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Abstract We investigate RD and RD∗ anomalies in a
low scale left–right symmetric model based on SU (3)C ×
SU (2)L × SU (2)R ×U (1)B−L with a simplified Higgs sec-
tor consisting of only one bidoublet and one SU (2)R doublet.
The Wilson coefficients relevant to the transition b → cτν

are derived by integrating out the charged Higgs H± boson,
which gives the dominant contributions. We emphasize that
the charged Higgs effects, with the complex right-handed
quark mixing matrix, can account for both RD and RD∗
anomalies simultaneously, while adhering to a set of signif-
icant constraints including, for instance, BR(B−

c → τ−ν̄τ )

and Bs(d) − B̄s(d) mixing. In relation to this, we show that
the predicted values of the D∗, τ longitudinal polarizations
and Pτ (D) can be affected for the set of the parameters of
the model resolving the RD,D∗ anomalies.

1 Introduction

In flavor physics, the two ratios RD and RD∗ are among
several long-term tensions between the Standard Model (SM)
and the related experimental measurements. These ratios are
defined by

RD∗,D ≡ B(Bq → {D∗, D}τν)

B(Bq → {D∗, D}lν)
, (1)

where l = e, μ. The processes Bq → {D∗, D}�ν with
� = l, τ arise at tree-level from the four fermion tran-
sition b → cτν. Upon combining different experimental
data by BaBar Collaboration [1,2], Belle Collaboration [3–6]
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and LHCb Collaboration [7–9], the Heavy Flavor Averaging
Group (HFLAV) obtained the average of RD and RD∗ for
2021 as [10],

RD = 0.339 ± 0.026 ± 0.014, (2)

RD∗ = 0.295 ± 0.010 ± 0.010. (3)

Recently, with the announcement of the LHCb collaboration
new results of RD and RD∗ in autumn 2022 using the Run 1
data sample of a luminosity of 2 f b−1, the HFLAV obtained
a new averages of RD and RD∗ for 2023 as [11],

RD = 0.356 ± 0.029, (4)

RD∗ = 0.284 ± 0.013. (5)

The corresponding averages of SM predictions as reported
by HFLAV [10] based on the predictions obtained in Refs.
[12–14] are given by

RSM
D = 0.298 ± 0.003, (6)

RSM
D∗ = 0.254 ± 0.005. (7)

Clearly, the listed results of RD and RD∗ in Eqs. (2, 3) exceed
the SM predictions given above, by 1.4σ and 2.9σ respec-
tively. Moreover, as reported by HFLAV [10], the difference
with the SM predictions reported above, corresponds to about
3.4σ [RD − RD∗ ] combination. In Ref. [15], the authors used
all the available experimental data and took the higher deriva-
tive QCDSR constraints on HQET parameters into account
to fit Bq → {D∗, D} form factors, and gave the accurate SM
prediction of RD∗ and RD . The result of their investigation
indicated a 4σ discrepancy in RD∗ and RD . All this may
serve as a hint for a violation of lepton-flavor universality.

In the literature, many theoretical models have been inves-
tigated aiming to explain the RD and RD∗ anomalies. Based
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on the remark that the measured ratio RD∗ is higher than
its value in the SM, attempts in many models have focused
on enhancing the rate of b → cτν transition through extra
contributions arising from the new particles mediating the
transition. This turns to be much easier than reducing the
rate of b → c(e, μ)ν transitions, given the much more severe
restraints on the couplings of new physics to muons and elec-
trons [16].

The new particles mediating the b → cτν can be spin-0
or spin-1. In addition, they can either carry baryon and lepton
number (leptoquarks) or be B/L neutral (charged Higgs and
W ′). As reported in Ref. [16], the existing models can be
classified into three main categories:

• Models with charged Higgs [17–22]. In these class of
models, integrating out the charged Higgs, that medi-
ates b → cτν transition at tree-level results in scalar–
scalar operators contributing to decay rates. The con-
tributions of these additional operators can be con-
strained using the measured Bc lifetime. This leads
to the upper limits BR(B−

c → τ−ν̄τ ) ≤ 40% [23],
BR(B−

c → τ−ν̄τ ) ≤ 30% [24] and a much stronger
bound BR(B−

c → τ−ν̄τ ) ≤ 10% was obtained from
the LEP data taken at the Z peak [25]. Later on, the
bounds using the measured Bc lifetime had been critically
investigated and relaxed upper limit of ≤ 39% [26] and
≤ 60% [27,28] were obtained. An analysis of the LHC
sensitivity of the charged Higgs that can explain RD and
RD∗ anomalies showed that the bound 400 GeV < mH±
is more stringent than Bc lifetime bound [29]. Based
on the finding of Ref. [29] and other investigations car-
ried out later in Refs. [30,31], the available charged
Higgs mass range for the explanation of the RD and
RD∗ anomalies within 1σ range is bounded from the
above as mH± ≤ 400 GeV. It should be remarked that
mH± > 400 GeV is ruled out by the τν resonance search
at the LHC [29,32], the low-mass bottom flavored di-jet
search [33,34] and a conventional search for tau slep-
tons [35] set constraint on the available parameter region.
Recently, the analysis has been extended to cover the
mass range 180 GeV < mH± < 400 GeV [30,36].
Experimentally, searches for charged Higgs bosons at
high-energy colliders such as the Large Hadron Col-
lider (LHC) have set model-dependent limits on their
masses. ATLAS and CMS collaborators have searched
for charged Higgs bosons that have large couplings only
to the third generation, looking for multijet events with
one lepton and at least 2 b-jets. They have carried out
dedicated searches only for charged Higgses that domi-
nantly couple to tb quarks. In addition, there is no dedi-
cated searches looking for a charged Higgs with sizable
couplings to both q b and t b quarks [37].

The production of charged Higgs bosons is influenced
by the particle’s mass and its couplings to other parti-
cles, which are determined by the specific beyond the
Standard Model (BSM) scenario being considered. When
the charged Higgs boson is heavier than the top quark,
the experimental constraints on its mass become weaker.
Certain regions of the charged Higgs boson mass param-
eter space have been excluded by experimental searches,
even for masses higher than the top quark mass. How-
ever, these constraints depend on the couplings to other
particles, particularly top and bottom quarks. We have
ensured that our coupling parameter, gH−t b̄, is below the
limits obtained from previous model-independent analy-
ses in Ref. [37]. Therefore, the mass of the charged Higgs
boson can fall within the range of 200 GeV to 1 TeV.

• Models with heavy charged vector bosons [38,39]. In
such class of models, integrating out W ′’s yields new
contributions to the vector-vector operators. Simultane-
ous explanation of both RD and RD∗ with left-handed
neutrinos requires non zero values for the associated new
contributions. It should be noted that, these class of mod-
els are subjected to constraints originating from the pres-
ence of an accompanying Z ′ mediator. Thus, the vertex
Z ′bLsL can be inferred from the W ′bLcL vertex through
the SU (2) invariance. The Z ′bLsL term in the Lagrangian
can lead to tree-level flavor-changing neutral currents
(FCNCs) and hence there is a need to some mechanism
to subdue the contributions of this term. One way to do
that is to assume minimal flavor violation (MFV) as con-
sidered in Refs. [40,41]. However, adopting this choice
in general can not suppress Z ′bb and Z ′ττ vertices. Con-
sequently, LHC direct searches for Z ′ → ττ resonances
can result in stringent restraints on the related parame-
ters of the models. However, as shown in Refs. [41,42],
selecting unnaturally high Z ′ widths helps to avoid these
severe constraints.

• Models with leptoquarks [18,43]. Either scalar and vec-
tor leptoquarks can be potentially favored as an expla-
nations for the RD(∗) anomaly [42,44]. These models
are subjected also to many important constraints includ-
ing those from b → sνν restraints [42], searches at the
LHC for ττ resonances [41,42], and the measured Bc

life-time [24,25]. However, these constraints turn to be
weaker compared to the corresponding ones imposed on
the alternative models described above [16].

In this study, we aim to derive the effective Hamiltonian
resulting from the four fermion transition b → cτν in the
minimal left–right model with an inverse-seesaw (LRIS). At
tree-level, the transition is mediated by the exchanging of
the charged Higgs boson in the model. The large neutrino
Yukawa, which measures the strength of the charged Higgs–
lepton interaction, and the charged Higgs–quark interaction,
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which is proportional to right-handed mixing matrix VCKM
R ,

are notable features of this class of left–right model with an
inverse seesaw mechanism that motivate it to solve RD and
RD∗ .

Having the effective Hamiltonian, we will proceed to
show the dominant Wilson coefficients contributing to the
ratios RD and RD∗ . Consequently, we will display the depen-
dency of the ratios on the parameters of the model to deter-
mine the most relevant ones. Moreover, we reexamine the
relation between the observable RD∗ and BR(Bc → τ ν̄τ ),
reported in Refs. [24,25], in light of Belle combination [6]
and LHCb [8] experimental results, and the projection at
Belle II experiment with an integrated luminosity of 50 ab−1

[45]. This turns to be very important because the constraint
on BR(Bc → τ ν̄τ ) affects substantially the contributions
from scalar operators [26–28]. The Bs(d) − B̄s(d) mixing can
lead to possible constraints on the parameter space related to
the the ratios RD and RD∗ . These constraints will be investi-
gated in this study also. Finally, we will also investigate the
possibility of resolving the anomalies after including the new
contributions to the Wilson coefficients of the total effective
Hamiltonian in the presence of the LRIS model and give
predictions of the D∗ and τ longitudinal polarizations.

