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Abstract We explore, in the framework of linearized
quantum gravity, the quantum gravitational quadrupole-
quadrupole interaction between two entangled non point-
like objects in the presence of both Dirichlet and Neumann
boundaries. The results show that, compared to the case with-
out boundaries, the interaction can be either enhanced or
weakened depending on the geometrical arrangement of the
objects with respect to the boundaries. In the limit when the
two-object system is placed very close to the Dirichlet bound-
ary, the near-regime interaction potential is larger than that
of the pure vacuum case when the two objects are placed
perpendicular to the boundary but smaller when parallel to
it, while, in the far regime, such strong and weak relations
between potentials are just opposite to that in the near regime.
And, there exists a new r−2 far-regime behavior of the inter-
action potential under the perpendicular configuration. For
the case of Neumann boundary, the strong and weak rela-
tions between the interaction potentials under perpendicular
or parallel configurations and the case without boundary are
opposite to the Dirichlet circumstance both in the near and far
regimes. Besides, the novel r−2 far-regime behavior occurs
for the parallel rather than perpendicular configuration in the
presence of Neumann boundary.

1 Introduction

Quantum vacuum fluctuation, which is an inevitable con-
sequence of quantum theory, may induce some observable
effects. The electromagnetic Casimir–Polder (CP) interac-
tion is one of the well-known examples, which arises from
the dipole–dipole interaction between two neutral atoms
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or molecules induced by electromagnetic vacuum fluctua-
tions [1]. Such interatomic or intermolecular CP effects have
been widely studied in different circumstances and found
to be influenced significantly by the atomic or molecular
states [2–16], the external electromagnetic fields [17–27] and
boundaries [28,29]. For instance, the CP interaction potential
behaves as r−6 and r−7 in the near and far regimes respec-
tively when the atoms are in their ground states [1], while it
decreases as r−3 and r−1 in the near and far regimes respec-
tively when the atoms are prepared in an entangled state [15]
or placed in external electromagnetic fields [17,19].

Likewise, in the gravitational case, there may also exist a
CP-like quantum gravitational quadrupole–quadrupole inter-
actions between non point-like objects if one accepts that
basic quantum principles are applicable to gravity. Unfortu-
nately, a full theory of quantum gravity is elusive at present.
Nonetheless, one can still study low energy quantum gravita-
tional effects in the framework of effective field theory or lin-
earized quantum gravity. Similar to the electromagnetic case,
the CP-like quantum gravitational quadrupole–quadrupole
interaction potentials also have been found to be significantly
different when the non point-like objects are prepared in dif-
ferent states or placed in certain environments. For exam-
ple, the gravitational CP-like quadrupole–quadrupole poten-
tial between two ground-state objects behaves as r−10 and
r−11 in the near and far regimes respectively [30–33], while
it decreases as r−5 and r−1 in the near and far regimes
respectively when the objects are in an entangled state or
in external gravitational radiations [34–36]. Moreover, in
the presence of gravitational boundaries, the quantum grav-
itational quadrupole–quadrupole interaction between two
ground-state objects is found to be always strengthened as
compared with the case without boundaries [37].

The CP-like quantum gravitational interactions discussed
above are obtained respectively under a particular condition.
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Since the entanglement, the external gravitational radiations
and gravitational boundaries can all enhance the quantum
gravitational quardrupole–quardrupole interaction in vac-
uum, a natural question arises as to whether such quantum
gravitational effects can be more significant under certain
composite circumstances. Physically, the gravitational CP-
like interaction for two entangled objects in vacuum is a
second-order effect while it is a fourth-order effect for objects
in their ground states or in an external gravitational field, due
to the fact that the former is related to the single-graviton
processes while the latter is relevant to the two-graviton pro-
cesses. Hence, the second-order quantum effect correlated to
the single-graviton processes is expected preferentially and
the composite case of two entangled objects together with
gravitational boundaries is thus taken into account first. Note
here that, although the reflection of gravitational waves by
ordinary materials is hardly possible [38], it might be realized
by quantum matter such as superconducting films [39,40].

