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Abstract In this paper we investigate the vacuum polariza-
tion effects associated to a charged quantum massive scalar
field on a (D + 1)-dimensional anti-de Sitter background
induced by a magnetic-flux-carrying cosmic string in the
braneworld model context. We consider the brane parallel
to the anti-de Sitter boundary and the cosmic string orthog-
onal to them. Moreover, we assume that the field obeys the
Robin boundary condition on the brane. Because the brane
divides the space into two regions with different properties of
the quantum vacuum, we calculate the vacuum expectation
value (VEV) of the field squared and the energy–momentum
tensor (EMT) in each region. To develop these analyses, we
have constructed the positive frequency Wightman function
for both regions. The latter is decomposed in a part associated
with the anti-de Sitter bulk in the presence of a cosmic string
only, and the other part induced by the brane. The vacuum
polarization effects associated with the higher-dimensional
anti-de Sitter bulk in the presence of cosmic string have been
developed in the literature, and here we are mainly inter-
ested in the effects induced by the brane. We show that the
VEVs of the field squared and the components of the EMT
induced by the cosmic string are finite on the brane. Explic-
itly, we compare these observables with the corresponding
ones induced by the brane only, and show that near the brane
the contribution induced by the latter is larger than the one
induced by the string; however, for points distant from the
brane the situation is reversed. Moreover, some asymptotic
expressions for the VEV of the field squared and EMT are
provided for specific limiting cases of the physical parame-
ters of the model. Also, an application of our results is given
for a cosmic string in the Z2-symmetric Randall–Sundrum
braneworld model with a single brane.
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1 Introduction

The anti-de Sitter (AdS) spacetime is one of the most inter-
esting spacetimes allowed by the Theory of General Rela-
tivity. Due to its maximal symmetry, many problems involv-
ing quantum fields propagating can be exactly solvable (see,
for example [1–7]). This allows to reveal information on the
influence of gravitational field on quantum matter in less
symmetric geometries. In addition, the length scale related
to the AdS negative constant curvature, can serve as a reg-
ularization parameter for infrared divergences in interacting
quantum field theories without have to reduce the number
of symmetries [8]. Besides, the importance of this theoreti-
cal background increased when it was discovered that AdS
spacetime generically arises as a ground state in extended
supergravity and in string theories. Additional interest in
this subject was generated by the appearance of two models
where AdS geometry plays a special role. The first model, the
AdS/CFT correspondence (for a review see [9]), represents a
realization of the holographic principle and relates string the-
ories or supergravity in the AdS bulk with a conformal field
theory living on its boundary. The second model is a real-
ization of a braneworld scenario with large extra dimensions
and provides a solution to the hierarchy problem between
the gravitational and electroweak mass scales (for reviews
on braneworld gravity and cosmology see [10,11]).

According to the Big Bang Theory, at the beginning the
Universe was very hot and was in a complete symmetric
stage. During its expansion, it cooled and underwent sev-
eral phase changes, accompanied by spontaneous symmetry
breaking resulting in the formation of toplological defects
[12,13]. These include domain walls, cosmic strings and
monopoles. Among them the cosmic strings are of special
interest.

Cosmic strings are linear topological defects. The grav-
itational field produced by an idealized cosmic string may
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be approximated by a planar angle deficit in the two-
dimensional sub-space orthogonal to the string. Although
there is no Newtonian potential, the lack of global flatness is
responsible for many interesting phenomena as shown many
years ago by Linet [14] and Smith [15]. For instance, in
Refs. [16,17] the authors have studied the vacuum polar-
ization effects induced by multiple parallel static straight-
line cosmic strings and have shown that two parallel strings
mutually attract each other with a Casimir-like force. More-
over, the presence of the string allows effects such as
particle-antiparticle pair production by a single photon and
bremsstrahlung radiation from charged particles which are
not possible in empty Minkowski space due to the conserva-
tion of linear momentum [18]. The dimensionless parameter
that characterizes the strength of gravitational interactions
of strings with matter is its tension, that is given in natural
units by Gμ0, being G the Newton’s constant and μ0 its lin-
ear mass density, proportional to the square of the symmetry
breaking scale energy.

In the eighties and early nineties of the last century, cos-
mic string was considered as possible seeds for large scale
structure formation in the Universe. Although recent obser-
vational data on the temperature anisotropies of the cos-
mic microwave background radiation (CMB) have excluded
the cosmic strings as the main origin of structures, they
are still sources for a number of interesting physical effects
such as gamma ray bursts [19], gravitational waves [20] and
high energy cosmic rays [21]. Recently, cosmic strings have
attracted renewed interest partly because a variant of their
formation mechanism is proposed in the framework of brane
inflation [22–24].

The analysis of the VEV of the bosonic current density,
〈 jμ〉, and the energy–momentum tensor, 〈Tμ

ν 〉, induced by
a magnetic flux running along the core of an idealized cos-
mic string in a high-dimensional AdS spacetime, admitting
that an extra dimension coordinate is compactified to a cir-
cle, were analyzed in [25] and [26], respectively. In both
papers it was admitted the presence of an extra magnetic
flux enclosed by the compactified dimension. Moreover, the
analysis of VEV of fermionic current density and energy–
momentum tensor in (1 + 4)-dimensional AdS spacetime in
the presence of a cosmic string, considering the compactifi-
cation of the extra dimension, have been developed in [27]
and [28], respectively. Finally considering the presence of a
brane parallel to the AdS boundary, the analysis of the effects
of the brane on the vacuum fermionic current, 〈 jμ〉, and the
energy–momentum tensor, 〈Tμ

ν 〉, were investigate in [29] and
[30], respectively.

The vacuum polarization effects induced by a cosmic
string in AdS spacetime were studied in Ref. [31], where
the authors have analyzed the VEVs of the field squared and
the energy–momentum tensor. Here in this paper, we want to
continue in this line of investigation and study the VEVs of

the field squared and the energy–momentum tensor induced
by an idealized cosmic string carrying a magnetic flux run-
ning along its core on (1 + D)-dimensional AdS bulk con-
sidering the presence of a brane parallel to the AdS bound-
ary. This analysis is developed for both part of the space.
Moreover, we admit that the bosonic field obeys the Robin
boundary condition (BC) on the brane in both parts of the
space.

The paper is organized as follows. In the Sect. 2 we present
the setup of the problem that we want investigate, and the
complete set of normalized positive and negative energy solu-
tions to the Klein–Gordon equation in the presence of a brane
parallel to the AdS boundary. In the Sect. 3 we construct
the Wightman function for both regions of the space. In the
Sects. 4 and 5, respectively, the VEVs of the field squared
and the energy–momentum tensor in the region between the
brane and the AdS horizon (R(right)-region) and the AdS
boundary and the brane (L(left)-region) are investigated. Var-
ious asymptotic limits are considered and numerical results
are presented. In the Sect. 6 we apply our analysis to the
Randall–Sundrum type model with a single brane and Sect.
7 summarizes the most relevant results obtained. Throughout
the paper, we use natural units G = h̄ = c = 1.

2 Model setup

In this section we present the model setup, describing the
background geometry and the matter field content. We begin
by presenting the line element, in cylindrical coordinates,
associated with the spacetime geometry we are going to con-
sider, which is a (D+1)-dimensional anti-de Sitter spacetime
containing a cosmic string:

ds2 = gμνdx
μdxν

= e−2y/a

[
dt2 − dr2 − r2dφ2 −

D∑
i=4

(dxi )2

]
− dy2,

(1)

where r � 0 and φ ∈ [0, 2π/q] define the coordinates on the
conical geometry, (t, z, y, xi ) ∈ (−∞, ∞) for i = 4, ..., D
and the parameter a determines the curvature scale of the
background spacetime. The latter is related to the cosmolog-
ical constant, � = −D(D − 1)/(2a2), and the Ricci scalar,
R = −D(D+1)/a2. In the case of D = 3, the cosmic string
is assumed to be along the y-axis. Moreover, the presence of
the cosmic string is codified through the parameter q ≥ 1.
Using the Poincarè coordinate defined by w = aey/a , the line
element above can be conformally related to the line element
associated with a cosmic string in Minkowski spacetime

ds2 =
( a

w

)2
[
dt2 − dr2 − r2dφ2 − dw2 −

D∑
i=4

(dxi )2
]
.