This paper is organized as follows. In Sect. 2, we give a
brief review of the left–right model with inverse seesaw. In
the review, we discuss the gauge structure and the particle
content of the model. We also discuss the fermion interac-
tions with charged Higgs and with the charged W,W ′ gauge
bosons. These interactions are required to derive the effective
Hamiltonian governs the processes contributing to RD and
RD∗ . Then, in Sect. 3, we present the effective Hamiltonian
describing b → cτν transition in the presence of a general
New Physics (NP) beyond the SM. Particularly, we derive the
analytic expressions of the Wilson coefficients up to one loop
level originating from the charged Higgs mediation in LRIS
model under study in this paper. Based on the Hamiltonian,
we show the total expressions of RD and RD∗ . In Sect. 4, we
give our estimation of RD , RD∗ , the D∗ and τ longitudinal
polarizations and their dependency on the parameter space.
Finally, in Sect. 5, we give our conclusion.

2 Left–right model with inverse seesaw (LRIS)

The gauge sector of the minimal left–right model with an
inverse-seesaw (LRIS) is based on the symmetry SU (3)C ×
SU (2)L × SU (2)R × U (1)B−L . The particle content of the
model includes the usual particles in the SM in addition
to extra fermions, scalars and gauge bosons. Regarding the
fermion content of the model, it is the same as its coun-
terpart in the conventional left–right models [46–53]. The
scalar sector consists of only one Bidoublet φ and one dou-
blet χR , which is more minimal and able to circumvent the

stringent FCNC constraints placed on the conventional left–
right model. Additionally, we abandon using the left-handed
doublet in order to prevent the severe fine tuning in the VEV
of the neutral component of the left-handed doublet scalar,
vL , caused by light neutrino masses. As a result, our model
is SU (2)L × SU (2)R gauge invariant but not symmetric in
left–right parity.

The implementation of the IS mechanism for neutrino
masses can be carried out via introducing three SM sin-
glet fermions S1 with B − L charge = −2 and three singlet
fermions S2 with B− L charge = +2. It should be remarked
that, this particular choice of the B − L charges of the pair
S1,2 assures that the U (1)B−L anomaly is free.

The scalar sector of the LRIS model contains SU (2)R
scalar doublet χR with B − L charge equals -1, and a scalar
bidoublet φ with zero B − L charge. The extra doublet and
bidoublet are essential for breaking the symmetries of the
model upon having nonvanishing VEVs. We define 〈χR〉 =
vR/

√
2 and assume that vR of an order TeV to break the right-

handed electroweak sector together with B − L . Regarding
the VEV of the scalar bidoublet φ, we use the parametrization
〈φ〉 = diag(k1/

√
2, k2/

√
2) where k1 = vsβ, k2 = vcβ and

hence v2 = k2
1 + k2

2 with v of an order O(100) GeV to
break the electroweak symmetry of the SM. Here and after
we use the definitions sx = sin x, cx = cos x , tx = tan x
and ctx = cot x .

The scalar–fermion interactions in the LRIS model can be
inferred from the left–right symmetric Yukawa Lagrangian
which can be generally expressed as

LY =
3∑

i, j=1

yLi j L̄ LiφLRj + ỹLi j L̄ Li φ̃LRj + yQi j Q̄LiφQRj

+ỹQi j Q̄Li φ̃QRj + ysi j L̄ Ri χ̃RS
c
2 j + H.c., (8)

here i and j are family indices that run from 1 . . . 3, yQ and
ỹQ represent the quark Yukawa couplings while yL and ỹL

stand for the lepton Yukawa couplings. It should be noted that
a Z4 discrete symmetry is implemented in order to forbid a
mixing mass term MS̄c1S2 and thus preserving the IS mech-
anism in a way similar to imposing Z2 symmetry discussed
in [54]. Under this discrete Z2 symmetry, S1 has a charge −1
and all other fields have a charge +1. The fields in Eq. (8)
are defined as

χR =
(

χ+
R

χ0
R

)
, φ =

(
φ0

1 φ+
1

φ−
2 φ0

2

)
,

QA =
(
uA

dA

)
, L A =

(
νA
eA

)
, f or A = L , R. (9)

The dual bidoublet φ̃ and doublet χ̃R are defined as φ̃ =
τ2φ

∗τ2 and χ̃R = iτ2χ
∗
R respectively. Clearly, from the scalar

sector of the model and before symmetry breaking, there are
12 scalar degrees of freedom: 4 of χR and 8 of φ. After
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symmetry breaking, six scalars out of these 12 degrees of
freedom remain as physical Higgs bosons while the other
degrees of freedom are eaten by the neutral gauge bosons:
Zμ and Z ′

μ and the charged gauge bosons: W±
μ and W ′±

μ

to acquire their masses. The physical Higgs bosons are two
charged Higgs bosons, one pseudoscalar Higgs boson, and
the remaining three areCP-even neutral Higgs bosons. For a
detailed discussion about the Higgs sector of the LRIS model
we refer to Ref. [55].

We turn now to the neutrino sector of LRIS model. After
breaking the B − L symmetry, one finds that the neu-
trino Yukawa interaction terms lead to the following mass
terms[54]:

Lν
m = mD ν̄LνR + MR ν̄cR S2 + h.c., (10)

where MR and MD are 3 × 3 matrices related to vR and
Dirac neutrino masses respectively via MR = ysvR/

√
2 and

MD = v(yLsβ + ỹLcβ)/
√

2. In addition one may generate
very small Majorana masses for S1,2 fermion through possi-
ble non-renormalizable terms. This tiny mass is required in
the standard inverse seesaw mechanism for generating light
neutrino masses [56–59]. Thus, the Lagrangian of neutrino
masses can be expressed as

Lν
m = MD ν̄LνR + MR ν̄cR S2 + 1

2
μs2 S̄

c
2S2 + H.c., (11)

where μs � 10−6 GeV, as it is suppressed by high non-
renormalizable scale. The inverse seesaw mechanism actu-
ally depends on small mass scale μ2, which violates the resid-
ual Lepton number symmetry after breaking the LR symme-
try. The light neutrino masses vanish identically in the limit
of μ2 → 0, and the lepton number is restored. According
to ’t Hooft criteria, such a small scale is natural. We demon-
strated that this mass parameter can be generated using a
non-renormalizable dimension 7 operator [54], and despite
its small size, it plays an important role in generating very
small neutrino masses in this mechanism. In this context,
the neutrino mass matrix can be written as Mνψ̄

cψ with
ψ = (νcL , νR, S2) and Mν is given by

Mν =
⎛

⎝
0 MD 0
MT

D 0 MR

0 MT
R μs2

⎞

⎠ . (12)

Note that in order to avoid a possible large mass term
mS1S2 in the Lagrangian (8), that would spoil the above
inverse seesaw structure, one assumes that LR , χR , and S2

are even under a Z2-symmetry, while S1 is an odd particle.
Furthermore, similar to S2, the fermion S1 can acquire a mass
via another renormalizable term. As discussed in Ref. [60],
S1 can be a natural candidate for warm dark matter. It is a

kind of sterile neutrino that has no mixing with active neu-
trinos and hence can only interact with Z ′ gauge boson. As
a consequence, S1 is not subjected to all constraints imposed
on sterile neutrinos due to their mixing with the active neu-
trinos. On the the hand, the mass of S1 has to be of order
O(10 keV) to satisfy the combined constraints from Lyman-
α forest data [61] and phase space arguments for fermionic
dark matter [62]. This can be accommodated by choosing
μs1 = O(10 keV) without any conflict with the mass param-
eter μs2 contributing to the neutrino mass matrix given below
which is required in our analysis. Moreover, for S1 being hot
dark matter, any related expected constraints will be set on
its mass μs1 and its couplings to the Z ′ gauge boson which
have no effects on the tau couplings to neutrinos or neutrino
masses or neutrino mixings needed in this study.

