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Abstract We study a class of homogeneous and anisotropic
geometries with affine equation of state (EoS) for different
physically plausible scenarios of the universe evolution using
dynamical system technique. We analyze the locally rotation-
ally symmetric Bianchi I (LRS BI), Bianchi III (LRS BIII)
and Bianchi V (LRS BV) geometry for the exhibition of the
effects of affine EoS in the model. The model exhibits stable
attractor which is also isotropic and thus, it may explain the
late-time accelerated expansion of the universe. The model
also possess stiff matter-, radiation- and matter-dominated
phases prior to the dark energy assisted accelerating phase
which are confirmed by the behaviours of effective equation
of state and deceleration parameters. We use the statefinder
diagnostic which is a geometrical diagnostic to explore model
independent features of the cosmological dynamical system.
The LRS BI, BIII and BV geometry based dynamical sys-
tems exhibit r = 1, s = 0 (� cold dark matter model) at
late-times, which is compatible with the observations. The
dynamical system for the Kantowski–Sachs model yields
synchronous bounce on the basis of the model parameters. It
also yields a late-time attractor which may explain the accel-
erated expansion of the universe in the model. The qualitative
differences between LRS BIII and BV cosmological dynam-
ical systems have also been discussed.

1 Introduction

The astronomical observations suggest that the observable
universe is expanding with acceleration and it is homoge-
neous and isotropic at a great accuracy [1–3]. The fluid
responsible for the observed accelerated expansion of the
universe may have a negative pressure and it is dubbed as
dark energy [4–6]. The origin and nature of the dark energy
is still one of the fascinating and challenging component of
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the modern cosmology. The cosmological constant [7] may
give rise to the negative pressure and thus, it may accelerate
the universe expansion. However, it suffers with some serious
theoretical shortcomings [8]. This issue motivates to search
for the alternatives which may include scalar field models,
modified gravity models and the unified dark energy models
[4–6,9].

The observed homogeneous and isotropic nature of the
universe may be explained by the inflationary paradigm,
which usually starts with the homogeneous and isotropic met-
ric in the literature [10]. Planck probe results [3,11] point
toward the presence of anisotropic ‘anomalies’ in the cos-
mic background radiation spectrum. This creates a lot of
interest towards the class of anisotropic geometries such as
the Bianchi class of geometries [12] and the Kantowski–
Sachs geometry [13]. Since, in these geometries the universe
may evolve towards the homogeneity and isotropy from the
anisotropic one, with some cosmological mechanism. Due
to the richer dynamical structure yielded by the anisotropic
models, one may also be able to analyze different issues
such as the behavior of model near the spacetime singu-
larities, issue of highly isotropic present day universe, the
effects of anisotropy on different astronomical observables
etc., as compared to the isotropic models. In the Bianchi
classification [12], Bianchi I (BI) geometry is spatially flat
but the Bianchi III (BIII) and Bianchi V geometries are
the hyper-spherically curved geometries. Isotropic analogue
of BI spacetime is the spatially flat Friedmann–Robertson–
Walker (FRW) spacetime and the open FRW geometry may
be obtained from the BIII and BV geometries under cer-
tain conditions of isotropization. On the other hand, the
Kantowski–Sachs metric possess its isotropic analogue with
the closed FRW metric. Different cosmological issues have
been investigated with the Bianchi I [14–25], Bianchi III
[26–31], Kantowski–Sachs [32–38] and Bianchi V geome-
tries [39–47]. The Bianchi III geometry is a special case
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of Bianchi VIh (BVIh) geometry, in particular, BIII=BVI−1

[46]. It is worthwhile to mention that the spatially homoge-
neous spacetimes may be classified into three broad classes,
namely the Bianchi class A, Bianchi class B and Kantowski–
Sachs geometries [12]. BI geometry belongs to class A and
BIII, BV, BVIh belong to class B in the notations of Ellis and
MacCallum [43]. In this paper, we proceed with the locally
rotationally symmetric (LRS) spacetimes. A spatially homo-
geneous spacetime is said to be LRS if it admits an extra
killing vector field, in addition to three killing vector fields
needed for the spatial homogeneity. In class A, LRS cases are
allowed by the Bianchi I, II, VII0, VIII and IX spacetimes.
And, in class B, LRS cases are allowed for the Bianchi III,
V and VIIh spacetimes [12,43,48]. The Kantowski–Sachs
spacetime automatically admits a fourth killing vector, in
addition to the Killing vector fields for spatial homogeneity
[13].

By considering an unified metric for the Bianchi I, Bianchi
III and Kantowski–Sachs geometries and another LRS met-
ric for Bianchi V geometry, we aim to perform a qualitative
study of these geometries with affine equation of state using
dynamical system technique. The dynamical system method
and the corresponding phase space analysis allows to over-
come the non-linear nature of the cosmological equations in
an efficient way. This method allows to extract the qualitative
description of the model and may also be used to identify the
stability of solutions of cosmological interest, such as those
with the phantom and/or quintessence evolution phases, stiff
matter-, radiation-, matter- and/or de Sitter-like expansion
phases. This method also offers for the study of universe
evolution in a cosmological models, irrespective of the ini-
tial conditions. This method have been used extensively to
study the cosmological models in different gravity theories
and geometries [14–17,20,25–28,32–41,44,46,49–61], for
a more technical detail on the theory of dynamical systems
in cosmology, see [9,12,62,63].