(2)
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For the new coordinate one has w ∈ [0, ∞). In particular, the
values w = 0 and w = ∞ correspond to the AdS boundary
and horizon, respectively.

As to the matter field content, we will consider a charged
massive bosonic field coupled to a gauge field, Aμ. The corre-
sponding field equation that governs the quantum dynamics
is given by the Klein–Gordon (KG) equation,

(D2 + m2 + ξ R)ϕ(x) = 0, (3)

where the differential operator in the field equation reads

D2 = 1√|g|Dμ

(√|g|gμνDν

)
,

Dμ = ∂μ + ieAμ with g = det(gμν) . (4)

In addition, we also consider the presence of a non-minimal
coupling, ξ , between the field and the geometry represented
by the Ricci scalar, R. Two specific values for the curva-
ture coupling are of special interest: ξ = 0 and ξ = D−1

4D ,
that correspond to minimal and conformal coupling, respec-
tively. As to the vector potential, we consider the configura-
tion Aμ = δ

φ
μAφ with Aφ constant, corresponding to a thin

magnetic flux along the string’s core.
We also consider a codimension one flat boundary, here-

after named brane, located at w = w0 and parallel to the AdS
boundary. On the brane we will impose that the field operator
obeys the gauge invariant Robin boundary condition,

(1 + βnμDμ)ϕ(x) = 0, w = w0. (5)

The inward pointing vector (with respect to the region under
consideration), nμ, is normal to the brane at w = w0. It is
defined by nμ = δ(J)δ

μ
3 a/w, where J = L, δ(L) = −1 in the

region 0 ≤ w ≤ w0, L-region, and J = R, δ(R) = 1 in the
region w0 ≤ w ≤ ∞, R-region. In addition, the parameter
β in (5) is a constant and it encodes the properties of the
brane, which in the special cases β = 0 and β = ∞ cor-
respond to the Dirichlet and Neumann boundary conditions,
respectively. Moreover, note that the value of this parameter
for both the regions divided by the brane could be different
in general.

In the geometry defined by (2) and in the presence of the
vector potential Aμ = δ

φ
μAφ , the KG equation (3) becomes[

∂2

∂t2 − ∂2

∂r2 − 1

r

∂

∂r
− 1

r2

(
∂

∂φ
+ ieAφ

)2

− ∂2

∂w2 − (1 − D)

w

∂

∂w
+ M(D,m, ξ)

w2

−
D∑
i=4

∂2

∂(xi )2

]
ϕ(x) = 0, (6)

where M(D,m, ξ) = a2m2 − ξD(D + 1).

According to the symmetry of the problem, the normalized
positive energy wave function solutions of (6) reads

ϕσ (x) = Cσ w
D
2 Zν(pw)

Jq|n+α|(λr)e−i Et+iqnφ+i 	k·	x‖ , (7)

where we have defined the function

Zν(pw) = C1 Jν(pw) + C2Yν(pw) (8)

is a linear combination of the Bessel and Neumann functions
[32], with the order given by

ν =
√

D2

4
+ a2m2 − ξD(D + 1). (9)

Moreover,

E =
√

λ2 + p2 + 	k2,

α = eAφ

q
= −�φ

�0
, (10)

being �0 = 2π
e , the quantum flux. In (7) 	x‖ represents the

coordinates defined in the (D − 4) extra dimensions, being
	k the corresponding momentum, and σ represents the set
of quantum numbers (n, λ, p, 	k), being n = 0,±1,±2, . . .,
λ ≥ 0, −∞ < k j < ∞ for j = 4, ..., D. The quantum
number p is determined separately in each region divided by
the brane.

The coefficient Cσ in (7) is determined from the normal-
ization condition∫

dDx
√|g|g00ϕ∗

σ ′(x)ϕσ (x) = 1

2E
δσ,σ ′ , (11)

where the delta symbol on the right-hand side is understood
as Dirac delta function for the continuous quantum numbers,
λ, p and 	k, and Kronecker delta for the discrete one, n.

Let us first consider the R-region. By imposing the Robin
boundary condition (5) on the flat boundary at w = w0,
we get the relation C2/C1 = − J̄ν(pw0)/Ȳν(pw0) for the
coefficients in (8). Here and bellow we use the notation

F̄(x) = A0F(x) + B0xF
′(x), (12)

with the coefficients

A0 = 1 + δ(J)
Dβ

2a
, B0 = δ(J)

β

a
. (13)

Thus, the mode functions in the R-region that obey the bound-
ary condition (5) can be written presented as,

ϕ(R)σ (x) = C(R)σ w
D
2 gν(pw0, pw)

Jq|n+α|(λr)e−i Et+iqnφ+i 	k·	x‖ , (14)

where we have introduced the function

gν(u, v) = Jν(v)Ȳν(u) − J̄ν(u)Yν(v). (15)
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Taking into account the continuous spectrum of the quantum
number p and the normalization condition (11), we obtain

|C(R)σ |2 = (2π)2−Dqpλ

2EaD−1[ J̄ 2
ν (pw0) + Ȳ 2

ν (pw0)]
. (16)

In the L-region, the region of integration over w in the
normalization condition (11) goes over the interval 0 ≤ w ≤
w0. For the solutions with C2 = 0 in (8), the integral over w

diverges at the lower limit w = 0 in the range of values ν ≥ 1.
Therefore, for this case we should take C2 = 0 according to
the normalization condition. On the other hand, in the region
0 ≤ ν < 1, the solution (8) with C2 = 0 is normalizable and
in order to uniquely define the mode functions an additional
boundary condition at the AdS boundary is required [3,33].
Here, we will choose the Dirichlet condition which gives
C2 = 0. Thus, with this choice, the mode function in the
L-region are given by

ϕ(L)σ (x) = C(L)σ w
D
2 Jν(pw)Jq|n+α|(λr)e−i Et+iqnφ+i 	k·	x‖ ,

(17)

where, according to the Robin boundary condition (5) on the
brane, the eigenvalues of the quantum number p obey the
relation:

J̄ν(pw0) = 0, (18)

where the eigenvalues are given by p = pν,i/w0, with pν,i

being the positive zeros of the function J̄ν(x), enumerated
by i = 1, 2, .... Note that the roots pν,i do not depend on
the location of the brane. From the normalization condition
(11), with δp,p′ = δi,i ′ , and integrating over w in the interval
[0, w0], we get

|C(L)σ |2 = (2π)2−Dqpν,iλTν(pν,i )

w0aD−1
√
p2
ν,i + w2

0(λ
2 + 	k2)

, (19)

with the function Tν(z) = z[(z2 −ν2)J 2
ν (z)+z2(J ′

ν(z))
2]−1.