In this paper, we explore the quantum gravitational
quardrupole–quardrupole interaction between two entangled
non point-like objects in the presence of both Dirichlet and
Neumann boundaries based on the method proposed by Dal-
ibard, Dupont-Roc, and Cohen-Tannoudji (DDC) [41,42].
First, we give a brief description of the formulae for the inter-
action between the two objects. Then, we obtain the general
expression of the interaction energy between the two objects
in the presence of Dirichlet and Neumann boundaries respec-
tively, and discuss these results in specific cases. Throughout
this paper, the Latin indices run from 1 to 3 and the Einstein
summation convention for repeated indices is assumed.

2 Basic equations

We consider two entangled non point-like objects (labeled
as A and B) coupled with the fluctuating gravitational fields
in vacuum in the presence of gravitational plane boundaries.
For simplicity, the objects A and B are modeled as two-level
systems with the ground and excited states being |g〉 and |e〉
respectively, and the corresponding energy spacing is labeled
as ω0. The total Hamiltonian of the system is

H = HS + HF + HI , (1)

where HS denotes the Hamiltonian of the two-level systems
(A and B), HF denotes the Hamiltonian of the gravitational
fields in vacuum, and HI denotes the interaction Hamilto-
nian between the non point-like objects and the gravitational
fields. Here HI takes the form

HI = −1

2
QA

i j Ei j (�xA) − 1

2
QB

i j Ei j (�xB), (2)

where Qξ
i j is the quadrupole moment operator of object ξ

(ξ = A, B), and Ei j is the gravitoelectric tensor of the

fluctuating gravitational fields in vacuum defined as Ei j =
−c2C0i0 j by an analogy between the linearized Einstein
field equations and the Maxwell equations [43–49], where
Cμναβ is the Weyl tensor and c the speed of light. Under the
weak-field approximation, the metric tensor for the fluctuat-
ing gravitational fields can be expanded as a sum of the flat
spacetime metric and a linearized perturbation hμν . Then,
the gravitoelectric tensor Ei j can be expressed as

Ei j = 1

2
ḧi j . (3)

where a dot denotes the derivative with respect to time t . For
the pure vacuum case, the quantized metric perturbations can
be expressed as (in the transverse traceless gauge) [50]

hi j =
∑

�p,λ
hλ
i j, �p =

∑

�p,λ

√
h̄G

ωc2π2 [aλ(ω)e(λ)
i j ( �p)ei( �p·�x−ωt)

+H.c.], (4)

where hλ
i j, �p is the gravitational field mode with wave vector

�p, aλ(ω) represents the annihilation operator of the fluctu-
ating gravitational fields, λ denotes the polarization states,
ω = c| �p| = c(p2

x + p2
y + p2

z )
1/2, e(λ)

i j ( �p) are polarization
tensors, and H.c. denotes the Hermitian conjugate.

We assume that the two objects are in their maximally
entangled states, i.e., the symmetric or antisymmetric state,

ψ± = 1√
2
(|gA〉|eB〉 ± |eA〉|gB〉), (5)

and denote the vacuum state of the gravitational field as
|0〉. To investigate the quantum gravitational quadrupole–
quadrupole interaction potential between two entangled
objects in vacuum, the second-order DDC formalism has ever
been exploited and shown to be really convenient, see in Ref.
[34]. Hence, in the presence of gravitational boundaries, we
employ this formalism again to calculate interaction energy
shift between objects A and B, which is [34]


EAB = − i

4

∫ t

t0
dt ′χ F

i jkl(�xA(t), �xB(t ′))CAB
i jkl(t, t

′)

+(A � B terms). (6)

Here CAB
i jkl(t, t

′) and χ F
i jkl(�xA(t), �xB(t ′)) are respectively the

statistical functions introduced for the gravitational field and
the objects, which take the form

CAB
i jkl(t, t

′) = 1

2
〈ψ±|{QAF

i j (t), QBF
kl (t ′)}|ψ±〉, (7)

