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Abstract Using the quadratic expansion in the photon
fields of Euler–Heisenberg (EH) non-linear electrodynam-
ics (NLED) Lagrangian model we study relevant vacuum
properties in a scenario involving the propagation of a pho-
ton probe in the presence of a background constant and
static magnetic field, Be. We compute the gauge invariant,
symmetric and conserved energy–momentum tensor (EMT)
and angular momentum tensor (AMT) for arbitrary magnetic
field strength using the Hilbert method under the soft-photon
approximation. We discuss how the presence of magneto-
electric terms in the EH Lagrangian is a source of anisotropy,
induce the non-zero trace in the EMT and leads to differences
between EMT calculated by the Hilbert or Noether method.
From the Hilbert EMT we analyze some quantities of interest
such as the energy density, pressures, Poynting vector, and
angular momentum vector, comparing and discussing the dif-
ferences with respect to the improved Noether method. The
magnetized vacuum properties are also studied showing that
a photon effective magnetic moment can be defined for dif-
ferent polarization modes. The calculations are done in terms
of derivatives of the two scalar invariants of electrodynamics,
hence, extension to other NLED Lagrangian is straightfor-
ward. We discuss further physical implications and experi-
mental strategies to test magnetization, photon pressure, and
effective magnetic moment.

1 Introduction

Vacuum in NLED theories is far from being trivial. For exam-
ple, in Quantum Electrodynamics (QED) the vacuum polar-
ization effects lead to effective interaction terms that are
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non-linear in the electric and magnetic fields, generating,
among other phenomena, light-by-light scattering, first cal-
culated in the low energy limit by Euler and Kockel [1] in
1935 and later completed by Karplus and Neuman [2] in
1951. As recently claimed photon-photon scattering may be
testable with modern accelerators, see a recent compilation
from ATLAS results in [3,4]. Switching on the interaction
leads to excitations creating virtual electron-positron pairs.
This theory conceives that fluctuations can give rise to very
interesting properties allowing to describe vacuum as a mag-
netized medium [5]. One of the quoted consequences is the
possible existence of birefringence, by which electromag-
netic (EM) waves propagating parallel or perpendicular to a
constant electric or magnetic background field in fixed direc-
tion display different propagation speeds. Great experimental
effort has been undertaken in the task of detection, like that
by Paulus and coworkers using an x-ray free-electron laser
in EuXFEL [6], but to present date this phenomenon has
not been experimentally found yet, as it involves tiny effects

[7] due to the non-linear coupling ξ = 8α2h̄3

45m4
ec

5 ∼ 8α
45B2

c
∼

6.7 × 10−30 m3/J where Bc = m2
ec

2

eh̄ = 4.4 × 1013 G is the
critical magnetic field.

Alternatively, this non-detection has been interpreted as
a possible manifestation of new physics. One of the most
relevant experimental setups to capture the effect of birefrin-
gence is the Polarization of Vacuum with Laser (PVLAS) [8]
that proposed axions [9] being produced from photon decay
and thus novel effects being responsible for the null experi-
mental signal, contrary to expectation. To date, the possible
existence of axions has not been discarded and has triggered
a variety of experimental projects [9,10].

Besides vacuum birefringence, the so-called vacuum
instability refers to the possibility of production of electron-
positron pairs excited when their rest mass energy thresh-
old is available and arises in the theory for values of mag-
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netic/electric fields higher than the Schwinger critical ones,

Bc/Ec, with Ec = m2
ec

3

eh̄ = 1.3 × 1018 V/m, respectively.
Finally, pressure anisotropy associated to magnetized vac-
uum with a fixed background magnetic field, is another theo-
retical finding of QED in the one-loop approximation, some-
what explored in [11,12], where differences in parallel and
transverse directions to the external field appear as a conse-
quence of the breaking of the SO(3) symmetry.

Apart from QED, there are additional alternative NLED
that have been proposed in the literature incorporating quan-
tum corrections. In the ModMax NLED [13] SO(2) elec-
tromagnetic duality invariance and conformal invariance are
fulfilled. The Lagrangian density is not analytic everywhere
failing at configurations for which the Lorentz invariants are
zero. Other NLEDs, such as the Born–Infeld theory [14]
instead, smoothes divergences and can be explored for strong
EM fields as it gives the restriction on the possible maximum
electric field. Born–Infeld theory induces a dual invariance
but displays no birefringence in vacuum [15]. Another dif-
ficulty is that the value of the electric field in the center of
the point-like charge depends on the direction of approach to
it but resolving this problem leads to application in gravity
[16] and holographic superconductors.

The scope of this paper is revisiting the energy–momentum
(EMT), angular momentum (AMT) tensors and magnetic
properties of the vacuum in selected NLED in a scenario
where photons are propagating in the presence of a back-
ground magnetic field of arbitrary strength. We will restrict
nevertheless to energy scales below the pair production insta-
bility i.e. photon frequency ω ≤ 2mec2.

In our study, we calculate the EMT opening the discussion
related to the equivalence between the results from improved
Noether and Hilbert EMT. All properties are obtained as
functions of derivatives of an effective Lagrangian with
respect to the two scalar invariants of the theory, F ,G,
thus becoming a more general study applicable to different
NLEDs. In the same fashion, all magnitudes obtained for the
EH effective theory are valid for arbitrary orientation of the
magnetic field, being equivalent cases that of a background
pure external electric field or perpendicular electric and mag-
netic fields.

The paper is organized as follows. In Sect. 2 we intro-
duce how the EM wave propagation can help study vac-
uum properties in the context of the NLED we consider. In
Sect. 2.1 we present the effective NLED described by the
Euler–Heisenberg Lagrangian for arbitrary magnetic field
strength and study the propagation of a photon probe in its
associated vacuum. We use a Lagrangian expansion in invari-
ants of the theory along with coefficients, which are deriva-
tives up to second order of it. This quadratic Lagrangian
allows us to obtain generalized Maxwell equations and, in

particular, that governing the displacement photon field and
dispersion equations in the Fourier space.

In Sect. 3 we proceed to obtain the EMT and AMT. Using
the Hilbert construction, symmetric, gauge invariant, and
conserved EMT is obtained. Additional physical quantities
of the theory stemming from EMT and AMT are calculated,
i.e. energy density, Poynting vector, pressure components
and angular momentum vector. We remark on differences
found when using alternative procedures. In Sect. 4 we dis-
cuss the photon magnetization and define a photon magnetic
moment giving generic expression as a function of magnetic
field strength in the range of validity of our approach and
comparing it to existing limiting values. In Sect. 5 we follow
with some discussion about possible strategies and experi-
mental tests to discriminate among magnitudes obtained in
the exposed scenarios. Finally, in 6, our conclusions are pre-
sented. A final Appendix Sect. 7 is included, where subsec-
tions detail complementary lengthy calculations appearing
along this manuscript.

2 Propagation of EM waves in vacuum

In order to further study vacuum properties as they arise in
NLED theories special attention is devoted to wave propaga-
tion. For example, radiation (photon) emission from pulsars
[17,18] i.e. magnetized neutron stars (NSs) has been reported
to show the indirect signal of birefringence. The latter has also
been claimed responsible in e+e− production from photon
fusion in Breit–Wheeler processes showing separation in the
differential angular distribution relative to the initial photon
polarization and magnetic field angle [19]. The vacuum bire-
fringence effect over the propagation of photons is equivalent
to that an ordinary anisotropic medium produces over light
propagation. That means that vacuum behaves as a refrac-
tive medium. Hence, the study of propagation of photons
in magnetized vacuum using NLEDs in the lowest order of
fields allows us to interpret and design experimental tests for
vacuum phenomenology using traditional treatments of non-
linear optics. Only precise observations and analysis of theo-
retical models may aim to isolate them. However, one should
keep in mind that when these very large fields are generated
in dense environments, matter effects are the main ingredi-
ent to include, although quantum vacuum aspects remain an
important contribution indicating that a consistent treatment
seems unavoidable.