3 Wightman function

In this section we present the positive frequency Wightman
function, W (x, x ′) = 〈0|ϕ̂(x)ϕ̂†(x ′)|0〉, where |0〉 stands for
the vacuum state, for both L-region and R-region in a closed
form. Here we will assume that the field is prepared in the
Poincaré vacuum state. To evaluate this function, we use the
mode sum formula:

W (x, x ′) =
∑
σ

ϕσ (x)ϕ∗
σ (x ′). (20)

3.1 R-region

Let us start with the R-region by taking the respective wave
function solutions (14) into the above expression. Thus, we
have

W (x, x ′) = q(ww′)D/2

2(2π)D−2aD−1

×
∑
σ

pλ

E

gν(pw0, pw)gν(pw0, pw′)
J̄ 2
ν (pw0) + Ȳ 2

ν (pw0)

×Jq|n+α|(λr)Jq|n+α|(λr ′)

×eiqn�φ+i 	k·�	x‖−i E�t , (21)

where gν(u, v) is defined in (15), �t = t − t ′, �φ = φ −φ′,
�	x‖ = 	x‖ − 	x ′‖ and with the notation

∑
σ

=
∫ ∞

0
dλ

∫ ∞

0
dp

∑
n

∫
d	k. (22)

Now performing a Wick rotation on the time coordinate and
using the identity

e−E�τ

E
= 2√

π

∫ ∞

0
dse−s2E2−�τ 2/(4s2), (23)

with the energy given by E =
√

λ2 + p2 + 	k2 in the R-

region, we can integrate over λ and 	k with the help of [34].
The result is,

W (x, x ′) = qrr ′

2(2π)D/2aD−1

(
ww′

rr ′

)D/2

×
∫ ∞

0
dχχ

D
2 −2e− r2+r ′2+�	x2‖−�t2

2rr ′ χ

×
∑
n

einq�φ Iq|n+α|(χ)

×
∫ ∞

0
dppe− rr ′

2χ
p2 gν(pw0, pw)gν(pw0, pw′)

J̄ 2
ν (pw0) + Ȳ 2

ν (pw0)
, (24)

where we have introduced a new variable, χ = rr ′/(2s2).
Note that the Wightman function above presents the con-

tributions coming from the cosmic string and the boundary.
However, in this paper we are mainly interested to investigate
the vacuum polarization effects associated to the boundary.
In this sense, we will split those contributions and focus on
the boundary induced one. For this end, we proceed in the
following way:

Wb(x, x
′) = W (x, x ′) − Wcs(x, x

′), (25)

where the term induced by the cosmic string was calculated
in [25] and is given by
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Wcs(x, x
′) = qrr ′

2(2π)D/2aD−1

(
ww′

rr ′

)D/2

×
∫ ∞

0
dχχ

D
2 −2e− r2+r ′2+�	x2‖−�t2

2rr ′ χ

×
∑
n

einq�φ Iq|n+α|(χ)

×
∫ ∞

0
dppe− rr ′

2χ
p2
Jν(pw)Jν(pw

′). (26)

Thus, replacing (24) and (26) into (25) and using the identity
[35]

gν(pw0, pw)gν(pw0, pw′)
J̄ 2
ν (pw0) + Ȳ 2

ν (pw0)
− Jν(pw)Jν(pw

′)

= −1

2

2∑
l=1

J̄ν(pw0)

H̄ (l)
ν (pw0)

H (l)
ν (pw)H (l)

ν (pw′), (27)

we get

Wb(x, x
′) = − qrr ′

4(2π)D/2aD−1

(
ww′

rr ′

)D/2

×
∫ ∞

0
dχχ

D
2 −2e− r2+r ′2+�	x2‖−�t2

2rr ′ χ

×
∑
n

einq�φ Iq|n+α|(χ)

×
∫ ∞

0
dppe− rr ′

2χ
p2

2∑
l=1

J̄ν(pw0)

H̄ (l)
ν (pw0)

×H (l)
ν (pw)H (l)

ν (pw′), (28)

where H (l)
ν (x), l = 1, 2, are the Hankel functions [32].

The parameter α in Eq. (10) can be written in the form

α = n0 + α0, with |α0| <
1

2
, (29)

being n0 an integer number. This allow us to sum over the
quantum number n in (28), using the result obtained in [36],
given below,

∞∑
n=−∞

eiqn�φ Iq|n+α|(χ)

= 1

q

∑
k

eχ cos(2πk/q−�φ)eiα(2πk−q�φ)

−e−iqn0�φ

2π i

∑
j=±1

je jiπq|α0|

×
∫ ∞

0
dy

cosh [qy(1−|α0|)]− cosh (|α0|qy)e−iq(�φ+ jπ)

eχ cosh (y)
[

cosh (qy)− cos (q(�φ+ jπ))
] ,

(30)

where

− q

2
+ �φ

�0
≤ k ≤ q

2
+ �φ

�0
. (31)

Substituting the formula above into (28), we can perform the
integration over χ using the integral formula [34]∫ ∞

0
xν−1e− β

x −γ xdx = 2

(
β

γ

)ν/2

Kν(2
√

βγ ). (32)

The result of these operations is the following:

Wb(x, x
′) = − (ww′)D/2

2(2π)D/2aD−1

{ ∑
k

eiα(2πk−q�φ)

u
D
2 −1
k

×
∫ ∞

0
dppD/2

2∑
l=1

J̄ν(pw0)

H̄ (l)
ν (pw0)

×H (l)
ν (pw)H (l)

ν (pw′)K D
2 −1(puk)

−qe−iqn0�φ

2π i

∑
j=±1

je jiπq|α0|

×
∫ ∞

0
dy

cosh [qy(1−|α0|)]− cosh (|α0|qy)e−iq(�φ+ jπ)

u
D
2 −1
y

[
cosh (qy)− cos (q(�φ+ jπ))

]
×

∫ ∞

0
dppD/2

2∑
l=1

J̄ν(pw0)

H̄ (l)
ν (pw0)

×H (l)
ν (pw)H (l)

ν (pw′)K D
2 −1(puy)

}
, (33)

where we have introduced the notation

u2
k = r2 + r ′2 − 2rr ′ cos (2πk/q − �φ)

+�	x2‖ − �t2

u2
y = r2 + r ′2 + 2rr ′ cosh (y) + �	x2‖ − �t2. (34)

As the last step, we rotate the contour integration over p by
the angle π/2 (−π/2) for the term l = 1 (l = 2). The result
is

Wb(x, x
′) = − (ww′)D/2

(2π)D/2aD−1

×
∫ ∞

0
dppD−1 Īν(pw0)

K̄ν(pw0)
Kν(pw)Kν(pw

′)

×
{∑

k

eiα(2πk−q�φ) f D
2 −1(puk)

−qe−iqn0�φ

2π i

∑
j=±1

je jiπq|α0|

×
∫ ∞

0
dy

cosh [qy(1−|α0|)]− cosh (|α0|qy)e−iq(�φ+ jπ)

cosh (qy)− cos (q(�φ + jπ))

× f D
2 −1(puy)

}
, (35)

where we have introduced the notation

fμ(x) = Jμ(x)

xμ
. (36)
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3.2 L-region

Now we want to calculate the Wightman function in the L-
region. Taking the respective wave function solutions (17)
into (20), we get

W (x, x ′) = q(ww′)D/2

(2π)D−2aD−1w2
0

×
∑
σ

λpν,i√
(pν,i/w0)2 + λ2 + 	k2

×Tν(pν,i )Jν(pν,iw/w0)Jν(pν,iw
′/w0)

×Jq|n+α|(λr)Jq|n+α|(λr ′)einq�φ+i 	k·�	x‖−i E�t ,

(37)

with the notation

∑
σ

=
∫ ∞

0
dλ

∞∑
i=1

∑
n

∫
d	k. (38)

Once again making a Wick rotation on the time coordinate
and using the identity (23) with the energy in the L-region

given by E =
√

λ2 + 	k2 + (pν,i/w0)2, we can integrate over

λ and 	k, obtaining the following result:

W (x, x ′) = qrr ′

(2π)D/2aD−1w2
0

(
ww′

rr ′

)D/2

×
∫ ∞

0
dχχ

D
2 −2e− r2+r ′2+�	x2‖−�t2

2rr ′ χ

×
∑
n

einq�φ Iq|n+α|(χ)

