 0 〈0|( f (x) + φ(x))|0〉0

= 0 〈0|( f (x) + φ0gB(x))|0〉0

= 0 〈0|
(
f (x) − φ0√

Q0
f ′(x)

)
|0〉0

= 0 〈0|
(
f

(
x − φ0√

Q0

)
+ O

(
1

Q0

))
|0〉0. (4.22)

We thus see that the kink profile, to leading order, is f (x −
φ0/

√
Q0), and so to leading order φ0/

√
Q0 is the position

of the kink. More precisely, it is the eigenvalue of φ0 divided
by

√
Q0 which provides the kink position in a φ0 eigenstate.
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Equation (4.21) tells us that, at leading order, the wave
packet is corrected by (−iK) times the position of the kink.
Of course, (−iK) is just the spatial derivative of the wave
packet itself, and so |K〉(L)P

1 is the first order Taylor series
expansion of a translation of the meson wave packet. Thus
we conclude that, as a result of this term, when the kink is
moved, the meson is moved by just the same amount.

Recall that the term contains powers of φ0 and so
is a descendant, and the descendants were derived using
translation-invariance of the combined meson and kink sys-
tem. Thus translation-invariance has implied that the relative
distance between the kink and the meson wave packet is fixed.
More precisely, the kink is in a momentum eigenstate which
corresponds to an infinite superposition of position eigen-
states, with every possible position summed over. We learn
that in each of these position eigenstates, the kink–meson
distance is fixed. Of course our perturbative treatment breaks
down for positions too far from zero, and so our expressions
are perturbative in φ0/

√
Q0.

4.3.3 The two-meson cloud

The last interesting term in |K〉(L)
1 is

|K〉(L)02
1 ⊃ −gV (3)

−
4ωK

∫
dx

∫∑ d2k

(2π)2

gk1(x)gk2(x)g−K(x)

ωK − ωk1 − ωk2

|k1k2〉0. (4.23)

Folding this into the wave packet, the same arguments as
above imply that the K integral is supported at x ∼ x0 where
the normal modes are plane waves, and so we find that

∫
dK

2π
αK|K〉(L)02

1 ⊃
∫

dK

2π
αK

[
− gV (3)

−
4ωK

∫
dx

∫∑ d2k

(2π)2

gk1(x)gk2 (x)g−K(x)

ωK − ωk1 − ωk2

|k1k2〉0

]

=
∫

dK

2π
αK

[
− gV (3)

−
4ωK

∫∑ d2k

(2π)2

Bk1Bk2B−K2πδ(K − k1 − k2)

ωK − ωk1 − ωk2

|k1k2〉0

]

=
∫

dK

2π
αK|K〉(L)S,

|K〉(L)S = − gV (3)
−

4ωK

∫∑ dk

2π

BkBK−kB−K

ωK − ωk − ωK−k
|k,K − k〉0.

(4.24)

We conclude that, after being folded into the wave packet,
this term in |K〉(L)02

1 is equal to |K〉(L)S .
This argument fails at the pole ωK = ωk1 + ωk2 . Here

one cannot assume that the denominator varies slowly as

compared with the exponential at large x0, as x0 would need
to be larger than the inverse distance to the pole which is
unbounded. This is the first place where the vacuum field
φ(L)(x) in the definition (3.10) of H (L) is necessary. Recall-
ing that H (L) contains φ(L)(x) and not φ(x), the three fac-
tors of g in the first line of (4.24) are replaced directly with
plane waves, leading to the second line with no need for
an argument involving αk . Physically this is very impor-
tant. Had H (L) contained φ(x) and not φ(L)(x) then the pole
would have led to a finite remainder consisting of two on-
shell mesons. This choice of initial state therefore contains
a physical mixture of 2-meson states, and so the probabil-
ity of meson multiplication would be nonzero even before
the meson approached the kink. Clearly this is an inappro-
priate initial condition for calculating the meson multiplica-
tion resulting from kink–meson scattering, as the mesons that
need to be created are already present in the initial state. Also,
these on-shell mesons will travel more slowly then the rest of
the wave packet, and so our first criterion for the definition
of an asymptotic state would not be satisfied had we used
φ(x) and not φ(L)(x) in the definition (3.10) of the vacuum
Hamiltonian.

This meson-splitting term also has a simple, physical
explanation. Far from the kink the meson may split into two
mesons if V (3)

− is nonzero. However, far from the kink, the
mesons must conserve momentum separately from the kink,
and so the total momentum is always K. This means that the
two-meson component of the meson wave function is far off-
shell, and these two mesons are quite virtual. In this sense,
the two-meson cloud shown here is quite similar to the cloud
which appears around an isolated meson in the vacuum sec-
tor.

We now arrive at the first application of this work. The
coefficients in the term |K〉(L)S are given in the first expres-
sion in Eq. (6.4) of Ref. [23]. In that reference they were
found by simply replacing the normal modes with plane
waves and removing the terms localized near the kink. Here
we have, instead, derived that result from a choice of initial
state. More importantly, our initial state exactly preserves
translation-invariance and so the reduced norms used in the
calculation of the meson multiplication probability may be
applied. In contrast, since H (L) does not commute with the
momentum operator, an exact eigenstate of H (L), as pro-
posed in Ref. [23], would not be translation invariant. We
have now avoided this problem by adding corrections to the
H (L) eigenstate which are exponentially suppressed in mx0.

Note that the second expression in Eq. (6.4) of Ref. [23],
describing the four-meson component which does not con-
tribute to meson multiplication, does not agree with our
asymptotic state (4.13). This is because here we use the full
kink Hamiltonian to determine the meson cloud about the
kink, unlike the choice in that paper.

123



743 Page 12 of 26 Eur. Phys. J. C (2023) 83 :743

4.3.4 The multi-meson sectors

The multimeson terms n ≥ 2 in |K〉, as reported in Eqs. (4.5)
and (4.13), can be summarized as follows, up to subleading
order

|K〉(L)
∣∣∣
n≥2

=
(
B†
K − gV (3)

−
4ωK

∫
dk

2π

BkBK−kB−K

ωK − ωk − ωK−k
B†
k B

†
K−k

)
|0〉.

(4.25)

Here the meson splitting term |K〉(L)S is included by dressing
the perturbative meson creation operator B†

K.
Assembling all of our results, we conclude that the wave

packet (3.5) may be written, up to order O(g), as

|�x0(t = 0)〉 =
∫

dK

2π
αK

[
|K〉(L)

∣∣∣
n≥2

+ |K〉(L)P
]

=
∫

dK

2π
αK

[(
B†
K − gV (3)

−
4ωK∫

dk

2π

BkBK−kB−K

ωK − ωk − ωK−k
B†
k B

†
K−k

)
|0〉

− iKφ0√
Q0

|K〉0

]
. (4.26)

This simple formula is one of our main results. The vac-
uum Hamiltonian only enters via the coefficient V (3)

− which
appears in the dressing of the meson creation operator. This
is physically reasonable, the meson is far from the kink
and so is not yet affected by the full interactions of the
kink Hamiltonian. However |0〉 is the perturbative ground
state of the full kink Hamiltonian, which again is reason-
able as the kink is affected by the kink, and so is its meson
cloud.

In summary, the effects of the vacuum and kink Hamilto-
nians at this order are clearly separated in the wave packet
state (4.26). The vacuum Hamiltonian determines the dressed
meson creation operator, and so appears inside of the round
brackets, while the state |0〉, representing the dressed kink on
which this terms acts, is determined by the full kink Hamil-
tonian H ′.

This agrees with the naive intuition that the meson wave
packet behavior is captured by the vacuum Hamiltonian and
the kink, together with its meson cloud, is captured by the
kink Hamiltonian. Of course, both evolve via the action of
the kink Hamiltonian, as it is the defining Hamiltonian (2.1),
written in the kink frame. In the next section we will show that
this decomposition is in fact preserved by evolution under the
full kink Hamiltonian.

5 Evolving the asymptotic state

After a time t , the initial state |�x0(t = 0)〉 evolves to

|�x0(t)〉 = e−i H ′t |�x0(t = 0)〉. (5.1)

In this section we will evaluate this at leading and subleading
orders.

5.1 Leading order

At leading order the evolved wave packet is

|�x0(t)〉0 = e−i H ′
2t |�x0(t = 0)〉0

=
∫

dK

2π
αKe

−i H ′
2t |K〉0. (5.2)

The leading order evolution of each |K〉0 is

e−i H ′
2t |K〉0 = e−i(Q1+ωK )t |K〉0. (5.3)

Such a K dependence, following standard arguments which
we will now review, yields rigid motion of the wave packet.