The scenario depicted before is valid for field strengths
smaller than the critical ones. However, generally speaking,
magnetic field strengths in nature can reach extreme values,
such as in the interior of white dwarfs or pulsars, where fields
attain strengths B ∼ 1012−15 G [20,21], and those gener-
ated in heavy ion collisions. For the latter, and in the earliest
moments after the collision, the system is subjected to what
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is expected to be the strongest magnetic field created in the
laboratory. In heavy-ion collisions of Au − Au at the RHIC
energy

√
sNN = 200 GeV and impact parameter b = 4 fm,

a local field eB ≈ 1.3 · m2
π with m2

π = 1402 · 0.512 × 1014

G ≈ 1018 G is estimated [22,23].
So far, there is a fundamental technical issue as it is not

possible to generate steady fields stronger than B ∼ 4.5×105

G in the lab because the magnetic stresses of such fields
exceed the tensile strength of terrestrial materials. Regarding
oscillating fields, special mention deserves those generated
in laser facilities. For optical lasers, peak powers beyond
1 PW are available in several present and future projects
such as in ELI [24], CoReLS [25], Appollon [26], Vulcan
[27] or CLPU [28], just to cite some of them. This would
promote the laser intensity beyond that currently available
at ∼ 1023 W cm−2 [25]. For larger intensities close to 1024

W cm−2 a 100 PW laser system is needed [29]. With better
focusing, the laser intensity could be even higher. This will
effectively drive laser-matter interaction in the strong-field
QED regime. Note that for short times Δt � P , being P the
wave field period, and in localized regions, one can assume an
equivalent constant magnetic field strength so the treatment
remains valid. On the other hand in the context of Dirac
materials [30] it is possible to test the strong field properties
of the vacuum of this theory with the advantage of the critical
field being O(1) T.

In our treatment the NLEDs studied display magneto-
electric properties in the magnetized vacuum. It is important
to size at what extent they may affect the photon propaga-
tion. In this context, as in the effective theory of magnetized
vacuum [31] Lorentz-symmetry is violated, the study of its
properties could illuminate theories Beyond Standard Model
that enable to explain with non-conventional mechanisms,
the existence of the so-called dark matter, milli-charged par-
ticles [32] and other exotic phenomenology [9] that are, so
far, out of the prediction of the standard scenarios.

2.1 Effective EH Lagrangian for non linear
electrodynamics

The one-loop photon-photon interaction processes are des
cribed by the Euler–Heisenberg Lagrangian density, first pro-
posed by Euler, Kockel [1] and Heisenberg and indepen-
dently by Weisskopf [33]. Following a renormalization pro-
cedure, it becomes finite and gauge invariant [34,35] under
the form

L = −μ−1
0 F − 1

8π2

∫ i∞

0

ds

s3 e
−m2

e s

×
[
(es)2ab coth(eas) cot(ebs)

− (es)2

3

(
a2 − b2

)
− 1

]
, (1)

wherea =
[(F2 + G2

)1/2 + F
]1/2

andb=
[(F2 + G2

)1/2 −
F

]1/2
. me, e are the mass and charge of the electron, respec-

tively. F ,G are secular invariants derived from the gauge
and Lorentz invariants of the generic electromagnetic fields
(E,B) defined as

F = 1

4
FμνFμν = 1

2

(
−ε0E

2 + B2

μ0

)
, (2)

G = 1

4
Fμν ˜Fμν =

√
ε0

μ0
(−E.B), (3)

We have used μ0, ε0 as electrical permittivity and mag-
netic permeability of the empty space, respectively. In what
follows we set μ0 = ε0 = 1 as well as the speed of light c = 1
for the sake of simplicity. The field-strength tensor compo-
nents are related to EM fields as Ei = F0i , Bi = − 1

2εi jk F jk

with i = 1, 2, 3. In addition, F̃μν = εμναβFαβ/2 is the
dual tensor and εμνα , εμναβ are the totally antisymmetric
Levi-Civita tensors of rank 3 and 4, respectively. We use
the Einstein convention of summing over repeated indices.
Note that for a pure magnetic field case (E = 0) we have
F = B2/2 and G = 0. Bianchi identities are fulfilled as

1√−g
∂ν

[√
gF̃μν

]
= 0. At this point it is worth noting that

for the sake of completeness we introduce the curved space
notation, however, for most of the calculations we will restrict
to a case assimilated to Minkowski flat space where we use
the convention gμν = ημν = diag(+1,−1,−1,−1) and g
for its determinant.

In general, for arbitrary value of the EM fields or equiva-
lently a, b is not possible to get a handy analytical expression
of this Lagrangian in Eq. (1). Fortunately, there is a more
general treatment at G = 0 performing an expansion of the
Lagrangian in terms of the Lorentz invariants. In particular,
the scalar derivatives LF = ∂L

∂F , LFF = ∂2L
∂F2 , LGG = ∂2L

∂G2

can be calculated analytically and we provide expressions
in the limit E → 0, i.e. b → 0 which is the one we are
interested in the present work, see Appendix 7.1.

In order to focus on the system under study we now
introduce the general expression of the Euler–Heisenberg
Lagrangian in Eq. (1) and decompose the EM field strength
tensor as Fμν(x) ≡ Fμν(x) + f μν(x) with contributions
from the background (external) field Fμν(x) = ∂μAν(x) −
∂ν Aμ(x) and from the photon field f μν(x) = ∂μaν(x) −
∂νaμ(x). From this we can construct the effective Lagrangian
under the form

L = −1

4
FμνFμν + L(1) + L(2). (4)
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The first term corresponds to the classical Maxwell Lagrangian
and the last two terms correspond to quantum corrections up
to second order in the radiation field strength tensor. L(1) and
L(2) describe interaction terms as [37]

L(1) = 1

2
LF f μνFμν, (5)

L(2) = 1

4
LF f μν fμν

+ 1

8
f αβ

(
LFF FαβFμν + LGG F̃αβ F̃μν

)
f μν. (6)

The explicit expressions for the non-zero scalar deriva-
tives LF = ∂L

∂F | f=0, LFF = ∂2L
∂F2 | f =0 and LGG = ∂2L

∂G2 | f =0

are shown in Appendix 7.1 for completeness and have been
previously compiled in [45]. L(1) arises as a topological term
in the expansion of Eq. (1) [37,39], but giving null contri-
bution to the equations of motion and the magnitudes aris-
ing from volume integrated space-time averaged quantities
from EMT. For the scope of this work we neglect higher
orders terms, L(n), n > 2 which are indeed possible and can
be generated in an analogous way. They would describe the
interaction of background and radiation fields as well as self-
interaction to quartic order in the fields. From the perspective
of non-linear optical theory quartic terms in radiation field
are related to possible new non-linear interactions, which do
not occur at the tree level [40] while for background fields
is thus connected to the interaction of a magnetic field with
electron-positron pairs capable to induce vacuum anisotropic
pressures [12,41] similar to the “Casimir effect”.

Therefore, the Lagrangian in Eq. (4) retains contributions
from background external field (B) and photon interaction
with external fields (ph-B) as L = L(B) + L(ph−B). The
terms involving photons can be explicitly written as

L(ph−B) = −1

4
(1 − LF ) f μν fμν − 1

2
(1 − LF ) f μνFμν

+ LFF
8

( f μνFμν)
2 + LGG

8
( f μν F̃μν)

2. (7)

The interaction terms take the following explicit form in
terms of the photon field (Ew, Bw) up to second order as
well as the external magnetic field Be ≡ B,

L(ph−B) = (1 − LF )

2
(E2

w − B2
w) + (1 − LF )(B · Bw)

+ LFF
2

(B · Bw)2 + LGG
2

(B · Ew)2. (8)

Note that this quadratic approximation for L(ph−B) has also
been the starting point of previous studies [42–44] in weak
or strong field limits. It is important to recall that by using
the soft-photon approximation in the Lagrangian in Eq. (8)
we restrict the validity of our approach to a maximum value

Fig. 1 Electric permittivities and magnetic permeabilities versus mag-
netic field strength. These quantities remain positive definite ensuring
the unitarity and causality constraint in vacuum (see Appendix 7.2)

B ≤ 430Bc [45]. Above this strength, we have to include
two-loop corrections [46] with explicit quantum treatment
[47–50]. However, for most usual physical motivations: a
study of laboratory astrophysics with pulsating laser fields
and/or Neutron Star physics, a single loop approximation
suffices, because typical magnetic fields in external layers
and magnetospheres usually stay hundreds of times lower
than the critical magnetic field.