×
∞∑
i=1

pν,i e
− rr ′

2χw2
0
p2
ν,i
Tν(pν,i )

×Jν(pν,iw/w0)Jν(pν,iw
′/w0), (39)

where we have introduced the variable χ = rr ′/(2s2). Now,
writing the parameter α as in (29) once again and using the
formula (30) for the summation over n, we can perform the
integration over χ using the formula (32). Following these
steps, we get the expression

W (x, x ′) = 2(ww′)D/2

(2π)D/2aD−1w
D
2 +1

0

{ ∑
k

eiα(2πk−q�φ)

u
D
2 −1
k

×
∞∑
i=1

pD/2
ν,i Tν(pν,i )Jν(pν,iw/w0)Jν(pν,iw

′/w0)

×K D
2 −1(uk pν,i/w0) − qe−iqn0�φ

2π i

∑
j=±1

je jiπq|α0|

×
∫ ∞

0
dy

cosh [qy(1 − |α0|)] − cosh (|α0|qy)e−iq(�φ+ jπ)

u
D
2 −1
y

[
cosh (qy) − cos (q(�φ + jπ))

]

×
∞∑
i=1

pD/2
ν,i Tν(pν,i )Jν(pν,iw/w0)

×Jν(pν,iw
′/w0)K D

2 −1(uy pν,i/w0)

}
, (40)

where the variable uk and uy are defined in (34).
In order to develop the summation over i , we will use the

generalized Abel–Plana summation formula [37]

∞∑
i=1

Tν(pν,i ) f (pν,i ) = 1

2

∫ ∞

0
dz f (z)

− 1

2π

∫ ∞

0
dz

K̄ν(z)

Īν(z)

[
e−iνz f (i z) + eiνz f (−i z)

]
. (41)

For the problem under consideration, the function f (z) is

f (z) = zD/2 Jν(zw/w0)Jν(zw
′/w0)K D

2 −1(2uz/w0). (42)

The first term in (41) will provide the Wightman function
induced by the cosmic string in the absence of brane, while
the second one is induced by the boundary. For the same
argument given in the previous subsection, we concentrate on
the brane-induced term. Therefore, after a few intermediate
steps, we find

Wb(x, x
′) =

− (ww′)D/2

(2π)D/2aD−1

∫ ∞

0
dvvD/2 K̄ν(vw0)

Īν(vw0)
Iν(vw)Iν(vw′)

×
{∑

k

eiα(2πk−q�φ) f D
2 −1(ukv) − qe−iqn0�φ

2π i

∑
j=±1

je jiπq|α0|

×
∫ ∞

0
dy

cosh [qy(1 − |α0|)] − cosh (|α0|qy)e−iq(�φ+ jπ)

cosh (qy) − cos (q(�φ + jπ))

× f D
2 −1(uyv)

}
, (43)

where we have made change of variable z = vw0.

4 Field squared

The VEV of the field squared is formally obtained from the
Wightman function by taking the coincidence limit, as shown
below:

〈|ϕ(x)|2〉 = lim
x ′→x

W (x, x ′), (44)

where the notation |ϕ(x)|2 is understood here as ϕ(x)ϕ†(x).
As we will see in what follows, in both regions, R and L, the
VEV of the field squared can be decomposed in the form:

〈|ϕ(x)|2〉b = 〈|ϕ(x)|2〉(0)
b + 〈|ϕ(x)|2〉(q,α0)

b , (45)

where the first term in the right-hand side comes from the
term k = 0 in the sum over k in the Wightman functions
for both regions, (35) and (43), and it is purely induced by
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the brane and was analyzed in [38], while the second term
is a new contribution induced by the cosmic string and the
magnetic flux along its core in the AdS geometry with a
flat boundary. In this paper we are mainly interested in the
investigation of the latter contribution and henceforth our
study is restricted to it.

4.1 R-region

Taking the positive frequency Wightman function in the R-
region, Eq. (35), into the equation above and subsequently
taking the coincidence limit, the second term in (45) reads

〈|ϕ(x)|2〉(q,α0)
b = − 2wD

(2π)D/2aD−1

×
∫ ∞

0
dppD−1 Īν(pw0)

K̄ν(pw0)
K 2

ν (pw)

×
[[q/2]∑′

k=1

cos(2πkα0) f D
2 −1(2rpsk)

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh (qy) − cos (qπ)

× f D
2 −1(2rp cosh(y/2))

]
, (46)

where [q/2] represents the integer part of q/2, and the prime
on the sign of the summation over k means that for even
values of q, the term k = q/2 should be taken with the
coefficient 1/2. Moreover, henceforth we adopt the notation

sk = sin(πk/q). (47)

As to the function h(q, α0, y), it reads

h(q, α0, y) = cosh(qy(1 − |α0|)) sin(qπ |α0|)
+ cosh(qy|α0|) sin(qπ(1 − |α0|)). (48)

Moreover, note that by making a simple change of variable,
z = pw0, this VEV depends on the ratio r/w, which is related
to the proper distance from the string, and the ratio w/w0,
which is related to the proper distance from the brane

w/w0 = e(y−y0)/a . (49)

This feature is also present in the VEV of the squared field in
the L-region and the components of the energy–momentum
tensor as we will see below.

Let us investigate some special and asymptotic cases for
the formula above. For a massless conformal scalar quantum
field, we have ν = 1/2, according to (9). Thus, using the
corresponding modified Bessel functions for this order, we
get

〈|ϕ(x)|2〉(q,α0)
b = − 2wD−1

(2π)D/2aD−1

×
∫ ∞

0
dppD−2e−(2w−w0)p

× (2A0−B0) sinh(pw0)+2B0 pw0 cosh(pw0)

2A0−B0(1+2pw0)

×
[[q/2]∑′

k=1

cos(2πkα0) f D
2 −1(2rpsk)

− q

2π

∫ ∞
0

dy
h(q, α0, y)

cosh (qy) − cos (qπ)

× f D
2 −1(2rp cosh(y/2))

]
. (50)

Note that this result contrasts with the one for the pure brane-
induced term, 〈|ϕ|2〉(0)

b which is zero for a conformal mass-
less quantum scalar field [38].

For points with the proper distance from the plate much
larger compared with the AdS radius, one has w/w0 � 1.
Introducing a new variable u = pw and by making use of the
formulae for the modified Bessel functions for small values
of the argument [32], with the assumption that A0−νB0 = 0,
to the leading order, we get

〈|ϕ(x)|2〉(q,α0)
b ≈ − 22−2ν−D/2

πD/2�(ν)�(ν + 1)aD−1

(
A0 + νB0

A0 − νB0

)

×
(w0

w

)2ν
∫ ∞

0
duuD+2ν−1K 2

ν (u)

×
[[q/2]∑′

k=1

cos(2πkα0) f D
2 −1(2rusk/w)

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh (qy) − cos (qπ)

× f D
2 −1(2ru cosh(y/2)/w)

]
. (51)

Finally, we analyze the Minkowskian limit, a → ∞, with
fixed coordinate y. In this limit, the geometry under consid-
eration is reduced to the geometry of a cosmic string in the
background of a (D+1)-dimensional Minkowski spacetime.
It can be observed that the coordinate w in the arguments of
the modified Bessel functions in this limit can be expressed
as w ≈ a + y. Considering that ν � 1, it can be seen that as
we approach the Minkowskian limit, the order and the argu-
ment of the modified Bessel functions in Eq. (46) tend to
become large. Hence, we can make use of the corresponding
uniform asymptotic expansions. Thus, for the leading order,
one gets

〈|ϕ(x)|2〉(q,α0),(M)
b = − 1

(2π)D/2

∫ ∞

m
du(u2 − m2)