Expanding ω about k0 one finds

ωK = ωk0 + K0

ωK
(K − k0) (5.4)

up to corrections of order O
(
(K − k0)

2
)

which yield wave
packet spreading but vanish at large σ . Here K0/ωK is the
expected velocity of the wave packet, and its position at time
t is

xt = x0 + K0

ωK
t. (5.5)

Dropping the higher order corrections, and so ignoring wave
packet spreading, one finds

|�x0(t)〉0 =
∫

dK

2π
2σ

√
πBKe

−σ 2(K−k0)2
ei(k0−K)x0

e
−i

(
Q1+ωk0 + K0

ωK
(K−k0)

)
t |K〉0

= 2σ
√

πe−i
(
Q1+ωk0

)
t∫

dK

2π
BKe

−σ 2(K−k0)2
ei(k0−K)xt |K〉0

= e−i
(
Q1+ωk0

)
t |�xt (t = 0)〉0. (5.6)

This last expression means that, at leading order, at time t the
initial meson wave packet is only changed, up to an overall
phase and ignoring the usual spreading, by the substitution
x0 → xt . Thus, at leading order we conclude that these states
satisfy the first property that we require, while the second
property was already manifestly satisfied as a result of the
choice of descendants.

However at this order we have not included our corrections
to |K〉(L) or to e−i H ′t , so this has been rather trivial. Now we
will check that this property is maintained at the next order.
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5.2 Subleading order: descendants

At order O(g), two kinds of terms appear in the evolution
equation (5.1). Either the evolution operator e−i H ′t is at order
O(g) and the initial state |�xt (t = 0)〉0 is at order O(g0) or
else the evolution operator e−i H ′

2t is at order O(g0) and the
initial state |�xt (t = 0)〉1 is at order O(g1).

In the case of the first terms, the evolution operator may
be expanded

e−i H ′t
∣∣∣
O(g)

=
∞∑
n=0

(−i t)n

n! H ′n
∣∣∣
O(g)

=
∞∑
n=0

(−i t)n

n!
n−1∑
m=0

H ′m
2 H ′

3H
′n−m−1
2 . (5.7)

We will often simplify this using

∞∑
n=0

(−i t)n

n!
n−1∑
m=0

ambn−1−m = e−ibt − eiat

b − a
. (5.8)

5.2.1 φ3
0 terms

We will begin with the terms containing three powers of φ0.
These can only arise from the term

H ′
3 ⊃ gVBBB

6
φ3

0 . (5.9)

Using

∂x V
(2)(g f (x)) = V (3)(g f (x))g f ′(x)

= −g
√
Q0V

(3)(g f (x))gB(x) (5.10)

and the Sturm–Liouville equation for the normal modes

V (2)(g f (x))gB(x) = ∂2
x gB(x) (5.11)

one finds

VBBB =
∫

dxV (3)(g f (x))g3
B(x)

= − 1

g
√
Q0

∫
dx∂x (V

(2)(g f (x)))g2
B(x)

= 2

g
√
Q0

∫
dxV (2)(g f (x))gB(x)g′

B(x)

= 1

g
√
Q0

∫
dx∂x (g

2
B(x)) = 0. (5.12)

Therefore there is no term in H ′
3 of order φ3

0 , and so no
contribution to the O(g) evolution with three powers of φ0.

5.2.2 φ2
0 terms

The evolution operator e−i H ′t at order O(g) contains terms
of order φ2

0 arising from

H ′
3 ⊃ gφ2

0

2

∫∑ dk

2π
VBBk

(
B‡
k + B−k

2ωk

)
. (5.13)

Let us first consider the B‡
k term, plugging it into (5.7) to

evaluate

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ gφ2
0

2

∫∑ dk

2π
VBBk

∞∑
n=0

(−i t)n

n!
n−1∑
m=0

(Q1 + ωK + ωk )
mB‡

k (Q1 + ωK)n−m−1|K〉0

= −gφ2
0

2

∫∑ dk

2π

VBBk

ωk

∞∑
n=0

(−i t)n

n! (Q1 + ωK)n

[
1 −

(
Q1 + ωK + ωk

Q1 + ωK

)n]
|K; k〉0

= gφ2
0

2
e−i(Q1+ωK)t

∫∑ dk

2π

VBBk

ωk

(
e−iωk t − 1

)
|K; k〉0. (5.14)

To simplify further, using the Sturm–Liouville equation

V (2)(g f (x))gk(x) = g′′
k (x) + ω2

kgk(x) (5.15)

to derive

VBBk =
∫

dxV (3)(g f (x))g2
B(x)gk(x)

= 1

g
√
Q0

∫
dxV (2)(g f (x))(gB(x)g′

k(x)

+gk(x)g
′
B(x))

= 1

g
√
Q0

∫
dx(∂x (g

′
k(x)g

′
B(x))

+ω2
kgk(x)g

′
B(x)) = ω2

k	kB

g
√
Q0

(5.16)

the term above is

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ φ2
0

2
√
Q0

e−i(Q1+ωK)t

∫∑ dk

2π
ωk	kB

(
e−iωk t − 1

)
|K; k〉0. (5.17)

As we will see is often the case below, for each such term,
there is a corresponding term which is O(g0) in the evolution
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operator e−i H ′
2t and O(g) in |K〉(L)

1 . Using Eq. (4.5) one finds
the term

e−i H ′
2t |K〉(L)22

1

= e−i H ′
2t

[
− φ2

0

2
√
Q0

∫∑ dk

2π
	kBωk |K; k〉0

]

= −e−i Q1t
φ2

0

2
√
Q0

∫∑ dk

2π
	kBωke

−i(ωK+ωk )t |K; k〉0.

(5.18)

Adding the contributions in Eqs. (5.17) and (5.18) one
finds the total 2-meson contribution to the φ2

0 terms

e−i H ′t |K〉 ⊃ −e−i(Q1+ωK )t φ2
0

2
√
Q0

∫∑ dk

2π
	kBωk |K; k〉0

= e−i(Q1+ωK )t |K〉(L)22
1 . (5.19)

Therefore these terms evolve by a multiplication by the phase
e−i(Q1+ωK )t . Following the same argument as in the lead-
ing order case in Sect. 5.1, this implies that this term in the
wave packet moves rigidly as time passes, up to wave packet
spreading corrections.

Let us turn now to the zero-meson terms that are pro-
portional to φ2

0 . Plugging the second term in Eq. (5.13) into
Eq. (5.7) one finds

e−i H ′t |K〉0 ⊃ gφ2
0

4

∫∑ dk

2π
VBBk

∞∑
n=0

(−i t)n

n!
n−1∑
m=0

Qm
1
B−k

ωk
(Q1 + ωK)n−m−1|K〉0

= gφ2
0VBB−K

4ωK

∞∑
n=0

(−i t)n

n!
n−1∑
m=0

Qm
1 (Q1 + ωK)n−m−1|0〉0

= gφ2
0VBB−K

4ω2
K

e−i Q1t
(
e−iωK t − 1

)
|0〉0

= φ2
0	KB

4
√
Q0

e−i Q1t
(
e−iωK t − 1

)
|0〉0. (5.20)

Again, there is a corresponding contribution in which the
free part of the kink Hamiltonian acts on the correction to the
state

e−i H ′
2t |K〉(L)20

1 = e−i Q1t
φ2

0

4
√
Q0

	−K,B |0〉0. (5.21)

Adding these two contributions one finds the 0-meson, φ2
0

term in the evolved wave packet

e−i H ′t |K〉 ⊃ e−i(Q1+ωK )t φ2
0

4
√
Q0

	−K,B |0〉0

= e−i(Q1+ωK )t |K〉(L)20
1 . (5.22)

In principle, when folding this into a wave packet, the same
argument implies that this component moves via a rigid trans-
lation.

However, the 	−K,B contains an x integral which is sup-
ported near the kink and so this term vanishes at time t = 0
when folded into the wave packet. More generally it is∫

dK

2π
αKe

−i(Q1+ωK )t |K〉(L)20
1

=
∫

dK

2π
2σ

√
πBKe

−σ 2(K−k0)2

ei(k0−K)x0e−i(Q1+ωK )t φ2
0

4
√
Q0

	−K,B |0〉0

= σ
√

πφ2
0

2
√
Q0

e−i(Q1+ωk0 )t
∫

dxg′
B(x)

∫
dK

2π
BKg−K(x)e−σ 2(K−k0)2

ei(k0−K)xt |0〉0

= σ
√

πφ2
0

2
√
Q0

e−i(Q1+ωk0 )t
∫

dxg′
B(x)

∫
dK

2π
eiKx e−σ 2(K−k0)2

ei(k0−K)xt |0〉0

= φ2
0

4
√
Q0

e−i(Q1+ωk0 )t

∫
dxg′

B(x)eik0x e−(xt−x)2/(4σ 2)|0〉0. (5.23)

The Gaussian term e−(xt−x)2/(4σ 2) has support at x ∼ xt , with
a width of σ . On the other hand g′

B(x) has support at x = 0,
with a width of 1/m. As a result, their product is exponen-
tially suppressed unless xt is close to zero. In other words, this
term only turns on when the meson wave packet approaches
the kink. We conclude that the meson wave packet moves
without deformation, apart from the usual spreading, until it
comes within either its width σ or the kink width 1/m of the
kink, at which time corrections such as this one appear.