Although the EH NLED description may conceal some
microscopic phenomena related to photon-photon inter-
action, it is a robust theory since it considers the vac-
uum behaves as a non-linear refractive optical medium. As
an example, from Eq. (8) and Lagrangian derivatives in
Appendix 7.1 we recover the weak field (WF) approxima-
tion expressions LF = ξF

4 , LFF = ξ
2 , LGG = 7ξ

4 obtaining
the well-known form

LWF
EH = −F + ξ

4
(4F2 + 7G2), (9)

usually taken for studies of non-linear laser optics [4,51,52].
From the Lagrangian L(ph−B) in Eq. (8) we can readily

obtain Maxwell equations (see Appendix 7.2) and related
electric permittivity and magnetic permeability tensors.

In Fig. 1 we have plotted electric permittivities and mag-
netic permeabilities from Eqs. (73) and (76) in Appendix
7.2 to illustrate these B-dependent quantities remain positive
definite as causality and unitarity require [44], LFF ≥ 0,
LGG ≥ 0 and 1 − LF ≥ 0.

3 Energy–momentum and angular momentum tensors

In this section, we are interested in determining the EMT and
AMT, starting off from the Lagrangian in Eq. (4) describing a
photon probe propagating transverse to an external magnetic
field. There are various techniques at hand for this, stemming
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from the effective theory and, usually, the approach chosen
is based on its intended use.

Among the most common are those from Noether [53],
based on the symmetries in the Lagrangian and Noether the-
orem [54] (current and charges are preserved), and Hilbert
[55], which is based on variational geometry. Other sev-
eral approaches have been developed to analyze the wave
propagation problem, in particular those due to Boillat
[56], Bialynicka-Birula and Bialynicki-Birula [57] and more
recently by Novello et al. [58]. It is important to note that, in
general, they do not yield the same result when computed.
Just to mention some important differences, the Noether
canonical procedure needs the Belinfante tensor to yield a
symmetric tensor [59]. Often the procedures providing gauge
invariant, symmetric, and conserved EMT [60,61] are best
suited for studies with non-flat geometry such as those in
General Relativity while Noether and its (improved) exten-
sions for most of remaining physical applications.

Despite the fact that we consider as a case study the
EH NLED whose limit at zero external magnetic fields is
Maxwell electrodynamics, we will show in what follows
that, as a clear example of the previous, Noether and Hilbert
approaches do not yield the same EMT tensor.

In the robust Hilbert method, we compute the EMT, Tμν
H ,

from the variation of the effective Lagrangian L with respect
to the metric tensor, gμν in the usual way. It has two main
contributions

T γρ

H = T (0)γρ

H + tγρ

H , (10)

where T (0)γρ

H is that of the external background field while
tγρ

H is that accounting for the interaction of the photon
field with the background field. Therefore from the photon
Lagrangian L(ph−B)

tγρ

H = 2√−g

δ[L(ph−B)]
δgγρ

∣∣∣∣∣
g=η

. (11)

Performing the derivatives and recovering the flat space

tγρ

H = (1 − LF ) f γ
λ f λρ + LFF

2
f μνFμν(F

γα f ρ
α + Fρα f γ

α )

+ LGG
2

f μν F̃μν(F̃
γα f ρ

α + F̃ρα f γ
α )

+ ηγρ

4

(
(1 − LF ) fμν f

μν

+ LFF
2

f μνFμν f
αβFαβ + LGG

2
f μν F̃μν f

αβ F̃αβ

)

+ LF (Fγα f ρ
α + Fρα f γ

α ) + ηγρ

2
LF f μνFμν. (12)

The obtained EMT is thus gauge invariant, symmetric
tμν
H = tνμ

H , displays anisotropy and lack of tracelessness i.e.
it has a non-vanishing trace tμH,μ �= 0.

As we will check below, the energy momentum tensor
tμν
H is locally conserved on shell imposing the corresponding

equations of motion [60].
The photon EMT can be also obtained as in [31,43], using

the improved Noether procedure yielding tμν
N+B . We label this

tensor as N + B from Noether plus Belinfante. Recapping
the procedure we have

tμν
N+B = 2

∂L(ph−B)

∂ fμα

f ν
α − ημνL(ph−B), (13)

and its explicit expression is

tμν
N+B = (1 − LF ) f αμ f ν

α + LFF
2

f ρσ Fρσ (Fμα f ν
α )

+ LGG
2

f ρσ F̃ρσ (F̃μα f ν
α ) − ημνL(ph−B). (14)

The tensor in Eq. (14) is also gauge invariant and con-
served but it is not symmetric and, therefore, is quantitatively
different to Eq. (12). The authors in [31] claim the latter is
due to the external magnetic field breaking the rotational
symmetry thus not being possible to symmetrize tμν

N+B .
As is well known, both methods are mathematically quite

different. In the Hilbert formalism, see Eq. (11), it implies
the variation of the Lagrangian with respect to the metric
while for Noether, see Eq. (13), it is varied with respect to
the fields.

The EMT in Eqs. (14) and (12), have been obtained start-
ing from an approximate version of EH Lagrangian, Eq. (7)
by performing an expansion including non-linear magneto-
electric terms. As is explained in [61] the term proportional
to ημνL in the Noether EMT is recovered by the Hilbert
method differentiating the factor

√−g, hence, the differences
come from the derivatives in the non-linear terms. By Hilbert
method a term with a four metric tensor product emerges
contributing to symmetrize the EMT while the correspond-
ing one obtained by Noether method only yields one of these
two terms and the resulting EMT is non-symmetric. In the-
ories like Classical Electrodynamics, identical results are
obtained from Hilbert or Noether methods. Thus one recovers
Maxwell theory from the EMT of a photon probe in a non-
linear theory computed by Hilbert or Noether plus Belinfante
symmetrization formalism, in the limit of Be → 0, being the
tensor gauge invariant, symmetric, conserved and traceless.

3.1 Equivalence of the EMT à la Noether and à la Hilbert
for EH non linear electrodynamics

At this point we aim to discuss the equivalence of the Noether
or Hilbert calculation of the photon EMT if, instead of start-
ing off from the approximate Lagrangian Eq. (7), we use a
general Lagrangian L = L(F ,G) with Fμν = Fμν + fμν

in the limit fμν � Fμν . Thus from a general Lagrangian
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L following the prescribed procedure an equivalent EMT is
obtained either by Hilbert or Noether plus Belinfante method.

The expansion up to second order in the photon fields of
the general EMT obtained from L by the Hilbert method,
also yields the EMT in Eq. (12). Hence, with this method no
matter if we compute the EMT from Lagrangian L(ph+B) or
if we start from a general Lagrangian L provided we expand
and retain terms up to second order in the photon fields. On
the contrary, with the Noether method we can obtain the
expression Eq. (12) only by expanding up to second order in
the photon fields from a symmetric EMT obtained from L.

Let us now illustrate the calculation to clarify these ideas.
We start from a general Lagrangian

L = L(F ,G) (15)

the Noether plus Belinfante EMT Tμν
N+B takes the form (note

we consider the full EMT here)

Tμν
N+B = 2

∂L
∂Fμα

Fν
α − ημνL, (16)

with

∂L
∂Fμα

= 1

2

∂L
∂F Fμα + 1

2

∂L
∂G F̃μα, (17)

we obtain the symmetric tensor

Tμν
N+B = 1

2
LFFμαFν

α + 1

2
LGF̃μαFν

α − ημνL. (18)

Substituting in Eq. (18) (i) the expansion ofL up to second
order terms in the photon field as given by Eq. (7) and (ii) the
expansion of Lagrangian derivatives evaluated for LG = 0
and LFG = 0 one arrives at the same expression of Tμν

N+B
found in the Hilbert formalism. For this one must retain only
up to second order terms on both the photon and the external
constant fields and neglect terms proportional to f σβ fσβ ,
f̃ σβ fσβ .

