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Abstract In this paper, we present double dimensional
reduction of the complete M5-brane action in the Sen formal-
ism of self-dual form. Although in this formalism the grav-
ity couples to the independent pseudo-2-form and pseudo-
3-form fields in a non-standard and very complicated way,
the double dimensional reduction on the complete action can
be carried out. This is by dualising some components of the
pseudo-2-form field and integrating out the pseudo-3-form
field. We show explicitly that the double dimensional reduc-
tion on a circle gives rise to the complete D4-brane or the
complete dual D4-brane action depending on what compo-
nents of the pseudo-2-form field are dualised. The duality
between the D4-brane and dual D4-brane actions are realised
in the viewpoint of the Sen formalism as the swapping of the
roles of the components of the pseudo-2-form field between
those which are dualised and those which remain. We also
make a brief outline on how to generalise this to the cases of
dimensional reduction on some other spaces as well as how to
understand the duality of reduced action from the viewpoint
of the Sen formalism. An explicit example for dimensional
reduction of the quadratic six-dimensional action on a torus
is given and the realisation of its S-duality is also discussed.

1 Introduction

The constructions of the low-energy effective action describ-
ing an M5-brane coupled to the background eleven-dimensio
nal supergravity have been known to be non-trivial. This
is largely due to the difficulty in the construction of a six-
dimensional action for a chiral 2-form field, which is one
of the fields in the field content of the M5-brane. The self-
duality of its 3-form field strength H makes the straightfor-
ward attempt impossible, since H∧ ∗ H = 0 when impos-
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ing H = ∗H in six dimensions. Therefore, the idea is to
first work out the six-dimensional action for a chiral 2-form
field then generalise to the complete M5-brane action cou-
pled to background eleven-dimensional supergravity. Vari-
ous non-trivial approaches which allow this are for example
by giving up manifest diffeomorphism invariance [1–5], or
by introducing auxiliary fields which have no dynamics as
in the PST formalism [6–13]. Once the action of the chiral
field is constructed, it is usually relatively simpler to extend
to the complete M5-brane action. It is also worth mentioning
a recent approach [14–16] in which further auxiliary fields
are introduced to lift the limitation on the auxiliary field in
the chiral 2-form action in the PST formalism.

Another recent approach is given in [17,18] which is moti-
vated by string field theory. This approach, which is called
the Sen formalism, in fact applies to self-dual fields in 4p+2
dimensions. The case relevant to us is therefore p = 1. In
this case, the Sen formalism gives a new perspective on the 2-
form field with linear self-dual field strength that the 2-form
field is in fact not an independent field. In this approach,
the independent fields are a 2-form field P and a 3-form
field Q. Both of these fields are non-standard, for exam-
ple, they transform in an unusual way under diffeomorphism
transformation. Furthermore, the field Q is linear self-dual
with respect to flat six-dimensional metric even if the six-
dimensional spacetime is curved. It is also required that a
certain combination of Q and the curved metric gives rise to
a 3-form field H which is off-shell self-dual with respect to
the curved metric and is closed on-shell. So in the spacetime
with trivial topology, H is exact on-shell. Therefore, in the
Sen formalism, instead of describing the 2-form field with
linear self-dual field strength, one describes an exact linear
self-dual 3-form field which is in fact not an independent
field.

Studies of various aspects as well as extensions of the Sen
formalism are given for example in [19–24]. Of particular
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interest to us is the extension [23] to a complete M5-brane
action coupled to background eleven-dimensional supergrav-
ity. The construction is within the Green–Schwarz formal-
ism in which only the target space has manifest supersym-
metry. The constructed action has all the required symme-
tries for example gauge symmetries, diffeomorphism, and
κ-symmetry.

Although the M5-brane action in the Sen formalism has
been constructed, further studies are still required in order to
better understand the action. One of the important aspects is
that the independent fields P and Q are expected to couple
to gravity in a non-standard and complicated way since these
fields transform in an unusual way under diffeomorphism
and the action is non-linear. In order to work towards this
goal, one may study dimensional reduction.

It turns out that even the dimensional reduction of the orig-
inal quadratic action in Sen formalism is readily a challenge.
Although it is possible to carry out dimensional reduction on
various spaces, the studies [18,19] are mostly being restricted
to the cases in which the uncompact space is flat. So when
extending to the M5-brane action, the situation is expected to
be even more complicated. Nevertheless, this is exactly the
task we focus on in this work.

The aim of this paper is to present double dimensional
reduction of the complete M5-brane action in Sen formal-
ism. In particular, we are going to show explicitly that dou-
ble dimensional reduction on a circle gives rise to the com-
plete D4-brane action or the complete dual D4-brane action,
depending on the processes. It turns out that these two pro-
cesses are related simply by swapping the components of the
pseudo-form P . In fact, the swapping is shown to be related
to a duality transformation. We also outline how to generalise
this to some other spaces provided that the six-dimensional
worldvolume is a Cartesian product and that a chosen set of
projection operators on 3-form fields satisfy several simple
properties.

This paper is organised as follows. In Sect. 2, we review
the M5-brane action in the Sen formalism. This action is
a complete action of M5-brane in the eleven-dimensional
supergravity background. Basic properties of this action are
reviewed. In particular, we give a brief explanation on how the
coupling of this action to gravity is complicated. In Sect. 3, we
present double dimensional reduction of the M5-brane action
in the Sen formalism on a circle. We first review and slightly
modify the approach of [20] for the dimensional reduction of
the Sen quadratic action on a circle. By a further modification,
the approach can be applied to the M5-brane action in the Sen
formalism whose induced metric is in a general form. The
approach involves integrating out some components of the
pseudo-form P, while the remaining components are com-
bined with some other fields, through appropriate field redefi-
nitions, to become standard fields. Depending on the way that
the components are chosen, one arrives to either the com-

plete D4-brane or the complete dual D4-brane actions each
of which is coupled to type IIA supergravity background. The
duality between the D4-brane and the dual D4-brane actions
can be realised from the viewpoint of the Sen formalism as
coming from swapping of the roles of the components of
P. With the insight gained from the analysis, we proceed in
Sect. 4 to generalise to the cases of dimensional reduction on
other spaces. The generalisation looks promising as it gives
the reduced action whose physical part describes standard
fields. Dualities for reduced actions can also be given from
the viewpoint of the Sen formalism. Further checks and gen-
eralisations could also be possible which we leave as future
works. We give conclusions and discussions in Sect. 5.

2 The M5-brane action with self-dual 3-form

In this section, we review the form of the M5-brane action in
the Sen formalism [17,18] which makes use of non-standard
self-dual 3-forms in the sense that the self-duality is with
respect to flat metric although the theory may couple to the
curved metric.

In the Sen formalism of self-dual (2p+1)-form in 4p+2
dimensional spacetime, there are two kinds of Hodge star
operators. The first kind is the standard Hodge star operator
∗ which is defined in the standard way, dependent on the
spacetime metric. The second kind is denoted ∗′ which is
similar to the standard Hodge star operator but is defined
with respect to 4p + 2 dimensional Minkowski metric.

From now on, let us focus on the case p = 1 which corre-
sponds to self-dual 3-form in six dimensional spacetime. In
this case, the action takes the form [17–20]

S =
∫ (

1

4
dP∧∗′dP − Q∧dP + LI (Q, g, J )

)
, (2.1)

where P is a 2-form field, Q is a 3-form field, g is the six
dimensional metric, and J is a 3-form external source. Note
that we have made the rescaling of the fields with respect
to those originally given in [17,18] in order for the action
to have the standard scaling. This is closely related to the
scaling adopted in [19]. The field Q is ∗′-self-dual, that is
Q = ∗′Q. The variation of the action of LI with respect to
Q takes the form

δQLI = δQ∧R(Q, g, J ). (2.2)

Therefore, R is ∗′-anti-self-dual. Define

H J ≡ Q − R + J, (2.3)

which should be ∗-self-dual off-shell. That is, for linear the-
ory, H J = ∗H J . The equations of motion for P and Q imply
that

dH (s) = 0, dH J = d J, (2.4)
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where

H (s) = Q + 1

2
(dP + ∗′dP). (2.5)

The kinetic term of the field P in the action (2.1) has the
wrong sign. So the field P is unphysical. However, this is not
harmful as the combination H (s) decouples from the physical
field H J . From Eq. (2.4), it can be seen that in spacetime with
trivial topology, H J − J is exact on-shell.