5.2.3 φ0 terms

Let us next turn to the (m, n) = (1, 3) terms with one power
of φ0 and three mesons. Again there are two, the first of which
arises from the subleading evolution operator acting on the
leading meson state. This uses the term

H ′
3 ⊃ gφ0

2

∫∑ d2k

(2π)2 VBk1k2 B
‡
k1
B‡
k2

(5.24)

leading to

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ gφ0

2

∫∑ d2k

(2π)2 VBk1k2

∞∑
n=0

(−i t)n

n!

×
n−1∑
m=0

(Q1 + ωK + ωk1 + ωk2)
mB‡

k1
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B‡
k2

(Q1 + ωK)n−m−1|K〉0

= gφ0

2
e−i(Q1+ωK)t

∫∑ d2k

(2π)2

VBk1k2

ωk1 + ωk2(
e−i(ωk1 +ωk2 )t − 1

)
|K; k1k2〉0. (5.25)

Using the identity

VBk1k2 =
∫

dxV (3)(g f (x))gB(x)gk1(x)gk2(x)

= 1

g
√
Q0

∫
dxV (2)(g f (x))(gk1(x)g

′
k2

(x)

+gk2(x)g
′
k1

(x))

= 1

g
√
Q0

∫
dx(∂x (g

′
k1

(x)g′
k2

(x))

+ω2
k1
gk1(x)g

′
k2

(x) + ω2
k2
gk2(x)g

′
k1

(x))

= (ω2
k1

− ω2
k2

)	k1k2

g
√
Q0

(5.26)

the contribution simplifies to

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ φ0

2
√
Q0

e−i(Q1+ωK)t

∫∑ d2k

(2π)2 (ωk1 − ωk2)	k1k2(
e−i(ωk1 +ωk2 )t − 1

)
|K; k1k2〉0. (5.27)

Again, there is a second contribution in which the free evo-
lution operator acts on the correction to the state

e−i H ′
2t |K〉(L)13

1

= e−i H ′
2t

[
φ0

2
√
Q0

∫∑ d2k

(2π)2 	k1k2 (ωk2 − ωk1)|K; k1k2〉0

]

= φ0

2
√
Q0

e−i(Q1+ωK )t

∫∑ d2k

(2π)2 	k1k2 (ωk2 − ωk1)e
−i(ωk1+ωk2 )t |K; k1k2〉0.

(5.28)

Combining these contributions, one arrives at the total 3-
meson, one power of φ0 piece of the state

e−i H ′t |K〉 ⊃ φ0

2
√
Q0

e−i(Q1+ωK )t

∫∑ d2k

(2π)2 	k1k2(ωk2 − ωk1)|K; k1k2〉0

= e−i(Q1+ωK )t |K〉(L)13
1 . (5.29)

Again, we see that this component of the state evolves via
a phase rotation e−i(Q1+ωK )t . The argument used above at
leading order again implies that, when folded into the wave
packet, this contribution evolves via rigid translation, as
desired.

Physically this term is just an undressed meson wave
packet in the presence of the leading quantum correction
to the kink. As the kink is far from the meson, it was to
be expected that its quantum correction does not affect the
propagation of the meson.

The last descendant term that may arise consists of one
power of the zero mode φ0 and one meson. Recall that we
found such a term in the initial condition which fixes the
distance between the kink and the meson wave packet. Again,
the first contribution arises from the quantum correction to
the evolution operator, now using

H ′
3 ⊃ gφ0

2

∫∑ d2k

(2π)2

VBk1k2

ωk2

B‡
k1
B−k2 (5.30)

one finds the contribution

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ gφ0

2

∫∑ d2k

(2π)2

VBk1k2

ωk2

∞∑
n=0

(−i t)n

n!

×
n−1∑
m=0

(Q1 + ωk1)
mB‡

k1
B−k2(Q1 + ωK)n−m−1|K〉0

= gφ0

2ωK
e−i(Q1+ωK)t

∫∑ dk

2π

VB,k,−K

ωk − ωK(
e−i(ωk−ωK )t − 1

)
|k〉0

= φ0

2
√
Q0

e−i(Q1+ωK)t
∫∑ dk

2π

(
1 + ωk

ωK

)
	k,−K

(
e−i(ωk−ωK )t − 1

)
|k〉0. (5.31)

Adding this to

e−i H ′
2t |K〉(L)11

1

= e−i H ′
2t

[
φ0

2
√
Q0

∫∑ dk

2π
	−K,k

(
1 + ωk

ωK

)
|k〉0

]

= φ0

2
√
Q0

e−i(Q1+ωK )t

∫∑ dk

2π
	−K,k

(
1 + ωk

ωK

)
e−i(ωk−ωK )t |k〉0 (5.32)

one finds the total one-meson contribution

e−i H ′t |K〉 ⊃ φ0

2
√
Q0

e−i(Q1+ωK )t

∫∑ dk

2π
	−K,k

(
1 + ωk

ωK

)
|k〉0

= e−i(Q1+ωK )t |K〉(L)11
1 . (5.33)

Again the fact that the full evolution yields a factor of
e−i(Q1+ωK )t implies that even this term, although it is per-
haps the most unexpected in our wave packet as it does not
arise from the action of the dressed creation operator on the
kink ground state, nonetheless evolves via a rigid translation
of the meson wave packet towards the kink.
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Recall that this term enforces that, in each kink-position
eigenstate component of the momentum eigenstate, the
meson wave packet is at the same distance from the kink. One
thus learns that this same distance evolves via rigid motion
in each of these kink-position eigenstates. In other words,
wherever the kink may lie, the meson wave packet moves
towards it rigidly and with the same speed.

In principle there are other contributions with one meson.
One potential source of these is the interaction

H ′
3 ⊃ gφ0

2
VIB . (5.34)

Via an argument similar to those above, it was shown in
Appendix A of Ref. [31] that VIB = 0, and so there is no
such contribution. Similarly a contribution could arise from
the VBBB term in H ′

3 combined with the π2
0 /2 in H ′

2, however
we have shown above that VBBB = 0 and so there is also no
such contribution.

5.3 Subleading order: primaries

5.3.1 The four-meson sector

The four-meson sector describes the traveling meson together
with three-meson virtual excitations around the kink. As the
virtual excitation cloud is localized around the kink, one
expects it not to interact with the virtual meson. To check that
this intuition is correct, we consider the two usual contribu-
tions. The first consists of the leading quantum correction to
the evolution operator corresponding to

H ′
3 ⊃ g

6

∫∑ d3k

(2π)3 Vk1k2k3 B
‡
k1
B‡
k2
B‡
k3

. (5.35)

This leads to the correction

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ g

6

∫∑ d3k

(2π)3 Vk1k2k3

∞∑
n=0

(−i t)n

n!

×
n−1∑
m=0

(Q1 + ωK + ωk1 + ωk2 + ωk3)
m

B‡
k1
B‡
k2
B‡
k3

(Q1 + ωK)n−m−1|K〉0

= g

6
e−i(Q1+ωK)t

∫∑ dk

2π

Vk1k2k3

ωk1 + ωk2 + ωk3(
e−i(ωk1 +ωk2 +ωk3 )t − 1

)
|K; k1k2k3〉0. (5.36)

On the other hand, the contribution from the free evolution
operator acting on the corrected state is

e−i H ′
2t |K〉(L)04

1

= e−i H ′
2t

[
−g

6

∫∑ d3k

(2π)3

Vk1k2k3

ωk1 + ωk2 + ωk3

|K; k1k2k3〉0

]

= −g

6
e−i(Q1+ωK)t

∫∑ d3k

(2π)3

Vk1k2k3

ωk1 + ωk2 + ωk3

e−i(ωk1 +ωk2 +ωk3 )t |K; k1k2k3〉0.

(5.37)

Adding these two together, as expected one finds

e−i H ′t |K〉 ⊃ −g

6
e−i(Q1+ωK)t

∫∑ d3k

(2π)3

Vk1k2k3

ωk1 + ωk2 + ωk3

|K; k1k2k3〉0

= e−i(Q1+ωK )t |K〉(L)04
1 . (5.38)

Thus we have confirmed that even in this sector, in which
the meson wave packet arrives at the corrected kink from far
away, the meson wave packet moves rigidly.