Let us now discuss the local conservation of the EMT
Eq. (12). Since we know Tμν

N+B = Tμν
H = T (0)μν

H + tμν
H we

obtain that

∂μt
μν
H =1

2
(1−LF )

(
(Fμν+ f μν)∂μ f ν

α −(Fσρ+ f σρ)
)
∂ν fσρ

+ 1

2
LFF Fαβ fαβ(Fμα∂μ f ν

α − Fσρ∂ν fσρ)

+ 1

2
LGG F̃αβ fαβ(F̃μα∂μ f ν

α − F̃σρ∂ν fσρ), (19)

where we have evaluated the divergence of the EMT on the
approximated equation of motion

∂μ

(
∂L

∂Fμν

)
= −1

2
(1 − LF )∂μ f μν + ∂μ

1

4
Iμν = 0, (20)

with

Iμν =
(LFF

2 (Fσρ fσρ(Fμν + f μν))

+LGG
2 (F̃σρ fσρ(F̃μν + f̃ μν))

)
. (21)

Doing some algebra we can accommodate Eq. (19) as

∂μt
μν
H =1

2
LFF Fαβ f ν

α

1

2
ηνλFμα(∂μ fλα+∂λ fαμ+∂α fμλ)

+1

2
LGG F̃αβ fαβ

1

2
ηνλ F̃μα(∂μ fλα+∂λ fαμ+∂α fμλ)

× 1

2
(1 − LF )

1

2
ηνλ F̃μα(∂μ fλα + ∂λ fαμ + ∂α fμλ)

= 0, (22)

due to the Bianchi identity (∂μ fλα + ∂λ fαμ + ∂α fμλ) = 0.

As we have checked, the second order on photon field
symmetric EMT is conserved. Let us note that the equation
of motion, Eq. (20) fulfills, contains quadratic terms in the
photon fields

LFF
2

Fσρ fσρ f μν + LGG
2

F̃σρ fσρ f̃ μν = 0, (23)

and after neglecting them and we obtain a similar expression
in accordance to the one obtained by [44] for L(ph−B).

In our previous work [65], the Hilbert-Einstein method
was also used to obtain the diagonal components of the EMT
in the weak field limit in Eq. (9). That calculation was per-
formed considering the external plus wave fields contribu-
tions to the strength tensor i.e. Fμν + f μν but neither were
explicitly separated nor the latter was approximated to their
quadratic contributions. Hence, it is worth noting that the
resulting EMT contains all possible interactions between the
external magnetic and the photon field probes, including self-
interaction, that, nevertheless, should coincide with the tμν

H
presented here if we make the appropriate approximations
above mentioned. This result is not a priori straightforward
to obtain [64,66].

Going back to the previous discussion about Noether and
Hilbert formalisms using L(ph−B), as both produce differ-
ent but conserved EMT (regarding improved Noether the
continuity equation is limited to second index) in principle
they should be both acceptable. The physical meaning of the
two approaches and the implications of their differences for
the observables is still an open question and deserves fur-
ther work to be fully understood, being however beyond the
scope of this work. Nevertheless in the next two subsection
we analyze some properties and characteristics of Noether
and Hilbert photon EMTs in Eqs. (12) and (14).

123



Eur. Phys. J. C (2023) 83 :746 Page 7 of 16 746

3.2 Components of tμν
H

Let us continue discussing the explicit components of the
photon contribution tμν

H obtained from Eq. (12) and doing
comparison with the result obtained by non-symmetric
Noether improved method Eq(14). We can write the com-
ponents in terms of the photon fields Hw,Bw, Dw and Ew,
see Eqs. (71) and (72) as

t00
H = 1

2
(Dw.Ew + Hw.Bw) + LGG(Be · Ew)2, (24)

while components i = j = 1, 2 are given by

t iiH = 1

2
(Dw.Ew + Hw.Bw)

− (Dw,i Ew,i + Hw,i Bw,i ) − LFF (Be · Bw)2. (25)

Instead, for i = j = 3, we obtain

t33
H = 1

2
(Dw.Ew + Hw.Bw)

− (Dw,3Ew,3 + Hw,3Bw,3) − LGG(Be · Ew)2, (26)

while for the Be = Beẑ the only spatial non-diagonal com-
ponent i �= j is

t13
H = t31

H = −LGG(Be · Ew)Ew,1Be,3

+ LFF (Be · Bw)Bw,1Be,3 = 0, (27)

and the non-vanishing components 0i corresponding to the
momentum density, Pw, are

t02
H =1

2

(
(Ew,3Hw,1−Ew,1Hw,3)+(Dw,3Bw,1−Dw,1Bw,3)

+ LFF Ew,1Be,3(Be · Bw) + LGG Bw,1Be,3(Be · Ew)
)
.

(28)

Besides, the AMT, a rank-3 tensor density, connected to
the symmetric EMT via tensor relations [60] as

Mμνλ = xμtνλ
H (x) − xν tμλ

H (x), (29)

is conserved ∂λM
μνλ = tνμ

H − tμν
H = 0, and antisymmetric

in the μν indices.
Once we have defined the tensorial quantities of interest,

EMT and AMT, as space-time dependent we now proceed
to provide their physical meaning. To do that we express
the explicit components of the photon contribution to tμν

H in
terms of the fields B = Be +Bw, E = Ew, obtaining magni-
tudes such as angular momentum, energy density, Poynting
vector or directional pressures.

On general grounds, magnitudes being conserved stem
from the dynamical equations they follow in a system. Then,

EMT and AMT conservation laws usually lead to the stan-
dard procedure to define physical quantities as integrals of
densities over a spatial volume V [31,67]. At the same time,
the presence of oscillating fields leads to the importance of
averaging over time t and coordinate propagation, y, whose
associated Fourier coordinates are frequency ω and momen-
tum k⊥, respectively.

In that way, the EH NLED vacuum would be described
as a classical Maxwell anisotropic medium and the photon’s
propagation would proceed via an effective metric to fulfill
the null geodesic requirement [58].

3.3 Angular momentum, energy density, pressures and
Poynting vector

We now discuss the relevant physical implications of Hilbert
and Noether procedures. We first focus on the angular
momentum vector J obtained from the AMT in Eq. (29).
As the obtained Hilbert EMT is symmetric its conservation
is straightforward [60]. J is given by volume integration as

J k = 1

2
εki j 〈Mi j0〉V = 1

2
εki j 〈xi t j0H − x j t i0H 〉V , (30)

with i, j, k = 1, 2, 3. The mechanical relation between
the EMT and AMT can be established [60]. Hence, a con-
served angular momentum vector also leads to a zero torque,
dJ
dt = τ = 0 and zero perpendicular component of the mag-

netization (τ = Mω,⊥ × Be).
However, as shown in [31] a non-conserved angular

momentum vector, non-zero torque, and perpendicular mag-
netization arises from a non-symmetric EMT, see Eq. (14),
as when using the Noether plus Belinfante or Hamiltonian
method. In such a case, an intrinsic photon spin could be
defined [68].

Let us now write the expression for the photon energy
density ρw = t00

H and its integrated value, the photon energy
contribution, P0

w = 〈ρw〉V . The space-time averaged form,
denoted with 〈..〉, for P0

w is

P0
w,H =

〈
D2

w

2ε⊥
+ B2

w

2μ⊥

〉

+ 1

2

〈
3LGG(Be · Dw)Dw

ε⊥ε‖
− LFF (Be · Bw)Bw

〉
Be,

(31)

P0
w,N =

〈
D2

w

2ε⊥
+ B2

w

2μ⊥

〉

+ 1

2

〈LGG(Be · Dw)Dw

ε⊥ε‖
− LFF (Be · Bw)Bw

〉
Be,

(32)
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We remind at this point that in general P0
w,H is not the

Hamiltonian H because it does not fulfill the Legendre trans-
formation

H = Dw · Ew(Dw,Bw) − L(ph−B)(Dw,Bw).