In the homogeneous and isotropic background, the
barotropic fluid following an affine equation of state (EoS)
yields either the de Sitter scenario at late-times or a bounc-
ing universe evolution or a combination of both these scenar-
ios [57]. The cyclic universe evolution may also be realized
with this EoS in the alternative gravity framework [58,59].
A bouncing universe evolution may be governed by the
affine EoS in the close neighborhood of bounce in the non-
conservative theories of gravity [19]. This fluid also offers
accelerating universe evolution at late-times in the model-
dependent investigations in the isotropic [60,64] as well as
anisotropic spacetime [65,66]. A simple extension of the
affine EoS may be the polytropic EoS [67–72]. Polytropic
EoS may yield various interesting cosmological and astro-
physical scenarios. In addition, barotropic fluids satisfying
p = f (ρ) (where p and ρ are the pressure and energy den-
sity respectively and f denotes an arbitrary function) have

also been incorporated in models to explain various cosmo-
logical issues, for more details see Bamba et al. [5]. How-
ever, we aim to explore the effects of inclusion of shear and
three-curvature scalar in the class of anisotropic spacetime
having the affine EoS in the matter sector of the Einstein’s
field equations in the General Relativity framework. It would
be interesting to see for the class of evolution scenarios of
the universe in the model using dynamical system analysis,
since the affine EoS is the simplest extension of EoS p = αρ.

Broadly speaking, the compatibility of the evolution trajecto-
ries in the phase space with the observational features (such as
the issue of accelerating universe transition from the decel-
erating evolution, present day observed isotropy etc.) may
yield the validity for the application of the dynamical system
method in the model.

The basic equations of the model have been written in
the Sect. 2. In Sect. 3, we compose the autonomous sys-
tem for the locally rotationally symmetric Bianchi I and
Bianchi III geometries. We perform a detailed analysis of
the system using qualitative tools such as the linear stabil-
ity and statefinder diagnostic analysis. In Sect. 4, we study
the autonomous system for the Kantowski–Sachs model in
order to identify different evolutionary phases including for
the possibility of a synchronous bouncing evolution of the
universe. In Sect. 5, we study the locally rotationally sym-
metric Bianchi V geometry with affine EoS for its qualitative
evolution. In Sect. 6, we summarize the obtained results with
conclusions.

2 The model

We consider an anisotropic but homogeneous metric for the
universe given by

ds2 = dt2 − a1
2dr2 − a2

2(dθ2 + f 2(θ)dφ2) (1)

where a1, a2 are the directional scale factors. Due to the
homogeneity property,a1, a2 are the functions of cosmic time
t only. Above metric may reduce into the Kantowski–Sachs
(KS), locally rotationally symmetric Bianchi III (LRS BIII)
and Bianchi I (LRS BI) metric for f (θ) = sin θ, sinh θ, θ

respectively. We follow the units 8πG = c = h̄ = kb = 1
and define the directional Hubble parameters as Hi = ȧi

ai
, i =

1, 2, where dot denotes the time derivative. The expan-
sion/contraction of the volume is measured by the expansion
scalar (�) and it is given by the divergence of 4-velocity field
ui . That is, � = ui ;i = 3H and we take 3H = H1 + 2H2,

where H is the mean Hubble parameter. For the choice of
tangent vector ui , the propagation equations of �, σ, 3R are

�̇ + 1

3
�2 + 2σ 2 = −1

2
(ρ + 3p) (2)

σ̇ + �σ − 1

2
√

3
3R = 0 (3)

123



Eur. Phys. J. C (2023) 83 :696 Page 3 of 16 696

3 Ṙ + 2

3
� · 3R − 2√

3
3Rσ = 0 (4)

where 3R denotes the 3-curvature scalar and σ is the shear
scalar (defined from the trace-free symmetric shear ten-
sor (σi j ) by σ 2 = 1

2σi jσ
i j ). ρ and p denote the conven-

tional matter density and pressure of the universe and it may
be given from the perfect fluid energy-momentum tensor
Ti j = (ρ + p)uiu j − pgi j . The generalized Friedmann con-
straint relating the 3-space Ricci scalar with the matter energy
density is

3R = 2σ 2 − 2

3
�2 + 2ρ. (5)

Above equation is also known as the Gauss–Codazzi con-
straint. For LRS BI, LRS BIII and KS universe, 3R =
0,− 2

a2
2 , 2

a2
2 respectively. The Bianchi identity (Gi j

; j = 0)

would lead to the continuity equation given by

ρ̇ + �(ρ + p) = 0. (6)

The perfect fluid matter consisting of the radiation and
matter (dark and baryonic) will decelerate the universe
expansion due to the positive active gravitational mass of
these components. Observations [1–3] suggest that the uni-
verse expansion is accelerating. In order to incorporate the
cosmological mechanism for the accelerating universe evo-
lution, we take the simplest modification of the equation of
state p = αρ as [57,73]

p = αρ − ρ0 (7)

where α, ρ0 are some constants. This simple generalization
provides a description of hydrodynamically unstable (sta-
ble) fluids for α < 0 (α > 0) respectively. On the basis of ρ0

value, for a very small α with small magnitude of energy den-
sity, we may have a mechanism for the existence of negative
pressure in the model. With the negative pressure component
(dark energy), one may explain the accelerating expansion of
the universe in the model. The null energy condition (NEC)
may be satisfied for ρ + p = (1 + α)ρ − ρ0 > 0. NEC
will be violated during the phantom dominated evolution of
the universe. The parameter α may also be interpreted as the
adiabatic sound speed squared of the linear perturbations and
the model is said to be classically stable for 0 ≤ cs2 ≤ 1,

since cs2 = ∂p
∂ρ

. This EoS may yield different evolutionary
aspects of the universe including the late-time accelerating
universe, isotropic universe at late-times and the cyclic uni-
verse evolution etc. [19,58–60,64–66].