D
2 −1

×
[[q/2]∑′

k=1

cos(2πkα0)
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Fig. 1 The VEV of the field squared 〈|ϕ|2〉(q,α0)
b (left panel) and the

ratio 〈|ϕ|2〉(q,α0)
b /〈|ϕ|2〉(0)

b (right panel) are exhibited as functions of
w/w0 for different values of q, considering Dirichlet and Neumann

boundary conditions. The graphs are plotted for a minimally coupled
massless scalar field in D = 3 with fixed parameters r/w0 = 0.5 and
α0 = 0.4

× f D
2 −1(2rsk

√
u2 − m2)

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh (qy) − cos (qπ)

× f D
2 −1(2r cosh(y/2)

√
u2 − m2)

]

×1 + βu

1 − βu
e−2u(y−y0). (52)

In Fig. 1 we exhibit the dependence of the field squared,
〈|ϕ|2〉(q,α0)

b , (left panel) and the ratio 〈|ϕ|2〉(q,α0)
b /〈|ϕ|2〉(0)

b
(right panel) as functions of w/w0 for Dirichlet and Neumann
boundary conditions with different values of the deficit angle
parameter,q. As we can see from the left panel the VEV of the
field squared, induced by the cosmic string only, is finite on
the brane and goes to zero for large distances from the brane
with (w0/w)2ν according to the corresponding asymptotic
formula (51). The right panel shows that the pure brane-
induced contribution is dominant near the brane, while the
string-induced term is more relevant for distant points from
the brane. Moreover, note that the intensities of this VEV
increase with the string parameter, q, and are higher for the
Neumann BC.

4.2 L-region

Now substituting the Wightman function in the L-region (43)
into the formal expression for the field squared (44) and tak-
ing the coincidence limit, the second term in the right hand
side of (45) reads:

〈|ϕ(x)|2〉(q,α0)
b = − 2wD

(2π)D/2aD−1

∫ ∞

0
dvvD−1 K̄ν(vw0)

Īν(vw0)
I 2
ν (vw)

×
[[q/2]∑′

k=0

cos(2πkα0) f D
2 −1(2rvsk)

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh (qy) − cos (qπ)

× f D
2 −1(2rv cosh(y/2))

]
. (53)

Comparing with (46), we see that the brane-induced con-
tribution in the L-region is obtained from the correspond-
ing quantity for the R-region by the replacements I → K ,
K → I of the modified Bessel functions.

Note that an important result which can be observed from
the expression above and Eq. (46) is that the VEVs of the
field squared in both regions are finite on the brane. The
corresponding values can be obtained directly from (46) and
(53) by putting w = w0. This finiteness of the field squared is
in clear contrast to the behaviour of the pure brane-induced
contribution, 〈|ϕ(x)|2〉(0)

b , which diverges on the brane as
1/(w − w0)

D−1 [38].
As we have proceeded in R-region, let us now analyze

some special and limiting cases of the squared field given
above. For a massless conformal scalar quantum field in this
region, we have

〈|ϕ(x)|2〉(q,α0)
b = − 2wD−1

(2π)D/2aD−1

∫ ∞

0
dppD−2e−pw0

× [2A0 − B0(1 + 2pw0)] sinh2(pw)

(2A0 − B0) sinh(pw0) + 2B0 pw0 cosh(pw0)

×
[[q/2]∑′

k=0

cos(2πkα0) f D
2 −1(2rpsk)

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh (qy) − cos (qπ)

× f D
2 −1(2rp cosh(y/2))

]
. (54)

We now analyse the asymptotic behaviour for points near
the AdS boundary (hyperplane at w = 0), w � w0, with
the proper distances from the plane much larger compared
with the AdS curvature radius. Thus, introducing the vari-
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able u = vw0 in (53) and by using the formulae for the
modified Bessel function for small values of the argument,
to the leading order, we obtain

〈|ϕ(x)|2〉(q,α0)
b ≈ − 21−2ν−D/2

πD/2�2(ν + 1)aD−1

(
w

w0

)D+2ν+2

×
∫ ∞

0
duuD+2ν−1 K̄ν(u)

Īν(u)

[[q/2]∑′

k=0

cos(2πkα0)

× f D
2 −1(2rusk/w0)

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh (qy) − cos (qπ)

× f D
2 −1(2ru cosh(y/2)/w0)

]
. (55)

In the Minkowskian limit, we follow the same procedure
as in the R-region. The corresponding result reads,

〈|ϕ(x)|2〉(q,α0),(M)
b = − 1

(2π)D/2

∫ ∞

m
du(u2 − m2)

D
2 −1

×
[[q/2]∑′

k=0

cos(2πkα0)

× f D
2 −1(2rsk

√
u2 − m2)

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh (qy) − cos (qπ)

× f D
2 −1(2r cosh(y/2)

√
u2 − m2)

]

×1 + βu

1 − βu
e−2u(y0−y). (56)

It worths to note that the expression above is similar to that
of the R-region with y − y0 replaced by y0 − y. This simi-
larity is expected since in the Minkowskian limit the VEV is
symmetric to the brane.

The left panel in Fig. 2 shows the behaviour of the field
squared and right panel the ratio 〈|ϕ(x)|2〉(q,α0)

b /〈|ϕ(x)|2〉(0)
b

as functions of w/w0 for Neumann and Dirichlet boundary
conditions and distinct values of q. In both plots we have
fixed r/w0 = 0.5 and α0 = 0.4. From the left panel we
can see that the field squared in this region goes zero on the
AdS boundary, which is in accordance with the asymptotic
formula (55), and it is finite on the brane. Moreover, the
right panel shows us that the string-induced contribution is
dominant near the AdS boundary for the curves with q = 2.5,
while the pure brane-induced term is more relevant close to
the brane for any value of q. Note that similar to the L-
region, this VEV increases with the string parameter, q, but
differently from the R-region it is higher for Dirichlet BC.

5 Energy–momentum tensor

Having obtained the Wightman function and the mean field
square, we can proceed to the calculation of the vacuum
expectation value of the energy–momentum tensor by mak-
ing use of the formula developed in [26]:

〈Tμν〉 = lim
x ′→x

(DμD
†
ν′ + D†

μ′ Dν)W (x, x ′) − 2[ξ Rμν

+ξ∇μ∇ν − (ξ − 1/4)gμν∇α∇α]]〈|ϕ|2〉, (57)

where Rμν = −Dgμν/a2 is the Ricci tensor for the AdS
space-time and Dμ = ∇μ + ieAμ.1 Similarly to the VEV of
the field squared, the VEV of the energy–momentum tensor
can be decomposed as

〈Tμν〉b = 〈Tμν〉(0)
b + 〈Tμν〉(q,α0)

b . (58)

As already stressed in beginning of the previous section, here
the first term in the right-hand side is also purely induced by
the brane, already analyzed in [38]. Thus, the analysis below
concerns only the second term, which is a new contribution
induced by the string and the magnetic flux along its core in
the AdS background with a flat boundary.

5.1 R-region

Let us start with the R-region, walking through the most
important steps of the calculation. The covariant d’Alem
bertian acting on the squared field in the R-region, Eq. (46),
gives

�〈|ϕ|2〉b = 4wD+2

(2π)D/2aD+1

∫ ∞

0
dppD+1 Īν(pw0)

K̄ν(pw0)

×
[[q/2]∑′

k=0

cos(2πkα0)S[sk , f D
2
(2rpsk), Kν(pw)]

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh (qy) − cos (qπ)

×S[cosh(y/2), f D
2
(2rp cosh(y/2)), Kν(pw)]

]
,

(59)

where we have introduced the function

S[γ, fμ(x), g(y)] =
2γ 2 [

x2 fμ+1(x) − 2 fμ(x)
]
g2(y)

+ fμ−1(x)

[
(g′(y))2+ D

y
g′(y)g(y)+

(
1+ ν2

y2

)
g2(y)

]
, (60)

1 As it was explained in [26], the second part on the right-hand side of
the energy–momentum tensor comes from two distinct contributions:
the one proportional to the non-minimum coupling, ξ , is a consequence
of the variation of the Ricci scalar with respect to the metric tensor; and
the second one is obtained through some algebraic manipulations and
use of the equation of motion associated with the scalar field.
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Fig. 2 The same as in Fig. 1 for the R-region

with γ = sk, cosh(y/2). The function fμ(x) is already
defined in (36).

