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Abstract Linear stability of a plane shock waves in ultra-
relativistic anisotropic hydrodynamics is investigated. The
properties of the amplitudes of perturbations of physical
quantities are studied depending on the components of the
wave vector of a small harmonic perturbation. Analytical cal-
culations for the longitudinal and transverse propagation of
shock wave normal with respect to the anisotropy axis (beam-
axis) and numerical calculations for an arbitrary polar angle
are carried out.

1 Introduction

The hydrodynamic approach is widely used to describe the
evolution of matter created at the early stages of heavy ion
collisions. Attempts to use dissipative hydrodynamic the-
ories are presented in various papers [1–5]. However, the
large pressure anisotropy, which appears at the early stages of
heavy ion collisions due to the rapid longitudinal expansion,
leads to a necessity of studing the effect of high-order gra-
dients. Relativistic anisotropic hydrodynamics has been pro-
posed as a theory where anisotropy is introduced explicitly
as an appropriate parameter [6–9]. Anisotropic hydrodinam-
ics produces solutions that are significally closer to the exact
solutions of the Boltzmann equation than the standard vis-
cous framework. This result was obtained both for longitudi-
nally boost invariant and transversely homogeneous systems
[10] and for Gubser flow [11,12]. It has been also shown that
the anisotropic modeling is a promising approach in describ-
ing experimental data on heavy-ion collisions [13,14].

The formation of shock waves in a quark-guon medium
during the heavy-ion collisions has been discussed for several
decades [15,16]. Mach cone generated by supersonic partons
moving through the medium was stadied in the context of the
jet-quenching phenomena [17,18]. It has been shown that
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transverse shock waves in hot QCD matter can be produced
by fluctuations of the local energy density (hot spots) and
turbulence [19,20]. Appropriate description of stable shock
waves in dissipative theories in general case is not possible.
For the Israel-Stewart theory the existence of shock waves has
been proved only for small Mach numbers [21,22]. However,
anisotropic relativistic hydrodynamics, even in the leading
order, can give interesting solutions for shock waves.

In the framework of anisotropic hydrodynamics, it was
found that a difference between the longitudinal and trans-
verse pressures considered in the framework of anisotropic
hydrodynamics leads to the anisotropy of sound propagation
and the asymmetry of the Mach cone [23]. Previously, ana-
lytical expressions for the longitudinal and transverse prop-
agation of shock wave normal with respect to the anisotropy
axis (beam-axis) were obtained, and numerical calculations
for an arbitrary polar angle were presented [24]. The cal-
culations were performed in the ultrarelativistic case with
the assumption of constant anisotropy ξ

′ � ξ . Such effects
as flow delfection and significant changes in the strength of
shock waves depending on the parameters σ = P

′
/P, ξ

and the polar angle were obtained. Some results lead to the
question of the stability of shock waves against small pertur-
bations of the discontinuity surface.

In present paper, the linear stability of shock waves in rel-
ativistic anisotropic hydrodynamics is investigated following
the approach of [25,26]. The key point of this approach is
the use of the Laplace transform for the amplitude of the per-
turbation of physical quantities. It should be noted that the
result for the ultrarelativistic case was not discussed in the
original work. The final equation is obtained using the law
of conservation of particle number density, which no longer
holds in the case of a massless gas. The plan of the paper is
the following. Section 2 gives a presentation of this approach
for the ultrarelativistic case, which construct the basis for an
anisotropic description. The third chapter is devoted to the

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11904-1&domain=pdf
http://orcid.org/0000-0003-3949-2017
mailto:kovalenkoam@lebedev.ru


754 Page 2 of 17 Eur. Phys. J. C (2023) 83 :754

anisotropic case, where a brief presentation of the founda-
tions of anisotropic relativistic hydrodynamics and a study
of the stability of shock waves for the boundary cases of the
location of the normal to the discontinuity surface is given.
In fourth chapter the case of an arbitrary polar angle is con-
sidered.

2 Isotropic case

2.1 Basic equations

Consider an ultrarelativistic massless gas with the equation of
state ε = 3P . In this case we do not assume the conservation
law of the number of particles and concentrate only on the
energy-momentum conservation law:

∂μT
μν = 0, (2.1)

where

Tμν = (ε + P)UμU ν − Pgμν, (2.2)

Uμ = (u0, ux , uy, uz), u0 =
√

1 + u2
x + u2

z , (2.3)

P is pressure and gμν—the metric tensor.
We investigate a plane shock wave one-dimensional flow.

Due to the isotropy, it is possible to fix any direction of the
normal of the shock wave in space, and then, by transforming
the coordinates, move to a system where one of the axes is
directed along the normal. Therefore, without loss of gen-
erality, choose the normal vector Nμ = (0, 0, 0, 1). In this
case, the discontinuity surface divides the space into two half-
spaces �+ for z > 0 and �− for z < 0. Since we are consid-
ering a one-dimensional flow, then one can put vx = vy = 0
and for the components of 4-velocity we have

u0 = 1√
1 − v2

, uz = v√
1 − v2

.

With a Lorentz transformation we can move into the rest
frame of the shock wave. It is assumed that the direction of
the flow is such that v > 0.

We consider small harmonic perturbation of the disconti-
nuity surface that lead to the perturbed surface equation of
the form

f (t, x, y, z) = z − ηe−i(ωt+kx+ly) = 0, (2.4)

where η is a small amplitude of the perturbation. We are inter-
ested in the mode of instability for which k, l are real numbers
and Im ω > 0. In this case, disturbance grows exponentially
in time. Also we assume that in general case l �= 0, k �= 0.

We expand the physical quantities to the first order

u0(t, x, y, z) = u0 + δu0(t, x, y, z), (2.5)

ux (t, x, y, z) = δux (t, x, y, z), (2.6)

uy(t, x, y, z) = δuy(t, x, y, z), (2.7)

uz(t, x, y, z) = uz + δuz(t, x, y, z), (2.8)

P(t, x, y, z) = P + δP(t, x, y, z). (2.9)

It is assumed that for z −→ ±∞ perturbations of physi-
cal quantities vanish so that δu0, δux , δuy, δuz, δP → 0.
Under such boundary conditions, exponential growth can-
not be driven by energy transfer from distant boundaries.
The region of the phase space (with the anisotropy parameter
included) where this boundary condition is satisfied, together
with k, l ∈ R, Im ω > 0, forms the shock wave instability
condition.

We introduce the vector W = (δP, δux , δuy, δuz) for
the perturbed quantities. Linearizing the Eq. (2.1) around a
constant state, we obtain the following system of equations

Aμ∂μW = 0. (2.10)

The matrices Aμ have the form

A0 =

⎛
⎜⎜⎝

−1 + (1 + c2
s )u

2
0 0 0 2(ε + P)u0uz

0 (ε + P)u0 0 0
0 0 (ε + P)u0 0

(1 + c2
s )u0uz 0 0 (ε + P)(u2

0 + u2
z )

⎞
⎟⎟⎠

(2.11)

A1 =

⎛
⎜⎜⎝

0 (ε + P)u0 0 0
1 0 0 0
0 0 0 0
0 (ε + P)uz 0 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 0 (ε + P)u0 0
0 0 0 0
1 0 0 0
0 0 (ε + P)uz 0

⎞
⎟⎟⎠

(2.12)

A3 =

⎛
⎜⎜⎝

(1 + c2
s )u0uz 0 0 (ε + P)(u2

0 + u2
z )

0 (ε + P)uz 0 0
0 0 (ε + P)uz 0

1 + (1 + c2
s )u

2
0 0 0 2(ε + P)u0uz

⎞
⎟⎟⎠ ,

(2.13)

whete c2
s = (∂P/∂ε)s is the speed of sound.