The point-wise energy conditions may be written by the
use of energy momentum tensorTi j = diag(ρ,−p,−p,−p)
as: Null energy condition (NEC) which is given by ρ+p ≥ 0,

Weak energy condition (WEC) which is given by ρ ≥
0, ρ + p ≥ 0, Dominant energy condition (DEC) which
is given by ρ ≥ 0, ρ ± p ≥ 0 and the Strong energy con-

dition (SEC) which is given by ρ + p ≥ 0, ρ + 3p ≥ 0
respectively.

The brief outline for the identification of the stability
nature of fixed points in the dynamical system analysis may
be summed up as follows: The fixed point obtained from the
autonomous system is used for the calculation of eigenval-
ues of the linearized matrix around the fixed points (Jacobian
matrix). If all the eigenvalues are negative (positive), then the
fixed point may be termed as stable (unstable) point respec-
tively. The stable (unstable) point also act as a sink (source) of
the system respectively. In other words, the stable (unstable)
point act as attractor (repeller) of the cosmological dynamical
system respectively. There may be a case where the eigen-
values at some particular fixed point are having positive as
well as negative signs, this kind of point is termed as the sad-
dle point. At saddle point, the trajectories in the phase plane
are attracted towards the direction having negative sign and
repels from the direction having positive sign. The saddle
points are very useful to portray intermediate evolutionary
phases such as the matter- and radiation dominated phases
in the cosmological dynamical systems. And, the unstable
and stable fixed points are useful to exhibit the origin and the
ultimate fate the universe evolution respectively [9,12,62].
In the cosmological dynamical systems, the terminology of
fixed point and critical point follows from the physical and
mathematical view respectively.

3 LRS Bianchi I and Bianchi III cosmology

In order to explore the universe evolution in the LRS BI and
BIII models with the affine EoS, we incorporate dynamical
system technique. This will enable us to analyze different
evolution trajectories, independent of the initial conditions.
For these cases, we define the dynamical variables of the
system in an unified way. For converting the propagation
equations of the expansion scalar, shear scalar and spatial
3-curvature (given by Eqs. 2–4) into an autonomous system,
we define

�m = ρ

3H2 , �k =
3R

6H2 , � = σ√
3H

, �� = ρ0

3H2 . (8)

The variables �m,�k and � measure, respectively, the
dynamical importance of matter content of the universe, spa-
tial geometry of the space-time and rate of shear in terms
of volume expansion � = 3H. For LRS BI and BIII space-
time, 3R will be 0 and − 2

a2
2 respectively. The variable �m

denotes the dimensionless energy density of the conventional
matter in the universe composed of matter and radiation as
a whole. We take the independent variable as logarithm of
the scale factor given by N = ln a and the ‘prime’ denotes
the derivative with respect to it. This normalization variable
is suitable for the study of expanding cosmological (H > 0)
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scenarios. For the LRS BI model, 3R = 0 and thus �k = 0
in terms of the dynamical variables will correspond to the
LRS BI case. In the LRS BIII cosmology, one may have the
fixed points with �k = 0, which in fact belong to the LRS
BI boundary. However, the stability in the case of LRS BIII
model may be different, since the system may evolve in the
�k direction. It is also worthwhile to mention that the invari-
ant sub-manifold of the dynamical system means that the
system cannot go through the sub-manifold and it may only
approach it in an asymptotic way.

The Gauss–Codazzi equation will yield a constraint (in
terms of the dynamical variables) as

�m + �2 − �k = 1. (9)

The deceleration parameter (indicating the rate at which uni-
verse expansion is slowing down) is defined as q = −1− 3�̇

�2 .

Equivalently, we may have q = −1 − Ḣ
H2 . We use decelera-

tion parameter to define the effective equation of state (EoS)
parameter as ω = 1

3 (2q − 1). From Eqs. (2), (7) and (8), we
may write

Ḣ

H2 = −1 − 2�2 − 1

2
(1 + 3α)�m + 3

2
��. (10)

Due to one constraint equation, the resulting state space is
3-dimensional. The dynamical system governing the propa-
gation of dimensionless variables are given by

�m
′ = −�m

(
1 + 3α + 3�� − 4�2

)

+3�� + (1 + 3α)�m
2 (11)

�′ = −1 + �m + �2 + 2�3

+ 1

2
�(−4 + (1 + 3α)�m − 3��) (12)

��
′ = ��

(
2 + 4�2 + (1 + 3α)�m − 3��

)
. (13)

In terms of variables (8), the deceleration and EoS parameters
may be written as

q = 1

2

(
4�2 − 3�� + (1 + 3α)�m

)
(14)

ω = 1

3

(
−1 + 4�2 − 3�� + (1 + 3α)�m

)
. (15)

The fixed points of the system (11–13) may be given from the
equations �m

′ = 0, �′ = 0,��
′ = 0. Above system pos-

sess 7 fixed points. This system possesses one model param-
eter α and we use different cosmologically viable criteria to
constrain this parameter. The stability behaviors and cosmo-
logical implications at the fixed points are given below in a
point-wise manner.

• K−(�m = 0, � = −1,�� = 0): This shear-dominated
point will exist for all α. The eigenvalues are given by

{6, 2,−3(α − 1)}. The point is unstable for α < 1 and
thus, it may act as a source. It will be saddle otherwise.