5.3.2 The two-meson sector

This sector is a bit more complicated then the others, as the
free kinetic term π2

0 /2 in H ′
2 also contributes and also there

are three terms in |K〉(L)02
1

|K〉(L)02
1 = |K〉(L)02A

1 + |K〉(L)02B
1 + |K〉(L)02C

1

|K〉(L)02A
1 = − g

2

∫∑ dk

2π

VIk
ωk

|K; k〉0

|K〉(L)02B
1 = − 1

2
√
Q0

∫∑ dk

2π
	kB |K; k〉0

|K〉(L)02C
1 = gV (3)

−
4ωK

∫
dx

∫∑ d2k

(2π)2

gk1 (x)gk2 (x)g−K(x)

ωK − ωk1 − ωk2

|k1k2〉0.

(5.39)

Let us start with the interaction term

H ′
3 ⊃ g

4

∫∑ d3k

(2π)3

Vk1k2k3

ωk3

B‡
k1
B‡
k2
B−k3 . (5.40)

This is annihilated by π0 and so the usual formulas can be
applied

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ g

4

∫∑ d3k

(2π)3

Vk1k2k3

ωk3

∞∑
n=0

(−i t)n

n!

×
n−1∑
m=0

(Q1 + ωk1 + ωk2)
m

B‡
k1
B‡
k2
B−k3(Q1 + ωK)n−m−1|K〉0

= g

4
e−i(Q1+ωK)t

∫∑ d2k

(2π)2

Vk1k2−K

ωk1 + ωk2 − ωK(
e−i(ωk1 +ωk2 −ωK )t − 1

)
|; k1k2〉0. (5.41)

The corresponding term arising from the leading evolution
operator is

e−i H ′
2t |K〉(L)02C

1 = e−i H ′
2t
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[
gV (3)

−
4ωK

∫
dx

∫∑ d2k

(2π)2

gk1(x)gk2 (x)g−K(x)

ωK − ωk1 − ωk2

|k1k2〉0

]

= gV (3)
−

4ωK
e−i(Q1+ωK)t

∫
dx

∫∑ d2k

(2π)2

gk1(x)gk2 (x)g−K(x)

ωK − ωk1 − ωk2

e−i(ωk1 +ωk2 −ωK )t |k1k2〉0. (5.42)

Adding these two terms we arrive at

e−i H ′t |K〉 ⊃ e−i(Q1+ωK )t |K〉(L)02C
1 + CK

CK = g

4ωK
e−i Q1t

∫
dx

(
V (3)

− − V (3)(g f (x))
)

×
∫∑ d2k

(2π)2

gk1(x)gk2(x)g−K(x)

ωK − ωk1 − ωk2(
e−i(ωk1 +ωk2 )t − e−iωK t

)
|k1k2〉0. (5.43)

The cancellation that we have always seen between these
two terms, annihilating the term that has the on-shell dis-
persion relation for the virtual particles, does not quite work
here. Instead a remainder CK remains. The problem is that
one expression has the full Vk1k2−K arising from the kink

Hamiltonian, while the other has only V (3)
− arising from the

left vacuum Hamiltonian.
Let us fold CK into the wave packet, to see if this term is

present in the evolved state. This yields

∫
dK

2π
αKCK = gσ

√
πe−i Q1t

2

∫
dx

(
V (3)

− − V (3)(g f (x))
)

∫∑ d2k

(2π)2 gk1(x)gk2 (x)|k1k2〉0

×
∫

dK

2π

BK

ωK
e−σ 2(K−k0)2

ei(k0−K)x0

g−K(x)

ωK − ωk1 − ωk2

(
e−i(ωk1 +ωk2 )t − e−iωK t

)
. (5.44)

Let us look more closely at the second line. It depends on k1,
k2 and x . The integrand does not have a pole when the on-
shell condition ωk1 + ωk2 = ωK is satisfied because at that
point the term in parentheses also vanishes linearly, leaving
a finite on-shell limit for the integrand.

Again expanding the dispersion relation for ωK , we may
rewrite this second line as∫

dK

2π

BK

ωK
e−σ 2(K−k0)2 g−K(x)

ωK − ωk1 − ωk2(
e−i(ωk1 +ωk2 )t ei(k0−K)x0 − e−iωk0 t ei(k0−K)xt

)
. (5.45)

Thus we see that the phase of g−K(x) must vary, with respect
to K, with a derivative of about x0 if the first term is to con-
tribute or xt if the second is to contribute. This means that this
term is exponentially suppressed unless x ∼ x0 or x ∼ xt . On
the other hand, the V (3)

− −V (3)(g f (x)) factor is exponentially
suppressed if x � 0. Thus both terms can be nonvanishing

only if x0 � 0, which it is not, or if xt � 0, which occurs
once the meson wave packet approaches the kink.

In conclusion, the correction term CK vanishes, when
folded into the meson wave packet, until the meson is within
a distance of order 1/m or within a distance of order σ of
the kink. Before this time, |K〉(L)02C

1 evolves via a multipli-
cation by the phase e−i(Q1+ωK )t and so, when folded into the
wave packet, evolves via a rigid translation. This resolves
the puzzle of how a wave packet that was constructed using
eigenstates of the left vacuum Hamiltonian H (L) may trans-
form rigidly under H ′ evolution, the difference between the
two eigenstates is in the kernel of the integral weighted by
αK.

Let us now turn to the next interaction term

H ′
3 ⊃ g

2

∫∑ dk

2π
VIk B‡

k (5.46)

which leads to the evolution

e−i H ′t
∣∣∣
O(g)

|K〉0

⊃ g

2

∫∑ dk

2π
VIk

∞∑
n=0

(−i t)n

n!

×
n−1∑
m=0

(Q1 + ωK + ωk )
mB‡

k (Q1 + ωK)n−m−1|K〉0

= g

2
e−i(Q1+ωK)t

∫∑ dk

2π

VI−K

ωk

(
e−iωk t − 1

)
|K; k〉0.

(5.47)

Adding

e−i H ′
2t |K〉(L)02C

1

= e−i H ′
2t

[
−g

2

∫∑ dk

2π

VIk
ωk

|K; k〉0

]

= −g

2
e−i(Q1+ωK)t

∫∑ dk

2π

VIk
ωk

e−iωk t |K; k〉0 (5.48)

as usual leads to

e−i H ′t |K〉 ⊃ e−i(Q1+ωK )t |K〉(L)02C
1 . (5.49)

The final contribution is a bit different. Consider the inter-
action

H ′
3 ⊃ gφ2

0

2

∫∑ dk

2π
VBBk B

‡
k . (5.50)

This interaction can, despite the φ2
0 factor, lead to a primary

in the evolution operator because H ′
2 contains a π2

0 /2 term.
The corresponding contribution is

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ g

2

∫∑ dk

2π
VBBk

∞∑
n=0

(−i t)n

n!

×
n−1∑
m=0

(
Q1 + ωK + ωk + π2

0

2

)m

φ2
0 B

‡
k (Q1 + ωK )n−m−1|K〉0
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= − g

2

∫∑ dk

2π
VBBk

∞∑
n=0

(−i t)n

n!
n−1∑
m=0

m
(
Q1 + ωK + ωk

)m−1
(Q1 + ωK )n−m−1|K; k〉0

= − g

2

∫∑ dk

2π
VBBk

∂

∂ωk

[ ∞∑
n=0

(−i t)n

n!
n−1∑
m=0

(Q1

+ωK + ωk
)m

(Q1 + ωK )n−m−1

]
|K; k〉0

= 1

2
√
Q0

e−i(Q1+ωK)t
∫∑ dk

2π
	kB

(
iωk te

−iωk t + e−iωk t − 1
)

|K; k〉0. (5.51)

The linear growth in t may look worrying.
The other contributions arise from the free evolution oper-

ator acting on the excited state. There are two such contribu-
tions. One is simply

e−i H ′
2t |K〉(L)02B

1 = e−i H ′
2t

[
− 1

2
√
Q0

∫∑ dk

2π
	kB |K; k〉0

]

= − 1

2
√
Q0

e−i(Q1+ωK)t

∫∑ dk

2π
	kBe

−iωk t |K; k〉0 (5.52)

and it cancels the second term in the parenthesis in Eq. (5.51).
The other uses the kink kinetic term π2

0 /2

e−i H ′
2t |K〉(L)22

1

=
∞∑
n=0

(−i t)n

n!