For the geometry under consideration, only the ∇r∇w and
∇μ∇μ differential operators contribute when acting on the
VEV of the field squared. The remaining contributions come
from the electromagnetic covariant derivatives acting on the
Wightman function. As to the azimuthal term, it is more con-
venient to act the DφD

†
φ′ operator in (28) for the R-region and

(39) for the L-region, and subsequently take the coincidence
limit in all coordinates, including the angular one. Following
this procedure, we obtain:

I(q, α, χ) =
∞∑

n=−∞
q2(n + α)2 Iq|n+α|(χ), (61)

where χ = rr ′/2s2. This sum can be developed by using the
differential equation obeyed by the modified Bessel function.
Then we get,

I(q, α, χ) =
(

χ2 d2

dχ2 +χ
d

dχ
− χ2

) ∞∑
n=−∞

Iq|n+α|(χ),

(62)

where this last sum is given by [39]

∞∑
n=−∞

Iq|n+α|(χ) = 2

q

[q/2]∑′

k=0

cos(2πkα0)e
χ cos(2πk/q)

− 1

π

∫ ∞

0
dy

e−χ cosh(y) f (q, α0, y)

cosh(qy) − cos(qπ)
.

(63)

The brane induced contribution in the VEV of the energy–
momentum tensor is calculated by making use of the corre-
sponding parts in the Wightman function and VEV of the
field squared. After long but straightforward steps, we get
(no summation over μ)

〈Tμ
μ 〉(q,α0)

b = − 2wD+2

(2π)
D
2 aD+1

∫ ∞

0
dppD+1 Īν(pw0)

K̄ν(pw0)

×
[[q/2]∑′

k=1

cos(2πkα0)G
μ
μ[sk, f D

2
(2rpsk), Kν(pw)]

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh(qy) − cos(qπ)

×Gμ
μ[cosh(y/2), f D

2
(2rp cosh(y/2)), Kν(pw)]

]
, (64)

with the functions

G0
0[γ, fμ(x), g(y)] =

−2 fμ(x)g2(y)

−ξ1

{
2γ 2 [

x2 fμ+1(x)−2 fμ(x)
]
g2(y)

+ fμ−1(x)

[
(g′(y))2 + D + 4ξ/ξ1

y
g′(y)g(y)

+
(

1 + ν2

y2

)
g2(y)

] }
,

G1
1[γ, fμ(x), g(y)] =
2(4ξγ 2 − 1) fμ(x)g2(y) − ξ1 fμ−1(x)

×
[
(g′(y))2 + D + 4ξ/ξ1

y
g′(y)g(y)

+
(

1 + ν2

y2

)
g2(y)

]
,

G2
2[γ, fμ(x), g(y)] =

−2(4ξγ 2−1)[x2 fμ+1(x)− fμ(x)]g2(y)

−ξ1 fμ−1(x)

[
(g′(y))2 + D + 4ξ/ξ1

y
g′(y)g(y)

+
(

1 + ν2

y2

)
g2(y)

]
,

G3
3[γ, fμ(x), g(y)] =

−2ξ1γ
2 [

x2 fμ+1(x) − 2 fμ(x)
]
g2(y)

+ fμ−1(x)

[
− (g′(y))2 + ξ1D

y
g′(y)g(y)

+
(

1 + 2m2a2 − ν2

y2

)
g2(y)

]
, (65)
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where ξ1 = 4ξ − 1. For the components μ = 4, ..., D, asso-
ciated to the extra dimensions, we have (no summation over
μ) 〈Tμ

μ 〉b = 〈T 0
0 〉b, as a consequence of the symmetry of the

problem. Additionally, we have an off-diagonal component2:

G1
3[γ, fμ(x), g(y)] =

−γ x fμ(x)

[
Dξ1+4ξ

y
g2(y)+2ξ1g(y)g

′(y)
]

. (66)

Let us now study some limiting cases for the energy den-
sity component, 〈T 0

0 〉(q,α0)
b . For a massless conformal quan-

tum field, we have ν = 1/2, and using the corresponding
modified Bessel functions, the energy density is given by

〈T 0
0 〉(q,α0)

b = − 4wD+1

(2π)
D
2 aD+1D

∫ ∞

0
dppDe−(2w−w0)p

× (2A0 − B0) sinh(pw0) + 2B0 pw0 cosh(pw0)

2A0 − B0(1 + 2pw0)

×
{[q/2]∑′

k=1

cos(2πkα0)

[
s2
k

(
(2rpsk)

2 f D
2 +1(2rpsk)

−2 f D
2
(2rpsk)

)
− Df D

2
(2rpsk)

+ f D
2 −1(2rpsk)

]
− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh(qy) − cos(qπ)

×
[

cosh2(y/2)
(
(2rp cosh(y/2))2

× f D
2 +1(2rp cosh(y/2)) − 2 f D

2
(2rp cosh(y/2))

)
−Df D

2
(2rp cosh(y/2))

+ f D
2 −1(2rp cosh(y/2))

]}
. (67)

Note that in contrast to the vanishing pure brane-induced
energy density in the R-region analyzed in [38], the cor-
responding contribution resulting from the presence of the
cosmic string and its magnetic flux along its core given by
the expression above is non-zero.

For distant points from the brane, w/w0 � 1, we intro-
duce a new variable u = pw in (64) for the energy density
component and by making use of the formulae for the mod-
ified Bessel functions for small values of the argument [32],
with the assumption that A0 −νB0 = 0, to the leading order,
we get

〈T 0
0 〉(q,α0)

b ≈ − 22−2ν−D/2

π
D
2 �(ν)�(ν + 1)aD+1

(w0

w

)2ν

×
∫ ∞

0
dpp2ν+D+1

(
A0 + νB0

A0 − νB0

)

2 Note that although the spacetime line element given by (2) is diagonal,
we have the appearance of an off-diagonal component in the scalar field
energy–momentum tensor, which is a common feature of similar setups
in anti-de Sitter and de Sitter spacetimes with a cosmic string [26,40].

×
[[q/2]∑′

k=1

cos(2πkα0)G
0
0[sk, f D

2
(2rpsk/w), Kν(p)]

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh(qy) − cos(qπ)

×G0
0[cosh(y/2), f D

2
(2rp cosh(y/2)/w), Kν(p)]

]
.