Since it is expected that the vector W will inherit the per-
turbation of the discontinuity surface, we look for a solution
of the specific form:

W(t, x, y, z) = Y(z)e−i(ωt+kx+ly), (2.14)

where Y(z)—amplitudes of perturbed quantities. By substi-
tuting (2.14) into the Eq. (2.10) we have
(
ωA0 + k A1 + l A2 + i∂z A3

)
Y(z) = 0. (2.15)
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It is assumed that Y(z) admits the Laplace transform in
the half-spaces �− : z < 0 (behind the shock wave) and
�+ : z > 0 (ahead the shock wave):

Ŷ(q) =
∫ ∞

0
e−qzY(z)dz for �+,

Ŷ(q) =
∫ ∞

0
e−qzY(−z)dz for �−.

After the Laplace transform one finds
(
ωA0 + k A1 + l A2 ± iq A3

)
Ŷ(q) ∓ i A3Y(0) = 0. (2.16)

Defining q = ∓im (for �±) and A = ωA0 +k A1 +l A2 +
mA3, one can rewrite (2.16) as

AŶ(m) = ±i A3Y(0), in �±. (2.17)

Note that for the matrix M = A−1
3 A the equation Det M = 0

is an equation of the fourth degree in m and is solvable in
radicals. In particular,

det M = (m − m0)(m − m1)(m − m2)(m − m3). (2.18)

For the system of equations

A−1
3 AŶ(m) = ±iY(0), in �±,

with a known vector Y(0), one can use Cramer’s rule by
introducing matrices Bi (i = 0, 1, 2, 3), that are constructed
by replacing the i-th column of M matrices, where the i-th
column replaced by theY(0) column. Denoting det Bi = �i ,
det M = �M we have following expression for the solution

Ŷ(m) =
(

�0

�M
,

�1

�M
,

�2

�M
,

�3

�M

)
.

Using (2.18), we can rewrite the vector Ŷ(m) as a decompo-
sition

Ŷ(m) =
∑
i

Ci
1

m − mi
, (2.19)

where Ci are some constant vectors.
Then for the inverse Laplace transform we have

1

2iπ

∫
e−qz 1

±iq − mi
dq ∼ e∓imi z, in �±. (2.20)

Therefore Y(z) is the sum of plane waves eimi z . This means
that the system of differential equations (2.15) generates the
linear system of equations, for which condition Det A = 0
is necessary for their consistency. This condition provides
characteristic equation for m To understand the behavior of
solutions e∓imi z , it is necessary to analyze the roots of this
characteristic equation.

2.2 The characteristic equation

The equation � = det A = 0 reads as follows


2
(

2 − c2

s [(k2 + l2)(1 − v2) + (m + vω)2]
)

= 0,


 = ω + vm. (2.21)

Its solutions are the double root for 
 = 0 and the two roots
of the quadratic equation:

m0 = m1 = −ω

v
, (2.22)

m2 = −vω(1 − c2
s ) + cs

√
1 − v2

√
(k2 + l2)(v2 − c2

s ) + ω2(1 − v2)

v2 − c2
s

,

(2.23)

m3 = −vω(1 − c2
s ) − cs

√
1 − v2

√
(k2 + l2)(v2 − c2

s ) + ω2(1 − v2)

v2 − c2
s

.

(2.24)

The root m0,1 = −ω/v corresponds to the entropy-vortex
perturbations propagating with the gas [26]. We assume that
Re ω > 0. Then for the double root m0,1 we have

Re ω � 0, Im ω > 0 ⇔ Rem0,1 � 0, Im m0,1 < 0 (2.25)

behind and ahead the shock wave.
To analyze the next two roots, we introduce the following

definition q = u2
0(k

2 + l2)(v2 − c2
s ), obtaining

m2,3 = −vu2
0ω(1 − c2

s ) ± cs
√
q + ω2

u2
0(v

2 − c2
s )

. (2.26)

Let ω = ωR + iωI , then
√
q + ω2 = √

zR + i z I , where

zR = q + ω2
R − ω2

I , zI = 2ωRωI .

It is known that for the square root of a complex number is
calculated one can write

√
zR + i z I = ±

⎡
⎢⎢⎣

√√√√
√
z2
R + z2

I + zR

2

+ i sign(zI )

√√√√
√
z2
R + z2

I − zR

2

⎤
⎥⎥⎦ .

Since the choice of the ± sign before the brackets only swaps
the roots m2 and m3, we can restrict ourselves to considering
the positive sign. We can write expressions for the real and
imaginary parts of m2 with sign(zI ) = sign(ωRωI ) = 1 as
follows
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u2
0(v

2 − c2
s ) Rem2

= −ωR

⎛
⎜⎜⎝vu2

0(1 − c2
s ) − cs

ωR

√√√√
√
z2
R + z2

I + zR

2

⎞
⎟⎟⎠ ,

u2
0(v

2 − c2
s ) Im m2

= −ωI

⎛
⎜⎜⎝vu2

0(1 − c2
s ) − cs

ωI

√√√√
√
z2
R + z2

I − zR

2

⎞
⎟⎟⎠ .

In the half-space �− behind the shock wave v2 −c2
s > 0 and

q > 0, so that

1

|ωI |

√√√√
√
z2
R + z2

I − zR

2
<

1

|ωI |

√√√√
√

(ω2
R + ω2

I )
2 − (ω2

R − ω2
I )

2
= 1,

1

ωR

√√√√
√
z2
R + z2

I + zR

2
<

1

ωR

√√√√
√

(ω2
R + ω2

I )
2 + (ω2

R − ω2
I )

2
= 1,

for which it follows that

Re ω � 0, Im ω > 0 ⇔ Rem2 � 0, Im m2 < 0 in �−.

(2.27)

For the half-space �+ we have v2 − c2
s < 0 and q < 0,

so one obtains

1

|ωI |

√√√√
√
z2
R + z2

I − zR

2
> 1,

1

ωR

√√√√
√
z2
R + z2

I + zR

2
> 1.

Therefore in �+ we have similar inequalities

Re ω � 0, Im ω > 0 ⇔ Rem2 � 0, Im m2 < 0 in �+.

Expressions for the real and imaginary parts of the root
m3 read

u2
0(v

2 − c2
s ) Im m3

= −ωI

⎛
⎜⎜⎝vu2

0(1 − c2
s ) + cs

ωI

√√√√
√
z2
R + z2

I − zR

2

⎞
⎟⎟⎠ ,

u2
0(v

2 − c2
s ) Rem3

= −ωR

⎛
⎜⎜⎝vu2

0(1 − c2
s ) + cs

ωR

√√√√
√
z2
R + z2

I + zR

2

⎞
⎟⎟⎠ .

Since the sign before the square root is positive here, it is
obvious that

Re ω � 0, Im ω > 0 ⇔ Rem3 � 0, Im m3 < 0 in �−,

(2.28)

Re ω � 0, Im ω > 0 ⇔ Rem3 � 0, Im m3 > 0 in �+.

(2.29)

2.3 Solution for Ŷ(m)

Now we can specify the behavior of Y(x) in the �± half-
spaces. For �− (z < 0) we obtain Im m0 < 0, Im m2 <

0, Im m3 < 0, then for z −→ ∞ we have exponential growth
of (2.20) that violates boundary condition, hence we need to
put C1,C2,C3 = 0. For half-space �+ (z > 0) the inequal-
ities are Im m0 < 0, Im m2 < 0, Im m3 > 0, that leads to
the condition C3 = 0.