• K+(�m = 0, � = 1,�� = 0): This point will always
exist in the model. The eigenvalues are {6, 6,−3(α−1)}.
For α < 1, this point will act as a source and saddle oth-
erwise.
The points K− and K+ will belong to the spatially-flat
(�k = 0) region of the spacetime. These points are cor-
responding to the vacuum Kasner models. The universe
is decelerating with the effective stiff fluid-like domina-
tion. At these points, expansion scalar (�) scales with 1

t
and the directional scale factors may scale with either

a1 ∝ t, a2 ∝ constant, or a1 ∝ t−
1
3 , a2 ∝ t

2
3 .

• R(�m = 1, � = 0,�� = 0): The eigenval-
ues of the Jacobian matrix at this point are given by{

3(α−1)
2 , 3(α + 1), 3α + 1

}
. The point will be source

(sink) for α > 1 (α < −1) respectively and saddle oth-
erwise.
This point will exhibit solutions corresponding to the spa-
tially flat, shear-free (isotropic) universe. The conven-
tional matter dominating universe evolution will depend
on the value of α. For −1 < α < 1, the point will be sad-
dle in nature. For α > − 1

3 , the universe will be deceler-
ating. However, the accelerating universe evolution may
be realized at this point for α < − 1

3 . For a classically
stable universe (0 ≤ cs2 ≤ 1), the universe evolution
will be decelerating and the point will be exhibiting sad-
dle behavior. In particular, for α = 1

3 , this point will
represent a radiation-dominated universe. The expansion
scalar will scale with 3

2t and the directional scale factors
will scale with either

a1 ∝ constant, a2 ∝ t
1
4 , or a1 ∝ t, a2 ∝ t−

1
4 , or

a1 ∝ t
1
2 , a2 ∝ constant.

• M(�m = 0, � = − 1
2 ,�� = 0): The eigenvalues will

be given by
{
3,− 3

2 ,−3α
}
. This point is always saddle

in nature and the value of α will not affect the stability
nature of this point.
The point belongs to the spatially-curved region (�k <

0) having LRS BIII geometry. This saddle point will lie
on the vacuum boundary where shear is dominating. This
point will represent matter-dominated decelerating uni-
verse in an effective sense for which q = 1

2 and ω = 0.

The expansion scalar will scale with 2
t and the directional

scale factors will scale with either

a1 ∝ constant, a2 ∝ t
1
3 , or a1 ∝ t−

2
3 , a2 ∝ t

2
3 , or

a1 ∝ t
2
3 , a2 ∝ constant.
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• dS(�m = 1, � = 0,�� = 1 + α): The eigenvalues
are given by {−3,−2,−3(α + 1)}. The point is sink for
α > −1 and saddle otherwise.
This point will represent spatially-flat, isotropic universe
and it will act as an attractor for α > −1. And, thus the
dark energy-dominated accelerating universe expansion
may be explained in the present anisotropic model. The
dark energy component having negative pressure is due
to the non-zero �� in the present case. �m = 1 sig-
nifies the presence of conventional matter in the model.
The expansion scalar is constant and the directional scale
factors may scale with

a1, a2 ∝ eH0t .

• U−(�m = −3α,� = − 1
2 (1 + 3α),�� = 0): This

point will reduce into point M for α = 0. In gen-
eral, the eigenvalues are given by λ1 = 3(α + 1),

λ2 = 3
4 (−1 + α − P) , λ3 = 3

4 (−1 + α + P) , where

P = √−24α3 + 17α2 + 6α + 1. The point is saddle in
nature. �m > 0 for α < 0. For α > − 1

3 , the point
will have �m < 1. The cosmologically viable criterion
0 < �m < 1 will be satisfied for − 1

3 < α < 0. The point
belongs to the spatially curved regions of the space-time
having LRS BIII geometry. In particular, for α = 1

3 ,

one may have radiation-dominated decelerating expan-
sion with �k = −1 which is exhibiting the LRS BIII
geometry for the universe. However, this radiation-like
component may be the dark-radiation, since �m = −1.

� = −1 signifies the shear-dominated universe and the
eigenvalues {4,−2, 1} are exhibiting the saddle behavior.

• U+(�m = 3, � = 1,�� = 3(1 + α)): The eigenvalues
at this point are {−6, 3,−3(α + 1)}. The point is always
saddle in nature.
This point will represent exponentially accelerating
expansion but the anisotropy will be increasing. The dark
energy will drive the accelerating expansion. However,
�m > 1 and �k > 1 scenarios will make this point
un-physical and it has been given just for the sake of
mathematical completeness. At this point, ρ � 3H2 and
thus the universe may not be the ‘realistic’ one.

The 3-dimensional autonomous system and the stability char-
acter of fixed points have been depicted graphically in Fig. 1
and the corresponding projection on the � − �� plane. The
point dS (exhibited by the red dot) acts as a stable attractor
of the model which explain the late-time accelerated expan-
sion of the universe. The specific evolution of the universe
depicted by the evolution of cosmological quantities has been
illustrated in Fig. 2. The deceleration parameter evolution
(equivalently, the effective EoS parameter) shows the stiff
matter-like evolution at early times, which transits into the

radiation dominated phase and with the evolution of time
(or scale factor), the accelerating universe expansion may
be realized in the model. The corresponding fixed points to
these phases are K+, R and dS respectively. The model con-
sist of the fixed point corresponding to the matter-dominated
phase but this point M (and the corresponding phase) is shear-
dominated and it belongs to the spatially curved region hav-
ing LRS BIII geometry. And, thus, one may have an evolution
scenario having the stiff matter dominated phase at early-
times, the matter dominated phase which is further transiting
into the dark energy dominated phase corresponding to the
points K−, M and dS respectively.

