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Abstract This paper analyzes the characteristic of a non-
static sphere along with anisotropic fluid distribution in the
background of modified f (G) theory. Conformal Killing vec-
tor is a productive constraint for computing reliable results
for modified field equations. The occurrence of conformal
Killing vector indicates the existence of symmetries in space-
time and it permits us to choose the coordinates that reduce
the number of independent variables. Subsequently, for dif-
ferent conformal Killing vector choices, we obtain several
types of precise analytical solutions for both non-dissipative
and dissipative systems. We compute the matching condi-
tions in the context of f (G) gravity. In addition to this, we
apply specific constraints to the matching conditions in an
attempt to determine the significant results. Further, we pro-
ceed our investigation by utilizing quasi-homologous condi-
tion and vanishing complexity factor condition. Finally, we
summarize all the important results which may help to under-
stand the properties of astrophysical objects.

1 Introduction

Several notions introduced to explain the cosmic evolution,
but general theory of relativity (GR) stood out among all of
them. Many investigations and findings, including the bend-
ing of light around massive objects, the precession of Mer-
cury’s orbit, time dilation effects, and the detection of grav-
itational waves, extensively verified and confirmed GR [1].
Gravitational waves are kind of waves that sweep through
spacetime, which are produced by the acceleration of mas-
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sive celestial bodies like black holes or neutron stars. They
transmit energy away from the system in the form of ripples
in spacetime. The Laser Interferometer Gravitational-Wave
Observatory LIGO [2,3] experiment identified the gravita-
tional waves. It is the basis of our understanding of gravity
on cosmological scales, describing the motion of massive
celestial objects such as stars, galaxies, and even the entire
universe.

GR deals with the evolution of the cosmos, beyond the
big-bang, but GR is unable to explain their initial events or
the causes. Understanding the birth of the universe and the
nature of its initial singularity require a theory that includes
gravity and quantum physics. The observable phenomena of
dark matter (DM) and dark energy (DE) were not adequately
explained by GR. These ideas developed to explain gravita-
tional effects on galactic and cosmic scales. The factors and
characteristics of DE along with DM are yet unresolved, and
research into their origin and behavior is still proceeding.

To deal with these issues, modified theories [4–12] were
presented, for instance the Brans–Dicke theory [13–15],
which extends GR by including a scalar field. Brans and
Dicke [16] proposed this theory with the aim of provid-
ing an alternative framework for understanding gravitational
interactions. Numerous applications of the Brans–Dicke the-
ory analyzed, including cosmological objects, the physical
characteristics of BHs etc. This theory is also associated
with other different theories, which might involve higher-
dimensional and scalar-tensor theories (STTs). The STTs
[17–23] examined in cosmology and modified gravity scenar-
ios. These theories analyze the universe’s expansion and the
evolution of cosmic objects. Moreover, STTs explored in the
realm of DE, expressing many possible explanations for the
rapid expansion of cosmos. Modified f (R) theories [24–30]
presented as an alternative explanation for the phenomena
that include DE and cosmic accelerating expansion. The pre-
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dictions regarding how gravity will behave can be based on
the precise form of f (R) theories. Observational constraints
and instabilities are significant deficiencies for f (R) the-
ories. Bhatti et al. [31–33] worked out to under stand the
dynamical behavior of self-gravitating compact structures
with an anisotropic environment with f (R, T ) theory. They
applied radial perturbation scheme studied the effects of extra
curvature terms which appear due to modified f (R, T ) grav-
ity model in both the Newtonian and Post Newtonian eras.

Modified Gauss–Bonnet (GB) theory is also familiar as
modified f (G) theory. Noriji and Odintsov [34–37] proposed
this modified theory, in which the gravitational action of GR
is modified by using generalized function f (G) instead of
Ricci scalar R. In this gravity, G is the GB invariant which is
also known to be topologically invariant in four dimensions,
which is written as G = R2 − 4RλνRλν + Rλγ νξRλγ νξ ,
where, Rλγ νξ and Rλν defined as the Riemann tensor and
Ricci tensor, respectively. In addition to the potential conse-
quences of modified GB theory, higher-order variables that
influence spacetime curvature may cause novel gravitational
effects, such as gravitational lensing. Moreover, this theory
may cause a variety of fascinating cosmological phenomena
in higher-dimensional brane-world methodologies [38–40].

Based on f (G) theory, new sorts of BH solutions, such
as those with scalar hair or non-singular center analyzed.
These solutions might possibly provide fresh perspectives on
the mathematical nature of BHs and the general relativistic
singularity challenges. Solar system tests are a significant
way of evaluating predictions of f (G) theory, which may
help in revealing the information on the nature of gravity and
the history of cosmos. The f (G) theory predicts variations
to the Friedmann equations, which explain the growth of
the universe. Observations of cosmic microwave background
radiation or the large-scale structure of the cosmos might
possibly put them under evaluation [41].

Nojiri et al. [42,43] analyzed the universe’s evolution
whenever it undergoes transition from a phase of decelera-
tion to accelerated expansion, or vice versa. These transitions
retain tremendous interest since they may provide informa-
tion on how the universe behaves within the parameters of
modified theories. Along with this, they demonstrated that
the �CDM, i.e., Lambda cold dark matter, may provide an
explanation for such theories. Felice et al. [44,45] found that
when a wide range of model parameters were considered,
these models satisfied all the constraints of the solar system.
Additionally, to assess the accuracy of the f (G) models, sev-
eral experiments were performed on the solar system, includ-
ing light deflection, Earth perihelion shift, gravitational red-
shift, and light retardation. Paul et al. [46] identified cos-
mic results and studied various phases of growth that are
allowed in higher derivative theories. They used the modi-
fied theories as an exploratory model to examine the past,
present, and forecast future evolution. It turns out that all

of the simulations investigated, are capable of analyzing the
universe’s present rapid phase of expansion. Myrzakulov et
al. [47] evaluated numerous cosmological solutions in the
framework of f (G) theory. To do so, the inhomogeneous
factors in the Equation of State (EoS) of a perfect fluid might
lead to late-time acceleration. Moreover, they established the
distinct solutions in f (G) theory. Bhatti et al. [48] examined
the unstable behavior of compact star in modified GB gravity
by using adiabatic approach. They also studied the standard
representation and scalar tensor representations of f (G, T )

gravitation and introduced a two set of novel matching con-
ditions in both representation to better understand the behav-
ior of this modified theory in the presence of boundaries or
interfaces [49]. Yousaf et al. [50–52] investigated behavior
of gravastar via theoretically and graphically, which is alter-
native compact object to black hole, under the influence of
different modified gravity theories.

Bamba et al. [53] explored bounce cosmology in f (G)

theory along with the stability of the solutions in the recon-
structed model. In addition to that, they effectively evaluated
the f (G)gravity model in an analytical manner, in which late-
time cosmos acceleration and early-time bounce are possible.
Abbas et al. [54] focused to determine analytical solutions for
compact objects with anisotropic gravitational static sources.
Moreover, they utilized the Krori and Barua metric for resolv-
ing Einstein field equations (EFEs) with anisotropic fluid
distribution and the power law model of f (G) theory. They
also examined the compact star’s regularity and stability.
Odintsov and Oikonomou [55] studied gravitational baryo-
genesis by developing an analogy between the GB invariant
and the baryonic current. Meanwhile, determined the baryon
to entropy ratio based on the GB terms by considering the
observational constraints. Antoniou et al. [56] looked at the
possible existence of typical BH solutions alongside scalar
hair, which particularly emphasizes the restrictions of the
prior no-hair theorems. They additionally investigated the
solutions of entropy, scalar charge and horizon area.

Munyeshyaka et al. [57] examined cosmic perturbations
in modified GB gravity by utilizing the (1+3) covariant for-
malism. They explained scalar and vector gradient functions
and calculated the evolution equations for them. Koussour et
al. [58] analyzed a holographic DE model with an anisotropic
and homogeneous cosmos of Bianchi type I in the context of
f (G) theory. They discovered precise solutions to the field
equations with the assumption that the parameter of decel-
eration fluctuates with cosmic time. Bajardi and Agostino
[59] obtained the theory’s point-like Lagrangian and associ-
ated equations of motion by considering a flat Friedmann–
Lemaître–Robertson–Walker metric. The Noether symmetry
approach utilized to identify effective functions. In addition,
they studied at the cosmological properties of the f (R,G)

model in the presence of matter fields.
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The Killing vector field (KVF) [60] is a vector field on a
manifold that retains the metric tensor at every point along
the vector field. The KVF is related to spacetime symme-
tries in GR. The curvature of spacetime is intrinsically asso-
ciated with the distribution of matter and energy in space.
The geometrical structure is described by the metric tensor,
which precisely defines the structures that the KVF retain.
The EFEs are differential equations that are associated with
the curvature of spacetime. These are particularly nonlinear
equations that are complex to resolve. The simplest way is
to use spacetime symmetries to simplify the equations. If
spacetime enables a KVF, then this vector field yield a set of
spacetime isometries. It leads to an array of transformations
that preserve the invariance of metric tensor. These isome-
tries may be utilized for simplifying the EFEs, leading to
breakthroughs in the study of spacetime appears in various
physical phenomena.

A conformal Killing vector (CKV) on a manifold is a par-
ticular kind of vector field that keeps the metric structure up
to a scale factor. In a nutshell, it is a vector field that retains
angles and distances between points despite enabling the
manifold’s overall dimension to differ. The CKV have several
major applications in GR, and provide a substantial function
in the study of asymptotically flat spacetime. These functions
are EFEs solutions corresponding to flat Minkowski space at
the point of infinity. The CKV permit the description of con-
served factors such as mass, angular momentum and electric
charge.

Böhmer et al. [61,62] identified that traversable worm-
holes exhibit precisely defined solutions under specified
circumstances of non-static spherical symmetry in their
structure. They found novel family of simple analytical
approaches corresponding to anisotropic objects alongside
conformal motion. These results can be considered to exam-
ine the physical properties of compact anisotropic objects.
It is essential to study the effects of physical variables such
as energy density, mass, pressure gradient, and force related
to the star in order to find a physically applicable solutions
[63–65]. Manjonjo et al. [66] analyzed the static spherical
metric corresponding to the CKV and obtained analytical
solutions of EFEs admitting conformal symmetries for dif-
ferent fluid distributions. Further, they demonstrated that the
results satisfied the barotropic EoS.

The goal of this manuscript is to extend the work of
Herrera et al. [67] in the framework of f (G) gravity. To
accomplish our objective, we determine specific solutions
that yield one-parameter group of conformal motions in gen-
eral. Depending on the choice of vector field, there will prob-
ably be a pair of different categories of solutions. We will
explore the dissipative and non-dissipative cases for each
of these categories individually. In particular, one of these
categories is related to the facts with vector field parallel to

four-velocity, while the other is related to the case with vector
field perpendicular to four-velocity.