It turns out that when promoting to non-linear theory [23],
the only change in the above discussion is simply that the
linear ∗-self-duality becomes the non-linear ∗-self-duality
condition

∗H J = V(H J , g). (2.6)

In particular, a complete M5-brane action in the Green-
Schwarz formalism in the form of Eq. (2.1) reads [23]

SM5 = 1

2

∫ (
1

2
dP∧∗′dP − 2Q∧dP − 1

12
∗U (F, g)

+Q∧R + 2C6 + F∧C3

)
, (2.7)

which describes a six-dimensional worldvolume embedded
in the eleven-dimensional background target superspace. For
definiteness, let us call the action (2.7) as the Sen M5-brane
action. The fields g,C3, and C6 are induced from the back-
ground target superspace. In the context of the action (2.1),
the field C3 is identified as J whereas the field F is identified
as H J . That is

F = Q − R + C3. (2.8)

Note that we have rescaled the action Eq. (2.7) with respect
to that presented in [23]. This is in order for the scaling to
better match with other M5-brane actions presented in the
literature. The scaling we made with respect to [23] is C6 →
C6/2, SM5 → SM5/2. The explicit form of V in Eq. (2.6) in
the context of M5-brane and the form of UM5 in the action
(2.7) can be described in index notation. So let us define the
convention before coming back to express V and U.

Let middle Greek alphabets for example μ, ν, ρ represent
indices of the coordinates of the six-dimensional worldvol-
ume. The worldvolume coordinates are then labelled as dxμ.

Define d6x through

dxμ1∧dxμ2∧ · · · ∧dxμ6 = d6xεμ1μ2···μ6 , (2.9)

where εμ1μ2···μ6 is the Levi–Civita symbol defined such that
ε012345 = 1. The ∗ operator is defined as

∗(dxμ1∧ · · · ∧dxμp )

= dxμp+1∧· · ·∧dxμ6
(−1)p+1

(6 − p)!√−g

×gμp+1νp+1 · · · gμ6ν6ε
νp+1···ν6μ1···μp . (2.10)

Similarly, the ∗′ operator is defined as

∗′(dxμ1∧ · · · ∧dxμp )

= dxμp+1∧· · ·∧dxμ6
(−1)p+1

(6 − p)!
×ημp+1νp+1 · · · ημ6ν6ε

νp+1···ν6μ1···μp . (2.11)

Differential p-forms are expressed in coordinates as

ωp = 1

p!dx
μ1∧dxμ2∧ · · · ∧dxμpωμp ···μ2μ1 . (2.12)

Exterior derivative is defined to act from the right

dωp = 1

p!dx
μ1∧dxμ2∧ · · · ∧dxμp∧dxν∂νωμp ···μ2μ1 .

(2.13)

For M5-brane, the non-linear ∗-self-duality condition
(2.6) can be expressed as

(∗F)μνρ =
(

−U

12
+ 24

U

)
Fμνρ + 6

U
(F3)μνρ, (2.14)

where

(F3)μνρ ≡ F[μ|ν′ρ′Fμ′ν′ρ′
Fμ′|νρ], (2.15)

and U, which also appears in the action (2.7), is given by

U = −24

√
1 + FμνρFμνρ

24
. (2.16)

The indices in Eqs. (2.14)–(2.16) are raised by gμν.

The action (2.7) possesses all the required symmetries
for example diffeomorphism, gauge symmetries, and kappa-
symmetry. It is interesting to note that for each symmetry,
transformation rules for P and Q are related by

δQ = −1

2
(1 + ∗′)dδP, (2.17)

which implies that H (s) is invariant under all of the symmetry
transformations. This is desirable since H (s) decouples from
physical fields. Its symmetry transformations should be zero
in order to not affect the symmetry transformations of physi-
cal fields. Focusing on diffeomorphism, the transformations
on P and Q under xμ �→ xμ + ξμ are

δξ P = iξ (F − C3), δξ Q = −1

2
(1 + ∗)diξ (F − C3),

(2.18)

which are non-standard for 2-form and 3-form fields. Due to
this, the fields P and Q are called pseudo-forms.

Although the Sen M5-brane action (2.7) is shown to be a
complete M5-brane action, further studies are still required
in order to better understand this action. Most notably, since
P and Q transform in a non-standard way under diffeomor-
phism, their coupling to gravity are non-standard and is in
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fact complicated. This complication is readily seen in the
quadratic action,

S =
∫ (

1

4
dP∧∗′dP − Q∧dP + 1

2
Q∧MQ

)
, (2.19)

which for definiteness, we will call this as the Sen quadratic
action. Here, M is a linear operator on 3-form and is given
by1

M = (1 + ∗∗′)−1(1 − ∗∗′). (2.20)

Part of non-standard coupling to gravity is due to the operator
∗ ∗′ . Its appearance through M makes this non-standard
coupling even more complicated since M can in principle
be expressed as a power series in ∗∗′ up to the 19th order.
Indeed, the complication is even further amplified in the Sen
M5-brane action as it is non-linear in Q. It is not even clear
whether it can be given in the closed form when expressed
explicitly in Q.

One way to better understand how the Sen M5-brane
action is coupled to gravity is to study dimensional reduction,
which provides a simpler scenario to study when compared
with the Sen M5-brane action itself.

In [18,20], dimensional reductions of the Sen quadratic
action are carried out on various spaces. Since the action
couples to gravity in a complicated way, in each case a spe-
cial metric is chosen such that the uncompactified space is
flat. This makes it possible to carry out the analysis and is
sufficient for the purpose of extracting some physics. It was
remained to see whether the cases of more general metric can
be studied without much difficulties.

In the next section, we will present the study of the dou-
ble dimensional reduction on a circle of the complete Sen
M5-brane action which is coupled to the background eleven-
dimensional target superspace. We will demonstrate how to
successfully study the full case in which the induced metric
takes a general form dependent on the coordinates of reduced
worldvolume.

3 Double dimensional reduction on a circle

3.1 Dimensional reduction of the Sen quadratic action

Let us review the analysis of dimensional reduction of the
Sen quadratic action (2.19) on a circle. In [20], the anal-
ysis is given both in the Hamiltonian and Lagrangian for-
malisms. Let us however only review the analysis of [20] in
the Lagrangian formalism and only follow the key ideas. The
exact analysis will be carried out slightly differently espe-

1 In principle, there are many possible ways to define the operator M.

See [17,18,20] for alternative definitions.

cially at the last stage. This results in the interpretation being
slightly improved.

Consider the case where the six-dimensional spacetime
has the metric of the form

g =
(

η5 0
0 r2

)
, (3.1)

where η5 is the five-dimensional flat metric, and r is a positive
real number. The coordinate x5 has length dimension and is
compactified as x5 ∼ x5 + l. Let every field be independent
from the coordinate x5.

Let Roman alphabets for example a, b, c, i, j, k,m, n rep-
resent indices of the coordinates of the five-dimensional
spacetime. Denote

εi jkmn ≡ εi jkmn5, εi jkmn ≡ εi jkmn5. (3.2)

Therefore, εi jkmn and εi jkmn are Levi–Civita symbols on the
five-dimensional spacetime.