Following the standard procedure, the diagonalization of
Mν results in the light and heavy neutrino mass eigen states
ν�i , νh j with the mass eigenvalues given by:

mν�i
= MDM

−1
R μs2(M

T
R )−1MT

D, i = 1 . . . 3, (13)

m2
νh j

= M2
R + M2

D, j = 1 . . . 6. (14)

The light neutrino mass matrix in Eq. (13) must be diagonal-
ized by the physical neutrino mixing matrix UMNS [63], i.e.,

UT
MNSmν�i

UMNS = md
ν�i

≡ diag{mνe ,mνμ,mντ }. (15)

Thus, one can easily show that the Dirac neutrino mass matrix
can be defined as:

MD = UMNS

√
md

ν�i
R
√

μ−1
s2 MR, (16)

where R is an arbitrary orthogonal matrix. Clearly, for MR

at TeV scale and μs2 
 MR the light neutrino masses can
be of order eV. The 9 × 9 neutrino mass matrix Mν , can
be diagonalized with the help of the matrix V satisfying
V TMνV = Mdiag

ν . The matrix can be expressed as [64]

V =
(
V3×3 V3×6

V6×3 V6×6

)
. (17)

As a good approximation, the matrix V3×3 can be given a

V3×3 �
(

1 − 1

2
FFT

)
UMNS . (18)

where F = MDM
−1
R . Generally F , as one can see from

the expression of V3×3, is not unitary matrix. This unitarity
violation, i.e., the deviation from the standard UMNS matrix,
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depends on the size of 1
2 FFT [65]. The matrix V3×6 is given

by

V3×6 = (03×3, F) V6×6. (19)

In addition, V6×3 = (V3×6)
†. Finally, the matrix V6×6 is the

one that diagonalize the {νR, S2} mass matrix.
The neutral scalar fields and their masses can be obtained

if one expands the neutral components of the bidoublet φ and
the doublet χR around their vacua as follows

φ0
i = 1√

2
(vi + φ0R

i + iφ0I
i ), (20)

where φi = φ1,2, χR and vi = k1,2, vR . In this case, the
symmetric mass matrix of the CP-odd Higgs bosons in the
basis (φ0I

1 , φ0I
2 , χ0I

R ) is given as

M2
A = 1

2

(
v2
Rα32

c2β

− 4v2(2λ2 − λ3)

)⎛

⎝
c2
β sβcβ 0
. s2

β 0
. . 0

⎞

⎠ , (21)

which can be diagonlized by a unitary matrix in the form

Z A =
⎛

⎝
0 0 1

−sβ cβ 0
cβ sβ 0

⎞

⎠ , (22)

leading to Z AM2
AZ

AT = diag(0, 0,m2
A) with the physical

mass of the pseudoscalar boson A, m2
A, given by

m2
A = 1

2

(
v2
R

c2β

α32 − 4v2(2λ2 − λ3)

)
. (23)

Similar to the CP-odd Higgs bosons, the elements of the
(3×3) symmetric mass matrix of theCP-even Higgs bosons
are given by

m11 = 2v2(λ1s
2
β + λ23c

2
β + λ4s2β) + 1

4

(
1

c2β

+ 1

)
α32v

2
R,

(24)

m12 = m21 = v2((λ1 + λ23)s2β + 2λ4) − 1

4
α32v

2
Rt2β,

(25)

m13 = m31 = vvR(α13sβ + α4cβ), (26)

m22 = 2v2(λ1c
2
β + λ23s

2
β + λ4s2β) + 1

4

(
1

c2β

− 1

)
α32v

2
R,

(27)

m23 = m32 = vvR(α12cβ + α4sβ), (28)

m33 = 2ρ1v
2
R, (29)

where the potential parameter α1i = α1 + αi , i = 2, 3
and λ23 = 2λ2 + λ3. This matrix can be diagonalized by a
unitary transformation matrix ZH such that ZHM2

H ZHT =
diag(m2

H1
,m2

H2
,m2

H3
). For more details, we refer to Ref. [55].

The process under study can receive dominant contribu-
tions from the charged Higgs mediation at tree level as we
will show in the following. Thus, below, we list the relevant
charged Higgs couplings related to our study following Ref.
[55]. In the flavor basis (φ±

1 , φ±
2 , χ±

R ), the charged Higgs
bosons symmetric mass matrix takes the form

M2
H± = α32

2

⎛

⎜⎜⎝

v2
Rs

2
β

c2β

v2
Rs2β

2c2β
−vvRsβ

.
v2
Rc

2
β

c2β
−vvRcβ

. . v2c2β

⎞

⎟⎟⎠ . (30)

The above matrix can be diagonalized by the unitary matrix,

ZH± =

⎛

⎜⎜⎜⎜⎜⎝

vc2β√
v2c2

2β+v2
Rs

2
β

0 vRsβ√
v2c2

2β+v2
Rs

2
β

− 1
2 v2

Rs2β√
(v2c2

2β+v2
Rs

2
β)(v2c2

2β+v2
R)

√
v2c2

2β+v2
Rs

2
β

v2c2
2β+v2

R

vvRcβc2β√
(v2c2

2β+v2
Rs

2
β)(v2c2

2β+v2
R)

− vRsβ√
v2c2

2β+v2
R

− vRcβ√
v2c2

2β+v2
R

vc2β√
v2c2

2β+v2
R

⎞

⎟⎟⎟⎟⎟⎠
. (31)

The mass eigenstates basis can be obtained using the rota-
tion (φ±

1 , φ±
2 , χ±

R )T = ZH±T (G±
1 ,G±

2 , H±)T such that

123
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ZH±
M2

H± ZH±T = diag(0, 0,m2
H±). Here G±

1 and G±
2 rep-

resent the massless charged Goldstone bosons and H± is a
massive physical charged Higgs boson. The massless Gold-
stone bosons are eaten by the charged gauge bosons Wμ and
W ′

μ to acquire their masses via the familiar Higgs mechanism.
On the other hand, the mass of the charged Higgs boson H±
is given by:

m2
H± = α32

2

(
v2
R

c2β

+ v2c2β

)
, (32)

where α32 = α3 − α2 is a potential parameter Ref. [55].
Clearly, the charged Higgs boson mass can be of the order of
hundreds GeV if we pick out the values vR ∼ O(TeV) and
α32 ∼ O(10−2). It is clear to see that, the physical charged
Higgs boson is a linear combination of the flavor basis fields
φ±

1 , φ±
2 , χ±

R , namely given as

H± = ZH±
13 φ±

1 + ZH±
23 φ±

2 + ZH±
33 χ±

R . (33)

The effective Lagrangian, in the LRIS model, describing the
charged Higgs and the charged gauge bosons W and W ′ cou-
plings to quarks and leptons can be expressed as

Le f f = Lq̄q ′H±
e f f + Lν̄�H±

e f f + LW,W ′
e f f (34)

The Lagrangians Lq̄q ′H±
e f f and Lν̄�H±

e f f can be obtained from
expandingLY, given in Eq. (8), and rotating the fields to their
corresponding ones in the mass eigenstates basis. It is direct
to obtain

Lq̄q ′H±
e f f = ūi

H± LR eff
ui d j

PRd j H
±

+ūi
H± RL eff
ui d j

PLd j H
± + h.c., (35)

where

H± LR eff
ui d j

=
3∑

a=1

(V R
CKM )∗ja y

Q
ia Z

H±
32

+
3∑

a=1

(V R
CKM )∗ja ỹ

Q
ia Z

H±
31

H± RL eff
ui d j

=
3∑

a=1

(V L
CKM )∗ja y

Q∗
ai Z H±

31

+
3∑

a=1

(V L
CKM )∗ja ỹ

Q∗
ai Z H±

32 . (36)

In the LRIS model and after electroweak symmetry breaking,
quarks and charged leptons acquire their masses via Higgs
mechanism. Consequently, we can express the quark Yukawa

couplings in terms of the quark masses and CKM matrices
in the left and right sectors as

yQ = 1

(tβ − ctβ)

(
Mdiag

u V R†
CKM

vd
− V L

CKMMdiag
d

vu

)

ỹQ = 1

(ctβ − tβ)

(
Mdiag

u V R†
CKM

vu
− V L

CKMMdiag
d

vd

)
, (37)

with v = 246 GeV, vu = vsβ√
2

, vd = vcβ√
2

. In the above

equation, Mdiag
u (Mdiag

d ) is the diagonal up (down) quark
mass matrix, V L

CKM and V R
CKM are the CKM matrices in the

left and right sectors respectively. The mixing matrices for
left and right quarks result in the CKM matrices in the left and
right sectors V L ,R

CKM = V u†
L ,RV

d
L ,R . We can choose the bases

where V u
L = I and as a result, in this basis, V L

CKM = V d
L .

Turning now to the right sector, we follow Ref. [66], where
the matrix V R

CKM can be written as a unitary matrix similar
to V L

CKM , but with new mixing angles θ R
i j and a new Dirac

phase δR , as follows:

V R
CKM = K V L

CKM

(
θ R

12, θ
R
23, θ

R
13, δR

)
K̃+, (38)

here the diagonal matrices K and K̃ contain five of six non-
removable phases in V R

CKM. It was emphasized that CP vio-
lation and FCNC in the right-handed sector can be under
control if the V R

CKM is of the form

V R
CKM =

⎛

⎜⎝
1 0 0
0 cθ R

13
sθ R

13
eiα

0 sθ R
13

−cθ R
13
eiα

⎞

⎟⎠ , (39)

where cθ R
13

= cos(θ R
13) and sθ R

13
= sin(θ R

13) and as we will
see that, in the following, the phase α in the third column
plays an important role in increasing the values of RD∗ . It
is also possible to have a non-vanishing phase in the second
column, which turns out to be irrelevant and has no effect on
the RD or RD∗ results. Therefore, we set it to zero. We work
in the bases where V d

R = I and thus V R
CKM = V u

R , similar to
the left-handed quark sector.