This manuscript is organized as follows: Sect. 2 presents
the basic formulism of f (G) theory and significant properties
of the fluid. In Sect. 3, we discuss kinematical variables for
non-static spherically symmetric spacetime. We also deter-
mine the mass function, structure scalars, and junction condi-
tions. Section 4 deals with the numerous analytical solutions
under the constraint YT F = 0 along with σ = 0 for both
the non-dissipative and dissipative systems. Eventually, we
summarize our findings in Sect. 5.

2 Field equations in f (G) gravity

In this section, we consider the equations of motion for f (G)

gravity. The action integral for f (G) theory [68] is given as

S =
∫ (

R + 1

κ
f (G) + lm

)√−gd4x, (1)

where R, g, lm , and κ = 8πG
c4 are the Ricci scalar, the deter-

minant of the metric tensor, the Lagrangian density of matter
distribution and the coupling constant. For simplicity, we
consider relativistic units, i.e., c = G = 1. The field equa-
tions for f (G) theory are

Rλν − 1

2
gλνR = 8πTλν,

where the term Tλν is defined as

Tλν = T (m)
λν + T (G)

λν ,

here, T (m)
λν and T (G)

λν represent anisotropic matter and the
modified correction terms of theory, respectively. The anisotr
opic fluid distribution can be described by

T (m)
λν = μVλVν + Phλν + 
λν + q(VλNν + NλVν), (2)

along with

P = Pr + 2P⊥
3

, hλν = gλν + VλVν,


λν = 


(
NλNν − 1

3
hλν

)
, 
 = Pr − P⊥,

where μ, Pr , P⊥ denote the energy density, radial pressure
and tangential pressure, respectively. The heat flux, the pro-
jection tensor, the anisotropic factor, the anisotropic tensor,
the four-velocity and the unit four-vector along the radial
direction reflected by qλ = qN λ, hλν , 
, 
λν , Vλ and N λ,

123



724 Page 4 of 23 Eur. Phys. J. C (2023) 83 :724

respectively. We define four-velocity and a unit four-vectors
as

Vλ =
(

1

A
, 0, 0, 0

)
, N λ =

(
0,

1

B
, 0, 0

)
. (3)

For comoving coordinates, these vectors satisfy the relation

VλVλ = −1, N λNλ = 1, N λVλ = 0. (4)

The expression for energy–momentum tensor in f (G) theory
is formulated by using the variational principle as

T (G)
λν = 1

κ
{ fG(4RλαRα

ν − 2RRλν

− 2RλαβγRαβγ
ν + 4RλανγRαγ )

+ 1

2
gλν f (G) − 2Rgλν∇2 fG

+ 2R∇λ∇ν fG − 4Rα
λ∇ν∇α fG

− 4Rα
ν ∇λ∇α fG + 4Rλν∇2 fG

+ 4gλνRαγ ∇α∇γ fG − 4Rλανγ ∇α∇γ fG}. (5)

Here, fG depicts d f (G)
dG , ∇2 = ∇λ∇λ is the d’Alembert oper-

ator and ∇λ is the covariant derivative. The non-static interior
spacetime is given as

ds2 = −A2(t, r)dt2 + B2(t, r)dr2

+ R2(t, r)(dθ2 + sin2 θdφ2). (6)

The modified field equations for spacetime described in Eq.
(6) is expressed as

8π{T (m)
00 + T (G)

00 } =
(

2
Ḃ

B
+ Ṙ

R

)
Ṙ

R
−

(
A

B

)2

×
[

2
R′′

R
+

(
R′

R

)2

− 2
B ′

B

R′

R
−

(
B

R

)2]
, (A1)

8π{T (m)
01 + T (G)

01 } = −2

(
Ṙ′
R

− Ḃ

B

R′

R
− Ṙ

R

A′

A

)
, (A2)

8π{T (m)
11 + T (G)

11 } = −
(
B

A

)2[
2
R̈

R
−

(
2
Ȧ

A
− Ṙ

R

)
Ṙ

R

]

+
(

2
A′

A
+ R′

R

)
R′

R
−

(
B

R

)2

, (A3)

8π{T (m)
22 + T (G)

22 } = 8π

sin2θ
{T (m)

33 + T (G)
33 }

= −
(
R

A

)2[ B̈

B
+ R̈

R
− Ȧ

A

(
Ḃ

B
+ Ṙ

R

)
+ Ḃ

B

Ṙ

R

]

+
(
R

B

)2[ A′′

A
+ R′′

R
− A′

A

B ′

B
+

(
A′

A
− B ′

B

)
R′

R

]
. (A4)

where, dot and prime show the derivative with respect to
time t and radius r , respectively. The non-zero component of
energy momentum tensor for usual matter are

T (m)
00 = μA2, T (m)

01 = −q AB, T (m)
11 = Pr B

2,

T (m)
22 = P⊥R2, T (m)

33 = sin2θT (m)
22 . (7)

Also, the non-vanishing component of energy momentum
tensor for f (G) theory is defined in Appendix.

3 Kinematical variables and mass function

The four-acceleration, the expansion scalar and shear tensor
of the fluid are given as

aλ = Vλ;νVν, � = Vλ
;λ,

σλν = V(λ;ν) + a(λVν) − 1

3
�hλν. (8)

We derive the four-acceleration and its scalar “a” after sub-
stituting the values in Eq. (8), which can be expressed as

aλ = aNλ, a = A′

A

1

B
. (9)

The expansion scalar is evaluated by using Eqs. (8) and (6)
as

� = 1

A

(
2
Ṙ

R
+ Ḃ

B

)
. (10)

The non-zero components of σλν from Eqs. (6) and (8) along
its scalar value can be expressed as

σ11 = 2

3
B2σ, σ22 = −1

3
R2σ, σ33 = Sin2θσ22, (11)

σλνσλν = 2

3
σ 2, (12)

here,

σ = 1

A

(
Ḃ

B
− Ṙ

R

)
. (13)
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The mass function introduced by Misner and Sharp [69],
which is used for describing the mass distribution in a spher-
ical spacetime. For the metric mentioned in Eq. (6), it can be
expressed as

m(t, r) = R3

2
R 23

23 = R

2

[(
Ṙ

A

)2

−
(
R′

B

)2

+ 1

]
. (14)

Next, DR and DT define proper radial derivative and proper
time derivative which is expressed as

DT = 1

A

∂

∂t
, DR = 1

R′
∂

∂r
. (15)

Furthermore, U is referred to the collapsing fluid’s velocity
and can be defined with respect to the proper time derivative
of the areal radius as

U = DT R.

Here, U may be negative when fluid is collapsing. The func-
tion m(t, r) using the collapsing velocity, which is evaluated
as

E ≡ R′

B
=

(
1 − 2m

R
+U 2

) 1
2

. (16)

By using Eq. (16), we can write Eq. (B1) as

4πq = − 1

2AB

[
fGGGZ3 + fGGZ4

]

+ E

[
1

3
DR(� − σ) − σ

R

]
. (17)

Using modified field equations along with proper derivatives
of Eq. (14), the expressions for the function of mass m(t, r),
which is expressed as

DTm = −4π

{
U

[
Pr − 1

κ

(
(G fG − f )

2

+ 1

B2 ( fGGGZ5 + fGGZ6)

)]

+
(
q + 1

κAB
( fGGGZ3 + fGGZ4)

)
E

}
R2, (18)

and

DRm

= 4π

[
μ + 1

κ

(
(G fG − f )

2
− 1

A2 ( fGGGZ1 + fGGZ2)

)

+
(
q + 1

κAB
( fGGGZ3 + fGGZ4)

)
U

E

]
R2. (19)

After the integration of Eq. (19), we get

m=
∫ r

0
4π

[
μ+ 1

κ

(
(G fG− f )

2
− 1

A2 ( fGGGZ1+ fGGZ2)

)

+
(
q + 1

κAB
( fGGGZ3 + fGGZ4)

)
U

E

]
R2R′dr. (20)

Performing certain computations, we find the expression for
m(t, r) as

3m

R3 = 4πμ − 4π

R3

∫ r

0
R3

{
DRμ

− 3

R

[
1

κ

(
(G fG − f )

2
− 1

A2 ( fGGGZ1 + fGGZ2)

)

+ U

E

(
q + 1

κAB
( fGGGZ3 + fGGZ4)

)]}
R′dr. (21)

The additional terms that resulted from f (G) theory in the
aforementioned mass function formulation are correspond-
ing to the basic characteristic of the spherically symmetric
distribution of fluid, that include heat dissipation as well as
change in energy density.

3.1 Structure scalars

In this subsection, we determine the structure scalar YT F

[70–73], which are chosen to define the complexity of the sys-
tem. Before computing the structure scalar, we calculate the
Weyl scalar by use of the Weyl tensor that can be expressed
as

Eλν = CλμνγVμVγ , (22)

where Cλμνγ denotes the Weyl tensor. In spherically sym-
metric spacetime, the magnetic part must vanishes but its
electric part reveals the importance of the Weyl tensor. The
non-zero components of Eq. (22) are

E11 = 2

3
B2E,

E22 = −1

3
R2E,

E33 = E22 sin2 θ, (23)

where Weyl scalar is indicated by E and is calculated for
spacetime (6) as

E = 1

2A2

[
R̈

R
− B̈

B
−

(
Ṙ

R
− Ḃ

B

)(
Ȧ

A
+ Ṙ

R

)]

+ 1

2B2

[
A′′

A
− R′′

R
+

(
B ′

B
+ R′

R

)(
R′

R
− A′

A

)]
− 1

2R2 .

(24)
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It is interesting to note that the electric component of the
Weyl tensor could also be expressed as

Eλν = E
(
NλNν − 1

3
hλν

)
. (25)

In order to illustrate the key characteristics of the matter
distribution, Herrera and his collaborators [70] constructed
structure scalars on the basis of splitting of Riemann tensor
[74]. Because of these structure scalars, we can analyze the
complexity of the self-gravitating systems. To determine the
complexity factor, let us express the tensor Yλν [75] as

Yλν = RλανβVαVβ. (26)

The tensor Yλν may be expressed in terms of YT and YT F ,
which describe the trace and the trace-free component of the
Riemann tensor as

Yλν = 1

3
YT hλν + YT F

(
NλNν − 1

3
hλν

)
. (27)

By using Eq. (26), we calculated trace and trace-free parts of
the electric part of Riemann tensor [76], which is expressed
as

YT = 4π(3P(D)
r − 2
(D) + μ(D)), YT F = E − 4π
(D).

(28)

Further, by using the modified field equations with the com-
bination of Eqs. (14) and (24), we have

3m

R3 = 4π(μ(D) − 
(D)) − E . (29)

Equation (28) along with Eqs. (21) and (28), yield

YT F = −8π
(D)

+ 4π

R3

∫ r

0
R3

{
DRμ − 3

R

[
T (G)

00

A2 + U

E

(
q(D)

)]}
R′dr,

(30)

where μ(D), P(D)
r , 
(D) and q(D) are defined in Appendix.