In the Fig. 2, the cosmological quantities are shown with
the scale factor scale. According to the observational cosmol-
ogy, in the scale factor scale, a = 1 is taken for the present
day universe. In the Table 1, we list different criterion for
the visualization of the past, present and the future universe
according to the observational cosmology. It is worthwhile to
mention that these scales are used interchangeably to illus-
trate the universe evolution in the cosmological dynamical
systems. In the present model, we take N = ln a and use the
relation 1+ z = a0

a for different illustrations in the Table 1. It
is worthwhile to mention that ln(1 + z) and − ln(1 + z) will
have vertical asymptote at z = −1 and are not defined for
z < −1. Here, we focus mainly on the cosmology concerned
with the late-time universe.

3.1 Statefinder analysis

The statefinder diagnostic pair [74] enables to explore the
dark energy properties in a model independent manner. These
parameters are dimensionless. This geometrical diagnostic is
algebraically related to the dark energy EoS and its deriva-
tive. In order to explore the characteristics of energy densi-
ties of different matter components in the model, we relate
the dynamical variables of the autonomous system with the
statefinder diagnostic pair. Since, this diagnostic pair uses
the geometrical parameters (such as the scale factor, Hub-
ble parameter and its derivatives), we apply this diagnostic
to trace the cosmological behaviour of universe beyond the
dark energy dominated phase having ω < − 1

3 . We check the
universe evolution for its whole history with this diagnostic.
The statefinder diagnostic pair [74] ({r, s}) may also be con-
verted into the form containing derivatives of N = ln a as
[75]

r = q(1 + 2q) − dq

dN
, s = r − 1

3
(
q − 1

2

) . (16)

For the variables defined in Eq. (8), these parameters may
take the form

r = 1

2
(−9α�� + (9α(α + 1) + 2)�m
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Fig. 1 a Phase plane of the 3-D autonomous system of the LRS model where points are shown by blue (K∓), green (R), black (M) and red (dS)

dots respectively, b projection on � − �� plane

Fig. 2 Evolution of the cosmological quantities in the LRS model for
α = 1

3

+ 4�(�(5 − 2�) − 2�m + 2)) (17)

s = −9α��+(9α(α+1)+2)�m+4�(�(5−2�)−2�m+2)−2

3
(
3α�m+4�2−3��+�m−1

) .

(18)

On the basis of fixed points of the cosmological dynami-
cal system, we may obtain the {r, s} parameters in different
dynamical regimes of the cosmological history of model. For
an evolving dark energy model, r 	= 1. In the r − s plane,
r = 1, s = 0 is a fixed point for the � cold dark mat-
ter (�CDM) model. r = 1, s = 1 is a fixed point for the
standard cold dark matter (SCDM) model. And, the distance
of trajectories from these points will illustrate the deviation
of considered model from the �CDM and SCDM models.
Also, in the r − s plane, r > 1, s < 0 and r < 1, s > 0
regions correspond to the models having Chaplygin gas- and
quintessence-like properties [74] (Fig. 3).

The LRS model with affine EoS traces the cosmological
history from the stiff matter-like evolution during early times
to the radiation-, matter- and dark energy-dominated phases.
The existence of fixed point signifying the dark energy dom-
inated phase explains the accelerated expansion of the uni-
verse in the model. The statefinder diagnostic pair behavior
highlights that the model approaches to the �CDM model-
like characteristics at late-times from the quintessence era.

Various details about these points have been listed in
Table 2.

Table 1 Universe history in
different scales

Era z a N ln(1 + z) − ln(1 + z)

Past 0 < z < ∞ 0 < a < 1 −∞ < N < 0 > 0 < 0

Present 0 1 0 0 0

Future −1 < z < 0 a > 1 0 < N < ∞ < 0 > 0
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Table 2 Cosmological quantities in the LRS BI and BIII model

Point �k q ω a(t) H(t) �(t) r s

K± 0 2 1 t
1
3 1

3t
1
t 10 2

R 0 1
2 (3α + 1) α t

2
3(1+α) 2

3(1+α)t
2

(1+α)t 1 + 9
2 α(α + 1) 1 + α

M − 3
4

1
2 0 t

2
3 2

3t
2
t 1 ∞

dS 0 −1 −1 eH0t H0 3H0 1 0

U− 3
4 (α − 1)(3α + 1) 1

2 (3α + 1) α t
2

3(1+α) 2
3(1+α)t

2
(1+α)t 1 + 9

2 α(α + 1) 1 + α

U+ 3 −1 −1 eH0t H0 3H0 1 0

Fig. 3 Evolution of the statefinder diagnostic parameters with a in the
LRS model

3.2 Energy conditions during the universe evolution

The universe evolution may be affected by the matter field
behavior during the evolution. The energy conditions reg-
ulate the accelerating and decelerating behavior of the uni-
verse expansion. The Raychaudhuri equation [76–79] relates
the active gravitational mass (equals ρ + 3p for the perfect
fluid matter) with the geometrical sector of the Einstein’s
field equation and thus, the energy conditions, in particular,
the strong energy condition may be related with the accel-
erating (or decelerating) universe evolution on the basis of
ä > 0 (or ä < 0) respectively. In the terms of dynamical vari-
ables of the model, the energy conditions may be satisfied if
following criterion are true in the �m − �� plane:

1. NEC: �m ≥ ��

1+α
.