χ F
i jkl(�x(t), �x(t ′)) = 1

2
〈0|[EF

i j (�x(t)), EF
kl(�x(t ′))]|0〉, (8)

where the label “F” denotes the free part of the operator, i.e.,
the part presents even in the absence of interaction.
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3 Dirichlet boundary condition

Now let us consider the quantum gravitational quadrupole–
quadrupole potential between two entangled non point-like
objects when a Dirichlet boundary is present. For simplicity,
this plane boundary is assumed to be placed at z = 0, so
that the metric perturbations satisfies hλ

i j, �p|z=0 = 0 and the

gravitational field mode hλ
i j, �p can be expressed as

hλ
i j, �p =

√
h̄G

2c2ωπ2

{
aλ(ω)

[
e(λ)
i j ( �p)ei( �p·�x−ωt) − e(λ)

i j ( �p−)

× ei( �p−·�x−ωt)
]

+ H.c.
}

, (9)

where �p− = {px , py,−pz}. Then, according to Eqs. (3)
and (8), the statistical function of the gravitational field
χ F
i jkl(�xA(t), �xB(t ′)) in the presence of a Dirichlet boundary

can be expressed as

χ F
i jkl(�x(t), �x(t ′)) = 1

8
〈0|[ḧi j (�x(t)), ḧkl(�x(t ′))]|0〉

= h̄cG

16π2

∫
d3 �p p3

∑

λ

[
e(λ)
i j ( �p)e(λ)

kl ( �p)ei �p·�r

+ e(λ)
i j ( �p−)e(λ)

kl ( �p−)ei �p−·�r−

− e(λ)
i j ( �p)e(λ)

kl ( �p−)ei �p·�r−

− e(λ)
i j ( �p−)e(λ)

kl ( �p)ei �p−·�r] (
e−iω
t ′ − eiω
t ′

)
, (10)

where 
t ′ = t − t ′, �r = {x − x ′, y − y′, z − z′} and
�r− = {x − x ′, y − y′, z + z′}. Note here that r = |�r | is
the distance between the two objects and r− = |�r−| is the
distance between an object and the image of another one.
Here the summation of polarization tensors in the TT gauge
gives [50]

∑

λ

e(λ)
i j ( �p)e(λ)

kl ( �p′) = δikδ jl + δilδ jk − δi jδkl

+ p̂i p̂ j p̂
′
k p̂

′
l + p̂i p̂ jδkl + p̂′

k p̂
′
lδi j

− p̂i p̂
′
kδ jl − p̂i p̂

′
lδ jk − p̂ j p̂

′
kδil − p̂ j p̂

′
lδik, (11)

where p̂i is the i-th component of the unit vector �pi/| �p|.
From this summation of polarization tensors, we can obtain

∑

λ

e(λ)
i j ( �p)e(λ)

kl ( �p)ei �p·�r

= 1

p4 [(δikδ jl + δilδ jk − δi jδkl)∇4 + (∂i∂ jδkl

+ ∂k∂lδi j − ∂i∂kδ jl

− ∂i∂lδ jk − ∂ j∂kδil − ∂ j∂lδik)∇2 + ∂i∂ j∂k∂l ]ei �p·�r

= 1

p4 H
r
i jkle

i �p·�r , (12)

and
∑

λ

e(λ)
i j ( �p)e(λ)

kl ( �p−)ei �p·�r−

= 1

p4 σkmσln[(δimδ jn + δinδ jm − δi jδmn)∇4

+ (∂i∂ jδmn + ∂m∂nδi j

− ∂i∂mδ jn − ∂i∂nδ jm − ∂ j∂mδin − ∂ j∂nδim)∇2

+ ∂i∂ j∂m∂n]ei �p·�r−

= 1

p4 σkmσln H
r−
i jmne

i �p·�r− , (13)

where Hρ
i jkl denotes the differential operator to ρ, ∇2 = ∂i∂

i ,
and σi j = δi j − 2δi3δ j3. Substituting Eqs. (12) and (13)
into Eq. (10) and performing the integration in the spherical
coordinate, we obtain

χ F
i jkl(�x(t), �x(t ′)) = h̄cG

2π

∫ ∞

0
dp

×
[
Hr
i jkl

sin pr

r
− σkmσln H

r−
i jmn

sin pr−
r−

]

×(e−iω
t ′ − eiω
t ′)

= − i h̄cG

2

[
Hr
i jkl

1

r
[δ(r − c
t ′) − δ(r + c
t ′)]

−σkmσln H
r−
i jmn

1

r−
[δ(r− − c
t ′) − δ(r− + c
t ′)]

]
.