Due to ∗′-self-duality of Q and ∗′-anti-self-duality of R,

each of them has only ten independent components. Let us
denote independent components for each of Q and R as

qab ≡ Qab5, Rab ≡ Rab5. (3.3)

Therefore,

Qabc = 1

2
εabci jη

imη jnqmn,

Rabc = −1

2
εabci jη

imη jn Rmn . (3.4)

Let us express Rab in terms of qab. This can be done by
computing

R = MQ, (3.5)

which gives

Rab = −r − 1

r + 1
qab. (3.6)

The action (2.19) then becomes

S = l

2

∫
d5x

(
3

4
∂a Pbc∂

[a Pbc] + ∂a Pb5∂
[a Pb]

5

+2qab∂a Pb5 + 1

2
qab∂m Pnpε

mnpab

+ (r − 1)

(r + 1)
qabqab

)
. (3.7)

Next, let us make a replacement

Xabc = 3∂[a Pbc] (3.8)

on Eq. (3.7) and introduce a Lagrange multiplier Km which
imposes ∂[a Xbcd] = 0. The action then becomes

S = l

2

∫
d5x

(
1

12
XabcX

abc + 1

6
qabε

abi jk Xi jk

+1

6
Xabc∂mKnε

abcmn + ∂a Pb5∂
[a Pb]

5
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+2qab∂a Pb5 + (r − 1)

(r + 1)
qabqab

)
. (3.9)

By integrating out X followed by q, we obtain

S = l

2

∫
d5x

(
r − 1

2r
∂aKb∂

[aK b]

−r + 1

r
∂aKb∂

[a Pb]5

+r − 1

2r
∂a Pb5∂

[a Pb]
5

)
. (3.10)

We may view the quantity inside the bracket as a quadratic
form whose matrix

1

2r

(
r − 1 −(r + 1)

−(r + 1) r − 1

)
(3.11)

has eigenvalues −1/r, 1 and the corresponding eigenvectors
(1, 1)T , (1,−1)T . Therefore, let us define

fab = l(∂[aKb] + ∂[a Pb]), f (s)
ab = l(∂[aKb] − ∂[a Pb])

(3.12)

where the factor l is introduced so that f and f (s) have mass
dimension two. This corresponds to the field redefinition

Aa = l

2
(Ka + Pa), A(s)

a = l

2
(Ka − Pa). (3.13)

So fab and f (s)
ab are field strengths of Aa and A(s)

a , respec-
tively. With the field redefinitions, the action becomes

S = ∫
d5x

(
− 1

4rl fab f
ab + 1

4l f
(s)
ab ( f (s))ab

)
, (3.14)

which describes two uncoupled Maxwell fields with opposite
signs of kinetic terms. For any value of r ∈ R

+, the field Aa

has the correct sign of the kinetic term with the 1/r scaling
as required by conformal symmetry [25]. On the other hand,
the field A(s)

a has the wrong sign of the kinetic term.
Note that the difference between the analysis in [20] and

ours is just only in the field redefinition which we have made
in Eq. (3.13). The counterpart presented in [20] leads to the
conclusion that the kinetic term of the standard Maxwell field
scales with 1/r only in the limit r → 0. On the other hand,
the field redefinition (3.13) leads to the conclusion that the
kinetic term of the standard Maxwell field scales with 1/r
for any value of r ∈ R

+, not only in the r → 0 limit. The
1/r scaling upon dimensional reduction on a circle is also
in agreement with the result from the PST formalism. As
a simple check, consider the quadratic version of the M5-
brane action in dual formulation. By considering the six-
dimensional spacetime with metric (3.1), identifying x5 as a
coordinate on the circle, and keeping only the zero Fourier
mode, the action presented in Eq. (3.19) of the reference
[5] reduces to the five-dimensional Maxwell theory with the
scaling 1/r. The exact agreement with the requirement from
conformal symmetry and the relevant result from the PST

formalism further confirms that the Sen quadratic action is a
quadratic action for an M5-brane.

In the next subsections, we will proceed to extend the idea
of this subsection to analyse double dimensional reductions
of the Sen M5-brane action on a circle. It will be seen that
although the Sen M5-brane action couples to gravity in a
complicated way, the analysis based on slight modifications
of the steps given in this subsection turns out to apply also
for the Sen M5-brane action.

3.2 The complete D4-brane action from the Sen M5-brane
action

In the previous subsection, we have reviewed the dimen-
sional reduction of the Sen quadratic action to give a five-
dimensional Maxwell theory. We worked with the case where
the metric is given by Eq. (3.1), in which the six-dimensional
worldvolume is a cartesian product of a flat five-dimensional
spacetime with a circle with coordinate x5.

It is possible, after slightly modifying the strategy, to
extend the analysis to the case of the Sen M5-brane action
which is a non-linear action with source terms. In the previ-
ous subsection, we have seen that the dimensional reduction
is obtained by first expressing R in terms of Q, dualising
some components of P, then using Euler–Lagrange equa-
tions to eliminate Q. Then after field redefinition, we are left
with the action which describes an unphysical field decou-
pled with Maxwell field in five dimensions.

In this section, since we are considering a non-linear action
with source terms, expressing R directly in terms of Q would
be too complicated if at all possible. As to be given in details
below, it turns out that the modification of the strategy is
simply to switch some steps. This would allow us to suc-
cessfully dimensionally reduce the Sen M5-brane action to
the complete action which describes a D4-brane in type IIA
supergravity background uncoupled with an unphysical field.

Let us consider a double dimensional reduction of the Sen
M5-brane action (2.7) by letting the background target space
be compactificed such that X10 is on a circle and let the
x5 coordinate of M5-brane worldvolume wraps around X10.

The length of x5 is given by

∫
dx5 = 2πgsls . (3.15)

So if the tension TM5 of the M5-brane action (2.7) is intro-
duced back, which is simply by making a scaling SM5 �→
TM5SM5, then TM52πgsls = TD4 as expected. So from now
on, let us set for simplicity

∫
dx5 = 1, TM5 = 1 = TD4. (3.16)
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Under the double dimensional reduction, the induced met-
ric on the worldvolume is given by

gμν =
(
e−2φ/3γab + e4φ/3CaCb e4φ/3Ca

e4φ/3Cb e4φ/3

)
. (3.17)

The fields φ and Ca are considered as pullbacks of the back-
ground superfield to five-dimensional worldvolume. Let us
next consider how the pullbacksC3 andC6 of the correspond-
ing target space superfields are dimensionally reduced. The
components of C3 are separated via

C3 = 1

2
dxa∧dxb∧dx5Cba5 + 1

3!dx
i∧dx j∧dxkCki j .

(3.18)

It is natural to denote the following:

bab ≡ Cab5, C̃ab ≡ 1

3!ε
abi jkCi jk . (3.19)

Note by definition that C̃ab is the dualisation of Ci jk with
respect to five-dimensional flat metric η. So it would be con-
venient to define raising and lowering of the indices of B and
C̃ by using five-dimensional flat metric. As for C6, it can be
expressed as

C6 = −C5∧dx5. (3.20)

So in summary, for the reduced theory, the pullbacks of the
target space superfields of type IIA supergravity to the five-
dimensional worldvolume theory are γab, b2,C1,C3,C5.

The worldvolume action then reads

S = 1

2

∫
d5x

(
3

4
∂a Pbc∂

[a Pbc] + ∂a Pb5∂
[a Pb]

5

+2qab∂a Pb5 + 1

2
qab∂m Pnpε

mnpab

+ 1

12

√−gU + [q(R + b)]

−1

2
[(q − R)(b − C̃)]

)
−

∫
C5. (3.21)

Since, unlike the case discussed in the previous subsection,
the five-dimensional part of the worldvolume is not flat. So
one has to be more careful when defining trace as there are
two kinds of metric being used here to raise and lower indices.
Let us revisit the definition of trace. From now on, it will be
understood that components of matrices appearing within the
trace are of the form (·)ab. For example,

[MN ] = Ma
bN

b
a . (3.22)

For a given five-dimensional matrix M, we will specify
whether its components are raised by five-dimensional flat
metric η or five-dimensional curved metric γ. The compo-
nents of matrices q, R, B, C̃ which we encounter so far are

raised and lowered by η. We will also later define other five-
dimensional matrices and will specify the metric which are
used to raise or lower their components.