Now, we need an expression for the vector Y(0). This
can be obtained using the matching equation for the energy-
momentum tensor at the discontinuity surface [27,28]. Let
Nμ be the normal to the discontinuity surface, then

NμT
μν = NμT

′μν, (2.30)

where the prime denotes variables in the half-space �+
(behind the shock wave). For the unperturbed case with
Nμ = (0, 0, 0, 1) we have two equations

(ε + P)u0uz = (ε
′ + P

′
)u

′
0u

′
z, (2.31)

(ε + P)u2
z − P = (ε

′ + P
′
)u

′2
z − P

′
. (2.32)

The expression for the normal of the perturbed surface
obtained from the equation

f (t, x, y, z) = z − ηe−i(ωt+kx+ly) = 0

leads to

Nμ = ∂μ f = (iηω, iηk, iηl, 1). (2.33)

Here and below, we will neglect the exponent, meaning that it
is included in the amplitude η. Since we found that Y(0) = 0
for the half-space �−, then for the upstream and downstream
4-velocity vectors we have

Uμ = (u0, 0, 0, uz), (2.34)

U
′μ = (u

′
0 + δu

′
0, δu

′
x , δu

′
y, u

′
z + δu

′
z). (2.35)

It follows fromU
′μU

′
μ = 1 that u

′
0δu

′
0 = u

′
zδu

′
z . Substituting

energy-momentum tensor with perturbed vectors (2.34–2.35)
and the normal (2.33) into the Eq. (2.30) and performing
some transformations using the Eqs. (2.31–2.32), we obtain
the following components of Y(0)
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Y 0(0) = δP
′ = −2iηω(ε

′ + P
′
)

× c2
s
(u0u

′
z − u

′
0uz)(u0u

′
0 − uzu

′
z)

(c2
s − (1 − c2

s )u
′2
z )uzu0

u
′
zu

′
0, (2.36)

Y 1(0) = δu
′
x = iηk

u0u
′
z − u

′
0uz

u0
, (2.37)

Y 2(0) = δu
′
y = iηl

u0u
′
z − u

′
0uz

u0
, (2.38)

Y 3(0) = δu
′
z = iηω

(u0u
′
z − u

′
0uz)(u0u

′
0 − uzu

′
z)

(c2
s − (1 − c2

s )u
′2
z )uzu0

× (u
′2
z + c2

s (1 + u
′2
z ))u

′
0. (2.39)

Now it is possible to solve the equation

MŶ(m) = iY(0)

using Cramer’s rule as described above. Note that �i are a
polynomial of the fourth degree in m, furthermore

�0 = (m − m0)
2P(1)

0 (m), (2.40)

�1 = (m − m0)P
(2)
1 (m), (2.41)

�2 = (m − m0)P
(2)
2 (m), (2.42)

�3 = (m − m0)P
(2)
3 (m), (2.43)

where P(n)
i (m) is a polynomial of the nth degree in m. Since

�M = (m − m0)
2(m − m2)(m − m3), we can write the

following decomposition

Ŷ(m) = C1

m − m0
+ C2

m − m2
+ C3

m − m3
. (2.44)

As already mentioned we are interested in the conditionC3 =
0. One can find expressions for the components of the vector
C3, using formulas (2.40–2.43) and decomposition (2.44):

C30 = −R
ηcs(ε + P)(v

′ − v)

2vv
′2(v′2 − c2

s )(1 − v
′2)2Q

, (2.45)

C31 = −R
ηk(v

′ − v)

2vv
′
(1 − v

′2)3/2Q[csω + v
′Q] , (2.46)

C32 = −R
ηl(v

′ − v)

2vv
′
(1 − v

′2)3/2Q[csω + v
′Q] , (2.47)

C33 = −R
η(Qcs + ωv

′
)(v

′ − v)

2vv
′2(v′2 − c2

s )(1 − v
′2)2Q[csω + v

′Q] ,
(2.48)

where

Q =
√

(k2 + l2)(v′2 − c2
s )/(1 − v

′2) + ω2, (2.49)

R = 2v
′
cs(1 − vv

′
)ωQ + (v

′2 + c2
s )(1 − vv

′
)ω2

+ vv
′
(v

′2 − c2
s )(k

2 + l2). (2.50)

It is seen that the common factor for the components of the
vector C3 is R, hence the obvious requirement for C3 = 0 is
the condition R = 0.

2.4 Unstable mode

We will assume an ideal equation of state ε = 3P which is
appropriate for a massless gas. It is known that the speed of
sound in such a medium is c2

s = 1/3. Moreover, the shock
wave solution leads to the relation vv

′ = 1/3. Formulae
allow us to work with only one quantity—the downstream
velocity v

′
. Also one can conclude from the characteristic

Eq. (2.21) and the expression for m3 (2.24) that

k2 + l2 = (mv
′ + ω)2 − c2

s (m + v
′
ω)2

c2
s (1 − v

′2)
, (2.51)

Q = c2
s (m + v

′
ω) − v

′
(mv

′ + ω)

cs(1 − v
′2)

. (2.52)

Therefore, in the ultrarelativistic case the condition R = 0 is
equivalent to the equation

ϕ2 − 2v
′
ϕ − (1 − v

′2) = 0, (2.53)

where ϕ = 
/m, 
 = ω + vm. This equation has only real
solutions

ϕ1,2 = v
′ ± 1. (2.54)

We have Re ϕ � v
′
, Im ϕ < 0, since we are considering

a mode in which Im m3 > 0, Rem3 � 0. However, this does
not entirely specify the range of the variable ϕ. The domain
of ϕ can be determined using Eq. (2.21) (see Appendix A).
For real values of ϕ we find that the following inequalities
should hold

v
′ � ϕ � cs(1 − v

′2)

(1 − csv
′
)

. (2.55)

It is seen that both solutions do not fall into this area.
This means that the mode of instability does not exist for the
ultrarelativistic case.

3 Anisotropic case

3.1 Anisotropic relativistic hydrodynamics

The framework of anisotropic hydrodynamics we use in this
paper is based on the kinetic theory approach [6,29,30],
where one assumes that the distribution function f is a ansatz
of Romatschke–Strickland form

f (x, p) = fiso

(√
pμ�μν(x)pν

�(x)

)
, (3.1)
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where �(x) is a coordinate-dependent temperature-like
momentum scale and�μν(x)quantifies coordinate-dependent
momentum anisotropy. In what follows we consider one-
dimensional anisotropy such that pμ�μν pν = p2 + ξ(x)p2‖
in the local rest frame (LRF).

To construct the energy-momentum tensor as the sec-
ond moment of the distribution function we define a general
orthogonal tensor basis Uμ, Xμ,Yμ, Zμ which in the LRF
reads

Uμ
LRF = (1, 0, 0, 0), (3.2)

Xμ
LRF = (0, 1, 0, 0), (3.3)

Yμ
LRF = (0, 0, 1, 0), (3.4)

Zμ
LRF = (0, 0, 0, 1). (3.5)

Since we consider one-dimensional (longitudinal) anisotropy,
one can write the energy-momentum tensor Tμν in terms of
four-velocity vector Uμ and space-like longitudinal vector
Zμ as follows [31]

Tμν = (ε + P⊥)UμU ν − P⊥gμν + (P‖ − P⊥)ZμZν,

(3.6)

where P‖ and P⊥ is longitudinal (towards anisotropy direc-
tion) and transverse pressure respectively. In the LRF the
expression (3.6) takes the form

Tμν = diag(ε, P⊥, P⊥, P‖).

In the case of massless gas the condition of the tracelessness
of the energy-momentum tensor leads to the relation ε =
2P⊥ + P‖.