(68)

In the Minkowskian limit, a → ∞, the energy density
reads,

〈T 0
0 〉(q,α0),(M)

b =
2

(2π)
D
2

∫ ∞

m
du(u2 − m2)

D
2 −1

{[q/2]∑′

k=1

cos(2πkα0)

×
[
u2

(
ξ1 f D

2 −1(2rsk
√
u2 − m2)

+ f D
2
(2rsk

√
u2 − m2)

)
− m2 f D

2
(2rsk

√
u2 − m2)

]

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh(qy) − cos(qπ)

×
[
u2

(
ξ1 f D

2 −1(2r cosh(y/2)
√
u2 − m2)

+ f D
2
(2r cosh(y/2)

√
u2 − m2)

)

−m2 f D
2
(2r cosh(y/2)

√
u2 − m2)

]}

×1 + βu

1 − βu
e−2u(y−y0). (69)

In Fig. 3 the energy density induced by the string and
its magnetic flux, 〈T 0

0 〉(q,α0)
b (left panel) and the ratio

〈T 0
0 〉(q,α0)

b /〈T 0
0 〉(0)

b (right panel) are displayed as functions of
w/w0. Both graphs are plotted for a minimally coupled mass-
less scalar field in D = 3 with fixed parameters r/w0 = 0.5
and α0 = 0.4. The curves exhibited correspond to different
values of q, considering Dirichlet (β = 0) and Neumann
(β → ∞) boundary conditions. The left panel shows us that
the intensity of the energy density increases with the param-
eter q associated with the string’s angle deficit. Moreover,
the energy density goes to zero for large distances from the
brane, and according to our asymptotic analysis behaves as
(w0/w)2ν , and it is finite on the brane. We can also observe
that in the region under consideration the energy density is
positive for Neumann BC and negative for Dirichlet BC and
that the intensities of the VEVs are higher for Neumann BC
by comparing curves with same q. On the other hand, from
the right panel we can read that the contribution induced by
the string and its magnetic flux, 〈T 0

0 〉(q,α0)
b , is negligible com-

pared with the pure brane-induced one, 〈T 0
0 〉(0)

b , for points
close to the brane. On the other hand, for distant points from
the brane the former dominates in the total VEV, 〈T 0

0 〉b.
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Fig. 3 The behaviour of the energy density as function of w/w0 is
shown for different values of q and for Dirichlet and Neumann bound-
ary conditions (left panel). The right panel exhibits the ratio between
the contribution 〈T 0

0 〉(q,α0)
b and 〈T 0

0 〉(0)
b also as a function of w/w0 for

distinct values q and Dirichlet and Neumann boundary conditions. The
graphs are plotted for a minimally coupled massless scalar field with
fixed parameters r/w0 = 0.5 and α0 = 0.4

5.2 L-region

Following the same procedure as in the R-region, the energy–
momentum tensor in the L-region reads,

〈Tμ
μ 〉(q,α0)

b =

− 2wD+2

(2π)
D
2 aD+1

∫ ∞

0
dppD+1 K̄ν(pw0)

Īν(pw0)

×
[[q/2]∑′

k=1

cos(2πkα0)G
μ
μ[sk, f D

2
(2rpsk), Iν(pw)]

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh(qy) − cos(qπ)

×Gμ
μ[cosh(y/2), f D

2
(2rp cosh(y/2)), Iν(pw)]

]
, (70)

with the functions Gμ
μ already defined in (65). For the

components μ = 4, ..., D, associated to the extra dimen-
sions, in the L-region we also have (no summation over μ)
〈Tμ

μ 〉b = 〈T 0
0 〉b and the off-diagonal component reads the

same as in (66). Moreover, note that the energy–momentum
tensor in the L-region is obtained from (64) with the replace-
ments I → K and K → I of the modified Bessel functions.

For a massless conformal quantum field, we have ν = 1/2,
and using the corresponding modified Bessel functions, the
energy density is given by

〈T 0
0 〉(q,α0)

b =
− 2wD+1

(2π)
D
2 aD+1D

∫ ∞

0
dppDe−pw0

× 2A0 − B0(1 + 2pw0)

(2A0 − B0) sinh(pw0) + 2B0 pw0 cosh(pw0)

×
{[q/2]∑′

k=1

cos(2πkα0)

[ [
2s2

k

(
(2rpsk)

2 f D
2 +1(2rpsk)

−2 f D
2
(2rpsk)

)
− 2Df D

2
(2rpsk)

]
× sinh2(pw) + f D

2 −1(2rpsk)[2 cosh2(pw) − 1]
]

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh(qy) − cos(qπ)

×
[[

2 cosh2(y/2)
(
(2rp cosh(y/2))2

× f D
2 +1(2rp cosh(y/2)) − 2 f D

2
(2rpsk)

)
−2Df D

2
(2rp cosh(y/2))

]
sinh2(pw)

+ f D
2 −1(2rp cosh(y/2))[2 cosh2(pw) − 1]

]}
. (71)

For points near the AdS boundary, w � w0, we introduce
the variable u = vw0 in (70) for the energy density com-
ponent and by using the corresponding expressions for the
modified Bessel functions for small values of the argument,
to the leading order, we get

〈T 0
0 〉(q,α0)

b ≈ −21−2ν−D/2

π
D
2 aD+1

(
w

w0

)D+2ν

×D + 2ν − 4ξ(D + 2ν + 1)

�(ν)�(ν + 1)

∫ ∞

0
dppD+2ν−1 K̄ν(pw0)

Īν(pw0)

×
[[q/2]∑′

k=1

cos(2πkα0) f D
2 −1(2rpsk)

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh(qy) − cos(qπ)

× f D
2 −1(2rp cosh(y/2))

]
. (72)
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Fig. 4 The energy density 〈T 0
0 〉(q,α0)

b the ratio 〈T 0
0 〉(q,α0)

b /〈T 0
0 〉(0)

b are plotted as functions of w/w0 for different values q and Dirichlet and Neumann
boundary conditions. The graphs are plotted for a minimally coupled massless scalar field in D = 3 with fixed parameters r/w0 = 0.5 and α0 = 0.4

In the Minkowskian limit, a → ∞, the energy density
reads,

〈T 0
0 〉(q,α0),(M)

b = 2

(2π)
D
2

∫ ∞

m
du(u2 − m2)

D
2 −1

×
{[q/2]∑′

k=1

cos(2πkα0)

[
u2

(
ξ1 f D

2 −1(2rsk
√
u2 − m2)

+ f D
2
(2rsk

√
u2 − m2)

)
− m2 f D

2
(2rsk

√
u2 − m2)

]

− q

2π

∫ ∞

0
dy

h(q, α0, y)

cosh(qy) − cos(qπ)

×
[
u2

(
ξ1 f D

2 −1(2r cosh(y/2)
√
u2 − m2)

+ f D
2
(2r cosh(y/2)

√
u2 − m2)

)
−m2 f D

2
(2r cosh(y/2)

√
u2 − m2)

]}

×1 + βu

1 − βu
e−2u(y0−y). (73)

It is noteworthy that the energy density, similar to the VEV
of the squared field, is also similar to that of the R-region
with y − y0 replaced by y0 − y, which is also expected since
in the Minkowskian limit the VEV is symmetric to the brane.

In Fig. 4 we present two plots showing the energy density
induced in the presence of the cosmic string and its mag-
netic flux (left panel) and the ratio 〈T 0

0 〉(q,α0)
b /〈T 0

0 〉(0)
b (right

panel) as functions of w/w0 for different values of the string
parameter, q, considering Dirichlet and Neumann boundary
conditions. From both plots we can observe an inversion of
the behaviour found in the R-region; the energy density is
negative for Neumann BC and positive for Dirichlet BC,
being the intensities higher for the latter by comparing the
curves with same value of q. Moreover, we can see that in
this region the energy density goes to zero near the AdS
boundary with (w/w0)

D+2ν , according to the corresponding

asymptotic expression (72), and it is finite on the brane. From
the right panel we can read that the pure brane-induced con-
tribution dominates in the total VEV for point close to the
brane. On the other side, for points close to the AdS boundary
the contribution induced by the string and its magnetic flux
dominates in the total VEV, depending on the deficit angle
parameter, q.