We proceed now to the lepton-neutrinio charged Higgs
interactions in the model under study. These interactions con-
tribute to the effective Lagrangian Lν̄�H±

e f f and generally, can
be written as

Lν̄�H±
e f f = ν̄i

H± LR eff
νi � j

PR� j H
±

+ν̄i
H± RL eff
νi � j

PL� j H
± + h.c., (40)

with

123
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H± LR eff
νi � j

=
3∑

a=1

ỹLa j Via Z
H±
31 −

3∑

a=1

yLaj Via Z
H±
32

−
3∑

a=1

ys∗jaVi6+a Z
H±
33

H± RL eff
νi � j

= −
3∑

a=1

V ∗
i3+a y

L∗
ja Z

H±
31

+
3∑

a=1

V ∗
i3+a ỹ

L∗
ja Z

H±
32 . (41)

The lepton Yukawa couplings yL and ỹL can be expressed
as

yL = t2β√
2 vu

(
M� − tβMD

)
, (42)

ỹL = t2β√
2 vu

(
MD − tβM�

)
, (43)

where M� is charged lepton diagonal mass matrix. Finally, the
leptons and quarks gauge interactions related to our processes
at tree-level can be deduced from the effective Lagrangian
LW,W ′
e f f given by

LW,W ′
e f f = 1√

2
g2 cos φW (V L

CKM)i jWμūiγμPLd j

− 1√
2
gR sin φW (V R

CKM)∗j iWμūiγμPRd j

+ 1√
2
g2 sin φW (V L

CKM)i jW
′
μūiγμPLd j

− 1√
2
gR cos φW (V R

CKM)∗j iW ′
μūiγμPRd j

+ 1√
2
g2 cos φWVi jWμν̄iγμPLe j

− 1√
2
gR sin φWV ∗

i3+ jWμν̄iγμPRe j

+ 1√
2
g2 sin φWVi jW

′
μν̄iγμPLe j

− 1√
2
gR cos φWV ∗

i3+ jW
′
μν̄iγμPRe j + h.c., (44)

where φW is the mixing angle between WL and WR , which
is of order 10−3. We have now all the ingredient required for
deriving the effective Hamiltonian contributing to the tran-
sition b → cτν. In next section, we derive this Hamilto-
nian and list the expressions of the Wilson coefficients cor-
responding to this Hamiltonian.

3 The effective Hamiltonian relevant to the processes in
the LRIS

In the presence of NP beyond SM, the effective Hamilto-
nian governs |�c| = 1 B decays transition relevant to our
processes up to one-loop level derived from the diagrams in
Fig. 1, can be expressed as

He f f = −4GF√
2
Vcb

(
(1 + gLLV ) (c̄γμPLb)(�̄ jγ

μPLνi )

+gRR
V (c̄γμPRb)(�̄ jγ

μPRνi )

+gLRV (c̄γμPLb)(�̄ jγ
μPRνi )

+gRL
V (c̄γμPRb)(�̄ jγ

μPLνi )

+gLLS (c̄PLb)(�̄ j PLνi )

+gRR
S (c̄PRb)(�̄ j PRνi ) + gLRS (c̄PLb)(�̄ j PRνi )

+gRL
S (c̄PRb)(�̄ j PLνi )

+gLLT (c̄σμν PLb)(�̄ jσ
μν PLνi )

+gRR
T (c̄σμν PRb)(�̄ jσ

μν PRνi )

)
, (45)

where Vcb is the cb Cabibbo–Kobayashi–Maskawa (CKM)
matrix element, PL ,R = 1

2 (1 ∓ γ5), σμν = i
2 [γμ, γν] and

as mentioned in Ref. [43] the tensor operator with chirality
(c̄σμν PRb)(�̄ jσ

μν PLνi ) vanishes. In case of � = τ we find
that the Wilson coefficients at the high energy scaleμ = mH±
can be expressed as

gLLV (μ) = m2
W

m2
W ′

sin2 φW Zv
M,i3,

gRR
V (μ) = 1

Vcb

(
sin2 φW + m2

W

m2
W ′

cos2 φW

)
(V R

CKM)∗32Z
v,∗
M,i6,

gLRV (μ) = −
(

1 + m2
W

m2
W ′

)
Zv,∗
M,i6 cos φW sin φW ,

gRL
V (μ) = − 1

Vcb

(
1 + m2

W

m2
W ′

)
(V R

CKM)∗32Z
v
M,i3 cos φW sin φW ,

gLLS (μ) = −
√

2

4GFVcbm2
H±

H± RL eff
u2d3

(H± LR eff
νi �3

)∗,

gRR
S (μ) = −

√
2

4GFVcbm2
H±

H± LR eff
u2d3

(H± RL eff
νi �3

)∗,

gLRS (μ) = −
√

2

4GFVcbm2
H±

H± RL eff
u2d3

(H± RL eff
νi �3

)∗,

gRL
S (μ) = −

√
2

4GFVcbm2
H±

H± LR eff
u2d3

(H± LR eff
νi �3

)∗,

gLLT (μ) = −
√

2αE

96πGFVcbm2
H±

H± RL eff
u2d3

(H± LR eff
νi �3

)∗

(
f (xc, xτ ) + 1

2
f (xb, xτ )

)
+ �gLL Z ,Z ′

T ,
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Fig. 1 Diagrams contributing to He f f , in Eq. (45) up to one loop-level
due to charged Higgs mediation with V can be Z or γ or both of them
depending on the fermion lines connecting them. In the figure when A
and B represent b and c quarks the other two external lines will repre-

sent ντ and τ . In the case that A and B represent ντ and τ , the other
two external lines should be understood as representing b and c quarks
respectively

gRR
T (μ) = −

√
2αE

96πGFVcbm2
H±

H± LR eff
u2d3

(H± RL eff
νi �3

)∗

(
f (xc, xτ ) + 1

2
f (xb, xτ )

)
+ �gRR Z ,Z ′

T , (46)

where i refers to the neutrino flavor, xk = m2
k

m2
H

, f (xi , x j ) =
1

(xi−x j )

(
xi

1−xi
logxi −(xi ↔ x j )

)
and we set the energy scale

μ = 1 TeV. In our numerical analysis, where all results are
evaluated at the bottom scale mb = 4.2 GeV, the evolution
down of the Wilson coefficients from the scale μ = 1 TeV
to the bottom scale can be inferred from the renormalization
group evolution (RGE). It should be noted that in Eq. (46),
the tensor contributions to the Wilson coefficients gLLT (μ)

and gRR
T (μ) are generated from the one-loop diagrams in

the figure. Moreover, in the same equation, we kept only
the dominant contributions to the scalar Wilson coefficients
gAB
S , with A, B run over L , R, which originate from tree-

level diagrams in Fig. 1. As we will show below, only these
tree-level scalar contributions will have sizable effects on
the ratios RD,D∗ and other observables under concern in this
work.

As can be seen from Eq. (46), the coefficients gLLS (μ) and

gRL
S (μ) have the same lepton vertex (H± LR eff

νi �3
)∗. There-

fore, they are expected to have different values due to receiv-
ing different contributions of the quark vertices H± RL eff

ui d j

and H± LR eff
ui d j

expressed in Eq. (36) in terms of yQ and

ỹQ . Furthermore, Eq. (37) shows that the contributions from
the terms proportional to V L

CKM to both yQ and ỹQ are sup-

pressed by the small down quark masses appear in the matrix
Mdiag

d .
In the processes under consideration, the corresponding

Wilson coefficient gLLS (μ) (gRL
S (μ)) receives contributions

only from the elements in the second column (row) of the
matrix Mdiag

u V R†
CKM, which are present in both of yQ and

ỹQ . With the texture of V R
CKM given previously, we find that

Mdiag
u V R†

CKM =
⎛

⎜⎝
mu 0 0
0 mc cθ R

13
mc sθ R

13

0 mt sθ R
13
e−iα mt cθ R

13
e−iα

⎞

⎟⎠ . (47)

In this regard, one can show that RD , RD∗ and BR(B−
c →

τ−ν̄τ ) receive contributions from the terms proportional to
mt sθ R

13
e−iα which originate from gLLS (μ) only and not from

gRL
S (μ). The other contributions generated from the Wilson

coefficient gRL
S (μ) are proportional to the charm quark mass

which is small compared to the top quark mass.

Finally in Eq. (46), the quantities �gLL(RR) Z ,Z ′
T refer

to the suppressed contributions, comparing to photon ones,
originating from Z and Z ′ mediating the diagrams. Upon
neglecting the small contributions �gLL ,RR Z ,Z ′

T we find the
following relations

gLLT (μ) = − αE

24π

(
f (xc, xτ ) + 1

2
f (xb, xτ )

)
gLLS (μ),

gRR
T (μ) = − αE

24π

(
f (xc, xτ ) + 1

2
f (xb, xτ )

)
gRR
S (μ). (48)

For a charged Higgs of a mass 300 GeV we find that
gLLT (μ) � 1.4×10−3gLLS (μ) and gRR

T � 1.4×10−3gRR
S (μ).
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Clearly the tensor contributions to the processes under study
can be safely neglected. This is the case also regarding the
vector Wilson coefficients gAB

V (μ), where AB can be any
combination of the L and R chiralities, as they are suppressed

by either
m2

W
m2

W ′
� 6.4 × 10−3 for mW ′ � O(1 TeV) or by

sin φW � φW � O(10−3) or both of them. Consequently,
we are left only with contributions of the scalar Wilson coef-
ficients.