(14)

As for the statistical function CAB
i jkl(t, t

′) of the objects, its
form can be obtained as

CAB
i jkl(t, t

′) = ±1

2
Q̂ A

i j Q̂
B
kl(e

−iω0
t ′ + eiω0
t ′), (15)

where the sign ± correspond to the symmetric and anti-
symmetric states respectively, Q̂ξ

i j = eiω0t 〈gξ |QξF
i j |eξ 〉,

Q̂ξ∗
i j = e−iω0t 〈eξ |QξF

i j |gξ 〉, and Q̂ξ
i j = Q̂ξ∗

i j is assumed.
Substituting Eqs. (10) and (15) into Eq. (6), the interobject

quantum gravitational interaction potential in the presence of
a Dirichlet boundary can then be obtained as


EAB = ∓G

4
Q̂ A

i j Q̂
B
kl

[
θ(c
t − r)Hr

i jkl
cos p0r

r

− θ(c
t − r−)Hr−
i jkl

cos p0r−
r−

]
, (16)

where we have introduced p0 = ω0/c and 
t = t − t0. θ(x)
is a step function, which equals to 1 when x > 0 but 0 when
x < 0. Let us note here that

Hr
i jkl

cos p0r

r
= 1

r5
[(δikδ jl + δilδ jk − δi jδkl

+ r̂i r̂ jδkl + r̂k r̂lδi j − r̂i r̂kδ jl

− r̂i r̂lδ jk − r̂ j r̂kδil − r̂ j r̂lδik

+ r̂i r̂ j r̂k r̂l)r
4 p4

0 cos p0r
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+ 2(−δikδ jl − δilδ jk + δi jδkl

− r̂i r̂ jδkl − r̂k r̂lδi j + 2r̂ j r̂kδil

+ 2r̂ j r̂lδik + 2r̂i r̂kδ jl + 2r̂i r̂lδ jk

− 5r̂i r̂ j r̂k r̂l)r
3 p3

0 sin p0r

+ (−3δikδ jl − 3δilδ jk + δi jδkl + 3r̂i r̂ jδkl

+ 3r̂k r̂lδi j + 9r̂ j r̂kδil

+ 9r̂ j r̂lδik + 9r̂i r̂kδ jl + 9r̂i r̂lδ jk

− 45r̂i r̂ j r̂k r̂l)r
2 p2

0 cos p0r

+ 3(δikδ jl + δilδ jk + δi jδkl

− 5r̂i r̂ jδkl − 5r̂k r̂lδi j − 5r̂ j r̂kδil

− 5r̂ j r̂lδik − 5r̂i r̂kδ jl

− 5r̂i r̂lδ jk + 35r̂i r̂ j r̂k r̂l)rp0 sin p0r

+ 3(δikδ jl + δilδ jk + δi jδkl − 5r̂i r̂ jδkl

− 5r̂k r̂lδi j − 5r̂ j r̂kδil

− 5r̂ j r̂lδik − 5r̂i r̂kδ jl − 5r̂i r̂lδ jk

+ 35r̂i r̂ j r̂k r̂l) cos p0r ], (17)

where r̂i is the i-th component of the unit vector �ri/r . The
first term in Eq. (16) corresponds to the interaction between
two entangled objects in vacuum [34], while the second term
is the additional contribution due to the Dirichlet boundary
which can be regarded as the interaction between an object
and the image of the other one. It shows that, both the two
terms exist simultaneously only when the distance r and r−
are smaller than the distance characterized by c
t , which
means that such interaction potential appears only when one
object (as well as its image) is in the light cone of the other.