[
− 1

2
√
Q0

∫∑ dk

2π

(
Q1 + ωk

+ωK + π2
0

2

)n

	kBωkφ
2
0 |K; k〉0

]

= − i t

2
√
Q0

∞∑
n=1

(−i t)n−1

(n − 1)![ ∫∑ dk

2π

(
Q1 + ωk + ωK

)n−1
	kBωk |K; k〉0

]

= − 1

2
√
Q0

∫∑ dk

2π
	kBiωk te

−i(Q1+ωk+ωK )t |K; k〉0

(5.53)

and it cancels the first term in the parenthesis in Eq. (5.51).
Adding all three contributions together, one arrives at

e−i H ′t |K〉 ⊃ − 1

2
√
Q0

e−i(Q1+ωK)t
∫∑ dk

2π
	kB |K; k〉0

= e−i(Q1+ωK )t |K〉(L)02B
1 . (5.54)

Again, when folded into the wave packet this ensures that
even the two-meson states move along with the wave packet.
This is nontrivial of course, since if the two mesons had been
on-shell they would move more slowly than the single meson.

5.3.3 The no-meson sector

Finally we turn our attention to the no-meson sector of the
primary coefficients. There are two such terms in the initial
condition

|K〉(L)00
1 = |K〉(L)00A

1 + |K〉(L)00B
1

|K〉(L)00A
1 = − 	−K,B

4
√
Q0ωK

|0〉0,

|K〉(L)00B
1 = gV (3)

−
4ω2

K

∫
dxI(x)g−K(x)|0〉0. (5.55)

The only interaction which contributes to the second term
is

H ′
3 ⊃ g

4

∫∑ dk

2π

VIk
ωk

B−k (5.56)

leading to

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ g

4

∫∑ dk

2π

VIk
ωk3

∞∑
n=0

(−i t)n

n!
n−1∑
m=0

Qm
1 B−k(Q1 + ωK)n−m−1|K〉0

= gVI−K

4ω2
K

e−i Q1t
(
e−iωK t − 1

)
|0〉0. (5.57)

Adding this to

e−i H ′
2t |K〉(L)00B

1 = e−i H ′
2t

[
gV (3)

−
4ω2

K

∫
dxI(x)g−K(x)|0〉0

]

= gV (3)
−

4ω2
K

e−i Q1t
∫

dxI(x)g−K(x)|0〉0

(5.58)

we find

e−i H ′t |K〉 ⊃ e−i(Q1+ωK )t |K〉(L)00B
1 + DK

DK = g

4ω2
K

e−i Q1t

∫
dx

(
V (3)

− − V (3)(g f (x))
)

I(x)g−K(x)
(

1 − e−iωK t
)

|k1k2〉0. (5.59)

The remainder DK is very similar to the CK in Eq. (5.43).
As a result, the same argument used above to show that CK

vanishes when folded into the wave packet also applies to
DK. This an important consistency check. Recall that the
zero-meson sector even in the initial condition was annihi-
lated by the folding into the wave packet, and so there was no
zero-meson piece in the initial state. Now in (5.59) we found
that the evolution consists of two terms. The first, due to the
factor of e−i(Q1+ωK )t , implies that the zero-meson piece of
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the wave packet is translated rigidly. However, when folded
into the wave packet this piece is zero, and so there is noth-
ing to translate rigidly. The DK piece on the other hand is,
as argued above in the case of CK, generated only when the
wave packet arrives within a distance of σ or 1/m of the
kink, and so it results from the kink–meson scattering. Thus,
we find that the meson wave packet indeed is rigidly trans-
lated before reaching the kink, despite the fact that the initial
condition was defined using the vacuum Hamiltonian, which
is a truncation of the true dynamics, while the evolution is
performed using the kink Hamiltonian.

Next let us turn to the first term |K〉(L)00A. The first con-
tribution arises from the interaction

H ′
3 ⊃ gφ2

0

4

∫∑ dk

2π

VBBk

ωk
B−k (5.60)

which leads to

e−i H ′t
∣∣∣
O(g)

|K〉0 ⊃ g

4
e−i Q1t

∫∑ dk

2π

VBBk

ωk

∞∑
n=0

(−i t)n

n!
n−1∑
m=0

(
π2

0

2

)m

φ2
0 B−kω

n−m−1
K |K〉0

= −gVBB−K

4ωK
e−i Q1t

∞∑
n=2

(−i t)n

n! ωn−2
K |0〉0

= − 	−KB

4
√
Q0ωK

e−i Q1t
(
e−iωK t − 1 + i tωK

)
|0〉0. (5.61)

Other contributions arise from the free evolution operator
acting on the excited state. The first is

e−i H ′
2t |K〉(L)00A

1 = e−i H ′
2t

[
− 	−K,B

4
√
Q0ωK

|0〉0

]

= − 	−K,B

4
√
Q0ωK

e−i Q1t |0〉0 (5.62)

which cancels the second term in parenthesis in Eq. (5.61).
The other uses the kink kinetic term π2

0 /2

e−i H ′
2t |K〉(L)20

1 =
∞∑
n=0

(−i t)n

n!

(
π2

0

2

)n
φ2

0

4
√
Q0

	−K,B |0〉0

= i t
	−K,B

4
√
Q0

e−i Q1t |0〉0 (5.63)

and cancels the last term in Eq. (5.61). In the end, only the
first term in (5.61) remains

e−i H ′t |K〉 ⊃ − 	−KB

4
√
Q0ωK

e−i(Q1+ωK )t |0〉0

= e−i(Q1+ωK )t |K〉(L)00A
1 . (5.64)

For the last time, a change in the phase shift, folded into the
wave packet, yields a rigid translation. We thus have com-
pleted our demonstration that our prescription for the leading
correction to the wave packet for a meson incident on a kink

evolves, under the full kink Hamiltonian, by a rigid transla-
tion with no deformations, even to the quantum corrections,
before the meson wave packet physically overlaps with the
kink.

6 Subleading corrections

The main motivation for the present work is to prepare for a
treatment of elastic kink–meson scattering, whose amplitude
is expected to be of order O(g2). One potential contribution
to this will be an O(g2) correction to the asymptotic state
proportional to |−K〉0. To see if such a contribution is present,
we need to calculate the O(g2) correction |K〉(L)

2 to the one-
meson part of |K〉(L). We will evaluate the amplitude using the
reduced norm of Ref. [25], which only requires the primary
part |K〉(L)01

2 . We will find that there is no | − K〉0 term in

|K〉(L)
2 , or more precisely that this term can and should be set

to zero, and so there will be no corresponding correction to
elastic kink–meson scattering. This question was the main
motivation for the present work.

6.1 One meson and two zero modes

To find |K〉(L)01
2 , first we need to find the term |K〉(L)21

2 with
two zero modes. As this is a descendant, it is determined
entirely by translation invariance P ′|K〉(L) = 0. This condi-
tion constrains π0|K〉(L)21

2

π0|K〉(L)21
2 = − 1√

Q0
P|K〉(L)

1 |m=n=1. (6.1)

Which terms in |K〉(L)
1 may contribute? We recall that all

of the zero-meson terms are annihilated when folded into
the wave packet as they contain 	KB , VIK or its vacuum
Hamiltonian analogue which are themselves annihilated.
This means that their contributions to |K〉(L)

2 will also be
annihilated when folded into the wave packet, and so we will
simply drop them.

This leaves four contributions. The m = n = 1 terms of
each are denoted with the ⊃ symbol

P|K〉(L)11
1

⊃ − i

2

∫∑ d2k

(2π)2 	k1k2

(
1 + ωk1

ωk2

)
B‡
k1
B−k2

[
φ0

2
√
Q0

∫∑ dk

2π
	−K,k

(
1 + ωk

ωK

)
|k〉0

]

= − iφ0

4ωK
√
Q0

∫∑ dk

2π[ ∫∑ dk′

2π

	−K,−k′	kk′

ωk′

(
ωK + ωk′

) (
ωk + ωk′

)] |k〉0

(6.2)
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P|K〉(L)22
1

⊃
∫∑ dk

2π
	kBπ0

B−k

2ωk[
− φ2

0

2
√
Q0

∫∑ dk′

2π
	k′Bωk′ |K; k′〉0

]

= iφ0

2
√
Q0

∫∑ dk

2π[
ωk

ωK
	−KB	kB |; k〉0 + |	kB |2|K〉0

]
(6.3)

P|K〉(L)02
1

⊃
∫∑ dk

2π
	kBiφ0

B−k

2[
gV (3)

−
4ωK

∫
dx

∫∑ d2k

(2π)2

gk1(x)gk2(x)g−K(x)

ωK − ωk1 − ωk2

|k1k2〉0

−g

2

∫∑ dk′

2π

[
VIk′

ωk′
+ 	k′B

g
√
Q0

]
|K; k′〉0

]

= igφ0V
(3)
−

4ωK

∫∑ dk

2π

[ ∫∑ dk′

2π
	−k′B

∫
dx

gk(x)gk′(x)g−K(x)

ωK − ωk − ωk′

]
|; k〉0

− igφ0

4

∫∑ dk

2π

[
VIk
ωk

+ 	kB

g
√
Q0

]
(	−kB |K〉0 + 	−KB |; k〉0) (6.4)

P|K〉(L)13
1

⊃ i
∫∑ d2k

(2π)2 	k1k2

B−k1 B−k2

4ωk2[
φ0

2
√
Q0

∫∑ d2k′

(2π)2 	k′
1k

′
2
(ωk′

2
− ωk′

1
)|K; k′

1k
′
2〉0

]

= − iφ0

8
√
Q0

[ ∫∑ d2k

(2π)2 |	k1k2 |2
(ωk1 − ωk2)

2

ωk1ωk2

]
|K〉0

+ iφ0

4ωK
√
Q0

∫∑ dk

2π[ ∫∑ dk′

2π

	−K,−k′	k′k
ωk′

(ωK − ωk′)(ωk − ωk′)

]
|k〉0.