In the given expressions below, the quantities gLLS ,

gRL
S , gLRS and gRR

S refer to the Wilson coefficients at the bot-
tom scale μ = mb. In terms of these quantities, the ratios RM

(M = D, D∗) are given as [16,67,68]:

RD = RSM
D

[
1 + 1.49 Re(gRL

S + gLLS )

+1.02
(|gRL

S + gLLS |2 + |gLRS + gRR
S |2)

]
, (49)

RD∗ = RSM
D∗
[
1 + 0.11 Re(gRL

S − gLLS )

+0.04
(|gRL

S − gLLS |2 + |gLRS − gRR
S |2)

]
. (50)

It should be noted that in the above expressions of RD,D∗
we assumed that NP effects are only present in the third
generation of leptons (τ, ντ ). This assumption is motivated
by the absence of deviations from the SM for light lepton
modes � = e or μ.

The D∗ and τ longitudinal polarizations depend on the
same Wilson coefficients affecting the RD,D∗ ratios. Thus, it
is relevant to our investigation to show their predicted values
for the set of the parameters of the model resolving the RD,D∗
anomalies. The two observables have been measured at Belle
experiment. Their expressions can be written as [16,67,68]

FL(D∗) = FSM
L (D∗) r−1

D∗
[
1 + 0.24 Re(gRL

S − gLLS )

+0.08
(|gRL

S − gLLS |2 + |gLRS − gRR
S |2)

]
, (51)

Pτ (D) = PSM
τ (D) r−1

D

[
1 + 4.65 Re(gRL

S + gLLS )

+3.18
(|gRL

S + gLLS |2 + |gLRS + gRR
S |2)

]
, (52)

Pτ (D
∗) = PSM

τ (D∗) r−1
D∗
[
1 − 0.22 Re(gRL

S − gLLS )

−0.07
(|gRL

S − gLLS |2 + |gLRS − gRR
S |2)

]
, (53)

with rD(∗) = RD(∗)/RSM
D(∗)

. In our analysis we use the mea-

sured values of the D∗ and τ longitudinal polarizations
reported by Belle collaborations namely, FExpt

L (D∗) =
0.60 ± 0.08 ± 0.035 [69] and PExpt

τ (D∗) = −0.38 ±
0.51+0.21

−0.16 [4,5,70]. On the other hand their SM predictions
are estimated as FSM

L (D∗) = 0.464 ± 0.010, PSM
τ (D) =

0.321 ± 0.003 and PSM
τ (D∗) = −0.496 ± 0.015 [14].

Although the tau polarization observable Pτ (D) is known
to be a good discriminator of scalar contributions originated
in many beyond SM physics, (for instances the leptoquark

(LQ) scenarios [71] ) there is no available experimental mea-
surements of this observable so far. However, it is important
to show its prediction in the model under study.

The tree-level charged Higgs boson exchange also modi-
fies the branching ratio of the tauonic decay B−

c → τ−ν̄τ as
follows [16,67,68]

BR(B−
c → τ−ν̄τ ) = BR(B−

c → τ−ν̄τ )SM

×
[∣∣∣∣1 + m2

Bc

mτ (mb + mc)
(gRL

S − gLLS )

∣∣∣∣
2

+
∣∣∣∣

m2
Bc

mτ (mb + mc)
(gLRS − gRR

S )

∣∣∣∣
2
]

, (54)

where m2
Bc

/mτ (mb + mc) = 4.065 and

BR(B−
c → τ−ν̄τ )SM

= τBc
G2

F

8π
|Vcb|2 f 2

BcmBcm
2
τ

(
1 − m2

τ

m2
Bc

)2
, (55)

where Vcb stands for the CKM matrix element, τBc and
fBc denote the B−

c meson lifetime and decay constant,
respectively. The SM prediction of BR(B−

c → τ−ν̄τ )SM =
(2.25 ± 0.21) × 10−2 [72]. Unfortunately, no direct con-
straints from upper bounds on the leptonic Bc branching
ratios are available from the LHC. In view of this, an esti-
mate of a bound on BR(B−

c → τ−ν̄τ ) has been derived from
LEP data at the Z peak in Ref. [25]. The bound turns to be
strong BR(B−

c → τ−ν̄τ ) ≤ 10%. Later on, the bounds using
the measured Bc lifetime had been critically investigated and
relaxed upper limit of ≤ 39% [26] and ≤ 60% [27,28] were
obtained. Thus we will follow Ref. [72] and take in our anal-
ysis the bound: BR(B−

c → τ−ν̄τ ) < 60%.
The processes Bs → �+

A�−
A , where �−

A denotes a charged
lepton, can be used to derive constraints on the parameter
space on the model under concern in this work as we discuss
in the following. These processes are mediated at tree-level
by the neutral Higgs (H0

k = H0, h0, A0) exchange. Their
branching ratios, including tree-level neutral Higgs contri-
butions, can be written as

B
[
B0
s → �+

A�−
A

]
= G4

FM
4
W

8π5

√
1 − 4xi MBs f 2

Bs m
2
lA τBs

×

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣

M2
Bs

(
Cbs

P − C
′bs
P

)

2mlA (ms + mb)
−
(
Cbs

A − C
′bs
A

)
∣∣∣∣∣∣

2

+
∣∣∣∣∣∣

M2
Bs

(
Cbs
S − C

′bs
S

)

2mlA(ms + mb)

∣∣∣∣∣∣

2

×
[
1 − 4x2

A

]
⎫
⎪⎬

⎪⎭
, (56)

where xi = m�i
MBs

, τBs and fBs stand for the B−
s meson life-

time and decay constant, respectively. In the above equation,
the neutral Higgs non-vanishing Wilson coefficients only
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include Cbs
P,S C

′bs
P,S . Their expressions are listed in Eq. (69)

in Appendix A.1. On the other hand and within SM, up to
one loop-level, we have Cbs

P = C
′bs
P = C

′bs
A = 0 [73] and

Cbs
A = −V �

tbVtsY

(
m2

t

M2
W

)
− V �

cbVcsY

(
m2

c

M2
W

)
, (57)

The function Y = ηY Y0 is defined in a way that the NLO
QCD effects are included in ηY = 1.0113 [74].The expres-
sion of the one loop Inami-Lim function Y0 is given as [75]

Y0(x) = x

8

[
4 − x

1 − x
+ 3 x

(1 − x)2 ln(x)

]
. (58)

It should be remarked that, the SM Wilson coefficient Cbs
A

is scale independent as its corresponding effective opera-
tor corresponds to conserved vector current with vanishing
anomalous dimensions [73].

In our analysis we use the numerical values of the CKM
matrix elements reported in Ref. [76]. Moreover, the numer-
ical values of the mass and life time of Bs are taken from
Ref. [77] and we take the value fBs = 0.230 GeV [78].
Setting the neutral Higgs Wilson coefficients to zero in Eq.
(56), we find that BSM (B0

s → μ+μ−) = 4.1 × 10−9 and
BSM (B0

s → τ+τ−) = 8.7 × 10−7. We note that the SM
prediction for the process B0

s → μ+μ− obtained here is
larger than the well known one by Misiak et al. (2013) read-
ing BSM (B0

s → μ+μ−) = (3.65 ± 0.23) × 10−9 [79]. This
can be attributed to the fact that the authors of Ref. [79]
performed extensive study and included O(αem) and O(α2

s )

corrections to the amplitude of the process. Experimen-
tally, from the non observation of the decay B0

s → τ+τ−,
we have the upper limit B(B0

s → τ+τ−) < 6.8 × 10−3

[77]. This result allows new physics to have large contri-
butions to B(B0

s → τ+τ−) and hence one obtains very
loose constraints. This is not the case regarding the pro-
cess B0

s → μ+μ− for which the experimental measurements
B (Bs → μ+μ−)

LHCb = (3.09+0.46+0.15
−0.43−0.11) × 10−9 [80]. We

refer to Ref. [10] for the results reported by the CMS, ATLAS
and CDF collaborations. Using the 2σ range of the HFLAV
average B (Bs → μ+μ−)

HFLAV = (3.45 ± 0.29) × 10−9

[11] and with the help of Eq. (56), we can derive the required
constraints on our parameter space

In the model under consideration in this work, the Bs(d) −
B̄s(d) neutral meson mixing receives new contributions from
tree-level diagrams mediated by the exchange of neutral
Higgs bosons, box diagrams mediated by the charged Higgs
only, the W ′ bosons only, both charged Higgs and W ′ or W±
together and finally both W ′ and W± together. In Appendix
A.1.1, we list the set of the operators contributing to the
effective Hamiltonian governing the Bs(d) − B̄s(d) mixing
and their corresponding Wilson coefficients. Following the

analysis in Ref. [81], we can use the reported experimen-
tal and SM values of �MBs,d and �MSM

Bs,d
respectively to

impose the constraints 0.85 < �MSM+H±
Bs

/�MSM
Bs

< 1.10

and 0.81 < �MSM+H±
Bd

/�MSM
Bd

< 1.03 up to 2σ level.
The b → sγ can lead to constraints on the parameter

space of the model under consideration. In our investigation
of these constraints, we work in leading logarithmic (LL)
precision. Charged Higgs can mediate a loop diagram similar
to the one in the SM but with replacing the charged W bosons
with the charged Higgs. On the other hand, the contributions
of the neutral Higgs boson to b → sγ are suppressed and
thus can be neglected. This can be explained as the flavor
off-diagonal elements in the down sector can be stringently
constrained from the tree-level decays. Thus, we are left with
the contributions originating from charged Higgs mediating
the loop diagram.