2. WEC: �m ≥ 0, �m ≥ ��

1+α
.

3. DEC: �m ≥ 0, �m ≥ ��

1+α
, �m ≥ ��

α−1 .

4. SEC: �m ≥ ��

1+α
, �m ≥ 3��

1+3α
.

We study the rate of change of ω with N given by ω′ =
dω
dN and plot its behavior in Fig. 2. From the figure, it may
be observed that the curved spatial geometry plays a role
during the transition from the shear dominated phase into
the radiation dominated phase and in this duration ω′ also
changes with the geometry.

4 Kantowski–Sachs cosmology

For the Kantowski–Sachs (KS) model, we define the dynam-
ical variables as

Q = �

3D
, � = σ

3D
, �m = ρ

3D2 ,

�k =
3R

3D2 , �� = ρ0

3D2 (19)

where D2 ≡ �2

9 + 3R
6 . The variable D is real-valued, strictly

positive quantity providing a monotonically increasing time
variable. Since, from the Gauss–Codazzi constraint, we may
have �2

3 + 3R
2 = ρ+σ 2. In the terms of dynamical variables,

the constraints are given by Q2 +�k = 1 and �m +�2 = 1.

Due to these constraints, the state space is 3-dimensional.
From the Raychaudhuri equation, the deceleration parameter
(q = −1 − 3�̇/�2) may be written as

q = 1

2Q2 (1 + 3α + 3�2 − 3α�2 − 3��). (20)

The effective EoS parameter (ω) is given by

ω = − 1

3Q2 (−1 + 3�� + Q2 − 3�2 + 3α(�2 − 1)) (21)

where ω = 1
3 (2q − 1). The autonomous system in the KS

model is given by

Q′ = 1

2
(Q2 − 1)(1 + 2Q� + 3�2 − 3��

− 3α(�2 − 1)) (22)

�′ = 1 − �2 + Q2(�2 − 1)

− 3

2
Q�(1 − �2 + �� + α(�2 − 1)) (23)
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��
′ = ��(−2� + 2�Q2 − 3Q(−1 − �2 + ��

+α(�2 − 1))) (24)

along with the auxiliary variables evolution equations as

D′ = D(−(1 + q)Q3 + �k(� − Q)) (25)

�k
′ = −2QQ′ (26)

�m
′ = −2��′. (27)

The fixed points of the system may be calculated by Q′ =
0, �′ = 0,��

′ = 0. The details about these fixed points
have been given below:

• dS−(Q = −1, � = 0,�� = 0): The eigenvalues at this

point are
{−3(α−1)

2 ,−3(α + 1),−3α − 1
}

. This point is

sink for α > 1 and source for α < −1.

• dS+(Q = 1, � = 0,�� = 0): The eigenvalues at dS+
are

{
3(α−1)

2 , 3(α + 1), 3α + 1
}

. This point is source

(sink) for α > 1 (α < −1) respectively.
• K−−(Q = −1, � = −1,�� = 0): The eigenvalues are

given by {−6,−6, 3(α − 1)}. This point will be stable
for α < 1 and saddle otherwise.

• K++(Q = 1, � = 1,�� = 0): The eigenvalues are
{6, 6,−3(α − 1)}. The point will act as source for α < 1
and saddle otherwise.

• K−+(Q = −1, � = 1,�� = 0): The eigenvalues are
{−6,−2, 3(α − 1)}. The point is stable for α < 1 and
saddle otherwise.

• K+−(Q = 1, � = −1,�� = 0): The eigenvalues are
given by {6, 2,−3(α − 1)}. This point will act as source
for α < 1 and saddle otherwise.

• Pα∓(Q = ∓1, � = 0,�� = α + 1): The eigenvalues
are given by {±3,±2,±3(α + 1)}. For α > −1, P− and
P+ are unstable and stable respectively. For α < −1,

these points are saddle in nature. For α = −1, the points
Pα∓ → dS∓ respectively.

• Cc∓
(
Q = ∓ 1

2 ;� = ∓ 1
2 ;�� = 3(α+1)

4

)
: The eigenval-

ues at Cc− and Cc+ are
{

3,− 3
2 ,

3(α+1)
2

}
and{

−3, 3
2 ,− 3(α+1)

2

}
respectively. These points are always

saddle in nature. The value of α will not convert these
points into either source or sink. For α = −1, these
points belong to the Q − � sub-manifold and lie on the
Q = � line.

• Uα∓
(
Q = ∓ 2

3α−1 , � = ± 3α+1
3α−1 ,�� = 0

)
: These points

belong to the curved-spatial region of the spacetime. The
eigenvalues of these points are having very long expres-
sions, so we omit to write it here. These points are saddle
in nature. For α = −1, these points belong to the Q −�

sub-manifold and lie on the Q = −� line.

• U∓(Q = ∓2;� = ±1;�� = 0): The eigenvalues
at U∓ are given by {∓6,±3,±6α} respectively. These
points are saddle in nature.

Various details about these points have been listed in
Table 3 and the corresponding phase behavior in Figs. 4,
5, 6, 7.

4.1 Cosmological implications of the Kantowski–Sachs
model

We list here the cosmological implications and behavior of
the KS model at the fixed points.