3.1 Two special cases

Now Let us discuss the interaction potential in some spe-
cial circumstances. The first case is that the two objects
are placed perpendicular to the Dirichlet boundary. We take
�r = {0, 0, r} and, for convenience, assume r < c
t . When
the two-object system is very close to the boundary, i.e.,
r ∼ r−, the interaction potential Eq. (16) becomes


EAB = ∓ h̄Gω0

r5
α(8p3

0r
3 sin p0r + 24p2

0r
2 cos p0r

−48p0r sin p0r − 48 cos p0r), (18)

where the isotropic gravitational polarizability α = αi jkl =
Q̂i j Q̂kl/h̄ω0 defined in Ref. [34] has been employed again.
In the near regime, i.e., r � c/ω0, the leading term of the
potential Eq. (18) takes the form


EAB 
 ±48h̄Gω0

r5
α cos p0r , (19)

while in the far regime, i.e., r � c/ω0, it becomes


EAB 
 ∓8h̄Gω4
0

r2c3 α sin (p0r + φ1), (20)

where φ1 = arcsin 3√
9+p2

0r
2
. This shows that, when the two

entangled objects are placed perpendicular to the Dirichlet
boundary, the interobject quantum gravitational quadrupole–
quadrupole interaction behaves as r−5 in the near regime and
r−2 in the far regime. Compare to the case without gravita-
tional boundary [34], the Dirichlet boundary increases the
near-regime potential about 2.3 times in the leading order
since the coefficient in the pure vacuum case is 21, and mod-
ifies the r−1 far-regime behavior of the interaction in the
absence of boundary.

The second case is that the two objects are placed par-
allel to the Dirichlet boundary. In the limit of r ∼ r−, the
interaction potential Eq. (16) becomes


EAB = ∓ h̄Gω0

r5
α(2p4

0r
4 cos p0r

+ 6p2
0r

2 cos p0r − 18p0r sin p0r − 18 cos p0r), (21)

where �r = {r, 0, 0} has been applied. In the near regime, i.e.,
r � c/ω0, the leading term of Eq. (21) becomes


EAB 
 ±18h̄Gω0

r5
α cos p0r , (22)

while in the far regime, i.e., r � c/ω0, it reduces to


EAB 
 ∓2h̄Gω5
0

rc4 α cos p0r . (23)

In this case, the interobject quantum gravitational quadrupole–
quadrupole interaction behaves as r−5 and r−1 in the near
and far regimes, respectively. Compare to the case without
gravitational boundary [34], the Dirichlet boundary weak-
ens the near-regime interaction potential, but increases the
far-regime potential 2 times in the leading order since the
coefficient in the pure vacuum case is 1.

4 Neumann boundary condition

For the Neumann boundary condition, the field mode satisfies
∂zhλ

i j, �p|z=0 = 0 and thus can be written as

hλ
i j, �p =

√
h̄G

2c2ωπ2

{
aλ(ω)

[
e(λ)
i j ( �p)ei( �p·�x−ωt)

+e(λ)
i j ( �p−)ei( �p−·�x−ωt)

]
+ H.c.

}
. (24)

From the above equation, one can show that the statisti-
cal function of the gravitational field χ F

i jkl(�xA(t), �xB(t ′))
becomes

χ F
i jkl(�x(t), �x(t ′)) = h̄cG

2π

∫ ∞

0
dp

×
[
Hr
i jkl

sin pr

r
+ σkmσln H

r−
i jmn

sin pr−
r−

]
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×(e−iω
t ′ − eiω
t ′)

= − i h̄cG

2

[
Hr
i jkl

1

r
[δ(r − c
t ′) − δ(r + c
t ′)]

+ σkmσln H
r−
i jmn

1

r−
[δ(r− − c
t ′) − δ(r− + c
t ′)]

]
,

(25)

and the interaction potential Eq. (6) then reads


EAB = ∓G

4
Q̂ A

i j Q̂
B
kl

[
θ(c
t − r)Hr

i jkl
cos p0r

r

+θ(c
t − r−)Hr−
i jkl

cos p0r−
r−

]
. (26)

Obviously, the boundary-dependent interaction energy exists
also only when an object as well as its image are in the light
cone of the other one, similar to the Dirichlet case.