(6.5)

Some of these terms will also vanish when folded into the
wave packet. For example, the |; k〉0 term in P|K〉(L)22

1 is
proportional to 	−KB , which we have seen vanishes when
folded as the x integral is supported far from the origin where
gB(x) vanishes.

What about P|K〉(L)02
1 ? The argument above applies to the

	−KB term here as well, so that term will not contribute. Let
us next consider the term that is trilinear in g, which is also
of the form |; k〉0. When folded into the wave packet, the K

integral vanishes unless x ∼ x0. Now, consider the k′ inte-
gral. This consists of an ωk′ in the denominator which varies
slowly far from the pole, and also gk′(x) in the numerator and
a g−k′(y) in the 	−k′B . What about the pole? Now recall that
in Eq. (3.10), the vacuum Hamiltonian should use the vac-
uum field φ(L) and so the three normal mode factors in the
residue are in fact plane waves, as can be seen in (4.26). The
x integration then implies that k1 + k2 = K and so the pole is
avoided. This is only the second time that the vacuum field
has been relevant in this note. Therefore, the K-dependence
in the denominator has little effect on the k′ integral, whose
integrand changes phase very rapidly with respect to k′ as a
result of the e−ik′x in g′

k(x). This must be compensated by
a phase in g−k′(y). This requires y ∼ x , which we recall
is very large. As a result the g′

B(y) in 	−k′B vanishes. We
conclude that this term will vanish when folded into the wave
packet, and so we do not consider it further. Only the |K〉0

piece of the P|K〉(L)02
1 term may contribute.

In fact, we may also simplify the first and fourth terms
when folded into wave packets. Recall from Eq. (4.21) that
this folding allows us to replace 	−K,k with −iK2πδ(K−k).
As a result of the δ, the round parenthesis in the last line of
P|K〉(L)13

1 vanish, and so this line does not contribute leaving

P|K〉(L)13
1 ⊃ − iφ0

8
√
Q0[ ∫∑ d2k

(2π)2 |	k1k2 |2
(ωk1 − ωk2)

2

ωk1ωk2

]
|K〉0. (6.6)

On the other hand, it allows the integrals in P|K〉(L)11
1 to be

performed, yielding

P|K〉(L)11
1 ⊃ − iK2φ0√

Q0
|K〉0.

Adding these to the |K〉0 terms in P|K〉(L)22
1 and P|K〉(L)02

1
one arrives at

P|K〉(L)
1 ⊃ iφ0

4
√
Q0

[
− 4K2

+
∫∑ dk

2π

(
|	kB |2 − g

√
Q0

	−kBVIk
ωk

)

−1

2

∫∑ d2k

(2π)2 |	k1k2 |2
(ωk1 − ωk2)

2

ωk1ωk2

]
|K〉0

= −√
Q0π0|K〉(L)21

2 . (6.7)

Thus we have found

|K〉(L)21
2 = φ2

0
8Q0

[
− 4K2

+
∫∑ dk

2π

(
|	kB |2 − g

√
Q0

	−kBVIk
ωk

)

− 1

2

∫∑ d2k

(2π)2 |	k1k2 |2 (ωk1 − ωk2 )2

ωk1ωk2

]
|K〉0. (6.8)
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Note that the only momentum which appears is k = K. This
was also the case at O(g) and is to be expected in general. It
reflects the fact that the meson momentum itself is conserved
far from the kink, as momentum cannot be exchanged with
the kink from far away. This fact distinguishes the asymp-
totic states defined in this paper from true eigenstates of the
kink Hamiltonian, calculated in Ref. [25], which also contain
| − K〉0, even after being folded into a distant wave packet,
reflecting the fact that the time-independent states contain
a component which is reflected from the kink. Such elastic
meson–kink scattering will be considered in the near future.

6.2 One meson and no zero modes

Finally we are ready to evaluate |K〉(L)01
2 . Recall (4.26) that

the state |K〉(L)
0 + |K〉(L)

1 , when folded into the wave packet,
is equal to(

B‡
K − gV (3)

−
4ωK

∫
dk

2π

BkBK−kB−K

ωK − ωk − ωK−k
B‡
k B

‡
K−k

)
|0〉

− iKφ0√
Q0

|K〉0 (6.9)

folded into the wave packet. The last term has a single power
of φ0 and so will not contribute to a term with no zero
modes, and thus will play no role here. Recall further that the
terms in the parenthesis are associated with the meson wave
packet, and so will be acted upon by the vacuum Hamilto-
nian, whereas |0〉 is the dressed kink, which will be acted
upon by the full kink Hamiltonian. In other words, at second
order our master formula (3.14) reads

0 = (H ′
2 − E1)|K〉(L)

2

−gV (3)
−

4ωK

∫
dk

2π

BkBK−kB−K

ωK − ωk − ωK−k
[H (L)

3 , B‡
k B

‡
K−k]|0〉0

+[H (L)
3 , B‡

K]|0〉1

−gV (3)
−

4ωK

∫
dk

2π

BkBK−kB−K

ωK − ωk − ωK−k
B‡
k B

‡
K−k H

′
3|0〉0

+B†
KH

′
3|0〉1 + [H (L)

4 , B‡
K]|0〉0 + B‡

K(H ′
4 − E2)|0〉0

(6.10)

where E1 = Q1 + ωK .
Using the identity

[φn(x), B‡
k ] = ng−k(x)

2ωk
: φn−1(x) :b (6.11)

one easily finds

[H (L)
3 , B‡

K] = gV (3)
−

4ωK

∫
dxg−K(x)

(
: φ2(x) :b +I(x)

)

[
H (L)

3 , B‡
k B

‡
K−k

]
= gV (3)

−
4ωk

∫
dxg−k(x)

(
: φ2(x) :b +I(x)

)
B‡
K−k

+ gV (3)
−

4ωK−k

∫
dxgk−K(x)B‡

k

(
: φ2(x) :b +I(x)

)
. (6.12)

Similarly, using the O(g2) interaction

H (L)
4 = g2V (4)

−
24

∫
dx

[
: φ4(x) :b

+6I(x) : φ2(x) :b +3I2(x)
]

(6.13)

one arrives at the commutator

[H (L)
4 , B‡

K] = g2V (4)
−

12ωK

∫
dxg−K(x)

[
: φ3(x) :b +3I(x)φ(x)

]
. (6.14)

6.2.1 The first term

Now we are ready to evaluate the one-meson, no zero-mode
contributions from all seven terms in the eigenvalue equation
(6.10). Using E1 = Q1 + ωK , the first term contains

(H ′
2 − E1)|K〉(L)

2 ⊃ π2
0

2
|K〉(L)21

2

+
(

−ωK +
∫∑ dk

2π
ωk B

‡
k Bk

)
|K〉(L)01

2

=
(

−ωK +
∫∑ dk

2π
ωk B

‡
k Bk

)
|K〉(L)01

2

+ 1

8Q0

[
4K2 +

∫∑ dk

2π

(
−|	kB |2 + g

√
Q0

	−kBVIk
ωk

)

+1

2

∫∑ d2k

(2π)2 |	k1k2 |2
(ωk1 − ωk2 )

2

ωk1ωk2

]
|K〉0. (6.15)

Note that the right hand side contains |K〉(L)01
2 , which is the

second order coefficient that we are trying to find. This is
the only place that it will appear, as |K〉(L)

2 does not appear
anywhere else in (6.10), and so we will not be able to fix
the kernel of the term in the round parenthesis. This kernel
consists of the initial state |K〉0 and also the state | − K〉0,
which is the coefficient corresponding to the leading quantum
correction to elastic kink–meson scattering. This ambiguity is
physical, as the kink Hamiltonian indeed has two degenerate
eigenstates and the two undetermined coefficients are just the
weights of those states in |K〉(L).