In the small tβ and α32 scheme adopted in this study, we
find that the effective couplings H± LR eff

cb and H± LR eff
cs

appearing in Eq. (36) are so tiny, regardless the values of the
parameters α and θ13. This is not the case if one considers
H± RL eff
cs and H± RL eff

cb which can be of order O(10−2)

or larger than that. Consequently, in our analysis, we keep
only the dominant contributions to b → sγ in the following.
Upon, neglecting the operators with mass dimension higher
than six, one obtains the same effective Hamiltonian as in the
case of the SM [82]

Hb→sγ
e f f = −4GF√

2
VtbV

�
ts

∑

i

Ci Oi . (59)

In the approximation we adopted above, charged Higgs, prop-
agating in the loop, contributes only to the Wilson coefficients
CH±

7 and CH±
8 corresponding to the operators

O7 = e

16π2 mbs̄σ
μν PRbFμν;

O8 = gs
16π2 mbs̄σ

μνT a PRbG
a
μν (60)

The Wilson coefficients CH±
7 and CH±

8 are given as

CH±
7 � v2

λt

3∑

j=1

RLH±�
u j d2

RLH±
u j d3

C0
7,YY (y j )

m2
u j

,

CH±
8 � v2

λt

3∑

j=1

RLH±�
u j d2

RLH±
u j d3

C0
8,YY (y j )

m2
u j

,

where y j = m2
u j

/m2
H+ and λt = Vtb V �

ts . The expressions of

C0
7,YY and C0

8,YY read [82];
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Fig. 2 Left (right) RD∗ (RD)
variation with gLLS where the
shaded green regions represent
the allowed 2σ region of their
experimental values

C0
7,YY (y j )

= y j
72

[−8y3
j + 3y2

j + 12y j − 7 + (18y2
j − 12y j ) ln y j

(y j − 1)4

]
,

C0
8,YY (y j )

= y j
24

[−y3
j + 6y2

j − 3y j − 2 − 6y j ln y j

(y j − 1)4

]
. (61)

From [83–85] we have

Bexp(b → sγ )

BSM(b → sγ )
− 1 = −2.87

[
CH±

7 + 0.19CH±
8

]

= (−0.7 ± 8.2) × 10−2, (62)

leading to [83]

|CH±
7 + 0.19CH±

8 | � 0.06 (2 σ). (63)

Here, we used CH±
7,8 at a matching scale of 1 TeV as input.

Again, these constraints are so stringent that the effect of
CH±

7,8 on the flavour anomalies can be mostly neglected.
Finally, It is worth to recall that, due to the requirement

of having light neutrino masses we found that the contribu-
tions of the right neutrino sector to the corresponding Wilson
coefficients gRR

S (μ) and gLRS (μ) are very small and thus can
be safely ignored, leaving us with only gLLS (μ) and gRL

S (μ).

4 Numerical results and analysis

Having discussed all relevant constraints related to the ratios
RD,D∗ , we are ready now to estimate their predictions in
the model under concern in this investigation. To proceed,
we need first to show, numerically, the RGE running effect
of gRL ,LL

S (μ) from μ = 1 TeV to mb = 4.2 GeV scale.
According to the estimation carried out in Refs. [86,87], we
have

(
gRL
S

gLLS

)
=
(

1.71 0
0 1.71

)(
gRL
S (μ = 1 TeV)

gLLS (μ = 1 TeV)

)
. (64)

Fig. 3 RD and RD∗ as function of the charged Higgs mass where the
parameters as stated in the text are chosen as follows: cθ R

13
∈ [−1, 1],

α ∈ [0, π ], α32 ∈ [0.00166, 0.00716] and tβ ∈ [0.15, 0.25]

Furthermore, we have checked that gRL
S is about one

order of magnitude smaller than gLLS ; thus for real gLLS (i.e.,
Re(gLLS ) = gLLS ), one finds

RD � RSM
D

[
1 + 1.49gLLS + 1.02|gLLS |2

]
, (65)

RD∗ � RSM
D∗
[
1 − 0.11gLLS + 0.04|gLLS |2

]
. (66)

This expression clearly shows that enhancing the values of
RD∗ to be in the range of the given experimental results, while
keeping the limit −1 � gLLS � 1 in mind is possible for a
range of negative values of gLLS as can be seen from the left
plot in Fig. 2. However, as can be remarked from the right
plot in Fig. 2, these negative values reduce RD below their
allowed 2σ region of the experimental results shown by the
shaded green region in the plot. Clearly, we deduce that the
phase α of the mixing matrix V R

CKM is crucial to solve the
concerned anomalies for the processes under consideration.

The attainable values of the Wilson coefficients gLLS and
gRL
S are affected by the charged Higgs mass. As a result,

to enhance these coefficients and thus the values of RD and
RD∗ while adhering to direct search constraints, the charged
Higgs masses should not be too heavy, namely of the order
of hundreds GeV. According to Eq. (32), this can be accom-
plished by considering vR ∼ O(TeV), α32 ∼ O(10−2) and
tβ less than one. Remarkably, from the pre factor 1/(tβ −ctβ)
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Fig. 4 RD and RD∗ as function of the sin of mixing angle θ R
13 left and the phase α of the V R

CKM matrix right and other parameters are fixed as in
the previous figure

in Eq. (37), it is direct to see that small tβ values can enhance
also the quark Yukawa couplings and hence together with the
angle θ R

13 and the complex phase α of the right-quark mixing
V R
CKM , defined in Eq. (39), play crucial roles in increas-

ing the values of RD and RD∗ , and allow them to take val-
ues that are compatible with the limit of the experiments
at the same time. In our scan of the parameter space we
take α32 ∈ [0.007, 0.016], tβ ∈ [0.15, 0.25], cθ R

13
∈ [−1, 1],

α ∈ [0, π ] and vR = 6400 GeV. With this in hand, we
show below our results corresponding to the scanned points
in the parameter space respecting all the bounds discussed in
the previous section. It should be noted that, in these results
we only select the points that lead to values of FL(D∗) and
Pτ (D∗) within their 2σ range of the corresponding exper-
imental results. Moreover, we have checked that, for these
parameters in the chosen ranges and values, the contribu-
tion of the gRL

S are irrelevant and can be safely neglected.
This confirms our previous conclusion that only the Wilson
coefficient gLLS plays the major role through the terms pro-
portional to mt sθ R

13
e−iα . In the following, we present a set of

elucidative plots of RD and RD∗ versus some selected rele-
vant parameters of the model. It should be noted that these
plots were generated through a random scan and therefore do
not reflect any specific correlations with the chosen parame-
ter.

In Fig. 3, we display the variation of RD and RD∗ with the
charged Higgs mass. As can be seen from the figure, it is pos-
sible to account for the experimental results of RD and RD∗
within 2σ range, while respecting the the mentioned con-
straints in the previous section and the 2σ range of FL(D∗)
and Pτ (D∗) mentioned in the previous section, with charged
Higgs masses mH± can be chosen of order 300 GeV. On the
other hand, the dependence of RD and RD∗ on the sin of
the mixing angle θ R

13 and the phase α of the V R
CKM matrix is

depicted in Fig. 4. It is clear from left plot in the figure that,
moderate and large values of sθ R

13
are preferable to satisfy the

experimental results of RD and RD∗ within 2σ range while
respecting the bounds and the requirements considered in the

Fig. 5 Allowed region in the (θ R
13, α) plane by all considered con-

straints in green color. The red region satisfies the 2σ experimental
results of RD∗ and RD together for tβ � 0.2074, α32 = 0.00416 which
result in mH± = 305 GeV and the other parameters are fixed as before

scan. On the other hand, regarding the phase α, large phases
are favored as can be seen from the right plot in the figure.
The explicit dependence of RD and RD∗ on the parameters
α23, which determines the mass of the charged Higgs MH± ,
θ13, and the phase α, can be understood through the following
approximate analytical expressions:

RD = 0.298 + H±
l,ν sin(θ13)

×
(

8.854 × 10−4H±
l,ν sin(θ13)

(α23)2 − 2.39

× 10−2�
(
e−iα

α23

))
(67)

R∗
D = 0.254 + H±

l,ν sin(θ13)

123



Eur. Phys. J. C (2023) 83 :731 Page 13 of 19 731

Table 1 A set of selective benchmarks of the parameters and intended predictions resulting from the scan after taking into account the constraints
discussed in the previous section and requirements stated in the beginning of this section

Parameter H±
l,ν θ R

13 α α32 m±
H �MBd �MBs BR(B−

c →
τ−ν̄τ )