If we were to follow the same strategy as that of the pre-
vious section, we would have to eliminate R from Eq. (3.21)
by expressing it in terms of Q, g,C3. Here, however, let us
instead keep R explicit at this stage and simply proceed to
dualise Pab. By defining Xabc as in Eq. (3.8) and introducing
the Lagrange multiplier term, we obtain

S = 1

2

∫
d5x

(
1

12
XabcX

abc + ∂a Pb5∂
[a Pb]

5

+2qab∂a Pb5 + 1

6
qabXmnpε

mnpab

+ 1

3! Xabc∂mKnε
abcmn + 1

12

√−gU

+[q(R + b)] − 1

2
[(q − R)(b − C̃)]

)
−

∫
C5. (3.23)

Integrating out X gives

S = 1

2

∫
d5x

(
−

[
(∂K + ∂P + q)2

]
+ 2 [∂K∂P]

+ 1

12

√−gU + [q(R + b)]

−1

2
[(q − R)(b − C̃)]

)
−

∫
C5, (3.24)

where ∂K and ∂P are matrices with components (∂K )mn ≡
∂[mKn] and (∂P)mn ≡ ∂[m Pn]5, respectively. The compo-
nents of ∂K and ∂P are raised and lowered by η. Let us
define

ψ ≡ ∂K + ∂P, ψ(s) ≡ ∂K − ∂P, (3.25)

whose components are also raised and lowered by η. We may
view the above definition as the field redefinitions

Km + Pm ≡ − Am

2
, Km − Pm ≡ A(s)

m

2
. (3.26)

So −ψ and ψ(s) are field strengths of A and A(s). The action
becomes

S = 1

2

∫
d5x

(
−

[
(ψ + q)2

]
+ 1

2
[ψ2] − 1

2
[(ψ(s))2]

+ 1

12

√−gU + [q(R + b)]

−1

2
[(q − R)(b − C̃)]

)
−

∫
C5. (3.27)

Euler-Lagrange equation for q gives

R = ψ + q. (3.28)

By using Eq. (3.28) to eliminate R from the action, we obtain

S =
∫

d5x

(
− 1

4
[(ψ(s))2] − 1

4
[ψ2] + 1

2
[q(−ψ + b)]

123
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+ 1

24

√−gU + 1

4
[ψb] − 1

4
[ψC̃]

)
−

∫
C5. (3.29)

It is possible to simplify the expression forU. Let us define
matrices F and F̃ whose components are

Fa
b ≡ e−2φ/3Fa

b5, F̃a
b ≡ e−2φ/3 F̃a

b5. (3.30)

It will be understood that indices of Fab and F̃ab are raised
and lowered by γ. With this convention, we have

FμνρF
μνρ = −3[F2] + 3[F̃2]. (3.31)

Since twenty components of Fμνρ are related to each other
by the non-linear self-duality condition, only ten independent
components are required. For our case, we need to eliminate
F̃ab5. The relevant non-linear self-duality condition is

F̃ab = (1 − y1)Fab + (F3)ab√
1 − y1 + y2

1 − y2

, (3.32)

where

y1 ≡ 1

2
[F2], y2 ≡ 1

4
[F4]. (3.33)

Therefore, after substituting into Eq. (3.31) and then working
out U, we obtain

U = −12
2 − y1√

1 − y1 + 1
2 y

2
1 − y2

. (3.34)

Let us eliminate q. By considering the i jk component of
H = Q − R along with Eq. (3.28), we obtain

qab = 1

2

(√−gF̃ab + C̃ab − 1

2
εabi jk Fi jCk

+ ηacηbd Fcd − bab
)

.

(3.35)

This completely determine Q in terms of other fields due to
Eq.(3.32) and

Fab = −ψab + bab, (3.36)

where, as defined in Eqs. (3.25)–(3.26), ψab is a field strength
of a 1-form field.

So by substituting Eq. (3.35) into Eq. (3.29), the action
becomes

S =
∫

d5x

(
1

4
ψ

(s)
ab ψ

(s)
i j ηaiηbj − e−φ

√− det(γab + Fab)

)

−
∫ (

C1 + C3 + C ′
5

)∧eF , (3.37)

where

Fab = ∂a Ab − ∂b Aa + bab, (3.38)

C ′
5 = C5 − 1

2
B∧C3, (3.39)

ψ
(s)
ab = ∂a A

(s)
b − ∂b A

(s)
a . (3.40)

The action (3.37) describes the complete D4-brane [26] in
type IIA supergravity background decoupled with unphysical
field.

At this point, let us compare with the result from the PST
formalism. It can be seen from the discussion in the literature
that double dimensional reduction of the M5-brane action in
the original PST action [4,6,7] on a circle is given by the dual
D4-brane action, which can be realised as a duality transfor-
mation [26] of the D4-brane action. Alternatively, if one starts
with the dual formulation of the M5-brane action [5,13], then
it can be shown that double dimensional reduction on a circle
directly gives rise to the D4-brane action. As for the case of
Sen formalism, we have seen in this subsection that essen-
tially by dualising some components of P, we obtain as a
result of double dimensional reduction of the complete M5-
brane action on a circle, the D4-brane action. Therefore, it
seems that the original PST M5-brane action naturally gives
rise, after double dimensional reduction on a circle, to dual
D4-brane action. On the other hand, the Sen M5-brane action
seems to naturally give rise to D4-brane action. In fact, as will
be demonstrated in the next subsection, it can be seen that the
Sen M5-brane action also naturally give rise to dual D4-brane
action.

3.3 Dual D4-brane action from Sen M5-brane action

We have learned from the previous section that the key steps
of double dimensional reduction of the M5-brane action
in Sen formalism to the D4-brane action are essentially to
dualise components Pab of P and then eliminate Q. The five-
dimensional DBI gauge field A and unphysical field A(s) then
arise as linear combinations of the Lagrange multiplier and
the remaining components Pa5 of P.

In fact, by slightly modifying the procedure, it is pos-
sible to obtain the dual D4-brane action by dimensionally
reducing Sen M5-brane action. The modification is simply
to switch the role of the components of P so that we dualise
components Pa5 and as to be seen at the end of the process
that components of Pab along with the Lagrange multiplier
will be linearly combined to form gauge field and unphysical
field.

Let us show this in more details. We follow the same steps
as those of the previous section up to Eq. (3.21). Then, by
defining

Yab = 2∂[a Pb]5 (3.41)

and introducing Lagrange multiplier term, we obtain

S̃ = 1

2

∫
d5x

(
3

4
∂a Pbc∂

[a Pbc] + 1

4
YabY

ab + qabYab

+1

2
qab∂m Pnpε

mnpab + 1

4
Yab∂mKnpε

abmnp

123
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+ 1

12

√−gU + [q(R + C̃)]

+1

2
[(q + R)(b − C̃)]

)
−

∫
C5. (3.42)

Integrating out Y gives

S̃ = 1

2

∫
d5x

( [
(∂̃K − ∂̃P + q)2

]
+ 2

[
∂̃K ∂̃P

]

+ 1

12

√−gU + [q(R + C̃)]

+1

2
[(q + R)(b − C̃)]

)
−

∫
C5, (3.43)

where ∂̃K and ∂̃P are matrices with components ∂̃K
mn ≡

εmni jk∂i K jk/4 and ∂̃P
mn ≡ εmni jk∂i Pjk/4, respectively.