1. The points dS± correspond to Q2 = 1 space and the
dimensionless matter density acts as the energy density
of the cosmological constant in an effective sense. dS−
and dS+ represent contracting and expanding universe
having shear-free (isotropic) evolution with flat-spatial
geometry. The deceleration parameter q and the stability
depend on the model parameter α. In particular, for α =
−1, these points will realize de Sitter contraction and
expansion respectively.

2. The points K−−, K++, K−+ and K+− are characterized
by Q2 = 1 and �2 = 1. These points are belonging
to the Q − � phase space having �k = 0,�m = 0
and �� = 0. The boundaries � = ±1 correspond to the
vacuum Kasner models. The universe is decelerating with
the effective stiff fluid-like domination. The expansion

scalar and average scale factor may scale with 1
t and t

1
3

respectively. At these points, the directional scale factors
may scale with either

a1 ∝ t, a2 ∝ constant, or a1 ∝ t−
1
3 , a2 ∝ t

2
3 .

3. The points Pα± belong to phase space region having
�k = 0 and � = 0. Therefore, the spacetime geome-
try corresponding to these points is isotropic and spatially
flat. The value of parameter α will determine the stability
character of these points but the de Sitter-like expansion
and contraction may be realized at Pα+ and Pα− respec-
tively. In particular, in �� > 0 plane (equivalently for
α > −1), these points will exhibit expanding de Sitter
and contracting de Sitter solutions of the model which are
stable and unstable respectively. Therefore, the acceler-
ating expansion phase of the present universe may be
realized in the model for the point Pα+. The directional
scale factors may scale with

a1, a2 ∝ eH0t .

4. The points Cc± belong to the spatially curved region of
the spacetime having �k > 0. At these saddle points,
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Fig. 4 a Phase plane of the KS model for α = − 4
3 where points are shown by blue (dS∓), yellow (K−−, K++), green (K−+, K+−), black (Pα∓),

red (Cc∓) and magenta (Uα∓) dots respectively, b Q − � phase plane with Q and � on horizontal and vertical axis respectively for α = − 4
3

Fig. 5 a Phase plane of the KS model for α = − 1
2 where points are shown by blue (dS∓), yellow (K−−, K++), green (K−+, K+−), black (Pα∓),

red (Cc∓) and magenta (Uα∓) dots respectively, b Q − � phase plane with Q and � on horizontal and vertical axis respectively for α = − 1
2

exponentially accelerated universe expansion may be
realized with q = −1. The effective EoS exhibits cosmo-
logical constant-like behavior and the directional scale
factors may scale with

a1, a2 ∝ eH0t .

At these points, expansion scalar is proportional to the
shear scalar. This model yields fixed points lying on the
Q = � line for α = −1. It simply means that there will

exist a phase of universe evolution for which � ∝ � and
it is exhibited by the trajectories parallel to Q = � in
Q − � phase plane. In order to find the exact solutions
[21,22,24,66] and the qualitative behaviors [27,28] of the
LRS models in different gravity theories, the assumption
of shear scalar proportional to the expansion scalar yields
interesting implications. However, in the present case,
this scenario is existing without any prior assumption.
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Fig. 6 a Phase plane of the KS model for α = 1
2 where points are shown by blue (dS∓), yellow (K−−, K++), green (K−+, K+−), black (Pα∓),

red (Cc∓) and magenta (Uα∓) dots respectively, b Q − � phase plane with Q and � on horizontal and vertical axis respectively for α = 1
2

Fig. 7 a Phase plane of the KS model for α = 4
3 where points are shown by blue (dS∓), yellow (K−−, K++), green (K−+, K+−), black (Pα∓),

red (Cc∓) and magenta (Uα∓) dots respectively, b Q − � phase plane with Q and � on horizontal and vertical axis respectively for α = 4
3

5. The points Uα± belong to the spatially curved region of
the spacetime with �m > 0 for α < 0. At these saddle
points, the expansion scalar and average scale factor may

scale with 2
3(α+1)t and t

2
3(α+1)t respectively. These points

lie on the Q + � = 0 line in the Q − � phase space for
α = −1.

6. The fixed points U± always lie outside the −1 ≤ Q ≤
1,−1 ≤ � ≤ 1 (physically accepted) region. These sad-
dle points behaves as matter-dominated phase solutions

representing decelerating universe. The directional scale
factors may follow either

a1 ∝ constant, a2 ∝ t
1
3 , or a1 ∝ t−

2
3 , a2 ∝ t

2
3 , or

a1 ∝ t
2
3 , a2 ∝ constant.

However, these points have �k = −3 signifying spatially
curved geometry. These points may not have physical
significance in the KS model and it have been given for
the mathematical completeness.
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Table 3 Cosmological quantities at the fixed points of the KS model

Point(s) �k �m q ω a(t) H(t) �(t)

dS∓ 0 1 1
2 (3α + 1) α t

2
3(α+1) 2

3(α+1)t
2

(α+1)t

K−−, K++, K−+, K+− 0 0 2 1 t
1
3 1

3t
1
t

Pα∓ 0 1 −1 −1 eH0t H0 3H0

Cc∓ 3
4

3
4 −1 −1 eH0t H0 3H0

Uα∓ 1 − 4
(3α−1)2 − 12α

(3α−1)2
1
2 (3α + 1) α t

2
3(α+1) 2

3(α+1)t
2

(α+1)t

U∓ −3 0 1
2 0 t

2
3 2

3t
2
t

4.2 Bouncing behavior in the KS model

The Kantowski–Sachs model consist of two directional scale
factors a1 and a2. The bouncing universe subsequently
expands from the contracting phase while attaining minima
at the end of contacting era [80–86]. The active gravitational
mass of the matter components affects the bouncing evolu-
tion of the universe in the model. This mass is related to the
geometry of the universe by the Raychaudhuri equation. In
the General relativity model, Null energy condition (NEC)
may not be satisfied for flat and open spatial section models
[81,83]. However, closed spatial section models may satisfy
NEC under certain conditions in their bouncing evolution
[81,83].