In conclusion, we see that Eq. (6.10) does not determine
the | −K〉0 component of |K〉(L)

2 , reflecting an honest degen-
eracy in the spectrum of the Hamiltonian. Rather, we brutally
set this component to zero by hand using the condition that the
wave packet moves rigidly whereas this component moves in
the opposite direction. So is this exercise trivial? No, because
the fact that a | − K〉0 component of |K〉(L)

2 is in the kernel
of the term in round parenthesis implies that the contribution
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from this term to the |−K〉0 part of (6.10) cancels. However,
there may still be a contribution from the other six terms, and
now we see that we cannot use |K〉(L)

2 to cancel it. In other
words, Eq. (6.10) is overconstrained. Therefore, it will be a
nontrivial check of the consistency of (6.10), and therefore
our master formula (3.14), that none of the other six terms
include contributions proportional to | − K〉0.

This is similar to the case of nonrelativistic quantum
mechanics, where there are steady state solutions with any
normalization and with any backwards traveling wave at
x = −∞. As in that case, the freedom is just the free-
dom to choose an initial backwards scattering wave, and
can be eliminated using the proper choice of boundary con-
ditions. If one solves the scattering problem using a kink
Hamiltonian eigenstate, then the correct boundary condition
is that there should be no incoming wave from the right.
If instead one solves the problem by evolving the incoming
wave packet, then the correct boundary condition is that there
should be no scattering before the wave packet arrives at the
kink. These two approaches to inelastic kink–meson scatter-
ing were described in Refs. [23] and [25] respectively where
the corresponding boundary conditions were described.

6.2.2 The second term

Let us turn to the next term in Eq. (6.10). We need terms

with one meson in the commutator
[
H (L)

3 , B‡
k B

‡
K−k

]
. These

include the zero-meson terms in : φ2 :b

: φ2(x) :b⊃
∫

d2k

(2π)2 gk1(x)gk2(x)B
‡
k1

B−k2

ωk2

. (6.16)

Therefore

[
H (L)

3 , B‡
k B

‡
K−k

]
|0〉0 ⊃ gV (3)

−
4ωk

∫
dxg−k(x) (I(x)|K − k〉0

+
∫

dk′

2π

gk′(x)gk−K(x)

ωk−K
|k′〉0

)

+ gV (3)
−

4ωK−k

∫
dxgk−K(x)I(x)|k〉0. (6.17)

The second term is therefore

−gV (3)
−

4ωK

∫
dk

2π

BkBK−kB−K

ωK − ωk − ωK−k
[H (L)

3 , B‡
k B

‡
K−k]|0〉0

= −g2V (3)2
−

16ωK

∫
dk

2π

BkBK−kB−K

ωk (ωK − ωk − ωK−k)

×
∫

dxg−k(x)

(
2I(x)|K − k〉0

+gk−K(x)

ωk−K

∫
dk′

2π
gk′(x)|k′〉0

)
. (6.18)

This is the first term in which we have seen that the meson
momentum is not manifestly conserved, because it is not
proportional to |K〉. The total momentum P ′ is conserved
because P ′ commutes with H ′, which evolves the system.
Therefore, if the meson momentum is not conserved, it means
that some momentum was exchanged with the kink. However
we do not expect this to happen if the meson is far from the
kink. To check this expectation, we should fold (6.18) into
the meson wave packet.

Let us first look at the first term in the round parenthesis
in Eq. (6.18). For σ large enough, the ω terms may be eval-
uated at k0 and removed from the K integral, leaving a term
proportional to

∫
dxI(x)

∫
dK

2π
e−iKx0

∫
dk

2π
gk(x)|K − k〉0

=
∫

dxI(x)
∫

dK

2π

∫
dk

2π
gk(x)e

−i(K+k)x0 |K〉0.

(6.19)

The phase of the k integration varies quickly with respect
to k, because (d/dk)Arg(e−ikx0) = −x0. This variation is
however canceled by that of the phase of gk(x) if x ∼ x0.
Therefore, we learn that the k integral is only appreciable
when x ∼ x0. However I(x0) is exponentially suppressed in
mx0, so this term vanishes when folded into the wave packet
in the large mx0 limit.

A similar argument applies to the second term in
Eq. (6.18). Now the K integral is proportional to

∫
dK

2π
e−iKx0gk−K(x) (6.20)

whose large mx0 limit vanishes unless x ∼ x0. In that case,
one may replace all of the normal modes g(x) with their
asymptotic forms (3.3). Equation (6.18) is then, up to terms
annihilated by folding, equal to

− g2V (3)2
−

16ωK

∫
dk

2π

B−K

ωkωk−K(ωK − ωk − ωK−k)∫
dxeiKx

∫
dk′
2π

Bk′e−ik′x |k′〉0

= − g2V (3)2
−

16ωK

[∫
dk

2π

1

ωkωk−K(ωK − ωk − ωK−k)

]
|K〉0.

(6.21)

This is proportional to |K〉0, and so we see that far away from
the kink, at mx0 � 1, the meson wave packet does not trans-
fer momentum to the kink. This of course is a property that
we expect of an asymptotic incoming state, but not of a true
kink Hamiltonian eigenstate, which will contain a scattered
component.
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6.2.3 The third term

The third term in the eigenvalue equation (6.10) is

[H (L)
3 , B‡

K]|0〉1 ⊃ gV (3)
−

4ωK

∫
dxg−K(x)

×
[
I(x)|0〉01

1 +
∫

d2k

(2π)2 gk1(x)gk2(x)

(
B‡
k1
B−k2

ωk2

|0〉01
1 + B−k1 B−k2

4ωk1ωk2

|0〉03
1

)]
. (6.22)

Again, when folding into the wave packet, the K integral
vanishes in the mx0 → ∞ limit unless x ∼ x0, in which
case the I(x) term vanishes.

At large x we use the asymptotic forms of the normal
modes and perform the x and k2 integrations

[H (L)
3 , B‡

K]|0〉1 ⊃ gV (3)
−

4ωK
B−K

∫
dk

2π
BkBK−k

(
B‡
k Bk−K

ωk−K
|0〉01

1 + B−k Bk−K

4ωkωk−K
|0〉03

1

)
. (6.23)

These terms involve interactions of the cloud around the kink,
described by |0〉1, with the meson wave packet, described by
the operators. Needless to say, any such interaction would
violate the locality that we require for our asymptotic states.
Therefore, it is an important consistency check of our choice
of asymptotic state that these terms vanish when folded into
the wave packet.

Let us look at the first term in the round parentheses, in
which the dressed kink contains a single meson. Folding it
into the wave packet, one obtains

σ
√

π
g2V (3)

−
2ωK

∫
dK

2π
e−σ 2(K−k0)2

ei(k0−K)x0

∫
dk

2π

Bk+KB−k

ωk

(
VIk
2ωk

+ 	kB

2g
√
Q0

)
|k + K〉0

= σ
√

π
g2V (3)

−
4ωK

∫
dk

2π

[∫
dK

2π
e−σ 2(K−k0)2

ei(k0−K)x0

BkBK−k

ωk−K

(
VI,k−K

ωk−K
+ 	k−K,B

g
√
Q0

)
|k〉0

]
. (6.24)

The term e−σ 2(K−k0)2
ei(k0−K)x varies very quickly with

respect to K, whereas the other terms are essentially con-
sistant within the support of the Gaussian e−σ 2(K−k0)2

in the
large mσ limit. Therefore we may replace K with k0 in the
other terms and pull them out of the K integral, leaving a
Gaussian integral

σ
√

π

∫
dK

2π
e−σ 2(K−k0)2

ei(k0−K)x0 = e−x2
0/(4σ 2)

2
(6.25)

which vanishes in the x0/σ → ∞ limit. Thus, there is no
nonlocal interaction between the kink and the wave packet
arising from the |0〉01

1 term in (6.23). In fact, like the I(x)
term, it does not contribute to Eq. (6.10).

Finally we consider the |0〉03
1 term in (6.23)

g2V (3)
−

24ωK
B−K

∫
dk

2π
BkBK−k

B−k Bk−K

4ωkωk−K∫∑ d3k

(2π)3

Vk1k2k3

ωk1 + ωk2 + ωk3

|k1k2k3〉0

= g2V (3)
−

4ωK
B−K

∫
dk

2π

BkBK−k

4ωkωk−K∫
dk′

2π

Vk′,−k,k−K

ωk′ + ωk + ωK−k
|k′〉0. (6.26)

Again, everything varies slowly with respect to K over the
narrow support of the Gaussian e−σ 2(K−k0)2

ei(k0−K)x in the
wave packetαK, and so eachKhere may be replaced by k0 and
the K integral reduces to (6.25), vanishing in the x0/σ → ∞
limit.