It is convenient to rewrite the four-vector Uμ(x) in terms
of the longitudinal rapidity ϑ(x), the time-like velocity u0 =√

1 + u2
x + u2

y and transverse velocities ux , uy [32]

Uμ = (u0 cosh ϑ, ux , uy, u0 sinh ϑ). (3.7)

Then vector Zμ takes the form

Zμ = (sinh ϑ, 0, 0, cosh ϑ). (3.8)

It is important to note that the dependence on the
anisotropy parameter ξ can be factorized [6]:

ε =
∫

d3 p

(2π)3 p
0 fiso

⎛
⎝
√
p2 + ξ(x)p2‖

�(x)

⎞
⎠ = R(ξ)εiso(�),

(3.9)

P⊥ =
∫

d3 p

(2π)3

p2⊥
2p0

fiso

⎛
⎝
√
p2+ξ(x)p2‖

�(x)

⎞
⎠= R⊥(ξ)Piso(�),

(3.10)

P‖ =
∫

d3 p

(2π)3

p2‖
p0

fiso

⎛
⎝
√
p2+ξ(x)p2‖

�(x)

⎞
⎠= R‖(ξ)Piso(�),

(3.11)

where the anisotropy-dependent factors R⊥(ξ) and R‖(ξ) are
[6]

R⊥(ξ) = 3
2ξ

(
1+(ξ2−1)R(ξ)

1+ξ

)
,

R‖(ξ) = 3
ξ

(
(ξ+1)R(ξ)−1

1+ξ

)
, (3.12)

where, in turn,

R(ξ) = 1

2

(
1

1 + ξ
+ arctan

√
ξ√

ξ

)
. (3.13)

The ultrarelativistic condition εiso = 3Piso leads to the fol-
lowing relation between the anisotropic functions:

2R⊥(ξ) + R‖(ξ) = 3R(ξ). (3.14)

In the preceding paper [23] we have derived the follow-
ing equation describing propagation of sound in relativistic
anisotropic hydrodynamics with longitudinal anisotropy:

∂2
t n(1) =

(
c2
s⊥ ∂2⊥ + c2

s‖ ∂2
z

)
n(1), (3.15)

where n(1) is a (small) density fluctuation and cs⊥ and cs‖
stand for anisotropy-dependent transverse and longitudinal
speed of sound respectively. The explicit expressions for c2

s⊥
and c2

s‖ read

c2
s⊥ = R⊥

3R
, c2

s‖ = R‖
3R

. (3.16)

Before introducing a perturbation on the discontinuity sur-
face, we consider the process of linearization of the equation
∂μTμν . We assume that the anisotropy is constant ξ = ξ

′
,

so we perturb the isotropic quantities. The isotropic pressure
Piso, longitudinal rapidity ϑ and four-velocity components
ux , uy are linearized around constant state as

Piso(t, x, y, z) = P + δP(t, x, y, z), (3.17)

ϑ(t, x, y, z) = ϑ + δϑ(t, x, y, z), (3.18)

ux (t, x, y, z) = ux + δux (t, x, y, z), (3.19)

uy(t, x, y, z) = uy + δuy(t, x, y, z). (3.20)

From the equations ∂μTμν = 0 we obtain

Aμ
aniso∂μWaniso = 0, (3.21)

where

Waniso = (δP, δux , δuy, δϑ), (3.22)

and the matrices Aμ
aniso are
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A0
aniso =

⎛
⎝
R⊥ + R1u2

0 cosh2 ϑ + R3 sinh2 ϑ 2PR1u j cosh2 ϑ P(2R2 + R1u2
0) sinh(2ϑ)

R1uiu0 cosh ϑ PR1(u2
0δi j + uiu j ) cosh ϑ/u0 PR1uiu0 sinh ϑ

P(2R2 + R1u2
0) sinh(2ϑ)/2 PR1u j sinh(2ϑ) P(2R2 + R1u2

0) cosh(2ϑ)

⎞
⎠ , (3.23)

Ak
aniso =

⎛
⎝

R1uku0 cosh ϑ PR1(u2
0δk j + uku j ) cosh ϑ/u0 PR1uku0 sinh ϑ

R⊥δik + R1ukui P R1(ukδi j + uiδ jk) 0
PR1uku0 sinh ϑ PR1(u2

0δk j + uku j ) sinh ϑ/u0 PR1uku0 cosh ϑ

⎞
⎠ , (3.24)

A3
aniso =

⎛
⎝

P(2R2 + R1u2
0) sinh(2ϑ)/2 PR1u j sinh(2ϑ) P(2R2 + R1u2

0) cosh(2ϑ)

R1uiu0 sinh ϑ PR1(u2
0δi j + uiu j ) sinh ϑ/u0 PR1uiu0 cosh ϑ

R⊥ + R2 cosh(2ϑ) + R1u2
0 sinh2 ϑ 2PR1u j sinh2 ϑ P(2R2 + R1u2

0) sinh(2ϑ)

⎞
⎠ , (3.25)

where, in turn,

R1 = (R‖ + 3R⊥), (3.26)

R2 = (R‖ + R⊥), (3.27)

R3 = (R‖ − R⊥). (3.28)

The indices i, j correspond to rows and columns and k =
1, 2. For velocities we have u1 = ux , u2 = uy .

3.2 Stability of the longitudinal normal shock wave

The normal to the undisturbed discontinuity surface is
directed along the anisotropy direction, i.e. Nμ = (0, 0, 0, 1).
We will assume that ux = uy = 0 and define the same small
harmonic perturbation of the discontinuity surface as in the
isotropic case:

f (t, x, y, z) = z − ηe−i(ωt+kx+ly) = 0. (3.29)

In terms of velocities one finds

sinh ϑ
′ = v

′
√

1 − v
′2

, cosh ϑ
′ = 1√

1 − v
′2

.

It is assumed that a solution for the vector Waniso = W‖
in Eq. (3.22) has the form

W‖(t, x, y, z) = Y‖(z)e−i(ωt+kx+ly). (3.30)

We denote matrices Ai
aniso at ux = uy = 0 as the matrices

Ai‖. Laplace transformation for the amplitude vectorY‖ gives
the following equation

A‖Ŷ‖(m) = ±i A‖3Y‖(0), (3.31)

in half-spaces �± respectively, where A‖ = ωA‖0 + k A‖1 +
l A‖2 + mA‖3.

Substitution of the ansatz (2.14) into the Eq. (3.21) leads
to a characteristic equation Det A‖ = 0, which reads


2
(

2
2−[(1−c2
s‖)(k2+l2)(1−v2)+2c2

s‖(m + vω)2]
)

= 0,


 = ω + vm, (3.32)

where

cs‖ = R‖
3R

(3.33)

is the longitudinal speed of sound.
Solving the equation for m, we obtain four roots

m0,1 = −ω

v
, (3.34)

m2 = 1 − v2

4(v2 − c2
s‖)

⎛
⎝ − 4vω(1 − c2

s‖) + 2
√

2

√
2c2

s‖ω2 + (1 − c2
s‖)(k2 + l2)(v2 − c2

s‖)
1 − v2

⎞
⎠ , (3.35)

m3 = 1 − v2

4(v2 − c2
s‖)

⎛
⎝ − 4vω(1 − c2

s‖) − 2
√

2

√
2c2

s‖ω2 + (1 − c2
s‖)(k2 + l2)(v2 − c2

s‖)
1 − v2

⎞
⎠ . (3.36)

Root analysis is carried out in a similar way to the isotopic
case and leads to the same relations:

Re ω � 0, Im ω > 0 ⇔ Rem0,1 � 0, Im m0,1 < 0 in �±,

(3.37)

Re ω � 0, Im ω > 0 ⇔ Rem2 � 0, Im m2 < 0 in �−,

(3.38)

Re ω � 0, Im ω > 0 ⇔ Rem2 � 0, Im m2 < 0 in �+,

(3.39)

Re ω � 0, Im ω > 0 ⇔ Rem3 � 0, Im m3 < 0 in �−,

(3.40)

Re ω � 0, Im ω > 0 ⇔ Rem3 � 0, Im m3 > 0 in �+.