Equations (A4)–(A2) and the formula for E , transform Eq.
(27) as

YT F = 1

A2

[
R̈

R
− B̈

B
+ Ȧ

A

(
Ḃ

B
− Ṙ

R

)]

+ 1

B2

[
A′′

A
+ A′

A

(
B ′

B
+ R′

R

)]
. (31)

The complexity of matter distribution has been measured by
using the scalar function YT F . It has been explained by the
notion that it reveals the most significant detail regarding the

distribution of matter by observing the pressure anisotropy
as well as energy density inhomogeneity. A number of the
solutions will be discussed in the coming sections using the
condition YT F = 0.

3.2 Junction conditions

In this subsection, we consider the Vaidya-metric as exterior
spacetime which is described as

ds2 = −
[

1 − 2M(ν)

r

]
dν2 − 2drdν + r2(dθ2 + sin2θdφ2),

(32)

where M(ν) and ν denote the total mass and retarded
time, respectively. The general interior spacetime and exte-
rior Vaidya spacetime matching on the boundary surface,
r = r� =constant. Next, we have to satisfy the Darmois
matching condition [77], so the continuity of the first and
second fundamental forms, across the boundary, give

m(t, r)
�= M(ν), (33)

{
2

(
Ṙ′
R

− Ḃ

B

R′

R
− Ṙ

R

A′

A

)}
�

=
{

− B

A

[
2
R̈

R
−

(
2
Ȧ

A
− Ṙ

R

)
Ṙ

R

]

+ A

B

[(
2
A′

A
+ R′

R

)
R′

R
−

(
B

R

)2]}
�

. (34)

In Eq. (34), both sides are equal on the boundary surface, and
then using Eqs. (A2) and (A3) in Eq. (34), we have

q� =
(
Pr − 1

2κ
(G fG − f )

)
�

. (35)

Finally, the matching across boundary of Eqs. (6) and (32)
formulates the Eq. (33) as well as Eq. (35). So, Eq. (33)
represent that the function m(t, r) and the total mass M(ν)

are equal to each other across �. Subsequently, Eq. (35)
express that the heat flux is equal to radial pressure and
higher-curvature terms at the �.

3.3 Quasi-homologous evolution

Here, we identify the constraint that has been chosen to fulfil
the requirement for the most basic form of evolution. To do
so, we rewrite the Eq. (A3) as

DR

(
U

R

)
= 4π

E

[
q + 1

κAB
( fGGGZ3 + fGGZ4)

]
+ σ

R
.

(36)
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After integration of Eq. (36), we obtain

U=ã(t)R

+R
∫ r

0

[
4π

E

(
q+ 1

κAB
( fGGGZ3+ fGGZ4)

)
+σ

R

]
R′dr.

(37)

Putting the value of the integration function ã(t), the Eq. (37)
produces

U= U�

R�

R

−R
∫ r�

r

[
4π

E

(
q + 1

κAB
( fGGGZ3+ fGGZ4)

)
+σ

R

]
R′dr.

(38)

Consequently, Eqs. (37) and (38) provide U = R, which is
a common characteristic of homologous evolution [78–80].
If two integral terms cancel one another or when the fluid is
adiabatic with σ = 0, we achieve

U = ã(t)R. (39)

The “homologous evolution” terminology is accomplished to
describe the relativistic structures which satisfy the expres-
sion as

R1

R2
= constant. (40)

Equation (40) illustrates that the evolution structure of mat-
ter distribution corresponds with the homologous condi-
tion throughout its evolution. Here, R1 and R2 denote the
areal radii of two concentric shells described by r = r1 =
constant , and r = r2 = constant , respectively. We can
write the quasi-homologous condition by using the Eq. (38)
in Eq. (B1) which implies

4π

R′

[
Bq + 1

κA
( fGGGZ3 + fGGZ4)

]
+ σ

R
= 0. (41)

3.4 The transport equation

When the gravitational collapse of a dissipative system in
thermodynamics happens, the transport equation (TE) will be
used in the diffusion approximation [81,82]. The TE yields
the temperature of the dynamically collapsing fluid and it
is a generalized differential equation that deals with several
aspects of transportation, such as fluid dynamics, heat trans-
mission, and mass transfer. The heat flux for the transport
equation becomes

τhλνVξqν;ξ + qλ = −κhλν(T,ν + Taν)

− 1

2
κT 2

(
τVν

κT 2

)
;ν
qλ, (42)

where κ represents the thermal conductivity, τ and T repre-
sent the relaxation time and temperature, respectively. The
TE contains one independent factor. This factor can be
extracted from Eq. (42) by reducing it with the vector, which
seems unit-space like N λ, as

τVλq,λ + q = −κ(N λT,λ + Ta) − 1

2
κT 2

(
τVλ

κT 2

)
;λ
q.

(43)

We may obtain TE’s truncated version as

τVλq̇,λ + q = −κ(N λT,λ + Ta). (44)

where τ describes ephemeral processes that take place earlier
in relaxation. While their accomplishments are applicable at
all time scales, they are notably crucial for time scales in the
range of τ or < τ . The TE’s truncated version is helpful to
provide the formulation of T for some peculiar models.

4 Conformal motions: exact solutions

Despite the fact that the major goal of this work is to examine
dissipative and adiabatic systems. In an attempt to balance
out overall perspective, we deal with the metric described in
Eq. (6), acknowledge the CKV, and satisfy the equation

LX gλν = 2ψgλν → LX gλν = −2ψgλν, (45)

here LX represents Lie derivative of X , also ψ treated as
function of t and r . When ψ is constant equivalent to a homo-
thetic Killing vector. The most inclusive formulation of Eq.
(45) is

X = ε(t, r)∂t + υ(t, r)∂r . (46)

where ε and υ are the functions of t and r . Next, we discuss
dissipative and non-dissipative cases under some restrictions
one by one.

4.1 Non-dissipation with vector field orthogonal to
four-velocity

Let us, consider the scenario where the vector field X δ

orthogonal to the four-velocity V δ and q = 0. From
Eq. (45), we have

LX gλν = 2ψgλν = X δ∂δgλν + gλδ∂νX δ + gνδ∂λX δ. (47)
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Using Eq. (47), we evaluate the following equations as

ψ = A′

A
X 1, (48)

ψ = (X 1)′ + B ′

B
X 1, (49)

ψ = R′

R
X 1, (50)

and

X 1
,t = X 1

,θ = X 1
φ = 0. (51)

From Eqs. (48) and (50), we obtain

A = k(t)R, (52)

here k(t) is function of integration. Through re-parametrization
t , we might set k to be equivalent to 1. Then, we can express

A = �R, (53)

where � is a unit constant. The derivative with respect to time
of Eq. (49) along with Eq. (50) and further using Eq. (51),
can formulated as

B

W (r)
= �η1(t)R, (54)

where W (r) is function of integration, we may set W equiv-
alent to 1 by re-parametrizing r , while η1(t) is an arbitrary
function. Thus, we have

B = �η1(t)R. (55)

Putting back Eqs. (53) and (55) in Eq. (A2) with q = 0, we
obtain

Ḃ ′
B

− 2Ḃ B ′

B2 = 1

2
( fGGGZ3 + fGGZ4). (56)

After integrating the Eq. (56), the solution reads

B = 1

ξ(t) + J (r) + I1(t, r)
,

A = �R = η(t)

ξ(t) + J (r) + I1(t, r)
, (57)

here, J (r), ξ(t), and I1(t, r) are integration functions
of their arguments. Further, η(t) ≡ 1

η1(t)
and I1 =

− ∫ ∫ 1
2B ( fGGGZ3 + fGGZ4)dtdr . We may see that these

arbitrary functions η(t), ξ(t), J (r) and I1(t, r) may exist in

the further discussed models. Then, the modified field equa-
tions become

8πμ = −1

2
(G fG − f ) + (ξ + J + I1)2

η2

×
[
fGGGZ1 + fGGZ2 + η̇2

η2 − 4η̇(ξ̇ + İ1)

η(ξ + J + I1)

+ 3(ξ̇ + İ1)2

(ξ + J + I1)2 + �2
]

+ 2(J ′′ + I ′′
1 )(ξ + J + I ) − 3(J ′ + I ′

1)
2, (58)

8π Pr = 1

2
(G fG − f ) + (ξ + J + I1)2

η2

×
[
η2( fGGGZ5 + fGGZ6) + η̇2

η2

+ 2η̇(ξ̇ + İ1)

η(ξ + J + I1)
− 3(ξ̇ + İ1)2

(ξ + J + I1)2

+ 2(ξ̈ + Ï1)

(ξ + J + I1)
− 2η̈

η
− �2

]
+ 3(J ′ + I ′

1)
2, (59)

8π P⊥ = 1

2
(G fG − f ) + (ξ + J + I1)2

η2

×
[
�2( fGGGZ7 + fGGZ8) + η̇2

η2 − 3(ξ̇ + İ1)2

(ξ + J + I1)2

+ 2(ξ̈ + Ï1)

(ξ + J + I1)
− η̈

η

]

+ 3(J ′ + I ′
1)

2 − 2(J ′′ + I ′′
1 )(ξ + J + I1). (60)

Using the results of Eq. (57) in the junction conditions which
are described in Eqs. (33) and (35) on hypersurface, we have
the solutions as

Ṙ2
� + �2(R2

� − 2MR� − � R4
�) = 0, (61)

2R̈�R� − Ṙ2
� − �2(3� R4

� − R2
�) = 0, (62)

where � ≡ J ′(r�)2. Basically, Eq. (62) is the time derivative
of Eq. (61), so we only consider the Eq. (61). Thus, we could
express Eq. (61) as

Ṙ2
� = �2R4

�[� − V (R�)], (63)

with

V (R�) = 1

R2
�

− 2M

R3
�

. (64)

From the integration of the Eq. (63), we obtain

�(t − t0) = ±
∫ √

27√
z(z + 6)(z − 3)2

dz

= ±2 tanh−1

√
3z√

z + 6
, (65)
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with z ≡ R�

M . We evaluate the solutions from Eq. (65) which
is expressed as

R(I )
� = 6M tanh2[�

2 (t − t0)]
3 − tanh2[�

2 (t − t0)]
, (66)

and

R(I I )
� = 6M coth2[�

2 (t − t0)]
3 − coth2[�

2 (t − t0)]
. (67)

The quasi-homologous condition in adiabatic system illus-
trates that σ = 0 in the fluid, from which Eq. (13) demon-
strates that

Ḃ

B
= Ṙ

R
⇒ η(t) = constant ≡ η0. (68)