Only for pure photon polarization mode (3) P0
w ≡ H. On

the contrary, Noether t00
N always leads to the Hamiltonian

[31,39,60].
Regarding the Poynting vector, Pw,H , we can obtain it

from the EMT components t0i
H . Due to the plane wave pho-

ton field, propagating in the ŷ-direction the only non-trivially
fulfilled EMT conservation relation concerns the i = 2
component. Having a fixed orientation in the ẑ-direction
for the background field the only non-zero component is
P2

w,H = 〈t02
H 〉 = 〈t20

H 〉

Pw,H =
〈
Dw,3Bw,1

(
1

ε‖μ⊥
+ 1

)
− Dw,1Bw,3

(
1

ε⊥μ‖
+ 1

)〉
ŷ

+ 〈Ew,1Be,3(Be · Bw)LFF + Bw,1Be,3(Be · Ew)LGG〉 ŷ,
(33)

and it does not match the one obtained by the Noether method,

Pw,N = 〈t02
N 〉 =

〈
Dw,3Bw,1

(
1

ε‖μ⊥
+ 1

)〉

−
〈
Dw,1Bw,3

(
1

ε⊥μ‖
+ 1

)〉
ŷ. (34)

and

Pmomentum
w,N = 〈t20

N 〉 = Pw,N − 〈Ew,1Be,3(Be · Bw)LFF 〉
+ 〈Bw,1Be,3(Be · Ew)LGG〉 ŷ. (35)

Noether method yields an EMT such that t20
N ≡ Ew ×Hw

while t02
N ≡ Dw × Bw i.e. t20

N �= t02
N due to the approximated

L(ph−B) used.
As for the photon pressure components, they are related

to the stress energy tensor (spatial part in EMT) t i jH . We thus
consider the flux of the i-th component of momentum carried
in the j-th direction and viceversa. As the background field
points in the ẑ-direction from Eq. (25) the expression for
p1
w = 〈t11

H 〉, p2
w = 〈t22

H 〉 reads

piw,H =
〈

1

2
(DwEw + HwBw) − (Dw,i Ew,i + Hw,i Bw,i )

−LFF (Be · Bw)2
〉
, (36)

where i = 1, 2, while for p3
w,H = 〈t33

H 〉 we obtain

p3
w,H =

〈
1

2
(DwEw + HwBw)

−(Dw,3Ew,3 + Hw,3Bw,3) − LGG(Be · Ew)2
〉
.

(37)

The expressions in Eqs. (36), (37) clearly show the
anisotropy regarding photon propagation with respect to
the fixed direction of the magnetic field Be, breaking the
rotational symmetry that otherwise would exist in vacuum.
Instead, the calculation of Noether pressures yield

piw,N =
〈

1

2
(DwEw + HwBw) − (Dw,i Ew,i + Hw,i Bw,i )

〉
,

(38)

for i = 1, 2, 3. Although piw,N is also anisotropic it is differ-
ent to those calculated in the Hilbert procedure.

Even when all pressures are different: p1
w p2

w and p3
w,

as the system becomes axially symmetric it seems natural
to define non-linear pressures into parallel, PNL

w,‖ , and trans-

verse, PNL
w,⊥, directions to the background external field under

the form

PNL
w,⊥ = p1

w + p2
w

2
, PNL

w,‖ = p3
w. (39)

The non-linear (NL) contribution to photon energies
P0,NL

w ≡ ENL
w , Poynting vector ( ŷ-direction component)

and directional pressures using the Hilbert and Noether pro-
cedures for each of two physical polarization modes, see
Appendix 7.2, can be summarized (beware of notation for
photon Ew field and non-linear photon energy ENL

w ) as

EH,NL ,(2)
w = EN ,NL ,(2)

w + LGGB2
e 〈E2

w〉
�

(
−LF + 3

2
LGGB2

e

)
〈E2

w〉 (40)

EH,NL ,(3)
w = EN ,NL ,(3)

w � −
(
LF + 1

2
LFF B2

e

)
〈E2

w〉,
PH,NL ,(2)

w = PN ,NL ,(2)
w + LGGB2

e 〈E2
w〉

� (−LF + LGGB2
e )〈E2

w〉 (41)

PH,NL ,(3)
w = PN ,NL ,(3)

w � −(LF + LFF B2
e )〈E2

w〉
PH,NL ,(2)

w,‖ = PN ,NL ,(2)
w,‖ + LGGB2

e 〈E2
w〉,� −3

2
LGGB2

e 〈E2
w〉

PH,NL ,(2)
w,⊥ = PN ,NL ,(2)

w,⊥ � −1

2
(LF − LGGB2

e )〈E2
w〉, (42)

PH,NL ,(3)
w,‖ = PN ,NL ,(3)

w,‖ � 1

2
LFF B2

e 〈E2
w〉,

PH,NL ,(3)
w,⊥ = PN ,NL ,(3)

w,⊥ + LFF B2
e 〈E2

w〉
� −1

2
(LF + 3LFF B2

e )〈E2
w〉, (43)

where we have used D2
w

ε(‖,⊥)
= B2

w

μ(⊥,‖) and Bw = Ew.
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Fig. 2 Non-linear contribution to energy ENL ≡ 〈ρw〉V (left) and par-
allel and perpendicular pressures (right) as a function of magnetic field
strength for both polarization modes. ENL ,(2) > ENL ,(3) with increas-

ing magnetic field strength. ENL ,(3) ≡ EN ,NL ,(3) = EH,NL ,(3). For
mode (2), PNL ,(2)

⊥ > PNL ,(2)
‖ while PNL ,(3)

⊥ < PNL ,(3)
‖ , for mode (3)

Hilbert energy EH,NL
w has an extra term when compared

to the Noether energy for mode (2) while for mode (3)
remains unchanged. The presence of magneto-electric terms,
also in the magnetization is the main reason for this. Con-
cerning pressures, we find that, depending on the photon
polarization mode, differences appear in the parallel or per-
pendicular components. For polarization mode (2) perpen-
dicular pressures are equal while the parallel differs. On
the contrary, for mode (3), the perpendicular pressure dif-
fers in Hilbert and Noether’s methods while the parallel are
equal. In Fig. 2 we have plotted the non-linear contribution
to photon energy ENL

w ≡ 〈ρ〉V as obtained in Hilbert and
Noether procedures (left) and parallel and perpendicular pho-
ton pressures (right) as a function of magnetic field strength
for both polarization modes. For increasing magnetic field
strength, EH,NL ,(2)

w > EH,NL ,(3)
w and PNL ,(2)

w,⊥ > PNL ,(2)
w,‖

while for mode (3) it is the opposite, PNL ,(3)
w,⊥ < PNL ,(3)

w,‖ and

EH,NL ,(3)
w = EN ,NL ,(3)

w .
Let us note that the photon pressure for monochromatic

planar waves for perpendicular propagation of the photon,
proceeds in ŷ-direction, defining p2

w the target pressure.
Then, radiation pressure is defined by Eq. (36) being for
mode (2)

p2
w =

(
1 − LF + LGGB2

2

)
〈E2

w〉, (44)

while for mode (3)

p2
w = (1 − LF − 3

2
LFF B2)〈E2

w〉. (45)

Although the Poynting vector is defined without ambigu-
ity due the EMT symmetry, it does not fulfill that p2

w = Pw,
as for photons propagating in isotropic media or in “empty
vacuum”. This is due to external magnetic field breaking the
rotational symmetry.

We note the radiation pressure as well as the perpendicu-
lar pressure PNL

w,⊥ have different behavior depending on their
propagation mode. For mode (2) both are higher than the
corresponding “classical pressures” while for mode (3) they
become lower than the classical value. At first glance the
behavior of mode (2) seems to be counterintuitive. Although
photon propagating in magnetized vacuum has a lower veloc-
ity than if it propagates in an “empty vacuum”, the contri-
bution of magnetic energy enters in the radiation pressure as
an additive term yielding a higher pressure than in the classi-
cal case, see Eq. (44). Instead, for mode (3) this contribution
appears subtracting, yielding thus a lower pressure value, see
Eq. (45).

A more detailed analysis of the physical meaning of pho-
ton EMTs obtained from the Lagrangian L(ph−B) by Noether
or Hilbert methods requires to go from the local conserva-
tion to the calculation of experimentally measurable physi-
cal quantities (like the radiation pressure). The experimen-
tal setup will then determine the boundary conditions to be
imposed, both on the photon field and the background mag-
netic field. It is an open question to determine if those condi-
tions will lead to different experimental results. Such an issue
requires a deeper analysis that deserves a separate work in
the future.