RD RD∗ FL (D∗) Pτ (D∗) Pτ (D) B0
s →

μ+μ−
|CH±

7 +
0.19CH±

8 |
BP1 0.03 1.5 2.4 0.00186 204 0.6 1.0 50% 0.296 0.285 0.51 − 0.3 2.1 3.56 × 10−9 0.027

BP2 0.03 1.7 2.2 0.00216 220 0.7 1.0 40% 0.31 0.27 0.5 − 0.37 1.8 4.1 × 10−9 0.02

BP3 0.08 2.55 2.0 0.00366 286 0.94 1 37% 0.373 0.274 0.49 − 0.4 1.3 3.89 × 10−9 0.019

BP4 0.18 2.1 2.3 0.00476 327 0.89 0.99 42% 0.33 0.283 0.50 − 0.33 1.7 3.72 × 10−9 0.027

BP5 0.16 2.3 2.2 0.00616 371 0.93 0.996 40% 0.35 0.284 0.51 − 0.347 1.0 3.98 × 10−9 0.019

BP6 0.14 2.3 2.1 0.00716 400 0.99 0.97 34% 0.32 0.27 0.48 − 0.4 1.4 3.54 × 10−9 0.027

×
(

2.936 × 10−5H±
l,ν sin(θ13)

(α23)2 + 1.496

× 10−3�
(
e−iα

α23

))
(68)

We can obtain the regions in the (θ R
13, α) parameter space

in which the anomalies are satisfied through varying θ R
13

and α while assigning fixed values of the other parameters.
As an example, we take the fixed values tβ � 0.2074 and
α32 = 0.00416 which result in mH± = 305 GeV and the
other parameters are fixed as before. In Fig. 5, we show the
experimentally allowed 2σ region in the (θ R

13, α) plane sat-
isfying RD∗ and RD together in red color. In the same plot,
the regions in green color are the allowed regions, in the
(θ R

13, α) plane for the set of the input parameters we use,
by all constraints discussed above in the previous section.
Clearly, the imposed constraints have a sensible effect on the
parameter space as large part of this space is excluded by the
constraints. Moreover, as shown in the plot, their is a small
region in the parameter space which is allowed by all the
aforementioned constraints in which RD∗ and RD anomalies
are satisfied together. Specifically, this region is the intersec-
tion region of the two colored regions in the plot. It should
be noted that this conclusion corresponds to our particular
example of the input parameters stated above. Taking other
values of the input parameters tβ , α32 and vR may lead to
another regions in (θ R

13, α) plane that respect all constraints
and satisfy RD∗ and RD anomalies together. For instances, in
Table 1, we list several benchmarks obtained upon variation
of α32 while keeping other input parameters as before.

In Fig. 6, we present the correlation between RD and RD∗
for the same set of the parameter space considered in the scan
over the values and ranges mentioned in the beginning of this
section. Only points that satisfy all the bounds discussed in
Sect. 3 and the 2σ range of FL(D∗) and Pτ (D∗) are included
here. It is remarkable from this figure that both RD and RD∗
are satisfied for a lot of points in the parameter space, thanks
to the complex mixing of right-handed quarks.

Fig. 6 The correlation between RD and RD∗ for the same set of param-
eter space considered in Fig. 3. The dashed red line represents the
�χ2 = 1.0 contour, which is consistent with the 2023 latest results
from HFLAV [11]

It should be noted that, if the tbH+ Yukawa coupling
is non-negligible (cRθ13 is non-zero), there will be non-
negligible t tφ couplings thanks to the SU(2) invariance
where φ stands for the neutral extra scalars: H and A. As a
consequence, gg → φ → ττ would also impose constraints
on the parameter space. To consider this possibility, we have
analyzed the processes gg → φ → ττ . We have found that
the corresponding cross-sections are less than 10−8 Pb, indi-
cating that they do not impose any significant constraints on
our analysis.

We turn now to the discussion of our predictions of the D∗
and τ longitudinal polarizations and tau polarization observ-
able Pτ (D). For this purpose we list in Table 1 a selective
set of 6 benchmarks representing part of our results. Recall
that the corresponding measurements, reported by Belle col-
laborations, are FExpt

L (D∗) = 0.60 ± 0.08 ± 0.035 [69]

and PExpt
τ (D∗) = −0.38 ± 0.51+0.21

−0.16 [4,5,70]. Clearly, the

uncertainty in the measurement of PExpt
τ (D∗) is so large and

thus we only restrict ourselves to FL(D∗). The SM prediction
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Table 2 Re(CNP
9μ )/CSM

9μ and Re(CNP
10μ)/CSM

10μ for the set of benchmark points considered in Table 1

Parameter H±
l,ν θ R

13 α α32 m±
H Re(CNP

9μ )/CSM
9μ Re(CNP

10μ)/CSM
10μ

BP1 0.03 1.5 2.4 0.00186 204 0.07 0.02

BP2 0.03 1.7 2.2 0.00216 220 0.08 0.02

BP3 0.08 2.55 2.0 0.00366 286 −0.039 −0.01

BP4 0.18 2.1 2.3 0.00476 327 0.04 0.01

BP5 0.16 2.3 2.2 0.00616 371 0.01 0.017

BP6 0.14 2.3 2.1 0.00716 400 0.03 0.009

is estimated to be FSM
L (D∗) = 0.464 ± 0.010 [14]. Clearly

from Table 1, the new contributions of the model under con-
cern can increase the central value of the SM by about 11%
for the listed set of the benchmarks. We also noted there are
points in our scan that imply a larger enhancement which
makes our predictions closer to the experimentally measured
central value. On the other hand, the enhancement in the tau
polarization Pτ (D) can reach 6 times its SM predicted value
as can be noted from the same table. This can serve as test of
the model under consideration once this observable is mea-
sured.

Searching for new physics via B meson exclusive decays
originating at the quark level from the b → s�+�− tran-
sitions has gained a lot of attention in the last decades.
In the framework of the SM, these transitions take place
only at loop-level. Consequently, their amplitudes are sup-
pressed, for instances, by factors accounting for the inte-
gration over the momenta running in the loop. This in turn
leads to deviations of the measured branching ratios of
B → Kμ+μ−, B → K ∗μ+μ−, and Bs → φμ+μ− decays.
from their SM predictions. Also, the angular observable P ′

5
in the B0 → K ∗0μ+μ− decay, [88,89], has shown tension
with the SM values. For instance, ATLAS [90], and LHCb
[91,92], measured the value of P ′

5 in the kinematical region
4.0 < q2 < 6.0 GeV2 and found departure from the SM
value to be more than 3σ [93]. Furthermore Belle [94,95] and
CMS [96] measured the value of P ′

5 for the same decay mode
in q2 bin 4.0 < q2 < 8.0 GeV2 and 6.0 < q2 < 8.68 GeV2

respectively. Belle measurement shows the deviation of 2.6σ

from the SM prediction and CMS measurement shows a dis-
crimination of 1σ from the SM value. Their is a possibility
that the tensions between the measurements and the SM pre-
dictions of all these observables can be relaxed if one consid-
ers NP models affecting theb → s�+�− transitions. In the lit-
erature, various performed model independent global fit anal-
yses [97–114] based on the assumption that NP present only
in the muon sector revealed that two simple one-dimensional
(1D) NP scenarios (S1)CNP

9μ or (S2)CNP
9μ = −CNP

10μ, that give
better fit to all the data, with preferences reaching ≈ 5 − 6σ

compared to the SM [115].

The observable P ′
5 is sensitive to the real parts of CNP

9μ

and CNP
10μ. On the other hand, the ratios RK (∗) , defined as

RK (∗) = B(B→K (∗)μ+μ−)

B(B→K (∗)e+e−)
, are also sensitive toCNP

9μ andCNP
10μ.

Recently the updated measurements of RK (∗) , [116,117] have
put stringent constraints on the NP couplings and the NP
models. This in turn lead to a strong constraints on the Wil-
son coefficients CNP

9μ and CNP
10μ which affect the aforemen-

tioned observables. In the model under concern we found
that it is not possible to accommodate P ′

5 and other observ-
ables related to theb → s�+�− transitions through Re(CNP

9μ )

and Re(CNP
10μ). To make it more clear, we show in Table 2

Re(CNP
9μ )/CSM

9μ and Re(CNP
10μ)/CSM

10μ for the set of bench-
mark points in Table 1. As can be seen from the table there is
no sizable enhancement due to the new contributions of the
model under consideration compared to the corresponding
SM Wilson coefficients.

5 Conclusion

In this work we have explored the possibility of resolving
the tension between the SM prediction and the experimental
results of the RD and RD∗ ratios using a low scale left–right
symmetric model based on SU (3)C × SU (2)L × SU (2)R ×
U (1)B−L . The scalar sector of the model contains charged
Higgs boson with masses that can be chosen in the order
of hundreds GeV without any conflict with direct search
constraints. We have shown that integrating out the charged
Higgs mediating the tree-level diagrams generates a set of
non vanishing scalar Wilson coefficients contributing to the
effective Hamiltonian governing the transition b → cτ ν̄ and
hence to the ratios RD∗ and RD and the D∗ and τ polariza-
tions.