Using Eq. (68), we can write metric functions as

A = η0

ξ(t) + J (r) + I1(t, r)
, B = 1

ξ(t) + J (r) + I1(t, r)
,

R = η0

�[ξ(t) + J (r) + I1(t, r)] . (69)

Then putting back Eq. (69) in Eq. (30) in addition to the
condition YT F = 0, we get

A′′

A
−

(
R′

R
+ B ′

B

)
A′

A
= 0. (70)

Again, using Eq. (69) in Eq. (70), we accomplish

J (r) + I1(t, r) = P1(t)r + P2(t), (71)

here, P1 and P2 are the arbitrary functions of t . After substi-
tuting Eq. (69) in Eq. (66), we obtain an arbitrary function
ξ (I )(t) as

ξ (I )(t) = η0{3 − tanh2[�
2 (t − t0)]}

6�M tanh2[�
2 (t − t0)]

− P1r� − P2. (72)

Using Eqs. (71) and (72) with Eq. (69), the modified field
equations for f (G) theory is expressed as

8πμ = −1

2
(G fG − f )

+ {3η0 coth2[�
2 (t − t0)] − η0 − 6�MP1(r� − r)}2

36�2M2η2
0

×
[
( fGGGZ1 + fGGZ2) + �2

]

+ 3

[
cosh[�

2 (t − t0)]
2M sinh3[�

2 (t − t0)] + Ṗ1(r� − r)

η0

]2
− 3P2

1,

(73)

8π Pr = 1

2
(G fG − f )

+
[ {3η0 coth2[�

2 (t − t0)] − η0 − 6�MP1(r� − r)}2

36�2M2

]

× ( fGGGZ5 + fGGZ6) − 3Ṗ1
2
(r� − r)2

η2
0

− 3 cosh[�
2 (t − t0)]Ṗ1(r� − r)

Mη0 sinh3[�
2 (t − t0)] − 4M2

P̈1(r� − r)

�η0

×
[

3 coth2[�
2

(t − t0)] − 1

3
− 2�MP1(r� − r)

η0

]

− 1

9M2 − �2
P1

2(r� − r)2

η2
0

− 3�P1(r� − r)

2η0M sinh4[�
2 (t − t0)]

+ 3P2
1 + 2�P1(r� − r)

3η0M
, (74)

8π P⊥ = 1

2
(G fG − f )

+
[ {3η0 coth2[�

2 (t − t0)] − η0 − 6�MP1(r� − r)}2

36η2
0M

2

]

× ( fGGGZ7 + fGGZ8) − 3Ṗ1
2
(r� − r)2

η2
0

− 3 cosh[�
2 (t − t0)]Ṗ1(r� − r)

Mη0 sinh3[�
2 (t − t0)] − 4M2

P̈1(r� − r)

�η0

×
[

3 coth2[�
2

(t − t0)] − 1

3
− 2�MP1(r� − r)

η0

]

+ 3P2
1 + η0 − 6�MP1(r� − r)

4M2η0 sinh4[�
2 (t − t0)]

+ η0 − 3�MP1(r� − r)

3M2η0 sinh2[�
2 (t − t0)] . (75)

In order to calculate the expansion scalar, we utilize the met-
ric functions of model I, which can be expressed as

� = 3 cosh[�
2 (t − t0)]

2M sinh3[�
2 (t − t0)]

+ 3Ṗ1(r� − r)

η0
. (76)

With the help of the Eqs. (67) and (69), we get

ξ (I I )(t) = η0{3 − coth2[�
2 (t − t0)]}

6�M coth2[�
2 (t − t0)]

− P1r� − P2. (77)

Moreover, we derive the modified field equations with addi-
tional curvature terms by using Eqs. (69), (71) and (77) that
can be expressed as
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8πμ = −1

2
(G fG − f )

+ {3η0 tanh2[�
2 (t − t0)] − η0 − 6�MP1(r� − r)}2

36�2M2η2
0

×
[
( fGGGZ1 + fGGZ2) + �2

]

+ 3

[
sinh[�

2 (t − t0)]
2M cosh3[�

2 (t − t0)] + Ṗ1(r� − r)

η0

]2
− 3P2

1,

(78)

8π Pr = 1

2
(G fG − f )

+
[ {3η0 tanh2[�

2 (t − t0)] − η0 − 6�MP1(r� − r)}2

36�2M2

]

× ( fGGGZ5 + fGGZ6) − 3Ṗ1
2
(r� − r)2

η2
0

− 3 sinh[�
2 (t − t0)]Ṗ1(r� − r)

Mη0 cosh3[�
2 (t − t0)] − 4M2

P̈1(r� − r)

�η0

×
[

3 tanh2[�
2

(t − t0)] − 1

3
− 2�MP1(r� − r)

η0

]

− 1

9M2 − �2
P1

2(r� − r)2

η2
0

− 3�P1(r� − r)

2η0M cosh4[�
2 (t − t0)] + 3P2

1 + 2�P1(r� − r)

3η0M
,

(79)

8π P⊥ = 1

2
(G fG − f )

+
[ {3η0 tanh2[�

2 (t − t0)] − η0 − 6�MP1(r� − r)}2

36η2
0M

2

]

× ( fGGGZ7 + fGGZ8) − 3Ṗ1
2
(r� − r)2

η2
0

− 3 sinh[�
2 (t − t0)]Ṗ1(r� − r)

Mη0 cosh3[�
2 (t − t0)] − 4M2

P̈1(r� − r)

�η0

×
[

3 tanh2[�
2

(t − t0)] − 1

3
− 2�MP1(r� − r)

η0

]

+ 3P2
1 + η0 − 6�MP1(r� − r)

4M2η0 cosh4[�
2 (t − t0)]

+ η0 − 3�MP1(r� − r)

3M2η0 cosh2[�
2 (t − t0)] . (80)

We assume � = 0 in Eq. (61) and get

R(I I I )
� = 2M cos2[�

2
(t − t0)]. (81)

When � = 0, we have J ′(r�)2 = 0, and we determine
P

2
1 = 0. Therefore, we may write the functions as

A = η0

ξ(t) + P2
B = 1

ξ(t) + P2
R = η0

�[ξ(t) + P2] . (82)

The function ξ (I I I )(t), using Eqs. (81) and (82), transforms
into

ξ (I I I )(t) = η0

2�M cos2[�
2 (t − t0)] − P2. (83)

The equations of motion in terms of f (G) for the functions
which is mentioned in Eqs. (82) and (83) are produced as

8πμ = −1

2
(G fG − f ) + 1

4�2M2 cos4[�
2 (t − t0)]

× ( fGGGZ1 + fGGZ2) + 3 − 2 cos2[�
2 (t − t0)]

4M2 cos6[�
2 (t − t0)] ,

(84)

8π Pr = 1

2
(G fG − f )

+ η2
0

4�2M2 cos4[�
2 (t − t0)] ( fGGGZ5 + fGGZ6),

(85)

8π P⊥ = 1

2
(G fG − f ) + 1

4M2 cos2[�
2 (t − t0)] ( fGGGZ7

+ fGGZ8) + 1

4M2 cos4[�
2 (t − t0)] . (86)

Furthermore, if we assume M = 0, the solution of Eq. (61)
can be evaluated as

R(I V )
� = 1√

� cos[�(t − t0)] , (87)

and

R(V )
� = 1√

� sin[�(t − t0)] . (88)

We determine the ξ (I V )(t) and ξ (V )(t) from the areal radius
at � which is mentioned in Eqs. (87) and (88) as

ξ (I V )(t) = η0

�

√
� cos[�(t − t0)] − √

�r� − P2, (89)

and

ξ (V )(t) = η0

�

√
� sin[�(t − t0)] − √

�r� − P2. (90)

Case: ξ (I V )(t)
The modified field equations for the function ξ (I V )(t) are

8πμ = −1

2
(G fG − f )

+
[√

�

�
cos[�(t − t0) − P1

�

(
1 − r

r�

)]2
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× ( fGGGZ1 + fGGZ2) + 3� − 3P2
1

− 2� cos2[�(t − t0)] − P1

(
1 − r

r�

)

×
[

2
√

� cos[�(t − t0)] − P1

(
1 − r

r�

)]

+ 3Ṗ1
2

�2

(
1 − r

r�

)2

+ 6Ṗ1
√

�

�
sin[�(t − t0)]

(
1 − r

r�

)
, (91)

8π Pr = 1

2
(G fG − f )

+
[√

�r� cos[�(t − t0)] − P1r�

(
1 − r

r�

)]2

× ( fGGGZ5 + fGGZ6) − 3� + 3P2
1

− 3Ṗ1

�

(
1 − r

r�

)[
2
√

� sin[�(t − t0)] + Ṗ1

�

(
1 − r

r�

)]

− 2P̈1

�2

(
1 − r

r�

)

×
[√

� cos[�(t − t0)] − P1

(
1 − r

r�

)]
+ P1

(
1 − r

r�

)

×
[

4
√

� cos[�(t − t0)] − P1

(
1 − r

r�

)]
, (92)

8π P⊥ = 1

2
(G fG − f )

+
[√

� cos[�(t − t0)] − P1

(
1 − r

r�

)]2

× ( fGGGZ7 + fGGZ8) − 3� + � cos2[�(t − t0)]

− 3Ṗ1

�

(
1 − r

r�

)[
2
√

� sin[�(t − t0)] − Ṗ1

�

(
1 − r

r�

)]

− 2P̈1

�2

(
1 − r

r�

)[√
� cos[�(t − t0)]

− P1

(
1 − r

r�

)]
+ 3P2

1

+ 2
√

�P1 cos[�(t − t0)]
(

1 − r

r�

)
. (93)

Case: ξ (V )(t)
For the function ξ (V )(t), we have the following physical

parameters

8πμ = −1

2
(G fG − f )

+
[√

�

�
sin[�(t − t0) − P1

�

(
1 − r

r�

)]2

× ( fGGGZ1 + fGGZ2) − 3P2
1 + 3�

+ 6Ṗ1
√

�

�
cos[�(t − t0)]

(
1 − r

r�

)

− P1

(
1 − r

r�

)

×
[

2
√

� sin[�(t − t0)] − P1

(
1 − r

r�

)]

− 2� sin2[�(t − t0)] + 3Ṗ1
2

�2

(
1 − r

r�

)2

, (94)

8π Pr = 1

2
(G fG − f )

+
[√

�r� sin[�(t − t0)] − P1r�

(
1 − r

r�

)]2

× ( fGGGZ5 + fGGZ6) − 3� + 3P2
1

− 3Ṗ1

�

(
1 − r

r�

)[
2
√

� cos[�(t − t0)] + Ṗ1

�

(
1 − r

r�

)]

− 2P̈1

�2

(
1 − r

r�

)[√
� sin[�(t − t0)]

− P1

(
1 − r

r�

)]
+ P1

(
1 − r

r�

)

×
[

4
√

� sin[�(t − t0)] − P1

(
1 − r

r�

)]
, (95)

8π P⊥ = 1

2
(G fG − f )

+
[√

� sin[�(t − t0)] − P1

(
1 − r

r�

)]2

× ( fGGGZ7 + fGGZ8) − 3� + � sin2[�(t − t0)]

− 3Ṗ1

�

(
1 − r

r�

)[
2
√

� cos[�(t − t0)] − Ṗ1

�

(
1 − r

r�

)]

− 2P̈1

�2

(
1 − r

r�

)[√
� sin[�(t − t0)]

− P1

(
1 − r

r�

)]
+ 3P2

1

+ 2
√

�P1 sin[�(t − t0)]
(

1 − r

r�

)
. (96)

In the Eqs. (91)–(96), we choose the relation between the
constants η0, r� , and � such that η0

r�
= �. In this case, we

examined the non-dissipation system using Eq. (47) and then
determined the metric functions. We utilized Eq. (57) in junc-
tion conditions which are mentioned in Eqs. (33) and (35) to
simplify it into a single differential equation. Next, to find
models I and II, we use some approaches such as σ = 0 and
YT F = 0. To determine further models, consider two scenar-
ios, � = 0 and M = 0, with the same approaches as men-
tioned before. Due to extra curvature terms, the radial pres-
sure at the boundary surface does not equal to zero in model
III, but it does in GR [67]. It is noteworthy that the expansion
scalar is homogeneous and positive, which is expressed in
Eq. (76).