(3.41)

Since the longitudinal case is technically the same as the
above-considered isotropic case, we have the same decom-
position (2.44) for the vector Y‖(z). To satisfy the boundary
condition δux , δuy, δϑ, δP → 0 at z −→ ±∞ we should
put again Ci = 0, i = 1, 2, 3 in �− and C3 = 0 in �+.
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The matching equation for the energy-momentum tensor
on the discontinuity surface NμTμν = NμT

′μν in the unper-
turbed case leads to the equations

(R⊥ − R‖)(P sinh(2ϑ) − P
′
sinh(2ϑ

′
)) = 0, (3.42)

(P − P
′
)R⊥ − P(R⊥ + R‖) cosh(2ϑ)

+ P
′
(R⊥ + R‖) cosh(2ϑ

′
) = 0. (3.43)

from which in terms of velocities one obtains (see [24])

vv
′ = R‖

3R
. (3.44)

Since we found that Y‖(0) = 0 in half-space �− then for
the velocities we obtain

Uμ = (cosh ϑ, 0, 0, sinh ϑ), (3.45)

Zμ = (sinh ϑ, 0, 0, cosh ϑ), (3.46)

U
′μ = (cosh ϑ

′ + δϑ
′
sinh ϑ

′
, δu

′
x ,

δu
′
y, sinh ϑ

′ + δϑ
′
cosh ϑ

′
), (3.47)

Z
′μ = (sinh ϑ

′ + δϑ
′
cosh ϑ

′
, 0,

0, cosh ϑ
′ + δϑ

′
sinh ϑ

′
). (3.48)

Substituting the perturbed vectors (3.45–3.48) into the
energy-momentum tensor and perturbed normal vector Nμ =
(iηω, iηk, iηl, 1) into the matching condition one finds

Y 0‖ (0) = δP
′ = 8iηωP

′ R⊥R2 sinh ϑ
′
cosh ϑ

′

3RR‖
, (3.49)

Y 1‖ (0) = δu
′
x = −2iηk

R⊥R2(R‖ − 2R⊥ sinh2 ϑ
′
)

3RR‖R1 sinh ϑ
′ , (3.50)

Y 2‖ (0) = δu
′
y = −2iηl

R⊥R2(R‖ − 2R⊥ sinh2 ϑ
′
)

3RR‖R1 sinh ϑ
′ , (3.51)

Y 3‖ (0) = δϑ
′ = −2iηω

[R‖ + 2R2 sinh2 ϑ
′ ]

3RR‖
. (3.52)

Solving the Eq. (3.31) using Cramer’s rule, we find the
following expressions for the components of the vector C3

C30 = −RηP
′ 1 − c4

s‖
2v

′2c2
s‖(1 − v

′2)Q
, (3.53)

C31 = −Rηk
(1 − c4

s‖)(1 − c2
s‖)(v

′2 − c2
s‖)

c2
s‖(3 − c2

s‖)v
′
(1 − v

′2)3/2Q[2c2
s‖ω + v

′Q] ,
(3.54)

C32 = −Rηl
(1 − c4

s‖)(1 − c2
s‖)(v

′2 − c2
s‖)

c2
s‖(3 − c2

s‖)v
′
(1 − v

′2)3/2Q[2c2
s‖ω + v

′Q] ,
(3.55)

C33 = Rη
(1 − c2

s‖)(Q + 2v
′
ω)

2v
′2c2

s‖(1 − v
′2)Q[2c2

s‖ω + v
′Q] , (3.56)

where

Q =
√

2(k2 + l2)(v′2 − c2
s‖)(1 − c2

s‖)/(1 − v
′2) + 4ω2c2

s‖,
(3.57)

R = 2v
′
ωQ + 2(v

′2 + c2
s‖)ω2 + (v

′2 − c2
s‖)(k2 + l2).

(3.58)

Together with (3.32), (3.36) one finds that the condition
R = 0 is equivalent to the equation

ϕ2 − 2v
′
ϕ − (1 − v

′2) = 0, (3.59)

where ϕ = 
/m, 
 = ω + vm. The Eq. (3.59) is identical
with the on eobtained in the isotropic case. Therefore, we
have the same roots v

′ ±1. We also obtain from their charac-
teristic equation that for the real ϕ the following inequalities
must be satisfied

v
′ � ϕ � cs(1 − v

′2)

(1 − csv
′
)

, (3.60)

which leads to the conclusion that of the mode of instability
that we looked for is absent.

3.3 Stability of the transverse normal shock wave

The normal to the undisturbed discontinuity surface orthog-
onal to the anisotropy direction, i.e. Nμ = (0, 1, 0, 0). Now,
we assume that uz = ϑ = 0 and introduce the small har-
monic perturbation

f (t, x, y, z) = x − ηe−i(ωt+ly+mz) = 0. (3.61)

In the matrices (3.23–3.25) we put uz = ϑ = 0 and denote
Ai

aniso|uy=ϑ=0 = Ai⊥. We consider a solution of Eq. (3.21)
in the following form

W⊥(t, x, y, z) = Y⊥(x)e−i(ωt+ly+mz). (3.62)

After Laplace transformation for the amplitude vector Y⊥
we have

A⊥Ŷ⊥(m) = ±i A⊥1Y⊥(0) (3.63)

in half-spaces �± respectively, where A⊥ = ωA⊥0+k A⊥1+
l A⊥2 + mA⊥3.

Equation (3.63) leads to a characteristic equation Det A⊥ =
0, which reads



[(

(1 + c2
s⊥)kv + (F1 − F2)ω

)(

2 − c2

s⊥(k + vω)2)

+ (1 − 2c2
s⊥)(1 − v2)

(
(5c2

s⊥ − 3)kv − (F1 + F2)w
)

123
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− c2
s⊥(1 − v2)

(
(1 + c2

s⊥)kv + (F1 − F2)ω
)
l2
]

= 0,

(3.64)

where


 = ω + kv, (3.65)

F1 = 2(1 − c2
s⊥), (3.66)

F2 = v2(1 − 3c2
s⊥) (3.67)

and transverse speed of sound is

c2
s⊥ = R⊥

3R
. (3.68)

It can be seen that the only one solution 
 = 0 remains
compared to the isotropic and the longitudinal cases. The
second one has been transformed into the root of a cubic
equation. This feature arises because the anisotropy direc-
tion is distinguished, even though the unperturbed problem
contains only the Ox axis.

Unfortunately, the cubic equation for k cannot be factor-
ized in a simple way. Using the Cardano formula, one can
find the roots of the equation. The roots were studied graph-
ically. For a better interpretation, we move from velocities
to the parameter σ = P

′
/P . For the velocities v, v

′
in the

regions �∓, respectively, we have [24]:

v =
√

R⊥(3σ R + R⊥)

3R(σ R⊥ + 3R)
, v

′ =
√

R⊥(σ R⊥ + 3R)

3R(3σ R + R⊥)
.

(3.69)

Then we can separately investigate the roots for the half-
spaces �±. It was found that the imaginary parts of the roots
have the same signs as in the longitudinal case. The value of
the variables l,m does not affect the final sign of the root in
any way, nor does the value of the of the real and imaginary
parts of ω. Thus, for the root k0 = −v/ω and the roots of the
cubic equation k1,2,3 one finds

Re ω � 0, Im ω > 0 ⇔ Re k0 � 0, Im k0 < 0 in �±,

(3.70)

Re ω � 0, Im ω > 0 ⇔ Re k1 � 0, Im k1 < 0 in �−,

(3.71)

Re ω � 0, Im ω > 0 ⇔ Re k1 � 0, Im k1 < 0 in �+,

(3.72)

Re ω � 0, Im ω > 0 ⇔ Re k2 � 0, Im k2 < 0 in �−,

(3.73)

Re ω � 0, Im ω > 0 ⇔ Re k2 � 0, Im k2 < 0 in �+,

(3.74)

Re ω � 0, Im ω > 0 ⇔ Re k3 � 0, Im k3 < 0 in �−,

(3.75)

Re ω � 0, Im ω > 0 ⇔ Re k3 � 0, Im k3 > 0 in �+.

(3.76)

Since we now have four different roots ki of the Eq. (3.64),
the following decomposition for the vector Y⊥(z) is valid:

Ŷ⊥(m) = C0

k − k0
+ C1

k − k1
+ C2

k − k2
+ C3

k − k3
. (3.77)

Using the inverse Laplace transform and inequalities
(3.76), one can conclude that in order to satisfy the boundary
condition δux , δuy, δϑ, δP → 0 with x −→ ±∞ we must
put Ci = 0, i = 1, 2, 3 in �− and C3 = 0 in �+.