4.1 Two special cases

For the special case of two entangled objects placed perpen-
dicular to the Neumann boundary, we take �r = {0, 0, r} and
consider the case when the two-object system is very close
to the boundary, i.e., r ∼ r−. The interaction potential Eq.
(26) becomes


EAB = ∓ h̄Gω0

r5
α(2p4

0r
4 cos p0r − 4p3

0r
3 sin p0r

−6p2
0r

2 cos p0r + 6p0r sin p0r + 6 cos p0r),(27)

where r < c
t is assumed. In the near regime, i.e., r �
c/ω0, the leading term of the potential Eq. (27) is


EAB 
 ∓6h̄Gω0

r5
α cos p0r , (28)

while in the far regime, i.e., r � c/ω0, it takes the form


EAB 
 ∓2h̄Gω5
0

rc4 α cos (p0r + φ2), (29)

where φ2 = arcsin 2√
4+p2

0r
2
. It shows, when the two objects

are placed perpendicular to the Neumann boundary, the inter-
object quantum gravitational quadrupole–quadrupole inter-
action behaves as r−5 and r−1 in the near and far regimes,
respectively. Compare to the case without boundary [34],
the Neumann boundary weakens the near-regime interaction
potential, and changes its sign which means the attractive and
repulsive properties of the interaction are modified. Also, the
far-regime interaction is enhanced about 2 times compared
to the pure vacuum case due to the boundary.

For the case when two entangled objects are placed paral-
lel and close to the Neumann boundary, the interaction poten-
tial Eq. (26) becomes


EAB = ∓ h̄Gω0

r5
α(4p3

0r
3 sin p0r + 12p2

0r
2 cos p0r

−24p0r sin p0r − 24 cos p0r), (30)

where �r = {r, 0, 0} has been taken. In the near regime, i.e.,
r � c/ω0, the leading term of Eq. (30) takes the form


EAB 
 ±24h̄Gω0

r5
α cos p0r , (31)

while in the far regime, i.e., r � c/ω0, it becomes


EAB 
 ∓4h̄Gω4
0

r2c3 α sin (p0r + φ1). (32)

It shows, the interobject quantum gravitational quadrupole–
quadrupole interaction behaves as r−5 and r−2 in the near
and far regimes, respectively. Compare to the case without
boundary [34], the Neumann boundary enhances the near-
regime interaction potential about 1.1 times in the leading
order and modifies the behavior of the interaction in the far
regime. Also, one can find that the interaction potentials in
these two special cases under Neumann boundary condition
are quite different from that of the Dirichlet circumstance.
Moreover, it is worth mentioning here that, thought we do
not know how to realize the gravitational Neumann bound-
ary condition through specific physical setup, a theoretical
exploration may deserve.

5 Discussion

In this paper, we explore the quantum gravitational quadrupole–
quadrupole interaction between two entangled non point-
like objects in the presence of plane gravitational bound-
aries, based on the second-order DDC formalism. Two kinds
of boundary conditions, i.e., Neumann and Dirichlet, are
considered and our result shows that the interaction can be
either enhanced or weakened depending on the geometri-
cal arrangement of the two-object system with respect to the
boundaries. In the limit when the two-object system is placed
very close to the Dirichlet boundary, the near-regime inter-
action potential is larger than that of the pure vacuum case
when the two objects are placed perpendicular to the bound-
ary but smaller when parallel to it, while, in the far regime,
such strong and weak relations between potentials are just
opposite to that in the near regime. And, there exists a new
r−2 far-regime behavior of the interaction potential under
the perpendicular configuration. For the case of Neumann
boundary, the strong and weak relations between the interac-
tion potentials under perpendicular or parallel configurations
and the case without boundary are opposite to the Dirichlet
circumstance both in the near and far regimes. Besides, the
novel r−2 far-regime behavior occurs for the parallel rather
than perpendicular configuration in the presence of Neumann
boundary.
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