6 Application to Randall–Sundrum model

The results given in the previous section can be applied
to the investigation of the cosmic string induced effects in
Z2-symmetric braneworlds models. Specifically, they can be
applied to the Randall–Sundrum model with a single brane
(RSII) [41,42]. In the RSII model, the universe is perceived
as a Z2-symmetric positive tension brane in 5-dimensional
AdS spacetime and the negative cosmological constant in the
bulk is the only contribution to the curvature. Nevertheless,
the majority of scenarios that are motivated by string theories
postulate the existence of additional bulk fields, including
scalar fields. For the setup under consideration, the cosmic
string is perpendicular to the brane and the corresponding
background contains two copies of the R-region that are iden-
tified by the Z2-symmetry (y− y0 ←→ y0 − y) with respect
to the brane located at y = y0. The corresponding line ele-
ment is given by

ds2 = e−2|y−y0|/a
[
dt2 − dr2 − r2dφ2 − dz2

−
D∑
i=4

(dxi )2

]
− dy2, (74)

where, as before, −∞ < y < ∞ and 0 ≤ φ ≤ 2π/q. It
should be noted that for an observer located at y = y0, the line
element above is trivially reduced to the standard line element
that characterizes a cosmic string in (D + 1)-dimensional
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flat spacetime. The boundary conditions on the bulk field
are imposed at the location of the brane and obtained by
integration of the field equations about y = y0. By following
a similar procedure to that used in [38,43,44] for a single
brane model it can be seen that for fields even under the
reflection with respect to the brane (untwisted scalar field)
the boundary condition is of the Robin type (5) with the
coefficient

β = − 1

cb + 4Dξ/a
, (75)

where cb is the brane mass term and it comes from the part of
the action located on the brane, Sb = −cb

∫
dDxdy

√|g|δ(y−
y0)ϕ

2/2. In the particular case of a minimally coupled field
and cb = 0, the boundary condition is reduced to the Neu-
mann one (β → ∞). On the other hand, for fields odd under
reflection (twisted scalar fields), the boundary condition takes
the Dirichlet form. In the Z2-symmetric models the region of
integration over the coordinate y ranges from −∞ to+∞ and
it results in the appearance of an additional 1/2 factor in the
normalization coefficient when compared to the one we have
obtained previously for the R-region, which has the interval
0 ≤ y < ∞ (with y0 = 0). Therefore, the formulas for the
VEVs of the field squared and the energy–momentum tensor
induced by a cosmic string in the generalized RSII model are
obtained from those expressions presented in the previous
sections by putting w0 = a with an additional factor of 1/2.

7 Conclusions

In this paper we have investigated the vacuum polarization
effects induced by a cosmic string carrying a magnetic flux
along its core in the background of (D + 1)-dimensional
AdS spacetime with a planar brane parallel to the string
core, which divides the background in two regions. In order
to obtain the bosonic normal modes in this setup in both
regions we have solved the gauge invariant Klein–Gordon
equation with a curvature coupling and assumed that on the
brane the field operator obeys the Robin boundary condition.
Having obtained the positive and negative energy modes in
each regions, we have constructed the Wightman function in
closed form for R-region (35) and L-region (43). By directly
taking the coincidence limit in the Wightman function, in
the Sect. 4 we have calculated the VEV of the field squared
induced by the string and its magnetic flux, 〈|ϕ|2〉(q,α0)

b , for
both regions. In the R-region the VEV of the squared field is
given by Eq. (46). In Eq. (50) we have presented this quantity
for a conformal massless quantum scalar. In the asymptotic
limit of large distances from the brane, w/w0 � 1, the string-
induced VEV of the field squared decays as (w0/w)2ν and it
is given by (51). The Minkowskian limit has been also ana-
lyzed and the corresponding expression is givem in Eq. (52).

We also have shown that 〈|ϕ|2〉(q,α0)
b is finite on the boundary;

moreover, comparing this quantity with the corresponding
VEV induced by the brane only, 〈|ϕ|2〉0

b, we have noticed by
the graph exhibited in the right panel of Fig. 1 that near the
brane the total VEV of the field squared is dominated by the
latter; however, for points more distant from the brane the
string-induced field squared becomes more relevant. In fact
the pure brane-induced VEV of the field squared is divergent
on the brane [38]. In the L-region the VEV of the field squared
is given in (53). Its conformal massless scalar field case is
presented in (54). For points close to the AdS boundary the
asymptotic expression is given (55) and it is shown that this
quantity decreases with (w/w0)

D+2ν+2. The Minkowskian
limit of string-induced VEV of the field squared was also
studied in this region and it is similar to that one for the R-
region with y− y0 replaced by y0 − y. In this region, we also
analyzed numerically the ratio between the VEV of the field
squared induced by the cosmic string and the corresponding
quantity induced by the brane, 〈|ϕ|2〉(q,α0)

b /〈|ϕ|2〉(0)
b . This

result is displayed in Fig. 2. There we observe in the right
panel, that the pure brane-induced VEV of the field squared
is dominant in the total VEV of the field squared, while for
points distant from the brane the most relevant contribution
comes from string-induced part. Also in the L-region, the
pure brane-induced VEV of the field squared is divergent on
the brane.

In the Sect. 5 we have presented our results for the VEV
of the energy–momentum tensor, analysing only the cos-
mic string induced term, 〈Tμν〉(q,α0)

b , which is a new con-
tribution. The corresponding expression for the R-region is
given in (64). All the diagonal components are nonzero and
an off-diagonal component is also present. We have stud-
ies the energy density component for some limiting cases.
The expression for a conformal massless scalar field case is
given in (67) is nonzero and it is in clear contrast with the pure
brane-induced term, which is zero in this particular case. For
distant points of the brane this VEV decreases as (w0/w)2ν

and is presented in (68). Moreover, the Minkowskian limit
is also analyzed and the corresponding expression given by
(69). In the left panel of Fig. 3 we display the behavior of
the string-induced energy density, 〈T 0

0 〉(q,α0)
b , as function of

w/w0. We show that this quantity is finite on the brane and
reinforce its decay for points distant from the brane; more-
over, in the right panel, we exhibit the behavior of the ratio
〈T 0

0 〉(q,α0)
b /〈T 0

0 〉(0)
b . We observe that the brane-induced VEV

of the energy density is more intense than the string-induced
one near the brane. However the situation changes in the
opposite situation. In fact the brane-induced energy density
is divergent on the brane [38]. We also have analyzed the VEV
of the energy–momentum tensor in the L-region (70), which
is obtained from the one for the R-region with the replace-
ments I → K and K → I of the modified Bessel functions.
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For a massless scalar field the energy density component is
given in (71). For point near the AdS boundary the energy
density goes to zero as (w/w0)

D+2ν as is shown in (72). Fur-
thermore, in the Minkowskian limit the energy density (73)
is similar to the corresponding VEV for the R-region with
y− y0 replaced by y0 − y. In this region, we also have evalu-
ated numerically the behavior of the string-induced VEV of
the energy density in the left panel of Fig. 4. We show that it is
finite on the brane. On the right panel, we plotted the behav-
ior of the ratio 〈T 0

0 〉(q,α0)
b /〈T 0

0 〉(0)
b . Again, we can notice that

near the brane the total energy density is dominated by the
brane-induced part; however for points far from the brane,
the string-induced contribution is dominant. Finally, in the
Sect. 6 we have applied the results found for the R-region
to study the cosmic string induced effects in the generalized
Randall–Sundrum model with a single brane. By integrating
the field equations about the brane location, y0, the boundary
conditions in this Z2-symmetric model is of the Robyn type
with coefficient given by (75) for a field even under reflection
with respect to the brane and it is reduced to the Neumann
boundary condition in the case of a minimally coupled field,
ξ = 0, and zero brane mass term, cb = 0. On the other hand
for a field odd we get the Dirichlet boundary condition. The
VEVs of the field squared and the energy–momentum tensor
induced by a cosmic string and its magnetic flux in the RSII
model are then obtained from those found in the Sect. 5 by
directly putting w0 = a with an additional factor 1/2.
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