4.2 Dissipation with vector field orthogonal to four-velocity

In this subsection, we assume the dissipation case when X δ

orthogonal to Vδ . Hence, from Eq. (47), we formulate

A = �R, η(t)B = �R. (97)
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Thus, implying Eq. (97) in Eq. (A2) with dissipative case,
we produce

Ḃ ′
B

− 2
B ′

B

Ḃ

B
= 4π

[
q AB + 1

κ
( fGGGZ3 + fGGZ4)

]
. (98)

The solution of Eq. (98) is given as

B = 1

ξ(t) + J (r) − 4π
∫ ∫

(q A + 1
κB ( fGGGZ3 + fGGZ4)dtdr

,

(99)

thus

A = �R

= η(t)

ξ(t) + J (r) − 4π
∫ ∫

(q A + 1
κB ( fGGGZ3 + fGGZ4)dtdr

,

(100)

here there are two integration functions, ξ(t) and J (r). Using
Eq. (97) in Eq. (30) along with the condition YT F = 0, we
have

1

η2

(
η̈

η
+ η̇ Ḃ

ηB
− η̇2

η2

)
+ B ′′

B
− 2

(
B ′

B

)2

= 0. (101)

In aiming to solve Eq. (101), we could take into account

(
η̈

η
+ η̇ Ḃ

ηB
− η̇2

η2

)
= 0, (102)

and

B ′′

B
− 2

(
B ′

B

)2

= 0. (103)

After integration, the Eq. (103) can express, in the form

B = − 1

ζ(t)r + ς(t)
, (104)

where both ζ and ς are the functions of t . Thus, computing
the r -derivative of Eq. (102), the solution becomes ς = ζ

�
.

So, we can write Eq. (104) as

B = − �

ζ(t)(� r + 1)
. (105)

After substituting Eq. (105) in Eq. (102), the solution of Eq.
(102) is determined as

η(t) = P3e
P4

∫
ζdt , (106)

here P3 and P4 are integration constants. Next, from Eq.
(106), we have

η̇

η
= P4ζ. (107)

After using the Eqs. (100), (105), and (106), we evaluate the
modified field equations under the influence of f (G) theory
that can be written as

8πμ = −1

2
(G fG − f ) + ζ 2(� r + 1)2

�2P2
3 e

2P4
∫

ζdt

×
[
fGGGZ1 + fGGZ2 + �2 − 4P4ζ̇ + 3ζ̇ 2

ζ 2 + P2
4 ζ 2

]

− 3ζ 2, (108)

4πq = − ζ ζ̇ (� r + 1)

�P3eP4
∫

ζdt
− ζ 2(� r + 1)2

2�2P3eP4
∫

ζdt
( fGGGZ3 + fGGZ4),

(109)

8π Pr = 1

2
(G fG − f ) + ζ 2(� r + 1)2

�2 ( fGGGZ5 + fGGZ6)

− ζ 2(� r + 1)2

�2P2
3 e

2P4
∫

ζdt

[
�2 − 2ζ̈

ζ
+ 3ζ̇ 2

ζ 2 + P2
4 ζ 2

]
+ 3ζ 2,

(110)

8π P⊥ = 1

2
(G fG − f ) + ζ 2(� r + 1)2

�2P2
3 e

2P4
∫

ζdt

×
[
�2( fGGGZ7 + fGGZ8) − 3ζ̇ 2

ζ 2 + 2ζ̈

ζ
− P4ζ̇

]
+ 3ζ 2.

(111)

Next, we assume the quasi-homologous condition which is
described in Eq. (41), then feeding back Eq. (109) in Eq. (41),
we obtain

4πq A
B2

B ′ + B

2B ′ ( fGGGZ3 + fGGZ4) = η̇

η
. (112)

If we impose the shear-free condition (σ = 0), then η̇ = 0,
which further implies that P4 = 0. Thus, from the Eq. (106),
it seems obvious that the function η(t) may be expressed as
P3. Next, the metric functions can be determined as

B = − �

ζ(� r + 1)
, A = − P3�

ζ(� r + 1)
,

R = − P3

ζ(� r + 1)
. (113)

With regard to the f (G) theory, the equations of motion can
be interpreted as

8πμ = −1

2
(G fG − f ) + ζ 2(� r + 1)2

�2P2
3

123



Eur. Phys. J. C (2023) 83 :724 Page 13 of 23 724

×
[
fGGGZ1 + fGGZ2 + �2 + 3ζ̇ 2

ζ 2

]
− 3ζ 2, (114)

4πq = −ζ ζ̇ (� r + 1)

�P3
− ζ 2(� r + 1)2

2�2P3
( fGGGZ3 + fGGZ4),

(115)

8π Pr = 1

2
(G fG − f ) + ζ 2(� r + 1)2

�2 ( fGGGZ5 + fGGZ6)

− ζ 2(� r + 1)2

�2P2
3

[
�2 − 2ζ̈

ζ
+ 3ζ̇ 2

ζ 2

]
+ 3ζ 2, (116)

8π P⊥ = 1

2
(G fG − f ) + ζ 2(� r + 1)2

�2P2
3

×
[
�2( fGGGZ7 + fGGZ8) − 3ζ̇ 2

ζ 2 + 2ζ̈

ζ

]
+ 3ζ 2.

(117)

Next, from the matching condition that is mentioned in Eq.
(34), we evaluate the function ζ as

2ζ̈

ζ
− 3

(
ζ̇

ζ

)2

+ 2�1ζ̇

ζ
= �2 − 3�2

1, (118)

with �1 ≡ �P3
� r�+1 . For integration, first we assume u = ζ̇

ζ
,

which reduce Eq. (118) into the Ricatti equation as

2u̇ − u2 + 2�1 u = �2 − 3�2
1. (119)

The solution of Eq. (119) turns out

u = �1 +
√

�2 − 4�2
1 tan

⎡
⎣

√
�2 − 4�2

1

2
(t − t0)

⎤
⎦ . (120)

Thus, from the Eq. (120), the function ζ(t) is given as

ζ(t) = �2e
�1t sec2

⎡
⎣

√
�2 − 4�2

1

2
(t − t0)

⎤
⎦ , (121)

here �2 is an integration constant. Furthermore, we need to
find the temperature, so we will use the transport equation.
Then, the notion of T (t, r) becomes

T (t, r) = (� r + 1)

4πκ� P3

[
τr(ζ̇ 2 + ζ ζ̈ )

P3
− ζ̇ ln(� r + 1)

]

+ ζ(� r + 1)

� κP3

[
τM − N

]
+ T0(t). (122)

Where

M =
∫

�

ζ(� r + 1)

[
ζ 2(� r + 1)2

8π�2P3
( fGGGZ3 + fGGZ4)

]̇
dr,

N =
∫

1

8π
( fGGGZ3 + fGGZ4)dr.

Further, P3 is the constant and T0(t) is the function of inte-
gration.

In the aforementioned case, we utilized the condition
(YT F = 0) to specify our solutions. Next, the function ζ(t)
is implemented to represent the physical parameters, as one
can observe in Eqs. (114)–(117). Further, the function ζ(t)
is evaluated from the junction condition that is described in
Eq. (35). Moreover, we implemented some additional limits
to reduce the complexity of our models. Finally, from the
transport equation, we compute the expression for tempera-
ture T (t, r) in the presence of additional curvature terms in
Eq. (122).

4.3 Non-dissipation with vector field parallel to
four-velocity

In this subsection, we discuss the non-dissipative system in
the framework of X δ that is parallel to the four-velocity Vδ .
Taking into account the aforementioned condition, we con-
sider Eq. (47), so that

A = BD(r), R = r B, ψ = Ḃ

B
, X 0 = 1, (123)

here, D(r) is function of integration. Also, by using Eq.
(123), we get

ds2 = B2(t, r)[−D2(r)dt2 + dr2 + r2(dθ2 + sin2 θdφ2)].
(124)

Using Eq. (123) in Eq. (A2) along with the condition q = 0,
we achieve

Ȧ′
A

− 2
Ȧ

A

A′

A
= 1

2
( fGGGZ3 + fGGZ4). (125)

The integration of Eq. (125) yields

A = 1

ξ(t) + J (r) + I2(t, r)
, (126)

also, we get

B = 1

D(r)[ξ(t) + J (r) + I2(t, r)] ,

R = r

D(r)[ξ(t) + J (r) + I2(t, r)] , (127)

here I2 = − ∫ ∫ 1
2A ( fGGGZ3 + fGGZ4)dtdr . Hence, we can

conclude that the arbitrary functions of their arguments are
represented by ξ , D, J , and I2. Next, the matching of the mass

123
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functions of inner and outer spacetime, which is mentioned
in Eq. (33) along with Eq. (127), can be expressed as

Ṙ2
� = �2R4

�[ϑ − V (R�)], (128)

where

�2 ≡ D2
�

r2
�

, ϑ ≡ (J ′)2
�D2

�,

V (R�) = 2
√

ϑ

R�

(1 − α1) + α1

R2
�

(2 − α1) − 2M

R3
�

, (129)

with α1 ≡ D′
�r�
D�

. Next, using the Eqs. (35) and (127), we get

2R̈�R� − Ṙ2
� − 3ϑ�2R4

� − 4�2
√

ϑR3
�(α1 − 1)

− �2R2
�α1(α1 − 2) = 0. (130)