Indices for matrices ∂̃K , ∂̃P are raised and lowered by the
five-dimensional flat metric η. Let us define

χ ≡ ∂̃P − ∂̃K , χ(s) ≡ ∂̃P + ∂̃K , (3.44)

which can be viewed as the field redefinitions

Pi j − Ki j ≡ 2Bi j , Pi j + Ki j ≡ 2B(s)
i j . (3.45)

So χ and χ(s) are dual of field strengths of B and B(s)

with respect to five-dimensional flat metric. The action then
becomes

S̃ = 1

2

∫
d5x

( [
(−χ + q)2

]
− 1

2
[χ2] + 1

2
[(χ(s))2]

+ 1

12

√−gU + [q(R + C̃)]

+1

2
[(q + R)(b − C̃)]) −

∫
C5. (3.46)

Variation with respect to q gives

R = χ − q. (3.47)

Eliminating R from the action gives

S̃ =
∫

d5x

(
1

4
[(χ(s))2] + 1

4
[χ2] + 1

2
[q(−χ + C̃)]

+ 1

24

√−gU + 1

4
[χb] − 1

4
[χC̃]

)
−

∫
C5. (3.48)

The next step is to reexpress U. For this, let us define

F̂a
b ≡ Fa

b
5√

g55
,

ˆ̃Fa
b ≡ F̃a

b
5√

g55
. (3.49)

Let indices of F̂ab and ˆ̃Fab be lowered byγab whereas indices
of Fμνρ and F̃μνρ are lowered by gμν. We obtain

FμνρF
μνρ = −3[F̂2] + 3[ ˆ̃F2]. (3.50)

We need to eliminate F̂ab using nonlinear self-duality con-
dition

F̂a
b = (1 + z1)

ˆ̃Fa
b − (

ˆ̃F3)ab√
1 + z1 + 1

2 z
2
1 − z2

, (3.51)

where

z1 ≡ 1

2
[ ˆ̃F2], z2 ≡ 1

4
[ ˆ̃F4]. (3.52)

This gives

U = − 12(2 + z1)√
1 + z1 + 1

2 z
2
1 − z2

. (3.53)

Let us eliminate q from the action (3.46). By considering
the ab5 component of H = Q − R, we obtain

qab − Rab + bab

= 1√
g55

(
gac F̂

c
b − 1

2

√−gεabcmng
c5 ˆ̃Fm

pg
pn

)
. (3.54)

So along with Eq. (3.47), we obtain

qab = 1

2

(
gac√
g55

F̂c
b − 1

2

√−g√
g55

εabcmng
c5 ˆ̃Fm

pg
pn

−bab + √−g
√
g55 ˆ̃Fm

pg̃
pnηmaηnb + C̃ab

)
, (3.55)

which completely determine Q in terms of other fields due
to Eq. (3.51). Here

g̃ab ≡ gab − ga5gb5

g55
. (3.56)

We also have

χab = √−g
√
g55 ˆ̃Fa

cg̃
cb + C̃ab. (3.57)

Let us define

Wab ≡ √−g
√
g55 ˆ̃Fa

d g̃
db

= − 1

3!ε
abi jk Fi jk, (3.58)

which is the dualisation of Fi jk with respect to five-
dimensional flat metric η. The components of W are raised
and lowered by η.

So the action becomes

S̃ =
∫

d5x

(
3

4
∂[ab(s)

bc]∂[i b(s)
jk]η

aiηbjηck

−e−φ√−γ

√
1 + z1 + 1

2
z2

1 − z2

+1

2
[Wb] + 1

4
[C̃b]

−1

8

1

g55
εabcmng

c5WmnWab
)

−
∫

C5

123
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=
∫

d5x

(
3

4
∂[ab(s)

bc]∂[i b(s)
jk]η

aiηbjηck

−e−φ
√−G

− 1

24

γ cdCdε
abmnpFmnpFabc

e−4φ/3 + e2φ/3Ciγ i jC j

)

+
∫

(b∧(F − C3) − C ′
5), (3.59)

where

Gab ≡ γab − i

6
eφ γacε

cdi jk Fi jk(γdb + e2φCdCb)√−γ
√

1 + e2φCmγmnCn
, (3.60)

and, due to Eqs. (3.44), (3.57)–(3.58),

Fi jk = ∂i B jk + ∂ j Bki + ∂k Bi j + Ci jk . (3.61)

The action (3.59) describes the complete dual D4-brane
action [26] decoupled with unphysical field.

3.4 Duality from the viewpoint of Sen M5-brane action

It is well known that the D4-brane part of the action (3.37) and
the dual D4-brane part of the action (3.59) are related by dual-
ity transformation. This can be shown [26] by considering the
dualisation of Aa in the D4-brane action, which then gives
rise to the dual D4-brane action. More explicitly, one replaces
2∂[a Ab] in the D4-brane action by ψab, treats the latter as an
independent field, introduces a 3−form Lagrange multiplier
χ which puts ψab = 2∂[a Ab], then finally integrates out Aa

and ψab. This process gives rise to the dual D4-brane action,
in which the Lagrange multiplier χ becomes the field strength
of the 2-form field B.

It can be shown from the viewpoint of dimensionally
reduced Sen M5-brane action that the action (3.37) and (3.59)
are dual to each other. The prove can be performed quite
simply by noting that the action (3.37) is equivalent to the
action (3.24), whereas the action (3.59) is equivalent to the
action (3.43). Let us replace (∂K )ab and (∂P)ab in the action
(3.24) by �

(1)
ab and �

(2)
ab , respectively. Let us treat �

(1)
ab and

�
(2)
ab as independent fields and impose Lagrange multipliers

�
(1)
ab ,�

(2)
ab which impose ∂[a�(1)

bc] = 0 = ∂[a�(2)
bc]. So the

action (3.24) becomes

S =
∫

d5x

(
− 1

2

[
(�(1) + �(2) + q)2

]
+

[
�(1)�(2)

]

+1

4
εabci j (∂a�

(1)
bc �

(1)
i j + ∂a�

(2)
bc �

(2)
i j )

+ 1

24

√−gU + 1

2
[q(R + b)]

−1

4
[(q − R)(b − C̃)]

)
−

∫
C5. (3.62)

Euler–Lagrange equations for �
(1)
ab and �

(2)
ab are ∂[i�(1)

jk] =
0 = ∂[i�(2)

jk], which if the five-dimensional spacetime is topo-

logically trivial in the sense that all closed forms are exact,
then we can write �

(1)
i j = ∂[i K j],�(2)

i j = ∂[i Pj], which
upon substitution into Eq. (3.62), we reobtain Eq. (3.24) as
expected. Let us however consider Euler–Lagrange equations
for �

(1)
ab and �

(2)
ab which imply

(�(1))ab = −qab − 1

4
εi jkab∂i�

(1)
jk , (3.63)

(�(2))ab = −qab − 1

4
εi jkab∂i�

(2)
jk . (3.64)

Substituting these results into Eq. (3.62), keeping in mind
that indices for q,�(1), �(2) are raised and lowered by η, and
denoting �

(1)
i j = −Pi j and �

(2)
i j = Ki j , we obtain Eq. (3.43).

This finishes the proof in the viewpoint of Sen formalism that
the D4-brane action and the dual D4-brane action are dual to
each other.

4 Towards dimensional reduction of the Sen M5-brane
action on other spaces

In [18,20], analyses of dimensional reductions of the 6d Sen
quadratic action are given. The examples of the spaces are a
circle, a torus, K3, and a non-compact Riemann surface.
Furthermore, in Sect. 3 we have demonstrated that when
non-linearising to the Sen M5-brane action, the dimensional
reduction on a circle can naturally be given. In particular, it
is natural to give, based on the procedure of double dimen-
sional reduction, either D4-brane action or dual D4-brane
action. Note that these results suggest a remarkable feature
of the Sen formalism that although its quadratic action cou-
ples to gravity in a complicated way, dimensional reduction
on various cases of spaces can naturally be performed.