Frome the matching condition μTμν = NμT
′μν he have

the following unperturbed equations

(R⊥ − R‖)(P sinh(2ϑ) − P
′
sinh(2ϑ

′
)) = 0, (3.78)

(P − P
′
)R⊥ − P(R⊥ + R‖) cosh(2ϑ)

+ P
′
(R⊥ + R‖) cosh(2ϑ

′
) = 0. (3.79)

from which one obtains

vv
′ = R⊥

3R
. (3.80)

Since we found Y⊥(0) = 0 in half-space �− then for the
velocities we have

Uμ = (u0, ux , 0, 0), (3.81)

Zμ = (0, 0, 0, 1), (3.82)

U
′μ = (u

′
0, u

′
xδu

′
x , δu

′
y, δϑ

′
u

′
0), (3.83)

Z
′μ = (δϑ

′
, 0, 0, 1). (3.84)

Substituting the perturbed vectors (3.81–3.84) to the
energy-momentum tensor and the perturbed normal vector
Nμ = (iηω, 1, iηl, iηm) into the matching equation one
obtains

Y 0⊥(0) = δP
′ = 2iηωP

′ R1R2u
′
xu

′
0

3RR⊥
, (3.85)

Y 1⊥(0) = δu
′
x = −iηk

R2(R‖ + R1u
′2
x )u

′
0

3RR⊥
, (3.86)

Y 2⊥(0) = δu
′
y = −iηl

R⊥ − R2u
′2
x

3Ru ′
x

, (3.87)

Y 3⊥(0) = δϑ
′ = −iηm

R‖(R⊥ − R2u
′2
x )

3R⊥Ru ′
xu

′
0

. (3.88)

We have all the inputs to solve the Eq. (3.63) using
Cramer’s rule. One can obtain formulae for all determinants
�i . However, in the transverse case, we will not substitute the
roots of the characteristic Eq. (3.64) into the vector decom-
position (3.77), since the roots are solutions of the cubic
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equation. Therefore, we will not obtain expressions for con-
stant vectors Ci , which do not depend on k, and the equation
C3 = 0 itself. However, instead of it, it is sufficient for us if
all the equations �i = 0, where we consider k = k3, which
obeys the conditions (3.76).

Denote M⊥ = A−1
1 A⊥, then the characteristic equation

is equivalent to det M⊥ = 0. It can be verified that that the
equation �0 = 0 can be obtained as a linear combination of
equations �2 = 0 and M⊥. Moreover it can be shown that the
equation �3 = 0 is contained in �∗

1 = 0 and �2 = 0, where
�∗

1 the combination of �1 and (c2
s⊥k + ωv)M⊥. Therefore

we should consider the equation �3 = 0 which is


(w2 − k2) = 0, (3.89)

that in terms of ϕ reads

ϕ2 − 2v
′
ϕ − (1 − v

′2) = 0. (3.90)

We have obtained the expression which is identical to the
Eqs. (2.53) and (3.59).

It should be noted that the equations det M⊥ = 0,� j =
0, j = 1, 2, 3 are not reducible to each other only by linear
transformations, but it can be shown that their combinations
with factors depending on w, k,m transform the equations
into each other, thereby highlighting the common part. Thus
equations contain not only the common part (3.90). In par-
ticular, the equation �3 = 0 (and therefore �0 = 0) has the
solution

ϕ = − v
′
(3c2

s⊥ − 1)(1 − v
′2)

2(1 − c2
s⊥) + v

′2(3c2
s⊥ − 1)

, (3.91)

which is correct for all equation only if c2
s⊥ = 1/2, i. e.

ξ → ∞.
The last step is to determine the domain of ϕ from the

characteristic equation with conditions (3.76). In the trans-
verse case, the analysis is carried out differently from in the
isotropic case (as well as longitudinal case) and is presented
in the Appendix B. It was found that the roots of Eq. (3.90)
do not satisfy characteristic equation. Thus, the shock wave
in the transverse case is stable.

3.4 Stability of the shock wave insident at an arbitrary
polar angle

For an arbitrary polar angleα the normal vector takes the form
Nμ = (0, sin α, 0 cos α). It is assumed that the upstream flow
moves with the velocity v, where vx = v sin α, vz = v cos α.
Behind the shock wave, the downstream flow moves with the
velocity v

′
, where v

′
x = v

′
sin α

′
, v

′
z = v

′
cos α

′
(Fig. 1).

Previously, the properties of such a class of shock waves
with constant anisotropy (ξ = ξ

′
) were considered [24]. The

Fig. 1 Transformation of flow velocity by the shock wave front.
Upstream flow moves with velocity v at an angle α to the direction
of anisotropy (beam-axis) and downstream flow moves with velocity v

′

at an angle α
′

to the same direction

solutions of the equations NμTμν = NμT
′μν were obtained

by numerical methods due to their analytical unsolvability in
the general case. Under certain conditions, for example, for
α = π/4, one can obtain an polynomial of the fifth degree
in v, and in the case of α

′ = 0, the system of equations is
solved analytically. However, we will not consider particular
solutions and will carry out the study numerically.

By introducing a harmonic perturbation to the discontinu-
ity surface, we must now take into account the polar angle α.
The equation of the perturbed surface reads

f (t, x, y, z) = x sin α + z cos α

−e−i
[
ωt+k(x cos α−z sin α)+ly

]
= 0. (3.92)

It is convenient to move to the coordinate system x̃, z̃, where
the Oz̃ axis is directed along the normal Nμ. The matrix
defining such a transformation has the form

O =

⎛
⎜⎜⎝

0 0 0 0
0 cos α 0 − sin α

0 0 0 0
0 sin α 0 cos α

⎞
⎟⎟⎠ . (3.93)

Coordinate transformations x, z → x̃, z̃ are

x̃ = x cos α − z sin α,

z̃ = x sin α + z cos α.

In this coordinate system one finds for the Eq. (3.92)

f (t, x̃, y, z̃) = z̃ − e−i(ωt+kx̃+ly) = 0. (3.94)
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The equations for the energy-momentum tensor in the
transformed coordinates are

∂̃μT̃
μν = 0, (3.95)

where T̃μν = OγμOλνT γ λ and ∂̃μ = Oγμ∂γ .
The isotropic pressure Piso, components of 4-velocity vec-

tor ux , uy and longitudinal rapidity are linearized according
to the formulae (3.17–3.20). The linearization of the equa-
tions (3.95) can be represented as

Ãμ∂̃μW = 0, (3.96)

where the vector W contains the expansion gradients of the
quantities defined in (3.17–3.20) and have the form

W(t, x̃, y, z̃) = Y(z̃)e−i(ωt+kx̃+ly). (3.97)

The further sequence of steps is similar to that in the lon-
gitudinal case. Applying the Laplace transform to the ampli-
tude vector Y and introducing the variable m gives

ÃŶ(m) = ±i Ã3Y(0), in �±. (3.98)

The corresponding characteristic equation det Ã = 0 can be
solved with respect tom. To avoid loss of accuracy and speed
of the solution, we pass from the anisotropy parameter ξ to
the ratio κ = R⊥(ξ)/R‖(ξ). The roots of this characteristic
equation are

m0 = −w − kv
′
sin(α − α

′
)

mv
′ cos(α − α

′
)

(3.99)

and the three roots of the cubic equation, which we will con-
sider graphically (Figs. 2, 3).

For the half-space �− one can obtain that for all roots
Im m < 0, therefore we will not consider this case in detail.
As can be seen from the graphs for �+, the imaginary part of
m is negative for the two roots. Moreover, these solutions are
deformed in such a way that the existence of a solution with
Im m > 0 is possible in the entire phase space. The root m1

shows the same behavior as in longitudinal and transverse
cases. The real part of the root m2 repeats the contours of the
graphs of the imaginary parts. For this root we again have
Rem > 0 if Im m > 0, Re ω > 0. However, for the root
m3 this pattern is violated - here one can see an appearance
of a region where Rem < 0 for Im m > 0, Re ω > 0. We
denote this region as D. The size of this region also depends
on ω, k, l, but the region D does not completely vanish.