4 Magnetization

The magnetic energy density associated with the photon can
be obtained from the magnetization in presence of an external
magnetic field as,

Emag = −1

2
Mw · Be (46)

where the magnetization is calculated generically from

L(ph−B) in Eq. (7) using H = − ∂L(ph−B)

∂Be
= Be − M or

by the Hamiltonian H (ph−B)

123



746 Page 10 of 16 Eur. Phys. J. C (2023) 83 :746

H (ph−B) =
∫

d3x
D2

w

2ε⊥
+ B2

w

2μ⊥

− 1

2

(LGG
ε⊥ε‖

(Be · Dw)2 − LFF (Be · Bw)2
)

.

(47)

The photon contribution to the magnetization has the form

Mw = LGG(Ew · Be)Ew,3 + LFF (Bw · Be)Bw,3. (48)

The magnetization depends on the polarization mode and
provided values of the Lagrangian derivatives and it is always
positive.This induces a paramagnetic nature for the photon.

Considering photon oscillating fields Bw = Ew =
E0ei(ωt−k⊥y) in Eq. (48) and from space-time averages
〈Mw〉, only even powers of wave fields will give a non-
vanishing contribution. Further, when considering effective
measurable energy values we must actually integrate over
volume, i.e. compute 〈Emag〉V .

This allows us to compute the effective magnetic moment
of a photon probe defined as

| μph |= −d〈Emag〉V
dBe

1

V 〈NV 〉 , (49)

where N (i)
V is the number density of ith mode (i = 2, 3) and

is given by N (2,3)
V = 1

2
E2

0
ω(2,3) [31]. μph will characterize the

interaction of propagating photons with the vacuum virtual
pairs under the presence of a magnetic field. More specifically
for the two modes | μ

(2,3)
ph | reads as

| μ
(2)
ph | = α

16π

1

b3

{
3 − 12ζ (1,1)

(
−1,

1

2b

)
+ 3ψ

(
1

2b

)}
.

+ b

[
−3 + log Γ

(
1

2b

) (π

b

)2

+ ψ(1)

(
1 + 1

2b

)
+ 2b2

]} | k⊥ |
Bc

, (50)

| μ
(3)
ph | = α

8π

1

b4

{
−ψ(1)

(
1 + 1

2b

)

+ b

[
4 − 4ψ

(
1 + 1

2b

)
+ 2ψ

(
1

2b

)]

+ b2 [
4 − 2 log(2π)

+ 4 log

(
Γ

(
1

2b

) (π

b

)1/2
)]} | k⊥ |

Bc
, (51)

where now b = Be/Bc, ψ(1) = ∂hψ[h] being ψ the
PolyGamma o Digamma function, (first derivative of ln Γ ).
ζ (1,1)[s, h] = ∂hζ

′ with ζ ′ = ∂sζ [s, h] and ζ [s, h] is the
Hurwitz zeta function [71]. In Appendix (7.1) we provide
expressions for ψ and ζ ′ in weak and strong field limits.

The photon effective magnetic moment inherits the ori-
entation of the magnetization. For both modes, it is parallel
to the external magnetic field, determining the photon field

Fig. 3 Photon effective magnetic moment as a function of magnetic
field strength, b = B/Bc, for mode (2) (mode (3)) is shown in red
(blue) solid line. Weak (strong) field limit is depicted in orange dashed
(grey dot-dashed) line for mode (2). The weak field limit for mode (3)
is depicted by the dashed green line

component. In the weak field limit, the photon effective mag-
netic moment yields for modes (2) and (3)

| μ
WF (2)
ph | = 7

2
ξ | k⊥ | Be = α

4π

28

45

Be

B2
c

| k⊥ |, (52)

| μ
WF (3)
ph | = 2ξ | k⊥ | Be = α

4π

8

45

Be

B2
c

| k⊥ | . (53)

Instead, in the strong field limit only mode (2) contributes
to it tending to a constant value found to be a thousand times
smaller than the anomalous electron magnetic moment, μe,

| μ
SF (2)
ph | = α

3π

〈E2
w〉

Bc
∼ α

3π

e

2me

| k⊥ |
me

∼ 10−3μe,

| μ
SF (3)
ph | = 0. (54)

As was pointed out in [31] performing an analogy between
the parallel magnetic moment for a photon probe μph and
the spin magnetic moment of the electron, the former could
be interpreted as a consequence of the existence of spin for a
photon probe. However, it is merely an analogy, since spin for
particles has to obey additional quantum mechanical proper-
ties that the bosonic photon field does not satisfy. In Fig. 3
we plot the photon effective magnetic moment as a function
of dimensionless parameter b = B/Bc for light polarization
modes (2) and (3). For comparison, we have depicted the
magnetic moment in the weak and strong field limits as well.
One can see that the effective magnetic moment for mode (2)
(model (3)) is over (under) estimated if we take the approxi-
mate values arising from the weak and strong limits in their
range of validity. Then, for a magnetic field Be � 2Bc the
effective magnetic moment of photons polarized on mode
(2) tends asymptotically to a constant value. Instead, pho-
ton magnetic moment for mode (3) slowly decreases with
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the magnetic field strength, being zero its strong field limit
value. Let us note that the effective magnetic moment for
mode (2) coincides with those obtained by [17] for arbitrary
values of the magnetic field strength and [31] in the strong
field limit.

As a complementary remark, let us mention that the mag-
netic moment of the electron in presence of a magnetic field
considering radiative corrections in QED, was studied in [74]
for weak and strong magnetic field limits providing expres-

sions ∼ α
2π

eB
2me

and ∼ meα
4π

ln2(
m2
e

2eB ), respectively. So far,
there is no general expression for the whole range of mag-
netic field strengths. However, our study for photon effective
magnetic moment for arbitrary values of the magnetic field
contributes to clarifying the physical implications of those
limits.

The physical picture that emerges for the effective mag-
netic moment of photons is thus a consequence of their
propagation in a magnetized vacuum. Likewise photons in a
medium, photons in vacuum behave as quasi-particles inter-
acting with virtual pairs and external magnetic fields via this
effective moment.

5 Experimental prospects for testing vacuum properties
with photon propagation with EH NLED

Indirect observation of photon magnetization and magnetic
moment are possible in the astrophysical scenario, as already
shown in the literature [17,36]. When photons cross the mag-
netic field in the magnetosphere of a NS they are deflected
and their trajectories are bent, rising magnetic lensing effects
where a non-vanishing photon magnetic moment plays an
important role, see [72]. Instead, on Earth, much lower
strength pulsating fields can be generated in modern laser
facilities on tabletop experiments [10,73] constituting yet
another interesting opportunity to measure quantities such
as photon magnetization, photon effective magnetic moment
or photon pressure in the weak field limit, as discussed. As
we have shown, photon magnetization and effective mag-
netic moment are mainly determined by the magneto-electric
terms in the Lagrangian 1/2LGG(Be ·Ew)2 and 1/2LFF (Be ·
Bw)2 depending on the polarization mode. In the EH weak
field limit LGGB2

e → 7/4ξ B2
e while LFF B2

e → 2ξ B2
e ,

respectively. Therefore, experiments aimed to get magneti-
zation properties, even if challenging, would give us the LGG
and LFF values independently.

As already mentioned, the photon pressure ( ŷ-direction
component) p2

w for modes (2,3) is written as p2
w = P0 +

C2,3M(2),(3)
w Be with P0 = (1 − LF )

〈
E2

w

〉
increased in a

quantity proportional to the magnetization of the photon
(C2,3 = 1/2,−3/2) i.e. for each polarization mode will be

different and likely better suited to discriminate over the Cot-
ton Mouton birefringence usually quoted. The latter is sen-
sitive to the refraction index difference Δn related to the dif-
ference (LGG −LFF )B2

e . The classical pressure diminishes
(increases) depending on the mode in a quantity proportional
to the magnetic energy (∼ Mw.Be). Therefore, in principle,
the radiation pressure could be accessible to experimental
setups. An ideal perfect mirror-plate along the plane xz (par-
allel to the magnetic field) may feel the radiation pressure
produced by a laser beam, with 〈E2

w〉 ∼ I . This pressure for
mode 2 (mode 3) will be higher (lower) than the classical
(corresponding to photons travelling in an “empty vacuum”)
[69,70].