In contrast, in the PST formalism, although dimensional
reduction can in principle be performed on any spaces, it is
more natural to use specific action for dimensional reduction
on a specific space. For example, it is natural to perform
dimensional reduction of the original PST action [4,6,7] and
its dual version [5,13] on a circle giving rise respectively to
D4-brane and dual D4-brane actions, whereas it is natural to
perform dimensional reduction of the 3 + 3 M5-brane action
[12] on T 3 to give an M2-brane action.

In this section, we will work towards generalising the anal-
ysis in Sect. 3 so that it applies also to dimensional reductions
on other spaces. We will only focus on special cases which
contain some particular ways of dimensional reductions. We
will also only give an outline of the analysis. The explicit
details will be studied as future works. We expect that the
analysis in this section could be served as a base for further
generalisations, for example, double dimensional reduction
of the complete M5-brane action on T 5−p to give Dp-brane
with p < 4 (the case p = 4 has been given in the previous
sections).

123
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4.1 An outline of the analysis

Let us consider dimensional reduction of the Sen M5-brane
action (2.7) from a 6 dimensional spacetime M6 = DD ×
C6−D with coordinates2 xμ,μ = 0, 1, 2, . . . , 5 to a D dimen-
sional topologically trivial spacetime DD with coordinates
xa, a = 0, 1, . . . , D − 1. Let fields be independent from the
coordinates xα, α = D, D + 1, . . . , 5 of the compact space
C6−D. Denote d and d̂ to be the exterior derivative on M6

and DD, respectively.
On M6, let us denote a 3-form coordinate basis in six

dimensions asB = {dxμ∧dxν∧dxρ |μ, ν, ρ ∈ {0, 1, 2, . . . ,

5}}. Let us pick 2n projection operatorsPI , I = 1, 2, . . . , 2n
such that

PI (dx
μ∧dxν∧dxρ)

=
{
dxμ∧dxν∧dxρ if dxμ∧dxν∧dxρ ∈ BI ,

0 if dxμ∧dxν∧dxρ /∈ BI ,

(4.1)

whereB1,B2, . . . ,B2n are mutually exclusive subsets ofB =
∪2n
I=1BI . Therefore, the projection operators satisfy

2n∑
I=1

PI = 1, (4.2)

∗′PI∗′ = YI JPJ , (4.3)

where YI J are constants. Let us also impose a condition that
the projection operators PI satisfy the property that for any
2-form A which is independent from coordinates of C6−D,

there exists a 2-form AI such that

PI d A = d̂ AI . (4.4)

Since A is independent from xα, it can easily be seen that
AI are also independent from xα. Let us require furthermore
that the first n projection operators P Î , Î = 1, 2, . . . , n, are
related to the last n projection operators P Ī , Ī = n + 1, n +
2, . . . , 2n, by

∗′ P Î∗′ = δ Î , J̄−nP J̄ . (4.5)

Therefore,

YĪ J̄ = YÎ Ĵ = 0, YÎ J̄ = YJ̄ Î = δ Î , J̄−n . (4.6)

Let us replace dP in Eq. (2.7) by X and introduce
Lagrange multiplier P̃ which puts dX = 0. The action
becomes

S = 1

2

∫ (
1

2
X∧ ∗′ X − 2Q∧X − d P̃∧X

2 In this section, middle Greek alphabets for example μ, ν, ρ are
used as indices of coordinates on M6. Roman alphabets for example
a, b, c, i, j, k,m, n are used as indices of coordinates onDD . Beginning
Greek alphabets for example α, β are used as indices of coordinates on
C6−D .

+d6x

12

√−gU + Q∧R + F∧C3 + 2C6

)
. (4.7)

Euler–Lagrange equation for X is given by

X + 2Q + ∗′d P̃ = 0. (4.8)

As suggested by [27], if we substitute X from Eq. (4.8) into
Eq. (4.7), we would obtain the action as in Eq. (2.7) with
P replaced by P̃. This is not the resulting action we are
interested in. So let us instead only substitute the components
P J̄ X from Eq. (4.8):

P J̄ X = −2P J̄ Q − P J̄ ∗′ d P̃ . (4.9)

into Eq. (4.7). This gives

S = 1

2

∫ (
2P Î Q∧ ∗′ P Î Q + 2P Î d P̃∧ ∗′ P Î Q

+1

2
P Î d P̃∧ ∗′ P Î d P̃ + 1

2
P Î X∧ ∗′ P Î X

−2 ∗′ P Î Q∧P Î X − YJ̄ ÎP J̄ d P̃∧P Î X

+d6x

12

√−gU + Q∧R + F∧C3 + 2C6

)
. (4.10)

Note that if ω is a differential p-form on M6 and is inde-
pendent on coordinates xα of C6−D , we have dω = d̂ω ≡
dxa∧∂aω. In particular, if d̂ω = 0, then by expressing in
index-notation and using the fact that the D-dimensional
spacetime is topologically trivial, it can be shown, for exam-
ple by expressing in index notation, that there exists a (p−1)-
form φ on M6 such that it is independent on xα and that
ω = d̂φ.

The Euler–Lagrange equations for P̃ are

d̂(2P J̄P J̄ Q + ∗′P ÎP Î d P̃ − P ÎP Î X) = 0, (4.11)

which imply

2P J̄P J̄ Q + ∗′P ÎP Î d P̃ − P ÎP Î X = −d̂ P, (4.12)

where we denote the arbitrary xα-independent 2−form on
the 6-dimensional spacetime as P. Let us apply P Î on Eq.
(4.12). This gives

P Î X = P Î d̂ P. (4.13)

By substituting Eq. (4.13) into Eq. (4.10), we obtain

S = 1

2

∫ (
2P Î Q∧ ∗′ P Î Q − 2 ∗′ P Î Q∧P Î (dP + d P̃)

+1

2
P Î d P̃∧ ∗′ P Î d P̃ + 1

2
P Î d P∧ ∗′ P Î d P

+d6x

12

√−gU + Q∧R + F∧C3 + 2C6

)
, (4.14)

where we discard the integral of total derivative.
The next task is to eliminate Q by solving its Euler–

Lagrange equations and substituting back into the action
(4.14). Let us argue that this is very difficult, if at all possible,

123
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to approach this directly. In principle, the Euler–Lagrange
equations of Q would not be sufficient to completely deter-
mine Q. One should also realise self-duality and non-linear
self-duality conditions. In particular, one should solve Eq.
(2.14) to determine R in terms of Q, g,C3. The resulting
expression of Q is expected to be in terms of P, P̃, g,C3. It
is likely that this expression would be complicated so that it
is not even clear if it can be expressible in a closed form.

With the insight gained from the analysis in Sect. 3, one
may approach this strategically. Let us first consider the
Euler–Lagrange equations for Q which can be expressed as

P Î R = P Î Q + 1

2
P Î (dP + d P̃). (4.15)

Note that one can see from Eq. (4.15) that some projections
of F = Q − R + C3 turn out to be expressible as simple
expressions of P and P̃. That is

P Î F = −1

2
P Î (dP + d P̃) + P Î C3, (4.16)

which when using the property Eq. (4.4), the first term on
the RHS of Eq. (4.16) is an exact differential form. One may
use Eq. (4.15) to express R in terms of Q then use Eq. (2.14)
to express Q in terms of P Î F. The idea is that the collec-

tion {P Î F | Î = 1, 2, . . . , n} contains ten components of F.