In order to find the specific models, we take α1 = 1, and then
Eq. (128) can be expressed as

Ṙ2
� = �2R4

�

{
ϑ − 1

R2
�

+ 2M

R3
�

}
. (131)

After applying the case α1 = 1 in Eq. (130), we obtain the
same solution as Eq. (63), which is expressed as

2R̈�R� − Ṙ2
� − 3ϑ�2R4

� + �2R2
� = 0. (132)

Feeding back Eq. (127) in Eq. (30) along with condition
YT F = 0, we accomplish

J ′′ + I ′′
2

J ′ + I ′
2

− 1

r
+ 2D′

D
= 0. (133)

Equation (133) can be written as

ε′

ε
− 1

r
+ 2D′

D
= 0, (134)

with ε ≡ J ′ + I ′
2. The integration of Eq. (134) yields

ε = P4(t)r

D2 . (135)

The solution of Eq. (135) is evaluated as

J + I2 = P4(t)
∫

r

D2 dr + P5(t), (136)

hereP4 andP5 are arbitrary functions of t . Further, we assume

D(r) = P6r, (137)

here, P6 is treated as a constant. Next, using Eq. (136), we
get

J + I2 = P5(t) + P7(t) ln r, (138)

where, P5 and P7 are the integration functions of t . If we
solve Eq. (131), we obtain R(V I I )

� as

R(V I I )
� = 6M tanh2[�

2 (t − t0)]
3 − tanh2[�

2 (t − t0)]
. (139)

Using the Eqs. (127) and (139), we can find the function
ξ (V I I )(t), which is expressed as

ξ (V I I )(t) = η0{3 − tanh2[�
2 (t − t0)]}

6�M tanh2[�
2 (t − t0)]

− P5 − P7 ln r�.

(140)

We utilized the functions that are expressed in Eqs. (138) and
(140) with Eqs. (127) and (128). Further, We calculate the
physical variables, which can be read as

8πμ = −1

2
(G fG − f )

+
[

3 coth2[ �
2 (t − t0)] − 1

6�M
+ P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

× ( fGGGZ1 + fGGZ2) + 3 coth2[ �
2 (t − t0)]

4M2 sinh4[ �
2 (t − t0)]

+ {3 coth2[ �
2 (t − t0)] − 1}2

36M2 − 3Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
coth[ �

2 (t − t0)]
M sinh2[ �

2 (t − t0)]
− Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

− 3�2
P

2
7

+ P7 ln

∣∣∣∣ r

r�

∣∣∣∣
[

3 coth2[ �
2 (t − t0)] − 1

3M
+ P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]
,

(141)

8π Pr = 1

2
(G fG − f ) + r2

×
[

3 coth2[ �
2 (t − t0)] − 1

6M
+ �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]2

× ( fGGGZ5 + fGGZ6) + 3�2
P

2
7 − 1

9M2

+ Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
[

3 coth[ �
2 (t − t0)]

M sinh2[ �
2 (t − t0)]

− 3Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

+ P̈7 ln

∣∣∣∣ r

r�

∣∣∣∣
[

3 coth2[ �
2 (t − t0)] − 1

3�M

+ 2P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

+ �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
(3 coth2[ �

2 (t − t0)] − 1)(3 coth2[ �
2 (t − t0)] − 5)

6M

− �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]
, (142)
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8π P⊥ = 1

2
(G fG − f )

+
[

3 coth2[ �
2 (t − t0)] − 1

6M
+ �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]2

× ( fGGGZ7 + fGGZ8) + 2 coth2[ �
2 (t − t0)] + 1

12M2 sinh2[ �
2 (t − t0)]

+ Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
3 coth[ �

2 (t − t0)]
M sinh2[ �

2 (t − t0)]
− 3Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

+ P̈7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
3 coth2[ �

2 (t − t0)] − 1

3�M
+ 2P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

+ 3�2
P

2
7 + ln

∣∣∣∣ r

r�

∣∣∣∣
�P7(3 coth2[ �

2 (t − t0)] − 1)

2M sinh2[ �
2 (t − t0)]

. (143)

We used �2 ≡ P2
6 in Eqs. (141)–(143). Next, if we consider

ϑ = 0 and α1 = 1
2 in Eq. (128), then the Eq. (128) can be

written as

Ṙ2
� = �2R4

�

[
2M

R3
�

− 3

4R2
�

]
. (144)

The integration of Eq. (144) gives

R(V I I I )
� = 4M

3
(1 + sin t̃). (145)

With x̃ ≡
√

3�
2 (t − t0). If we further choose D(r) = P1

√
r

with P1 = constant. After integration, Eq. (133) may be
expressed as

J (r) + I2(t, r) = P2(t)r + P3(t), (146)

where, P2 and P3 are the functions of t . Assume that ϑ = 0,
we have J ′(r�)2 = 0. The function P2 must vanish. Next,
the physical variables with modified correction terms yield

8πμ = −1

2
(G fG − f ) + 9

16�2M2(sin x̃ + 1)2

× ( fGGGZ1 + fGGZ2) + 27

64M2(sin x̃ + 1)2

×
[

3 cos2 x̃

(sin x̃ + 1)2 + r�
r

]
, (147)

8π Pr = 1

2
(G fG − f ) + 9rr�

16�M2(sin x̃ + 1)2

× ( fGGGZ5 + fGGZ6)

+ 27

64M2(sin x̃ + 1)2

[
1 − r�

r

]
, (148)

8π P⊥ = 1

2
(G fG − f ) + 9r�

16r�M2(sin x̃ + 1)2

× ( fGGGZ7 + fGGZ8) + 27

64M2(sin x̃ + 1)2 .

(149)

Moreover, we consider M = 0 and α1 = 1, then Eq. (128)
is evaluated as

Ṙ2
� = �2R4

�

[
ϑ − 1

R2
�

]
. (150)

The integration of Eq. (150) gives

R(I X)
� = 1√

ϑ cos[�(t − t0)]
, (151)

R(X)
� = 1√

ϑ sin[�(t − t0)]
. (152)

Using Eqs. (151) and (152), we may find the functions
ξ (I X)(t) and ξ (X)(t) as

ξ (I X)(t) =
√

ϑ cos[�(t − t0)]
�

− P5 − P7 ln r�, (153)

ξ (X)(t) =
√

ϑ sin[�(t − t0)]
�

− P5 − P7 ln r�. (154)

After using Eqs. (146), (153), and (154) along with Eqs. (127)
and (128), the corresponding set of modified field equations
read as
Case: ξ (I X)(t)

The physical parameters for the function ξ (I X)(t) yield

8πμ = −1

2
(G fG − f )

+
[√

ϑ cos[�(t − t0)] + P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]2

× ( fGGGZ1 + fGGZ2) + 3Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣ − 2
√

ϑ sin[�(t − t0)]
]

+ 3ϑ − 2ϑ cos2[�(t − t0)] + �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
2
√

ϑ cos[�(t − t0)] + �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

− 3�2
P

2
7 − 2

√
ϑ cos2[�(t − t0)], (155)

8π Pr = 1

2
(G fG − f ) + r2

[√
ϑ cos[�(t − t0)] + �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]2

× ( fGGGZ5 + fGGZ6) − 3Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣ − 2
√

ϑ sin[�(t − t0)]
]

+ 2P̈7 ln

∣∣∣∣ r

r�

∣∣∣∣
[√

ϑ cos[�(t − t0)]
�

+ P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]
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− �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
[
�P7 ln

∣∣∣∣ r

r�

∣∣∣∣
+ 4

√
ϑ cos[�(t − t0)]

]
− 3ϑ + 3�2

P
2
7, (156)

8π P⊥ = 1

2
(G fG − f )

+
[√

ϑ cos[�(t − t0)] + �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]2

× ( fGGGZ7 + fGGZ8) − 3ϑ + ϑ cos2[�(t − t0)]
+ 3�2

P
2
7 + 3Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
2
√

ϑ sin[�(t − t0)] − Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

+ 2P̈7 ln

∣∣∣∣ r

r�

∣∣∣∣
[√

ϑ cos[�(t − t0)]
�

+ P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

− 2�P7
√

ϑ cos[�(t − t0)] ln

∣∣∣∣ r

r�

∣∣∣∣.
(157)

Case: ξ (X)(t)
The equations of motion in the context f (G) gravity can

be read as

8πμ = −1

2
(G fG − f )

+
[√

ϑ sin[�(t − t0)] + P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]2

× ( fGGGZ1 + fGGZ2) + 3Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣ − 2
√

ϑ cos[�(t − t0)]
]

+ 3ϑ − 2ϑ sin2[�(t − t0)]
+ �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
[

2
√

ϑ sin[�(t − t0)] + �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

− 3�2
P

2
7 − 2

√
ϑ sin2[�(t − t0)], (158)

8π Pr = 1

2
(G fG − f )

+ r2
[√

ϑ sin[�(t − t0)] + �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]2

× ( fGGGZ5 + fGGZ6) − 3Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣ − 2
√

ϑ cos[�(t − t0)]
]

+ 2P̈7 ln

∣∣∣∣ r

r�

∣∣∣∣
[√

ϑ sin[�(t − t0)]
�

+ P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

− �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
[
�P7 ln

∣∣∣∣ r

r�

∣∣∣∣
+ 4

√
ϑ sin[�(t − t0)]

]
− 3ϑ + 3�2

P
2
7, (159)

8π P⊥ = 1

2
(G fG − f )

+
[√

ϑ sin[�(t − t0)] + �P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]2

× ( fGGGZ7 + fGGZ8) − 3ϑ

+ 3�2
P

2
7 + 3Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[
2
√

ϑ cos[�(t − t0)] − Ṗ7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

+ 2P̈7 ln

∣∣∣∣ r

r�

∣∣∣∣
×

[√
ϑ sin[�(t − t0)]

�
+ P7 ln

∣∣∣∣ r

r�

∣∣∣∣
]

− 2�P7
√

ϑ sin[�(t − t0)] ln

∣∣∣∣ r

r�

∣∣∣∣
+ ϑ sin2[�(t − t0)]. (160)

In this section, we begin with the non-dissipative case, i.e.,
q = 0. After, utilizing Eq. (123) in Eq. (A2), we get Eq.
(125). The solution of Eq. (125) specifies the metric vari-
ables. In fact, by computing the Eq. (33) along with Eq. (127),
we obtain the differential equation whose solution constructs
model V I I with additional curvature factors. Further, if we
assume ϑ = 0 and α1 = 1

2 in Eq. (128), then their solution
provides the Eq. (145). Next, the vanishing complexity factor
condition (YT F = 0) along with Eq. (145) used to determine
the model V I I I . At the end, the model I X and X are eval-
uated when we consider M = 0 in Eq. (128). The solutions
of models I X and X describe the properties of the compact
objects.