Further, numerically solving the matching equation Nμ

Tμν = NμT
′μν we can find the solution for the vector Y(0).

By Cramer’s rule one finds a solution to the Eq. (3.98) of the
form

Ŷ(m) =
(

�0

�M̃

,
�1

�M̃

,
�2

�M̃

,
�3

�M̃

)
, (3.100)

where M̃ = Ã−1
3 Ã. We are interested in the mode for which

Im ω > 0 and Im m > 0. The real parts of Re ω, Rem, as can

be seen from the graphs, can take different signs depending
on the different regions of the phase space and the variables
k, l.

It can be found that the equation �0 = 0 is a linear com-
bination of the characteristic equation �M̃ = 0 (or � Ã = 0)
and the equation �2 = 0. It can be shown numerically that
the solution of the system of equations
{

�M̃ (ω, k,m, l) = 0,

�2(ω, k,m, l) = 0.
(3.101)

is also a solution of the equations �1 = 0,�3 = 0. There-
fore, it is possible to confine ourselves to considering only
the system (3.101).

We introduce the following variables

x = ωR

mR
, y = ωI

m I
, r = mR

mI
, h = k

mI
. (3.102)

Since Im ω > 0 and Im m > 0 we have y > 0, and for x, r, h
there exist four cases depending on the signs of mR and k.
The system of Eq. (3.101) is divided into four equations (for
real and imaginary parts) with unknown x, y, r, h, l. We can
write it as⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Re G(1)
M (x, y, r, h) = Re G(2)

M (x, y, r, h)l2,

Im G(1)
M (x, y, r, h) = Im G(2)

M (x, y, r, h)l2,

Re G(3)
M (x, y, r, h)l = 0,

Im G(3)
M (x, y, r, h)l = 0.

(3.103)

where in the characteristic equation G(2)
M is the coefficient

for l2 and �2 can be represented as G(3)
M (ω, k,m)l. Since l

is a real number, we have

Re G(1)
M (x, y, r, h) Im G(2)

M (x, y, r, h)

= Im G(1)
M (x, y, r, h) Re G(2)

M (x, y, r, h). (3.104)

This equation is the condition for zeroing the imaginary part
of the coefficient for l2 in the characteristic equation. Since
l is a real number one has the following inequalities:

Re G(1)
M (x, y, r, h)

Re G(2)
M (x, y, r, h)

� 0 or
Im G(1)

M (x, y, r, h)

Im G(2)
M (x, y, r, h)

� 0.

(3.105)

Thus for l �= 0 we have a system of three equations and
inequality
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Re G(1)
M (x, y, r, h) Im G(2)

M (x, y, r, h)

= Im G(1)
M (x, y, r, h) Re G(2)

M (x, y, r, h),

Re G(3)
M (x, y, r, h) = 0,

Im G(3)
M (x, y, r, h) = 0,

Re G(1)
M (x,y,r,h)

Re G(2)
M (x,y,r,h)

> 0.

(3.106)
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Fig. 2 Graphs of the imaginary parts of the roots of the charac-
teristic equation in half-space �+ as a function of the polar angle
α and the anisotropy ratio κ for k = 2, l = 2, ω = 2 + 2i .

Blue means negative area, orange means positive. The rows corre-
spond to the roots m1,m2,m3 and columns correspond to the cases
σ = 2, σ = 10, σ = 20 respectively

Since y > 0, we have to solve three equations for each value
of y and real x, r, h, and then see if the inequality is satisfied.
If at least one value of y satisfies the given system, then the
mode of instability exists.

It was found that three equations of the system (3.106)
have solutions only for x < 0. Negative values of x is valid
because the signs of Re ω and Rem can be different, as dis-
cussed above and shown in the Fig. 3.

However, numerical calculations did not lead to any results
on the detection of the y region where the inequalities (3.105)

hold. Thus it was obtained that for the shock wave incident at
an arbitrary polar angle there are no solutions corresponding
to the instability mode.

4 Conclusion

The linear stability of plane shock waves in ultrarelativistic
anisotropic hydrodynamics has been studied. We considered
a small harmonic perturbation of the discontinuity surface,
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Fig. 3 Graphs of the real parts of the roots of the characteristic equation
in half-space �+ as a function of the polar angle α and the anisotropy
ratio κ for k = 2, l = 2, ω = 2 + 2i . Blue means negative area,

orange means positive. The rows correspond to the roots m1,m2,m3
and columns correspond to the cases σ = 2, σ = 10, σ = 20 respec-
tively

which grows exponentially with time. If solutions for per-
turbed physical quantities vanish at spatial boundaries (at
infinity), then an instability mode exists.

The absence of an instability regime was obtained for the
solutions of longitudinal and transverse shock waves derived
in [24]. In the transverse case the influence of the direction
of anisotropy was noticed in the solution of the characteristic
equation. This effect is expressed in the form of a transforma-
tion of a quadratic equation into a cubic one. For both cases,
the sign of Re ω and Im ω uniquely determined the signs of

the real and imaginary parts of m (for the longitudinal case)
and k (for the transverse case).

The case of a shock wave incident at an arbitrary polar
angle α was considered. Two of the three roots of the char-
acteristic equation are mirrored with respect to the sign of
Im m. For one of these “mirrored roots”, the appearance of
a region D of the phase space was found, where Rem < 0
with Re ω > 0 and Im ω > 0.

The system of equations and inequalities (3.106) was con-
structed for the input parameters ξ, σ, α, y, the solution of
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which leads to the existence of an instability mode. However,
numerical calculations have shown a violation of inequalities
(3.105), which indicates the absence of an instability mode.

Acknowledgements The author are indebted to Professor A. Leonidov
for helpful and stimulating discussions in the course of the preparation
of this paper.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Derivation of the domain for ϕ in isotropic
case

The first step is to write the Eq. (2.21) in terms of m and 
:

W = 
2 − c2
s (m − v

′2m + v
′

)2 = c2

s (k
2 + l2)(1 − v

′2).

(A.1)

Define the real and imaginary parts as 
 = 
R + i
I . m =
mR + im I . Since the right side (A.1) is real and greater than
zero, we have

Im W = v
′2(1 − c2

s v
′2)xy − c2

s v
′2(1 − v

′2)(x + y)

− c2
s (1 − v

′2)2 = 0, (A.2)

Re W = r2(x2v
′2 − c2

s (v
′2x + 1 − v

′2)2)

− (v
′2v2 − c2

s (v
′2y + 1 − v

′2)2) � 0, (A.3)

where

x = 
R

v
′mR

, y = 
I

v
′mI

, r = mR

mI
. (A.4)

We are interested in the case of a root m = m3 for which

Re ω > 0, Im ω > 0 ⇔ Rem3 > 0, Im m3 > 0 in �+.

Therefore we obtain the following conditions on the intro-
duced variables: x � 1, y > 1, r ∈ [0,∞).

The expression (A.2) represents a hyperbola, which is
symmetric in the variables x, y. For the function x(y) one
finds

x(y) = c2
s v

′2(1 − v
′2)y + c2

s (1 − v
′2)2

v
′2(1 − c2

s v
′2)y − c2

s v
′2(1 − v

′2)
. (A.5)

It can be seen that x(y) decreases as x increases, and for
y > 1 we obtain

x < x(1) = c2
s (1 − v

′2)

v
′2(1 − c2

s )
.