The other ten components which are contained in the collec-
tion {P J̄ F | J̄ = n + 1, n + 2, . . . , 2n} can in principle be
expressed in terms of P Î F by using non-linear self-duality
relation of F . This means that Eq. (2.14) can be used to
express

P J̄ F = V̂J̄ (P Î F, g), (4.17)

where V̂J̄ (P Î F, g) is a differential 3-form which is a function
of P Î F and g. Then by using F = Q − R + C3 along with
Eqs. (4.15)–(4.17), we obtain

P Î Q = 1

2
P Î F + 1

2
YÎ J̄ ∗′ V̂J̄ (P Î F, g) − 1

2
P Î (C3 + ∗′C3).

(4.18)

Let us then substitute Eqs. (4.15) and (4.18) into the action
(4.14). Note also that we may substitute the componentsP J̄ F
from Eq. (4.17) into the expression of U (F, g) leaving only
the dependency onP Î F and g. More explicitly, we have after
substitution,

U (F, g) = Û (P Î F, g). (4.19)

The action (4.14) then becomes

S = 1

2

∫ (
1

4
P Î (dP − d P̃)∧ ∗′ P Î (dP − d P̃)

+YÎ J̄ V̂J̄ (P Î F, g)∧P Î F

+d6x

12

√−gÛ (P Î F, g)

+P ÎP Î (2F − C3)∧C3 + 2C6

)
. (4.20)

Let us make field redefinitions

A = −1

2
(P + P̃), A(s) = 1

2
(P − P̃). (4.21)

We may write

P Î d A = d̂ Â Î , P Î d A
(s) = d̂ Â(s)

Î
. (4.22)

Therefore,

S = 1

2

∫ (
d̂ Â(s)

Î
∧ ∗′ d̂ Â(s)

Î
+ YÎ J̄ V̂J̄ (F̂K̂ , g)∧F̂Î

+d6x

12

√−gÛ (F̂Î , g)

+P Î (2FÎ − P Î C3)∧C3 + 2C6

)
, (4.23)

where F̂Î ≡ d̂ Â Î + P Î C3. After integrating out internal

coordinates xα the action (4.23) physical fields Â Î decoupled

with free unphysical fields Â(s)

Î
. Generically, each of Â Î are

collections of physical 0-form, 1-form, and 2-form fields in
the D dimensional spacetime.

4.2 Duality

In Sect. 3.4, we have seen that there is a simple way to realise
the duality between D4-brane and dual D4-brane. From the
point of view of the Sen M5-brane action, the duality is
realised by simply switching the roles of components of P.

In fact, it is natural to extend this idea to the cases of dimen-
sional reduction to even lower dimensions.

Let us start by giving a quick summary to the result of
Sect. 4.1 as follows. Consider a dimensional reduction of the
M5-brane action (2.7) to a D dimensional spacetime. The
appropriate choice of 2n projection operators satisfy Eqs.
(4.1)–(4.6) are also chosen. It turns out that only the first n
projection operators P1,P2, . . . ,Pn explicitly appear in the
reduced action (4.23), which let us denote as S1,2,3,...,n .

If we swap for example P1 with Pn+1, the projec-
tion operators would still satisfy the properties (4.1)–(4.6).
Therefore, we may obtain the reduced action Sn+1,2,3,...,n

which is explicitly described by the projection operators
Pn+1,P2,P3, . . . ,Pn .

In fact, the theories S1,2,3,...,n and Sn+1,2,3,··· ,n are related
by duality transformation. We first note that the action
S1,2,3,...,n is equivalent to the action (4.14). Focusing on terms
involving P1Q,P1dP,P1d P̃, we may express the action
(4.14) as

S1,2,3,...,n

= 1

2

∫ (
2P1Q∧ ∗′ P1Q
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−2 ∗′ P1Q∧P1(dP + d P̃)

+1

2
P1d P̃∧ ∗′ P1d P̃

+1

2
P1dP∧ ∗′ P1dP

)
+ S′, (4.24)

where

S′ = 1

2

∫ ( n∑
Î=2

2P Î Q∧ ∗′ P Î Q

−
n∑

Î=2

2 ∗′ P Î Q∧P Î (dP + d P̃)

+
n∑

Î=2

1

2
P Î d P̃∧ ∗′ P Î d P̃

+
n∑

Î=2

1

2
P Î d P∧ ∗′ P Î d P

+d6x

12

√−gU + Q∧R + F∧C3 + 2C6

)
. (4.25)

Note that by using the property (4.4) and the fact that P
and P̃ are independent from xα, we may express

P1dP = d̂ P1, P1d P̃ = d̂ P̃1. (4.26)

In the action (4.24), let us set � ≡ d̂ P1, �̃ ≡ d̂ P̃1 and
introduce Lagrange multiplier to set d̂� = d̂�̃ = 0 and
P1� = �,P1�̃ = �̃. So

S1,2,3,...,n

= 1

2

∫ (
2P1Q∧ ∗′ P1Q − 2 ∗′ P1Q∧(� + �̃)

+1

2
�̃∧ ∗′ �̃ + 1

2
�∧ ∗′ �

−Pn+1dK∧� − Pn+1d K̃∧�̃

)
+ S′, (4.27)

where K and K̃ are independent from xα. Euler–Lagrange
equations for � and �̃ are

� = −2P1Q − ∗′Pn+1dK , �̃ = −2P1Q − ∗′Pn+1d K̃ .

(4.28)

Substituting into the action (4.27) gives

S1,2,3,...,n

= 1

2

∫ (
2Pn+1Q∧ ∗′ Pn+1Q

−2 ∗′ Pn+1Q∧Pn+1(dK + d K̃ )

+1

2
Pn+1d K̃∧ ∗′ Pn+1d K̃

+1

2
Pn+1dK∧ ∗′ Pn+1dK

)
+ S′, (4.29)

which after field redefinitions, it can easily be seen that

S1,2,3,...,n = Sn+1,2,3,...,n, (4.30)

as required.
The analysis above indeed generalises the analysis of

Sect. 3, in which D = 5. So if we define P1,P2 such that

P1(dx
μ∧dxν∧dxρ) = 3δ

μνρ
i j5 dxi∧dx j∧dx5,

P2(dx
μ∧dxν∧dxρ) = δ

μνρ
i jk dxi∧dx j∧dxk, (4.31)

then the physical part of the action (4.23) describes a D4-
brane. But if we define

P1(dx
μ∧dxν∧dxρ) = δ

μνρ
i jk dxi∧dx j∧dxk,

P2(dx
μ∧dxν∧dxρ) = 3δ

μνρ
i j5 dxi∧dx j∧dx5, (4.32)

then the physical part of the action (4.23) describes a dual
D4-brane.

By similar considerations, any pair (Pk,Pk+n), k =
1, 2, . . . , n of projection operators can be swapped and that
it is also possible to swap more than one pair at a time. The
resulting action is dual to the original action. For simplicity,
let us discuss an example case where the action is quadratic.
In this case, the action (4.23) is

S = 1

2

∫ (
d̂ Â(s)

Î
∧ ∗′ d̂ Â(s)

Î
+ YÎ J̄ V̂J̄ (F̂K̂ , g)∧F̂Î

+P Î (2F̂Î − P Î C3)∧C3 + 2C6

)
, (4.33)

where the form of V̂J̄ (F̂Î , g) will be given on a case by case
basis by rearranging the 6d ∗−self-duality condition of F .