However, when k′ ∼ K, there is a δ-function divergence
in Vk′,−k,k−K

Vk′,−k,k−K ⊃ V (3)
−

∫
dxBk′B−kBk−Ke

i(K−k′)x

= 2πδ(K − k′)V (3)
− Bk′B−kBk−K (6.27)

and so this contribution is not small. It is

g2V (3)2
−

16ωK

∫
dk

2π

1

ωkωk−K(ωK + ωk + ωK−k)
|K〉0. (6.28)

6.2.4 The fourth term

The fourth term contains B‡
k B

‡
K−k on the left. As a result, it

always leads to at least two mesons, so it cannot contribute
to the one-meson correction to the asymptotic state.

6.2.5 The fifth term

Next we turn to the fifth term, which represents the second
order corrected kink and the bare meson. The terms with one
meson and no zero modes, representing the energy correction
to the kink, are

B†
KH ′

3|0〉1 = B†
K

[
g

6

∫∑ d3k

(2π)3 Vk1k2k3

B−k1 B−k2 B−k3

8ωk1ωk2ωk3

+ g

2

∫∑ dk

2π
VIk

B−k

2ωk

]

×
[
− g

6

∫∑ d3k′
(2π)3

Vk′
1k

′
2k

′
3

ωk′
1

+ ωk′
2

+ ωk′
3

|k′
1k

′
2k

′
3〉0
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− g

2

∫∑ dk′
2π

(
VIk′
ωk′

+ 	k′B
g
√
Q0

)
|k′〉0

]

=
[
− g2

48

∫∑ d3k

(2π)3

|Vk1k2k3 |2
ωk1ωk2ωk3(ωk1 + ωk2 + ωk3)

− g2

8

∫∑ dk

2π

(
|VIk |2 + VIk	−kB

g
√
Q0

)]
|K〉0.

(6.29)

Note that the V	 cross-term cancels that in the first contri-
bution (6.15).

6.2.6 The sixth term

The sixth term represents the second order correction to the
meson together with the bare kink. The one-meson part is

[H (L)
4 , B‡

K]|0〉0 ⊃ g2V (4)
−

4ωK

∫
dxg−K(x)I(x)φ(x)|0〉0

= g2V (4)
−

4ωK

∫
dxg−K(x)I(x)

∫∑ dk

2π
gk(x)|k〉0. (6.30)

As usual, when folded into the wave packet, theK integration
implies that this is nonvanishing only for x ∼ x0 and so
I(x) → 0 for a well-separated initial meson wave packet.
This is to be expected, as I(x) results from the interaction
of the meson with the kink, which is too far to interact. Thus
there is no such contribution, the momentum of an isolated
meson is conserved far from the kink.

6.2.7 The seventh term

The last term represents the second order correction to the
kink with a bare meson, together with the correction to the
energy. The only terms contributing a single meson are

B‡
K(H ′

4 − E2)|0〉0 =
(
g2VII

8
− E2

)
|K〉0. (6.31)

6.3 Defining E

We have seen that the only terms in Eq. (6.10) which survive
are proportional to |K〉0. This means that the momentum of
our asymptotic state is conserved when it is far from the
kink, as one expects. Recall that the second order contribution
|K〉(L)01

2 does not contribute to |K〉0 terms in (6.10), as they
are annihilated by the free kinetic term minus ωK . Therefore,
the only unknown in (6.10) is E2 in the seventh contribution
(6.31), and fixing E2 to the sum of the other terms will lead
(6.10) to be satisfied.

This is easily done. One finds

E2 = Q2 + M2 (6.32)

where

Q2 = g2VII
8

− g2

48

∫∑ d3k

(2π)3

|Vk1k2k3 |2
ωk1ωk2ωk3(ωk1 + ωk2 + ωk3)

− g2

8

∫∑ dk

2π
|VIk |2 − 1

8Q0

∫∑ dk

2π
|	kB |2

+ 1

16

∫∑ d2k

(2π)2 |	k1k2 |2
(ωk1 − ωk2 )

2

ωk1ωk2

(6.33)

is the 2-loop correction to the ground state kink mass, first
found in Ref. [31]. On the other hand

M2 = −g2V (3)2
−

8ωK[∫
dk

2π

ωk + ωK−k

ωkωk−K((ωk + ωK−k)2 − ω2
K)

]
(6.34)

is the one-loop correction to the moving meson energy in the
left vacuum.

The variable E2 is part of the definition of our asymptotic
state |K〉(L), and so this is an essential result. We believe that
more generally the variable E can be written as the sum of the
exact quantum corrections to the kink mass, calculated using
the kink Hamiltonian, with the corrections to the energy of a
moving meson that one would calculate in the vacuum sector
where the meson wave packet is located.

In summary, we have found E2 and we have shown that
|K〉(L)01

2 is proportional to |K〉0, with an arbitrary coefficient
reflecting a choice of normalization of |K〉(L). There is no
|−K〉0 piece, and so no corresponding contribution to elastic
meson–kink scattering.

7 Remarks

Our goal in this work has been to define asymptotic states
consisting of a kink and a meson wave packet far to its left
which have two properties. First, the state evolves via a con-
stant velocity motion of the meson wave packet, keeping
its shape including all quantum corrections, up to the usual
wave packet spreading effects. Second, the state is invariant
under rigid translations, which translate both the kink and
the meson while maintaining their relative distance.

We then presented a construction. Translation-invariance
was manifest in our construction. It fixed a part of our state,
which we called the descendant. The rest of the state, called
the primary, was fixed via a variant on the usual eigenvalue
problem. Instead of imposing that the state be an eigenstate of
the full Hamiltonian, we separated it into a dressed kink and a
dressed meson and acted on the dressed meson with a vacuum
Hamiltonian. This is a truncation of the full Hamiltonian
corresponding, intuitively, to removing the kink.

This is not clearly consistent, as it is inevitable that the
vacuum Hamiltonian terms also contract with the dressed

123



Eur. Phys. J. C (2023) 83 :743 Page 25 of 26 743

kink and also evolution proceeds via the full Hamiltonian.
Also, it is not obvious that this leads to constant velocity, rigid
evolution. However, we showed that at the first few orders
the potentially offending terms disappear when folded into
the wave packet. Thus, our construction appears to satisfy
not only the translation-invariance criterion but also the rigid
motion criterion, as desired.

The generalization to an arbitrary number of meson wave
packets in arbitrary positions is obvious. One simply keeps
track of which wave packet which virtual meson is associated
with, and uses the vacuum Hamiltonian corresponding to the
vacuum in its position. Similarly, we believe that the gen-
eralization to extended domain walls is straightforward. We
hope that in the future this approach may be generalized to
the scattering of general global solitons, such as Skyrmions,
with elementary quanta, as this will teach us about baryon-
meson scattering [19]. Indeed, the scattering of fundamental
quanta off of solitons in general is a consistently popular
topic [39–41] and we hope that our construction of asymp-
totic states may be applied to extend existing results beyond
the leading order.

The results here justify some assumptions made in Refs.
[23–25] regarding quantum corrections to the initial and final
states in inelastic meson–kink scattering. In the short term,
this was the last missing ingredient needed for the study
of several problems. These problems include higher order
corrections to inelastic meson–kink scattering, leading order
elastic meson–kink scattering and a determination of quan-
tum corrections to the life time of an overly excited shape
mode, for example the twice-excited shape mode in the φ4

model. Such lifetimes are in general dependent on the quan-
tum corrections to the unstable state, but can be made well-
defined as the widths of resonances in elastic meson–kink
scattering. We hope to turn to the study of such unstable
resonances in the near future.

One may ask whether our asymptotic states may be created
directly from H ′ eigenstates, avoiding our construction. Of
course these are a basis of states, so some such construction
must be possible. Nonetheless, we have seen that the use of
H (L) here removes on-shell, degenerate eigenstates which,
using H ′, needed to be removed by hand during a careful
matching in Ref. [25]. Also, H (L) leads to much simpler
expressions, such as (4.26), for states, manifestly eliminating
	Bk terms and shape modes from the operator creating the
dressed wave packet and that this operator, at each order and
in each term, contains a product of B‡

ki
operators such that∑

i ki = K. Furthermore, our asymptotic states can naturally
be tensored together to create any number of mesons on both
sides of the kink, whereas states constructed from H ′ will
necessarily have on-shell additional mesons on one side of
the kink or the other, with the numbers on each side differing
by the number created during scattering.

Needless to say, with these asymptotic states in hand, it
would be tempting to search for an LSZ reduction formula
valid in the one-kink sector, which allows the states |K〉(L) to
be replaced by |K〉0 while removing those irreducible inter-
actions which occur far from and on the same side of the
kink.
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