Interestingly, experimental setups based on light scatter-
ing [52] and Dirac materials [30] have already obtained mea-
surements of magnetization that seem promising. For the lat-
ter their associated values of Schwinger fields are Ec ∼ 105

V/cm and Bc ∼ 1 T, both being experimentally accessible
and providing a platform to explore the strong field regime of
QED and to observe a new class of magneto-electric effects
such as a high electric field modulated magnetization and
a very large enhancement of the dielectric constant. These
effects are also highly anisotropic as they depend on relative
orientation of E/B fields and their crystallographic orienta-
tion

Considering photon probes from a laser beam whose
intensity is related with electric and magnetic field of the

photon by I
c = ε0E2

w = B2
w

μ0
, typical current values of mag-

netic field generated in laboratory attain around ∼ 45 T =
4.5 × 105 G, while future intensities of I = 1028 W/m2, in
CGS units I = 1024 W/cm2, will require ∼ 102 PW lasers.
Very recent advances on this side [75] include the possibil-
ity of generating ultrahigh magnetic fields of the MegaTesla
order using microtube implosions driven by ultraintense and
ultrashort laser pulses in a novel scheme. For a future bench-
mark intensity, I = 1024 W/cm2 and Be ∼ 30 T = 3 × 105

G, we can estimate the theoretical vacuum magnetization for
both photon modes M(2)

w = 7
2

ξ I
c Be ∼ 2.3 × 10−4 G and

M(3)
w = 2 ξ I

c Be ∼ 1.3 × 10−4 G.
To illustrate with numbers, at atmospheric conditions of

pressure P and temperature T , one can obtain the estimate of
Inverse Cotton Mouton (ICM) magnetization, Matom

ICM finding
these values are two orders of magnitude higher than those
for Helium magnetization [51] at reach in current facilities
[62,63]. However, we should keep in mind that ionization
appears at different intensities, typically I > 1019 W/m2

depending on the noble gas and the consequent ion current
could somewhat perturb the ICM measurement. Recently, on
this same line, it has been stated [76] that performing photon-
photon collision experiments using two counterpropagating
laser beams could yield very promising results for intensities
close to I ∼ 1024 W/cm2.
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6 Conclusions

Starting from the EH NLED, the EMT and AMT associ-
ated to a photon probe, propagating transverse to a con-
stant and uniform background magnetic field have been cal-
culated in vacuum, using the Einstein-Hilbert method. Our
calculations have been performed using NLED in the soft-
photon regime which assures the validity of our results up to
Be ∼ 430Bc. Thus for applications in astrophysical scenarios
or studies related to ultraintense laser experiments, concern-
ing strengths below the critical field, Bc, our findings remain
valid. In particular energy density, pressures, Poynting vec-
tor, angular momentum, magnetization, and photon effective
magnetic moment have been derived for those strengths in
a more general and accurate fashion for the selected NLED,
rather than using the usual weak and strong field limits.

By construction the robust and elegant Euler–Hilbert
method guarantees symmetric, conserved, and gauge-invariant
EMT. Besides, the EMT found, is anisotropic and lacks
tracelessness. Besides, we have confirmed that, in general,
the assumption of the equivalence of EMT from the Hilbert
method and that by improved Noether technique used in [31]
is not fulfilled. We have also identified this effect originating
in the non-linear magneto-electric terms of the Lagrangian
(second order in the photon fields) and the convenience of
the Hilbert method to obtain a symmetric gauge invariant
EMT. Nevertheless, despite finding that physical magnitudes
in Noether and Hilbert procedures thus differ, some gen-
eral properties of the non-linear theory like EMT anisotropy
and not being traceless are valid for both formalisms. As
EMT is anisotropic, the rotational symmetry is broken and is
replaced by an axial symmetry driven by the direction of the
external magnetic field. We compare the Hilbert and Noether
methods and discuss some observables. The non symmet-
ric EMT obtained “ à la Noether” yields non conservation
of angular momentum vector and the appearance of a finite
torque and perpendicular magnetization. Besides, pressures
obtained using the Hilbert or Noether method are different
for each polarization mode. In addition, we find the photon
radiation does not fulfill that p2

w = Pw, as occurs for photon
propagating in isotropic media or in “empty vacuum”.

Therefore, the photon probe feels the non-linear mag-
netized vacuum effects. In this qualitative sense, vacuum
anisotropic pressures have some analogy with the Casimir
effect. Both effects lead to differences in pressures and bear a
common origin, axial symmetry. The former is determined by
the external magnetic field and the latter due to boundary con-
ditions: the presence of plates in Casimir effect [38,41,77].

Let us remark that the results obtained by the Noether
and Hilbert methods can reconcile for the EH NLED i.e,
giving the same results, if the Noether EMT is calculated
not starting off from L(ph−B) but from a general Lagrangian

L(F ,G) and then performing the expansion up to second
order in the photon fields, on the resulting symmetric EMT.

In addition, we have also studied the magneto-electric
properties of the magnetized vacuum finding that it behaves
as paramagnetic. A photon effective magnetic moment is also
calculated. It agrees for mode (2) with the result obtained by
[17]. In the weak field limit, we reproduce the linear behav-
ior of the magnetic field obtained in complementary way
from radiative corrections of QED and the corresponding
dispersion equations [41]. Instead, for strengths, Be � 2Bc,
the effective photon momentum tends to another constant
value in accordance to results obtained in the strong mag-
netic field limit [17,31]. Finally, based on previous works
regarding experiments proposed by [52,73] and promising
measurement of vacuum magnetization of Dirac materials
we have discussed the possibility of measuring magnetiza-
tion of vacuum, photon radiation pressure in future experi-
ments although they present important challenges.
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7 Appendix

7.1 Derivatives of the effective EH Lagrangian

As mentioned, in Sect. 2.1 the Lagrangian derivatives can be
calculated for arbitrary external magnetic field B ≡ Be and
the result reads as follows [45]

LF = −μ−1
0 − α

2πμ0

∫ ∞

0
dze− Bc

B z
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×
[
− 2

3z
− 1

z sinh2(z)
+ coth(z)

z2

]
, (55)

LFF = − α

2πμ0B2

∫ ∞

0
dze− Bc

B z

×
[

2
z coth(z) − 1

z sinh2(z)
+ 1

z sinh2(z)
− coth(z)

z2

]
,

(56)

LGG = − α

2πμ0B2

∫ ∞

0
dze− Bc

B z

×
[
−2

3
coth(z) − 1

z sinh2(z)
+ coth(z)

z2

]
. (57)

In the limit E → 0, i.e. b → 0 we can solve these integrals
using functional regularization so that using LEH in Eq. (1)

LF = ∂LEH

∂F | f =0

= −μ−1
0 − α

2πμ0

(
1

3
+ 2h2 − 8ζ ′(−1, h)

+ 4hlnΓ (h) − 2hlnh + 2

3
lnh − 2hln2π

)
,

LFF = ∂2LEH

∂2F | f =0= α

2πμ0B2

(
2

3
+ 4h2ψ(1 + h)

−2h − 4h2 − 4hlnΓ (h) + 2hln2π − 2hlnh ) ,

LGG = ∂2LEH

∂2G | f =0

= α

2πμ0B2

(
−1

3
− 2

3

(
ψ(1 + h) − 2h2 + (3h)−1

)

+ 8ζ ′(−1, h) − 4hlnΓ (h) + 2hln2π + 2hlnh
)
,

(58)

where h = Bc
2Be

, and the quantum corrections are proportional
to the fine structure constant, α. ψ denotes the PolyGamma
o Digamma function (first derivative of ln Γ ) and ζ ′ is the
first derivative of the Hurwitz zeta function with respect to
the first argument.