One can define a parametric form x(s), y(s), where
x = x(s) = a0 + a1s, s ∈ [s0, s∗] such that x(s0) =
1, x(s∗) = c2

s (1−v
′2)

v
′2(1−c2

s )
. We require that the denominator (A.5)

is proportional to s, i.e.

v
′2(1 − c2

s v
′2)a0 − c2

s v
′2(1 − v

′2) = 0, (A.6)

which gives

a0 = c2
s (1 − v

′2)

1 − c2
s v

′2 . (A.7)

The corresponding parameterization for x(s), y(s) is

x = a0 + a1s, (A.8)

y = a0 + a2

s
. (A.9)

It is natural to require that a1 = a2, which leads to a system
of equations for the boundaries s0, s∗ and a1:

a0 + a1 ∗ s0 = 1, (A.10)

a0 + a1/s0 = c2
s (1 − v

′2)

v
′2(1 − c2

s )
, (A.11)

a0 + a1/s∗ = 1, (A.12)

having the following solution

a1 = cs(1 − v
′2)

v
′
(1 − c2

s v
′2)

, s0 = K , s∗ = 1/K ,

K = v
′
(1 − c2

s )

cs(1 − v
′2)

. (A.13)

Substitution of the parametric expressions for x and y into
the inequality (A.3) gives

Re W = r2[a2
1(s2 − 1)] − [a2

1(
1

s2 − 1)] � 0. (A.14)
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It can be seen that the inequality (A.14) is equivalent to s � 1.
Thus, for s we have the range s ∈ [1, 1/K ]. For ϕ = 
/m
in terms of s we obtain

Re ϕ = v
′
a0 + v

′
a1

r2s + 1/s

1 + r2 , (A.15)

Im ϕ = v
′
ra1

(1/s − s)

1 + r2 , (A.16)

with r ∈ [0,∞), s ∈ [1, 1/K ] These conditions determine
the domain of the complex plane A for possible values of ϕ

that correspond to the instability regime.
For real values of ϕ, it is necessary to put r = 0, from

which one can find the segment of the real line

v
′ � ϕ � cs(1 − v

′2)

(1 − csv
′
)

. (A.17)

AppendixB:Proof of stability for the transverseanisotropic
case

Let us define the real and imaginary parts ω = ωR+iωI . k =
kR + ikI , and introduce the following variables

x = 
R

v
′kR

, y = 
I

v
′kI

, r = kR
kI

. (B.18)

We are looking for a specific value of k that satisfies the
inequalities

Re ω > 0, Im ω > 0 ⇔ Re k3 > 0, Im k3 > 0 in �+,

therefore x � 1, y > 1, r ∈ [0,∞).
In the Eq. (3.64) we denote part that does not depend on

m, l as W , then we have

Re W = r(−3L1 − 2L2y − L3y
2 − L2x − 2L2xy

+ 3L4xy
2) + (L1 + L2x + L3x

2 − L4x
3)r3

= r

k2
I

(1 − v
′2)

(
c2
s⊥

[
(3c2

s⊥ − 1)(1 − v
′2)

+ (−2 + v
′2 + (2 − 3v

′2))x
]
l2

+ (1 − 2c2
s⊥)

[ − (3c2
s⊥ − 1)(1 − v

′2)

+ (−2 − v
′2 + (2 + 3v

′2))x
]
m2

)
(B.19)

Im W = (3L1 + 2L2x + L3x
2 + L2y + 2L2xy

− 3L4x
2y)r2 − L1 − L2y − L3y

2 + L4y
3

= 1

k2
I

(1 − v
′2)

(
c2
s⊥

[
(3c2

s⊥ − 1)(1 − v
′2)

+ (−2 + v
′2 + (2 − 3v

′2))y
]
l2

+ (1 − 2c2
s⊥)

[ − (3c2
s⊥ − 1)(1 − v

′2)

+ (−2 − v
′2 + (2 + 3v

′2))y
]
m2

)
, (B.20)

where

L1 = c2
s⊥(3c2

s⊥ − 1)(1 − v
′2)3, (B.21)

L2 = c2
s⊥(1 − v

′2)2[2 − 3v
′2 + c2

s⊥(9v
′2 − 2)], (B.22)

L3 = v
′2(1 − v

′2)[1 + c2
s⊥(1 − 3v

′2) + c4
s⊥(9v

′2 − 4)],
(B.23)

L4 = v
′2(1 − c2

s⊥v
′2)[2 − v

′2 − c2
s⊥(2 − 3v

′2)]. (B.24)

Since l,m are arbitrary real numbers, it is convenient to
include 1/k2

I in the definition of l,m.
Consider the imaginary and real parts of ϕ = (ω+kv

′
)/k

Re ϕ = v
′ r2x + y

1 + r2 , (B.25)

Im ϕ = v
′
r
(y − x)

1 + r2 . (B.26)

One should write r = 0 or y = x , since ϕ takes real values
ϕ1,2 = v

′ ± 1. We will consider both cases.
Instead of obtaining the domain of all possible values of ϕ

from the characteristic equation, we will substitute the solu-
tion ϕ1,2 into the characteristic equation. From the roots of
ϕ we obtain conditions on r, y, which are then applied to the
characteristic equation. If in this case the Eqs. (B.19) and
(B.20) are valid, then the roots v

′ ±1 lie in the proper region.
Consider the case of the solution r = 0. From (B.26) one

can finds that the roots v
′ ± 1 lead to condition y = (v

′ ±
1)/v

′
. Since y > 1, we must choose only y = (v

′ + 1)/v
′
.

Substituting the found solutions into the Eqs. (B.19–B.20)
gives

Re W = 0, (B.27)

Im W = −L1 − L2
v

′ + 1

v
′ − L3(v

′ + 1)2v
′2 + L4(v

′ + 1)3v
′3

= 1

v
′ (1 − v

′2)
(
c2
s⊥

[
(3c2

s⊥ − 1)(1 − v
′2)v

′

+ (−2 + v
′2 + (2 − 3v

′2))(v
′ + 1)

]
l2

+ (1 − 2c2
s⊥)

[ − (3c2
s⊥ − 1)(1 − v

′2)v
′

+ (−2 − v
′2 + (2 + 3v

′2))(v
′ + 1)

]
m2

)
. (B.28)

The last equation provides the following solution for m2

m2 = [(1 − c2
s⊥)(1 + v

′
) + c2

s⊥(1 − v
′
)l2][2 − v

′ + c2
s⊥(3v

′2 − 2)]
(1 − 2c2

s⊥)(1 − v
′
)(−2 − v

′ + c2
s⊥(3v

′2 + 2))
.

(B.29)

The first factor in the numerator is greater than zero and
1 − 2c2

s⊥ � 0 because for the transverse speed of sound
we have 1/3 � c2

s⊥ � 1/2. For the second factor in the
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numerator one can write

[2 − v
′ + c2

s⊥(3v
′2 − 2)

∣∣∣
c2
s⊥=1/3

= 4

3
,

[2 − v
′ + c2

s⊥(3v
′2 − 2)

∣∣∣
c2
s⊥=1/2

= v
′ + 2

2
.

Similarly, for the third factor in the denominator we have

[−2 − v
′ + c2

s⊥(3v
′2 + 2)

∣∣∣
c2
s⊥=1/3

= −4

3
,

[−2 − v
′ + c2

s⊥(3v
′2 + 2)

∣∣∣
c2
s⊥=1/2

= v
′ − 2

2
.

One can observe that the entire expression (B.29) is less than
zero, and since m is a real number, we have a contradiction.

Consider the second case y = x , then for x we obtain
x = (v

′ + 1)/v
′
. It can be seen that the Eqs. (B.19–B.20) for

r �= 0 can be represented as

Re W = −G1(x, y) + G2(x)r
2 = G3(x, l,m), (B.30)

Im W = G1(y, x)r
2 − G2(y) = G3(y, l,m), (B.31)

whereas y = x gives

[−G1(x, x) + G2(x)](r2 + 1) = 0. (B.32)

The substitution x = (v
′ +1)/v

′
will not give zero, therefore

we have the only solution r2 = −1, which is not in the
domain of real r .

Thus, we have proved that the instability mode is not
observed in the transverse case.
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