4.4 Dissipation with vector field parallel to four-velocity

In this subsection, we assume that the vector fieldX δ parallel
to Vδ in combination with a dissipative system q 	= 0. Then,
we have the same metric functions which have been described
in Eq. (123). Thus, after substituting the Eq. (123) in Eq. (A2),
we have

4πq AB + 1

2
( fGGGZ3 + fGGZ4) = Ḃ′

B
− 2

Ḃ

B

B′
B

− Ḃ

B

D′
D

.

(161)

After integration, the solution of Eq. (161) is obtained as

B= 1

D(r){ξ(t)+J (r)− ∫ ∫ [4πqB+ 1
2A ( fGGGZ3+ fGGZ4)]dtdr} ,

(162)

A= 1

ξ(t)+J (r)− ∫ ∫ [4πqB+ 1
2A ( fGGGZ3+ fGGZ4)]dtdr ,

(163)
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R= r

D(r){ξ(t)+J (r)− ∫ ∫ [4πqB+ 1
2A ( fGGGZ3+ fGGZ4)]dtdr} .

(164)

Here, ξ(t) and J (r) are functions of integration.
To attain another model, we apply the condition (YT F =

0). Putting the metric functions of Eqs. (162)–(164) in Eq.
(31) produce

J ′ −
∫

[4πqB + 1

2A
( fGGGZ3 + fGGZ4)]dt = ς(t)r

D2(r)
.

(165)

After integration, the Eq. (165) is obtained as

J −
∫ ∫

[4πqB + 1

2A
( fGGGZ3 + fGGZ4)]dtdr

= ς(t)
∫

rdr

D2(r)
, (166)

where ς(t) is function of integration. Let us, taking time
derivative of Eq. (165), we get

4πqB + 1

2A
( fGGGZ3 + fGGZ4) = −

˙ς(t)r

D2(r)
. (167)

Using the Eqs. (162)–(164), the metric functions can be rep-
resented as

B = 1

D(r)[ξ(t) + ς(t)
∫ rdr

D2(r)
] , (168)

A = 1

ξ(t) + ς(t)
∫ rdr

D2(r)

, (169)

R = r

D(r)[ξ(t) + ς(t)
∫ rdr

D2(r)
] , (170)

Further, the combination of Eqs. (35), (168)-(170) and Eq.
(A3) produce

D2
�S�

(
1

r�
− D′

�

D�

− S′
�

S�

)(
1

r�
− D′

�

D�

− 3
S′
�

S�

)

− S�

(
− 2

S̈�

S�

+ 3
Ṡ2
�

S2
�

+ �2
)

= −2ς̇

�
, (171)

where

� ≡ D�

r�
, S ≡ ξ(t) + ς(t)

∫
rdr

D2(r)
. (172)

To find the solution of Eq. (171), we consider

− 2
S̈�

S�

+ 3
Ṡ2
�

S2
�

+ �2 = 2ς̇

�S�

, (173)

1 − α1 − r�S′
�

S�

= 0, (174)

where α1 ≡ D′
�r�
D�

. Also, we can write Eq. (174) as

1 − α1 = ς(t)

�2S�

. (175)

Using Eq. (175) after implying a time derivative, we compute

ς(t)Ṡ�

S2
�

=
˙ς(t)

S�

. (176)

Using Eqs. (175) and (176) in Eq. (173), we get

2
S̈�

S�

− 3
Ṡ2
�

S2
�

+ 2�Ṡ�(1 − α1)

S�

− �2 = 0. (177)

Further, we consider x = Ṡ�

S�
for simplification. Then, we

can say that the solution of Eq. (177) is the Ricatti equation,
which is expressed as

ẋ − 1

2
x2 + �(1 − α1)x − �2

2
= 0. (178)

The particular solution to Eq. (178) may be represented by
as

x0 = �(1 − α1) ± �

√
α2

1 − 2α1. (179)

The Eq. (178) by assuming y = x − x0 is determined as

ẏ − 1

2
y2 + [�(1 − α1) − x0]y = 0. (180)

The general solution of Eq. (180) produces

y = 2ω

1 + deωt
, (181)

here d is an integration constant and ω ≡ �(1 − α1) − x0.
Now, we have to find the solution of Eq. (181) in terms of
S� , which can be evaluated as

S� = Pe(2ω+x0)t

(1 + deωt )2 . (182)

Furthermore, the equations of motion for f (G) in the terms
of S�(t, r) and D(r) can be read as

8πμ = −1

2
(G fG − f ) + S2( fGGGZ1 + fGGZ2) + 3Ṡ2

− D2S2
[

− 2D′′

D
+ 3

(
D′

D

)2

− 2
S′′

S
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+ 3

(
S′

S

)2

+ 2
D′

D

S′

S
− 4D′

r D
− 4S′

r S

]
, (183)

8πq = −DS2( fGGGZ3 + fGGZ4) − 2DSṠ′, (184)

8π Pr = 1

2
(G fG − f ) + D2S2( fGGGZ5 + fGGZ6)

+ 2S̈S − 3Ṡ2 + D2S2
[(

D′

D

)2

+ 3

(
S′

S

)2

+ 4
D′

D

S′

S
− 2D′

r D
− 4S′

r S

]
, (185)

8π P⊥ = 1

2
(G fG − f ) + D2S2

r2 ( fGGGZ7 + fGGZ8)

+ 2S̈S − 3Ṡ2 + D2S2
[

− D′′

D
+

(
D′

D

)2

− 2
S′′

S
+ 3

(
S′

S

)2

− D′

r D
− 2S′

r S

]
. (186)

For the next model, we consider the case x0 = −� and
ω = 0. By using these values in Eq. (182), we obtain the
expression for S� , which is expressed as

S� = P̃e�t , (187)

with P̃ ≡ P
(1+d)2 . Next, we consider the functions D(r) and

� as

D(r) = b̃r2, � = b̃r�. (188)

Using the Eq. (188), we have

∫
rdr

D2(r)
= − r2

�

2�2r2 . (189)

By utilizing the Eq. (175), we get the expression for ς(t) as

ς(t) = −�2P̃e−�t . (190)

We find the function ξ(t) with the combination of Eqs. (172),
(187), (189) and (190) as

ξ(t) = P̃e−�t

2
. (191)

The final expression for the function S(t, r) is

S(X I )(t, r) = P̃e−�t

2

[
1 +

(
r�
r

)2]
. (192)

For this particular model, the equations of motion in the influ-
ence of f (G) theory are evaluated as

8πμ = −1

2
(G fG − f ) + P̃2e−2�t

4r2 (r2 + r2
�)2

× ( fGGGZ1 + fGGZ2)

+ 3P̃2�2e−2�t

4r4 (5r4 + 2r2r2
� + r4

�), (193)

8πq = −�P̃2e−2�t

4r2r�
(r2 + r2

�)2

× ( fGGGZ3 + fGGZ4)

− P̃2�2 exp−2�t (r2 + r2
�)

r�
r3 , (194)

8π Pr = 1

2
(G fG − f ) + �2P̃2e−2�t

r2
�

(r2 + r2
�)2

× ( fGGGZ5 + fGGZ6)

+ P̃2�2e−2�t

4r4 (2r2r2
� − 9r4 − r4

�), (195)

8π P⊥ = 1

2
(G fG − f ) + �2P̃2e−2�t

r2r2
�

(r2 + r2
�)2

× ( fGGGZ7 + fGGZ8)

+ P̃2�2e−2�t

4r4 (2r2r2
� − 9r4 − r4

�). (196)

The expression of total mass and temperature T (t, r) for this
specific model are determined as

m� = e�t

P̃�
, (197)

T (t, r) = P̃e−�t (r2 + r2
�)

2r2

×
[

1

4πκ

(
τ P̃�2r2

�e
−�t

r2 + � ln

∣∣∣∣ r2

r2 + r2
�

∣∣∣∣
)

− 1

κ
(τH + L) + T0(t)

]
, (198)

with

H =
∫

r�

�P̃e−�t (r2 + r2
�)

×
[
�P̃e−2�t (r2 + r2

�)2

16πr2r�
( fGGGZ3 + fGGZ4)

]̇
dr,

and

L =
∫

1

8π
( fGGGZ3 + fGGZ4)dr.

Here, T0(t) is the integration function. The expression for
temperature that is mentioned in Eq. (198) is derived by using
the Eq. (44).

In the aforementioned case, the condition YT F = 0 is
implemented to obtain the metric variables that are men-
tioned in Eqs. (168)–(170). The junction conditions provided
further constraints on functions ξ(t) and ς(t). Ultimately, the

123



Eur. Phys. J. C (2023) 83 :724 Page 19 of 23 724

functions ξ(t) and ς(t) produced the expression for S(t, r).
Lastly, we evaluated the model X I in terms of the function
S(t, r). It is noteworthy that this model is anisotropic in pres-
sure but isotropic in GR [67]. If G < 0, the energy density is
greater than pressure and will be treated as a positive quantity.

5 Conclusion

We studied a spherical symmetric collapsing fluid’s distri-
bution to correspond a system which is characterized by a
dissipative fluid. This fluid may contains matter or radiation,
that collapses in a symmetric way through the pull of its own
gravity. The aforementioned scenario is extremely fascinat-
ing in astrophysics and cosmology because it helps to clarify
the origins and growth of celestial structures. In the mean-
time, we observed by introducing CKV which yields a variety
of solutions to modified field equations. In order to account
for some modification under the influence of f (G) gravity
for usual non-static spherical fluid distributions, we imple-
mented various constraints and obtained analytical solutions.
Most of them have distinct physical meanings (for instance,
YT F = 0 or σ = 0).

We evaluated essential aspects of the complexity defini-
tion that discussed in [67]. In the context of f (G) gravity
and dissipative system, we set up structure scalar and defined
YT F as a complexity factor that includes physical character-
istics like energy density inhomogeneity, anisotropic pres-
sure and modified terms. These entities reflect the complexity
of the system. The work of several relativistic astrophysicists
[83–87] emulated the justification for evaluating this type of
assumption. Further, we examined anisotropic spherical sym-
metric solutions with shear-free backgrounds by considering
the shear scalar to be zero, i.e., σ = 0. The aforementioned
approach specifies the isotropic relative evolution focus on
galaxy structures, although in the presence of a high gravita-
tional background. Moreover, this approach might give rise
to an indication of a naked singularity, opposing the widely
understood cosmic theories.