The dependency of the scalar Wilson coefficients on the
matrix elements of the quark mixing angle in the right sec-
tor turns to be important. We emphasized that the mixing
element (V R

CKM )23 should be complex in order to satisfy
both RD and RD∗ . We have also shown the complex phase
associated with this mixing element is essential to accommo-
date the experimental results of the ratios for charged Higgs
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masses of order 300 GeV while respecting the constraints
from BR(B−

c → τ−ν̄τ ), Bs(d) − B̄s(d) mixing and other rel-
evant constraints discussed above.
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Appendix

A.1 Wilaon coefficients relevant to the process Bs → �+
A�−

A

Following Ref. [73], the neutral Higgs non-vanishing Wilson
coefficients can be expressed as

Cbs
S = π2

2G2
FM

2
W

3∑
k=1

1

m2
H0
k

(

LR H0

k
�A�A

+ 
RL H0

k
�A�A

)

RL H0

k
bs

Cbs
P = π2

2G2
FM

2
W

3∑
k=1

1

m2
H0
k

(

LR H0

k
�A�A

− 
RL H0

k
�A�A

)

RL H0

k
bs

C
′bs
S = π2

2G2
FM

2
W

3∑
k=1

1

m2
H0
k

(

LR H0

k
�A�A

+ 
RL H0

k
�A�A

)

LR H0

k
bs

C
′bs
P = π2

2G2
FM

2
W

3∑
k=1

1

m2
H0
k

(

LR H0

k
�A�A

− 
RL H0

k
�A�A

)

LR H0

k
bs .

(69)

with vertex

RL A0

bs = − 1√
2

(
3∑

b=1

(V R
CKM )∗3b

3∑

a=1

(V L
CKM )∗2a y

Q∗
ab Z A

32

+
3∑

b=1

(V R
CKM )∗3b

3∑

a=1

(V L
CKM )∗2a ỹ

Q∗
ab Z A

31

)
(70)

LR A0

bs = 1√
2

(
3∑

b=1

3∑

a=1

(V L
CKM )3a y

Q
ab(V

R
CKM )2bZ

A
32

+
3∑

b=1

3∑

a=1

(V L
CKM )3a ỹ

Q
ab(V

R
CKM )2bZ

A
31

)
(71)

RL hk
bs = i

1√
2

(
−

3∑

b=1

(V R
CKM )∗3b

3∑

a=1

(V L
CKM )∗2a y

Q∗
ab Z H

k2

+
3∑

b=1

(V R
CKM )∗3b

3∑
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(V L
CKM )∗2a ỹ

Q∗
ab Z H

k1

)
(72)

LR hk
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1√
2
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(V L
CKM )3a y

Q
ab(V

R
CKM )2bZ

H
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+
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Q
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H
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)
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A
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)
(74)
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− yLAAZ
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32 + ỹLAAZ

A
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H
k2 + ỹLAAZ

H
k1

)
(77)

The expressions of Z A,H
i j can be found in Ref. [55]. The

Wilson coefficients at low energy scale μlow, C (′)bs
S,P (μlow),

can be obtaining from their corresponding ones listed in Eq.
(69) using the relation [73]

C (′)bs
S,P (μlow) = mq(μlow)

mq(μhigh)
C (′)bs
S,P (μhigh), (78)

here mq represents the running quark mass with the appro-
priate number of active flavors. Finally, it should be noted
that since the Wilson coefficients are given at the matching
scale, mb and mt must be evaluated at this scale [73].

A.1.1 Bq − B̄q mixing

The contributions of the NP to the effective hamiltonian gen-
erating �B = 2 transitions, q = d, s, can be written as

H�Q=2
eff = −4GF√

2
|VtbV ∗

tq |2
{

5∑

i=1

CNP
i Qi +

3∑

i=1

C̃ N P
i Q̃i

}
.

(79)

The four-quark operators are given as

Q1 = (
q̄γ μPLb

) (
q̄γμPLb

)

Q2 = (q̄αPLbα) (q̄β PLbβ)

Q3 = (q̄αPLbβ) (q̄β PLbα)

Q4 = (q̄αPLbα) (q̄β PRbβ)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


731 Page 16 of 19 Eur. Phys. J. C (2023) 83 :731

Q5 = (
q̄αPLbβ

) (
q̄β PRbα

)
(80)

The operators Q̃1,2,3 can be obtained from the operators
Q1,2,3 by the replacement L ↔ R. At tree-level, we have
contributions to H�Q=2

eff from only neutral Higgs bosons

mediation. Denoting these contributions by C
H0
k

i , we find
that their expressions can be written as

C
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k
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k
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qb 
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(81)

The quantities 
AB H0

k
qb are defined as before. We remark from

the above expressions that, the neutral Higgs bosons con-
tributes only to the scalar color singlet four-quark operators
in Eq. (80). In Ref. [81], it was pointed out that the contri-
butions of the operators that contains scalar and tensor Dirac
structures are highly disfavored by the fits to b → s data
and hence their contributions can be neglected. The charged
Higgs contributions to H�Q=2

eff originate at one loop-level
and can be expressed as

CH±
1 (μH±) = − 1
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√

2π2GFm2
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tq)
2

×
∑

k,�
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VkbV
∗
�qG2(xk, x�, xW )

+g2mukmu�
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∗
�qG3(xk, x�, xW )

]
, (82)

where the loop functions Gi for i = 1, 2, 3 are given as

G1(x, y)

= 1
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x2 log x
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. (85)

and xW = m2
W /m2

H+ and xk = m2
uk/m

2
H+ . The next step is

to calculate the matrix elements of the operators Qi at the
scale μ = μb and to run the Wilson coefficients from the
electroweak scale to the scale μ = μb. The contribution to
the Bq − B̄q mixing amplitudes induced by a given NP scale
coefficient Ci (μ = μN P ), denoted by 〈Bq |H�B=2

eff |B̄q〉i , as
a function of αs(μN P ) and the scale μ = μb is given as [118]
(see also [119])

〈Bq |H�B=2
eff |B̄q〉i

=
5∑

j=1

5∑

r=1

(
b(r,i)
j + η c(r,i)

j

)
ηa j

×Ci (μN P ) B
Bq
i 〈Bs |Qr |B̄q〉, (86)

where η = αs(μN P ))/αs(mt ), a j , b
(r,i)
j and c(r,i)

j are magic

numbers given in [118] and Bi
Bs

are the B parameters that
can be found in Table 9 in Ref. [120]. It should be noted
that the magic numbers for the evolution of the Wilson coef-
ficients C̃1−3 are the same as the ones for the evolution of

C1−3 [119]. Moreover, in the basis Q̃i , the B
Bq
i parameters

and the hadronic matrix elements 〈Bq |Q̃r |B̄q〉 are equal to
their corresponding ones in the basis Qi [121]. The matrix
elements are given by

〈Bq |Q1|B̄q〉 = 1

3
MBq f 2

Bq ,

〈Bq |Qr |B̄q〉 = Nr

(
MBq

mq + mb

)2

MBq f
2
Bq , (87)

with Nr = (−5/24, 1/24, 1/4, 1/12) for r = (2, 3, 4, 5).
With all this in hand, it is direct to calculate the quantity
�Mq [122,123] and thus derive the bounds on the parameter
space using the measured value of �Mq .

The K − K̄ mixing can be studied in a similar way used
above in the Bq − B̄q mixing. In fact, it is possible to have
a non-vanishing phase in the second column of the V R

CKM
matrix, which turns out to be irrelevant and has no effect on
the RD and R∗

D result. However, this imaginary phase can
affect the bound from other flavor observables e.g. εK . In
particular, through the contributions from the neutral Higgs
mediating the tree-level diagrams. In order to provide the
ingredient required for the estimation of εK , we define

CεK = Im 〈K 0|H�S=2
full |K̄ 0〉

Im 〈K 0|H�S=2
SM |K̄ 0〉 , (88)

123
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where H�S=2
full = H�S=2

SM + H�S=2
NP . The calculation of

〈K 0|H�S=2
full |K̄ 0〉i can be done in a similar manner to

〈Bq |H�B=2
eff |B̄q〉i with the replacement of bs ↔ sd in the

Wilson coefficients listed above. The K − K̄ mixing can be
evaluated using [118]

〈K̄ |H�S=2
eff |K 〉i

=
5∑

j=1

5∑

r=1

(
b(r,i)
j + η c(r,i)

j

)
ηa j

×Csd
i (μ) BK

i 〈K̄ |Qsd
r |K 〉, (89)

as before ai , b
(r,i)
j and c(r,i)

j are “magic numbers” listed in

[124] and Bi
K are the B parameters collected in Table 8. The

matrix elements are given by

〈K̄ |Qsd
1 |K 〉 = 1

3
MK f 2

k ,

〈K̄ |Qsd
r |K 〉 = Nr

(
MK

md + ms

)2

MK f 2
k , (90)

with Nr = (−5/24, 1/24, 1/4, 1/12) for r = (2, 3, 4, 5). In
the next step, the Wilson coefficients are evolved down from
the mass scale of the Higgs scalars to the scale μ = 2 GeV
at which the hadronic matrix elements are evaluated using
the RG equations in [124]. Doing so, it is quite forward and
direct to compute the constraint on the non-vanishing phase
in the second column of the V R

CKM matrix using the bound
from εK .
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