Let us remark that the expansion on the derivatives of the
effective Lagrangian LEH and their integration Eq. (58), for
G = 0 could be extended for the study of the propagation
of photon: in a pure background electric field and/or in the
background of an orthogonal electric and magnetic field, with
h → Bc

2
√

2F .
For the weak field (WF) case h > 1 the functions

ζ ′(−1, h), ln Γ (h) and ψ(1+h) have the asymptotic expres-
sions

ζ ′(−1, h) = 1

12
− h2

4
+ lnh

2
B2(h)

+
∫ ∞

0

e−hx

x2

(
1

1 − e−x
− 1

x
− 1

2
− x

12

)
︸ ︷︷ ︸

1
720

1
h2

,

Re(h) > 0

lnΓ (h) = − lnh

2
+ 1

12h
+ 1

360h2 + hlnh − h

− 1

2
+ 1

2
ln2π,

ψ(1 + h) = lnh + 1

2h
− 1

12h2 + 1

120h4 , (59)

and B2(h) = h2 − h + 1
6 is the second Bernoulli polynomial

Then, LF , LFF and LGG become

LF = −1 − α

2π

(
1

3
+ 2h2

−8

(
1

12
− h2

2
+ lnh

2
B2(h) + 1

720h2

)

+ 4hΓ [h] + 2hln(2π) + 2hlnh

)
, (60)

LGG = α

2πB2
e

(
−1

3
− 2

3

(
ψ(1 + h) + 2h2 + 1

3h

)

− 2h

(
1

6h
− 1

180h3

)
− 2

3
ln(h)

−4h

(
ln(h)

6
+ 1

360h2

))
,

LGG
WF−−→ α

2πB2
e

(
1

18h2 + 1

90h2 + 1

360h2

)

= 7

2

8

45

α

4πB2
c

= 7

2
ξ, (61)

LFF = α

2πB2
e

(
2

3
− 2h

(
1

6h
− 1

180h3

)

+6h2
(

2

3
ψ(1 + h) + 2h2 + 1

3h

))

LFF
WF−−→ α

2πB2
e

(
1

90h2 + 1

90h2

)

= α

2πB2
e

(
4

90h2

)
= 8

45

α

4πB2
c

= 2ξ, (62)

The asymptotic behavior, i.e. h < 1 i.e. strong field (SF)
limit of functions ζ ′(−1, h), ln Γ (h) and ψ(1 + h) reads

ζ ′(−1, h) = −h2

4
+ lnh

2
B2(h), (63)

ln Γ (h) = − lnh

2
+ hlnh − h + 1

2
ln2π, (64)

ψ(1 + h) = γ + π2

6
h − ζ(3)h2..., (65)
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and in this limit LF , LFF and LGG have the form

LF = α

3π
ln (B/Bc), (66)

LGG = α

3πBeBc
, (67)

LFF = 1

B2
e

α

3π
. (68)

7.2 Maxwell equations for magnetized vacuum in EH
NLED

We summarize the equations of motion and dispersion
laws for a photon probe in the presence of an exter-
nal fixed background magnetic field. It can be extracted
directly from the Lagrangian in Eq. (4) presented before.
We first select the direction of a photon probe propagating
in ŷ−direction, transverse to a fixed constant magnetic field
along the ẑ−direction, B = B(0, 0, 1). Therefore the equa-
tion of motion is determined using Euler–Lagrange equations

1√−g
∂ν

[√
gFμν

] = 0.
We can express the non-linear Maxwell equations in the

local flat geometry in the more familiar form focusing on
the wave fields using the electric displacement field. Dw, and
magnetic field, Hw,

∂Dw

∂t
= −∇ × Hw, ∇ · Dw = 0, (69)

and a second pair for Ew and Bw

∇ · Bw = 0,
∂Bw

∂t
= −∇ × Ew, (70)

with the constitutive equations for Dw and Hw components
being

Dw,i = ∂

∂Ew,i
[L(ph−B)] = εi j Ew, j = Ew,i + Pw,i , (71)

Hw,i = − ∂

∂Bw,i
[L(ph−B)] = (μ−1)i j Bw, j = Bw,i − Mw,i ,

(72)

with i = 1, 2, 3. Similar to an optical medium, Pw and Mw

are the resulting polarization and magnetization of the photon
probe due to the magnetized vacuum. Note that the presence
of an arbitrary strength external magnetic field will impact
not only the electric permittivity and magnetic permeability
tensors, ε(B) and μ−1(B), but also Maxwell equation solu-
tions for the photon fields in Dw and Hw thus affecting its
propagation in a magnetized vacuum.

In our configuration, explicit expressions for the ε and
μ−1 components can be expressed in terms of Lagrangian

derivatives as

ε11 = (μ−1)11 = 1 − LF , (73)

ε22 = (μ−1)22 = 1 − LF , (74)

ε33 = (1 − LF + 2FLGG), (75)

(μ−1)33 = (1 − LF − 2FLFF ), (76)

being zero otherwise. Further, we define in our system
ε‖ = ε33, ε11 = ε22 = ε⊥, μ33 = μ‖, μ11 = μ22 = μ⊥.
From Maxwell equations in Eqs. (69), (70) for Dw and
Hw and assuming a plane wave photon field in the form
Ew = E0exp[−i(k⊥y−ωt)], propagating in the ŷ−direction
we obtain the dispersion equation in Fourier space for a
monochromatic wave as

(εi jkεlabk j (μ
−1)klka + ω2εib)Ew b = 0, (77)

where i, j, k, a, b, l = 1, 2, 3. Solutions to the previous
Eq. (77) describe two physical polarization modes of the pho-
ton field, (2) and (3). Mode (2) with Bw⊥Be Ew ‖ Be and
mode (3) with Bw ‖ Be, Ew⊥Be. If we now set the wave
number k⊥ = k2 assuming propagation in the ŷ-direction
we obtain linear birefringence due to the linear polarization
of the radiation

ω(2) � c | k⊥ |
(

1 − LGGB2
e

2

)
, (78)

ω(3) � c | k⊥ |
(

1 − LFFB2
e

2

)
. (79)

in line with [41,44]. Besides, Cotton Mouton birefringence
[51] appears and the refraction index is associated to the two
different polarizations modes: n‖ for mode (2) and n⊥ for
mode (3)

n‖,⊥ = | k⊥ |
ω(2,3)

=
√

ε‖,⊥
μ⊥,‖

. (80)

If we now define its difference as

Δn = (LGG − LFF )B2
e

2
. (81)

In the weak field limit (see Appendix 7.1) it is reduced to
the well-known result ΔnWF

CM = 3/4ξ B2
e , instead for the

strong limit ΔnSF
CM = α

6π
( BeBc

− 1). Since the velocity v‖,⊥ =
1/n‖,⊥, in the strong field limit the condition, vSF‖ = 1 −
α

6π
( BeBc

) > 0 (α/(4π) = 1/137) fixes the validity of one-loop
approximation up to values of the magnetic field Be/Bc ≤
π/α ∼ 430 [45].

If we particularize the previous for electric permittivity
and magnetic permeability in weak and strong field limits
we obtain the following expressions.
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In the weak field limit magnetic permeability components
in presence of an external magnetic field Be = Be ẑ are

ε11 = (1 − ξ B2
e ), (82)

ε33 = (1 + 5

2
ξ B2

e ), (83)

(μ−1)11 = (1 − ξ B2
e ), (84)

(μ−1)33 = (1 − 3ξ B2
e ), (85)

and refraction indices and quadratic velocities in parallel and
perpendicular components as

n‖ = 1 + 7

4
ξ B2

e n⊥ = 1 + ξ B2
e (86)

v2‖ =
(

1 − 7

2
ξ B2

e

)
, v2⊥ = (1 − 2ξ B2

e ), (87)

for strong magnetic field we have the electric permittivity
and magnetic permeability are

ε11 = (μ−1)11 � 1 − α

3π

[
ln

(
Be

Bc

)]
, (88)

ε33 � 1 − α

3π

[
ln

(
Be

Bc

)
− Be

Bc

]
, (89)

μ33 � 1 − α

3π

[
ln

(
Be

Bc

)
+ 1

]
, (90)

and

n‖ �
(

1 + α

6π

Be

Bc

)
, n⊥ � 1 + α

6π
, (91)

v2‖ �
(

1 − α

3π

Be

Bc

)
, v2⊥ �

(
1 − α

3π

)
. (92)

In the weak magnetic field limit for photon propaga-
tion perpendicular to the external magnetic field [41,78] we
obtain the dispersion equation

ωWF,(2) �| k⊥ |
(

1 − 7

4
ξ B2

e

)
.

ωWF,(3) �| k⊥ | (1 − ξ B2
e) (93)

while for strong magnetic field limit the result is

ωSF,(2) �| k⊥ |
(

1 − α

6π

Be

Bc

)
,

ωSF, (3) �| k⊥ |
(

1 − α

6π

)
. (94)
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