We connected two distinct interior and exterior manifolds
smoothly over a three-dimensional hypersurface by satisfy-
ing Darmois’s conditions. If we discuss a non-dissipative
system, the pressure gradient has no impact on the bound-
ary. However, in the dissipative system, the radial pressure
does not vanish across the hypersurface. The junction condi-
tions specified in Eqs. (33) and (35) can possibly be reduced
to a single differential equation. The solution of Eq. (61)
generated a function that characterizes spherical symmetry.
Further, we assumed shear-free and vanishing complexity
factor conditions to evaluate the remaining variables. Under
the context of f (G) gravity, we proceeded with the results
of models I and I I . The physical parameters and positive
energy densities have been identified in each model. These

densities are singular-free, as are the physical parameters
with higher curvature terms, as well as the exception of model
I for t = t0. Afterwards, we have examined the case � = 0
with conditionYT F = 0 in order to construct the model I I I .
For this model, the areal radius fluctuates between 0 and 2M
across the boundary. This model’s tangential pressure and
energy density are homogenous and positive, whereas the
pressure in radial direction didn’t equal zero due to the extra
curvature factors. Further, we studied the scenario M = 0.
Models I V and V obtained from this particular scenario
M = 0. They are some sort of “ghost stars”, formed through
a fluid dispersion that are unable to generate any gravitational
pull across the boundary’s surface.

Further, to construct the model V I , we assumed that
the fluid is dissipative. Also, we applied some constraints
(YT F = 0, σ = 0) to diminish the complexity of the system.
Next, we evaluated the function ξ(t) from the integration of
junction condition (35). Under the influence of f (G) theory,
the Eq. (44) permitted us to determine the expression for tem-
perature that contained the notion of relaxation time τ . Fur-
ther, if τ = 0, it is associated with the steady dissipative case
that takes into consideration the thermal evolution of galac-
tic objects, especially the period preceding relaxation. More-
over, we construct models when the vector field is parallel to
the four-velocity along with q = 0. The Eq. (128) has been
integrated for different choices of the parameter. However,
we chose α1 = 1 with the approach YT F = 0 and obtained
model V I I . The areal radius across boundary expands from
0 to 3M in this model. For model V I I , the signature of
μ depends upon the behavior of extra curvature factors of
f (G) theory, and its singularity appears only at t = t0. One
can witness it from Eqs. (141)–(143). Moreover, if ϑ = 0
and α1 = 1

2 , the solution of junction conditions yield model
V I I I . For model V I I I , the areal radius across hypersurface
fluctuates among 0 and 8M

3 . The system’s energy density is
greater than pressure which is applied in radial direction and
is thus positive if G < 0 as one can notice it from Eq. (147).
Furthermore, if we consider M = 0 and α1 = 1 in Eq. (128),
its solution produces the models I X and X . These models
depict “ghost stars”.

Lastly, for the parallel case, we considered q 	= 0. In
this scenario, the corresponding values of metric variables
are described in Eqs. (162)–(164). The vanishing complexity
factor condition is utilized, which yield the Eqs. (168)–(170).
Thus, the solution of the junction conditions generated some
specific functions, which are expressed in Eq. (188). This
case is further characterized by the choice of α1 = 2. This
leads to the model X I , which is demonstrated in Eq. (192).
In model X I , the total mass has a tendency to be infinite at
t = ∞. Even though q approaches to zero and μ does not
approaches to zero because of the impact of f (G) theory.

Analytical models could provide the prediction of physical
events. Based on specific choices of gravity, we could under-
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stand the significance of curvature, the interaction of geome-
try and matter, and the basic properties of gravity itself. These
analytical solutions could characterize particular phases for
self gravitating objects during the formation of compact bod-
ies. Ultimately, our analytical solutions reduce to GR if we
replace the generic function f (G) with the Ricci scalar R.
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Appendix A

Utilizing Eq. (10) with Eq. (12), we could modify the Eq.
(A2) as

4πqB + 1

2A

(
fGGGZ3 + fGGZ4

)
= 1

3
(� − σ)′ − σ

R′

R
.

(B1)

Some terms that are used in Eq. (29) are defined as

μ(D) = μ + T (G)
00

A2 , q(D) = q − T (G)
01

AB
,

P(D)
r = Pr + T (G)

11

B2 , P(D)
⊥ = P⊥ + T (G)

22

R2 . (B2)

Here, the non-zero component for the expression T (G)
λν is

evaluated as

T (G)
00 = 1

κ

[
A2

2
(G fG − f ) − fGGGZ1 − fGGZ2

]
,

T (G)
01 = − 1

κ

[
fGGGZ3 + fGGZ4

]
,

T (G)
11 = − 1

κ

[
B2

2
(G fG − f ) + fGGGZ5 + fGGZ6

]
,

T (G)
22 = − 1

κ

[
R2

2
(G fG − f ) + fGGGZ7 + fGGZ8

]
,

T (G)
33 = sin2 θT (G)

22 , (B3)

where

Z1 = 4G′′

R2B4 (A2R′2 − A2B2 − B2 Ṙ2) + 4̇G
A2B3R2

× (A2B2 Ḃ − A2 Ḃ R′2 + 3B2 Ḃ Ṙ2

+ 2A2 ṘR′B ′ − 2A2B ṘR′′)

+ 4G′

B5R2
(A2B2B ′ − 3A2B ′R′2 + B2B ′ Ṙ2

+ 2A2BR′R′′ − 2B2 Ḃ ṘR′),

Z2 = 4G′2

B4R2 (A2R′2 − A2B2 − B2 Ṙ2),

Z3 = 4Ġ′
A2B2R2 (A2R′2 − A2B2 − B2 Ṙ2)

+ 4Ġ
A3B2R2 (A2B2A′ + 3A′B2 Ṙ2 − A2A′R′2

+ 2AB Ḃ ṘR′ − 2AB2 Ṙ Ṙ′)

+ 4G′

A2B3R2 (A2B2 Ḃ + B2 Ḃ Ṙ2 − 3A2 Ḃ R′2

− 2ABA′ ṘR′ + 2A2BR′ Ṙ′),

Z4 = 4ĠG′

A2B2R2 (A2R′2 − A2B2 − B2 Ṙ2),

Z5 = 4G̈
A4R2 (A2R′2 − A2B2 − B2 Ṙ2)

+ 4Ġ
A5R2

(A2B2 Ȧ + 3B2 Ȧ Ṙ2 − A2 ȦR′2

− 2AB2 Ṙ R̈ + 2A2A′ ṘR′)

+ 4G′

A3B2R2 (A2B2A′ + A′B2 Ṙ2 − 3A2A′R′2

+ 2AB2R′ R̈ − 2 ȦB2 ṘR′),

Z6 = 4Ġ2

A4R2 (A2R′2 − A2B2 − B2 Ṙ2),

Z7 = 4RG̈
A4B3 (A2BR′′ − B2 Ḃ Ṙ − A2BR′)

+ 4RG′′

A3B4 (AB2 R̈ − B2 Ȧ Ṙ − A2A′R′)

+ 4RĠ′
A3B3 (2AḂR′ + 2BA′ Ṙ − 2AB Ṙ′)

+ 4RĠ
A5B3

(3B2 Ȧ Ḃ Ṙ + A2 ȦB ′R′
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− A2B ȦR′′ − A2 Ḃ A′R′ − AB2 Ḃ R̈ − 2ABA′2 Ṙ
+ 2A2BA′ Ṙ′ + A2BA′′ Ṙ

− AB2 B̈ Ṙ − A2 Ṙ A′B ′) + 4RG′

A3B5

× (3A2A′B ′R′ − B2 Ḃ Ṙ A′ − A2BA′R′′

+ B2 Ȧ ṘB ′ − AB2B ′ R̈
− 2AB Ḃ2R′ + 2AB2 Ḃ Ṙ′ − A2BA′′R′

− B2 Ȧ Ḃ R′ + AB2 B̈ R′),

Z8 = 4Ġ2R

A4B3 (A2BR′′ − B2 Ḃ Ṙ − A2BR′)

+ 4RG′2

A3B4 (AB2 R̈ − Ȧ ṘB2 − A2A′R′)

+ 4RĠG′

A3B3 (2AḂR′ + 2BA′ Ṙ − 2AB Ṙ′).

Appendix B: Dynamical analysis

We can formulate the non-zero components of Bianchi iden-
tities, Tλν

;ν = 0, by utilizing the Eqs. (A4)–(A3), which pro-
duce

T
λν
;δ Vλ = − 1

A

[
μ̇ + 2(μ + P⊥)

Ṙ

R
+ (μ + Pr )

Ḃ

B

]

− 1

B

[
q ′ + 2q

(
A′

A
+ R′

R

)]
+ W = 0, (C1)

where,

W = 1

A

{−1

2
(Ġ fG + G ḟG − ḟ ) (199)

+ 1

A2

[
∂

∂t
( fGGGZ1 + fGGZ2)

]

−
(

2
Ȧ

A3 − Ḃ

B A2 − 2
Ṙ

RA2

)
( fGGGZ1 + fGGZ2)

− 1

B2

[
∂

∂r
( fGGGZ3 + fGGZ4)

]

−
(

A′

AB2 − B ′

B3 + 2
R′

B2R

)
( fGGGZ3 + fGGZ4)

+ Ḃ

B3 ( fGGGZ5 + fGGZ6)

+ Ṙ

R3 ( fGGGZ7 + fGGZ8)

}
.

T
λν
;ν Nλ = 1

A

[
2q

(
Ḃ

B
+ Ṙ

R

)
+ q̇

]

+ 1

B

[
(μ + Pr )A′

A
+ P ′

r + 2
(Pr − P⊥)R′

R

]

+ W = 0, (C2)

where

W = 1

B

{−1

2
(G′ fG + G f ′

G − f ′) − A′

A3 ( fGGGZ1 + fGGZ2)

+ 1

A2

[
∂

∂t
( fGGGZ3 + fGGZ4)

]

−
(

Ȧ

A3 − Ḃ

A2B
− 2

Ṙ

A2R

)
( fGGGZ3 + fGGZ4)

− 1

B2

[
∂

∂r
( fGGGZ5 + fGGZ6)

]

−
(

A′

AB2 − 2
B ′

B3 + 2
R′

B2R

)
( fGGGZ5 + fGGZ6)

+ R′

R3 ( fGGGZ7 + fGGZ8)

}
.

After utilizing the Eqs. (9), (10), (15) and (16), we achieve

1

3
(Pr + 3μ + 2P⊥)� + DTμ + EDRq

+ 2

3
σ(Pr − P⊥) + 2q

(
a + E

R

)
− W = 0, (C3)

DTq + 2

3
q(σ + 2�) + a(μ + Pr ) + EDRPr

+ 2
E

R
(Pr − P⊥) + W = 0. (C4)

The previous equation might be reduced significantly using
the mass function, Eqs. (14), (16) and (A3) can be read as

DTU = −4π Pr R − m

R2 + Ea − 4πRT (G)
11

B2 . (C5)

Further, utilizing the factor a from Eq. (C5) into Eq. (C4),
we accomplish

DTU (μ + Pr ) = −(μ + Pr )

[
4π Pr R + m

R2 + 4πRT (G)
11

B2

]

− E

[
DTq + 2q

(
σ + 2

U

R

)
+ W

]

− E2
[

2

R
(Pr − P⊥) + DRPr

]
. (C6)
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