In particular, let us consider an example case in which
D = 4, the compact space is a torus, and the 6d metric is
g = g4 ⊕ g2. Let us pick the projection operators as follows

P1(dx
μ∧dxν∧dxρ) = 6δ

μνρ
i45 dxi∧dx4∧dx5,

P2(dx
μ∧dxν∧dxρ) = 3δ

μνρ
i j4 dxi∧dx j∧dx4,

P3(dx
μ∧dxν∧dxρ) = δ

μνρ
i jk dxi∧dx j∧dxk,

P4(dx
μ∧dxν∧dxρ) = 3δ

μνρ
i j5 dxi∧dx j∧dx5. (4.34)

Furthermore, let us consider a consistent truncation by setting

F̂1 = F̂3 = P1C3 = P3C3 = 0, (4.35)

or in component form

Fi45 = Fi jk = Ci45 = Ci jk = 0. (4.36)

This example case is exactly what studied before in [18]
in which g4 = η4 is the flat 4d metric. Here, however, we
shall generalise this by taking g4 to be a general 4d metric
which depends on the 4d coordinates xi . The ∗-self-duality
condition of F in 6d gives

Fi j4 = 1

g44

(
gmi gnj + g45

1

2
√−g

εi jmn
)
Fmn4, (4.37)
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where Fmn4 = 2∂[m An]4 + Cmn4. Therefore, the physical
part of the action (4.33) is

Sphys =
∫

d4x

(
− 1

4

√
g44g55 − g2

45

g44

√−g4Fi j4Fmn4g
img jn

−1

8

g45

g44
εmni j Fi j4Fmn4

)

+
∫

d4x

(
− 1

4
Fi j4Cmn5ε

i jmn − 1

8
Ci j4Cmn5ε

i jmn

− 1

4!Ci jmn45ε
i jmn

)
, (4.38)

where εi jmn is a 4d Levi–Civita tensor which is defined as
εi jmn = εi jmn45, and for simplicity, we set

∫
dx4 = ∫

dx5 =
1. By making the swap P2 ↔ P4, we obtain the dual action

S̃phys =
∫

d4x

(
− 1

4

√
g44g55 − g2

45

g55

√−g4Fi j5Fmn5g
img jn

+1

8

g45

g55
εmni j Fi j5Fmn5

)

+
∫

d4x

(
1

4
Fi j5Cmn4ε

i jmn + 1

8
Ci j4Cmn5ε

i jmn

− 1

4!Ci jmn45ε
i jmn

)
. (4.39)

The action (4.38) and its dual (4.39) transform to each other
under the S-duality transformation

g44 �→ g55, g45 �→ −g45, g55 �→ g44, (4.40)

Fi j4 �→ −Fi j5, Fi j5 �→ Fi j4,

Ci j4 �→ −Ci j5, Ci j5 �→ Ci j4.
(4.41)

Note that the transformation (4.40) is equivalent to

τ �→ − 1

τ
, (4.42)

where

τ =
−g45 + i

√
g44g55 − g2

45

g44
. (4.43)

The transformation (4.42) is what expected from the con-
formal symmetry of the 6d action of self-dual 3-form [25].
Furthermore, in the context of D3-brane, τ encodes axion
and dilation as τ = C0 + ie−φ, whereas Ci j4 and Ci j5 are
identified with B2 andC2. The transformations (4.40)–(4.41)
is precisely the S-duality transformation for D3-brane.

It is clear that the reduced theories (4.38)–(4.39) we have
obtained is expressed entirely in terms of standard fields. This
is possible largely due to that we have chosen appropriate
projection operators, in particular the ones which project to
i j4 or i j5 components. On the other hand, for the choice
studied in [18], in which the components î ĵα where î, ĵ ∈
{1, 2, 3}, α ∈ {4, 5} are chosen, it is not yet clear whether the

Lagrangian can be expressed entirely in terms of standard
fields.

Note that due to the expected form of the reduced theory
under dimensional reduction and how it transforms under
S-duality, it could be expected that if one considers double
dimensional reduction of the complete Sen M5-brane action
(2.7) on a torus, then one could obtain the complete D3-brane
action on a circle. Indeed, explicit checks are required. If this
succeeds, one may then compare and contrast the approach
with its counterpart [28] given in the PST formalism.

It is remarkable that the duality can easily be obtained
simply by appropriately swapping the projection operators.
In fact, since the analysis only involves mainly the field
P and projection operators, similar analysis for the dual-
ity of dimensional reduction of self-dual (2p + 1)-forms in
4p+2 dimensions in Sen formalism can easily be performed.
This way that dualities of dimensionally reduced theories
are realised in the Sen formalism is another property which
makes the Sen formalism appealing. Of course, further efforts
are still required to eliminate Q from each action to arrive at
the final form.

5 Conclusion and discussion

In this work, we have studied double dimensional reduc-
tion of the Sen M5-brane action (2.7). In particular, we have
explicitly shown that double dimensional reduction of the
Sen M5-brane action on a circle indeed gives, depending
on how the projection operators are chosen, the complete
D4-brane action or the complete dual D4-brane action. The
procedure we have followed is essentially just a slight mod-
ification of that given in [20]. It is remarkable that although
the Sen M5-brane action couples to gravity in a complicated
way and that there are fields which do not transform in the
standard way under diffeomorphism, it seems that dimen-
sional reduction can be carried out relatively simply giving
rise to reduced actions which describe dynamics of fields
which transform in a standard way under diffeormorphism.

We have also outlined an extension of dimensional reduc-
tion on other spaces. The analysis suggests that provided that
one picks projection operators which satisfy Eqs. (4.1)–(4.6),
the dimensional reduction of the Sen M5-brane action gives
rise to the reduced action (4.23) which contains standard
fields.

Note that one aspect which makes the procedure of dimen-
sional reduction simple despite the aforementioned compli-
cations of the Sen M5-brane action is that it allows one to
easily integrating out Q. In particular, it avoids the need to
explicitly express R in terms of Q, g,C3. As a future work,
it would be interesting to see whether it is possible to extend
and modify the procedure to show explicitly that the Sen
M5-brane action is equivalent to the M5-brane actions in
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PST formalism. We anticipate that if this is at all possible,
the procedure should also allow one to integrate out Q in a
simple way.

We have found another remarkable feature of Sen M5-
brane action that dualities of dimensional reduced action
seem to be encoded within the Sen M5-brane action. For
example, as demonstrated explicitly in this paper, in the view-
point of string theory, it would take some efforts to show that
the D4-brane and dual D4-brane actions are dual to each
other. On the other hand, from the viewpoint of the Sen M5-
brane action, the D4-brane and dual D4-brane actions can be
put in a similar form. This can be seen by comparing Eqs.
(3.24) and (3.43), which can be transformed to each other
simply by swapping the projection operators between Eqs.
(4.31) and (4.32). We have also shown that this swapping is
a result of dualisation.

We have outlined a generalisation to dimensional reduc-
tion on other manifolds. As long as the projection operators
can be given to satisfy (4.1)–(4.6), the process will give rise to
the reduced action (4.23) whose physical part describe fields
which transform under standard diffeomorphism. Apart from
the D4-brane and dual D4-brane actions, it can be expected
that the action (4.23) should also give rise to other com-
plete actions in string theory and M-theory for example D3-
brane, D2-brane, D1-brane, F1-brane, M2-brane actions and
whether S-dualities in these cases are the results of sim-
ple swapings of the projection operators. For completeness,
explicit checks should be made in each case.

The analysis for dimensional reduction on other spaces
as given in Sect. 4 heavily relies on the assumption that the
projection operators should satisfy Eqs. (4.1)–(4.6). It would
be interesting to see whether the analysis can be extended to
the cases where some of the properties (4.1)–(4.6) are gen-
eralised. In any case, it would also be interesting to consider
dimensional reduction of the Sen M5-brane action on other
spaces. In particular, one might consider the dimensional
reduction of the Sen M5-brane action on Riemann surface
and K3. This is to see non-linear extension to the result of
[20].

It could also be expected that other kinds of dimensional
reduction for the Sen M5-brane action could also easily be
carried out. In particular, the null dimensional reduction on
a (2,0) theory in the Sen formalism has been carried out in
[21]. So one might try to use a similar method to study the
null reduction of the Sen M5-brane action.

Although the analysis in Sect. 4 is given explicitly for the
six-dimensional Sen M5-brane action, the extension espe-
cially for the quadratic version which describes self-dual
(2p + 1)-form on 4p + 2 dimensional spacetime can easily
be done. In particular, for the case p = 2, the Sen quadratic
action describes type IIB supergravity. So it would also be
interesting to study how the dimensional reduction of type
IIB supergravity is realised in Sen formalism.
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