Due to the presence of more than one directional scale
factors, the bouncing evolution of the universe may be visu-
alized in the average scale factor V = a1a2

2 = a3, where a is
the mean scale factor. The condition of bounce at t = tb may
be given by �(tb) = 0 and �̇ > 0 in the small neighborhood
of bounce instant [16,19,25,29–31,38]. In a more generic
situation, one may consider a bouncing universe in any of
the directional scale factor. There may also be a bounce in
all of the directional scale factors, however, it may occur at
different times.

We define the ‘synchronous bounce’ as the bouncing evo-
lution occurring in different scale factors of the anisotropic
spacetime at the same instant. It is worthwhile to mention that
in a minimally coupled cosmological framework, the NEC
is necessarily violated for the synchronous bounce [16,31].

In the Q − � phase plane, the red and blue lines exhibit
H1 = 0 and H2 = 0 respectively. The trajectories with
Q′ > 0 (Q′ < 0) crossing the point Q = 0, � = 0 are
highlighting the synchronous bounce (turnaround) respec-
tively. The Kantowski–Sachs model with affine equation of
state yields the synchronous bouncing evolution for α < 0.

5 LRS Bianchi V cosmology

In this section, we investigate the qualitative dynamics of
LRS Bianchi V (LRS BV) metric with affine EoS. For this,
we write the propagation equations of the dynamical vari-
ables of the model and use the normalized variables (depend-
ing on expansion scalar) to convert these equations into an
autonomous system. The LRS Bianchi V metric is given by
[40]

ds2 = dt2 − a1
2dx2 − a2

2e2x (dy2 + dz2) (28)

where a1, a2 are the directional scale factors and depend on
cosmic time t only. This metric is a homogeneous axially
symmetric metric, where axial symmetry with respect to x
has been assumed. The expansion scalar (�), shear scalar (σ )

and 3-curvature scalar for the metric (28) are respectively
given by � = H1 + 2H2, σ = 1√

3
(H1 − H2) and 3R =

− 6
a1

2 , where Hi = ȧi
ai

, i = 1, 2. We assume that the fluid

4−velocity ui is equal to the unit normal of the homogeneous
spatial hyper-surfaces. And, thus, the propagation equations
of these quantities are given by [87]

�̇ + 1

3
�2 + 2σ 2 = −1

2
(ρ + 3p) (29)

σ̇ + �σ = 0 (30)

3 Ṙ + 2

3
� · 3R = 0 (31)

where ρ and p denote the conventional matter density and
pressure of the universe. The Gauss–Codazzi constraint relat-
ing the 3-space Ricci scalar with the matter energy density
is given by

3R = 2σ 2 − 2

3
�2 + 2ρ. (32)
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One may observe the difference between the 3-curvature
scalar of LRS BV metric (28) and the LRS metric (1)
along with the propagation equations of shear scalar and 3-
curvature scalar. In order to explain the qualitative dynamics
of the LRS Bianchi V model, we take the dynamical variables
as

�m = ρ

3H2 , �k =
3R

6H2 , � = σ√
3H

, �� = ρ0

3H2 . (33)

We proceed with the independent variable N = ln a and in
this section, the ‘prime’ denotes the derivative with respect
to N . The variable N is suitable for the study of expanding
cosmological (H > 0) scenarios. The variable �m is used for
the energy density of the conventional matter in the universe
composed of matter and radiation as a whole. In the terms
of above variables, the Gauss–Codazzi equation will yield a
constraint equation given by

�m + �2 − �k = 1. (34)

The deceleration and effective equation of state (EoS) param-
eters may be written as

q = 1

2

(
4�2 − 3�� + (1 + 3α)�m

)
(35)

ω = 1

3

(
−1 + 4�2 − 3�� + (1 + 3α)�m

)
(36)

where we use Ḣ
H2 = −1 − 2�2 − 1

2 (1 + 3α)�m + 3
2��.

The resulting state space is 3-dimensional due to the con-
straint equation (34). The dynamical system governing the
propagation of dimensionless variables are given by

�m
′ = 3�� + �m

(−3α − 3�� + (3α + 1)�m + 4�2 − 1
)

(37)

�′ = 1

2
�

(−3�� + (3α + 1)�m + 4�2 − 4
)

(38)

��
′ = ��

(−3�� + (3α + 1)�m + 4�2 + 2
)
. (39)

The fixed points of the system (37–39) may be calculated
by �m

′ = 0, �′ = 0,��
′ = 0. The system possess five

fixed points which will always exist and thus may be used to
determine different cosmological phases for the system. The
details may be summarized as

• Kv± (�m = 0, � = ±1,�� = 0): These shear domi-
nated points will lead to the decelerating universe evolu-
tion having q = 2. These points will belong to the spa-
tially flat region of the spacetime. The eigenvalues are
given by {6, 4,−3(α−1)}. These points will be unstable
for α < 1 and saddle otherwise. In the phase governed
by these points, the universe will behave like universe
governed by stiff fluid (having ω = 1). These points
will correspond to the vacuum Kasner models. At these
points, � = 1

t and the directional scale factors may scale

with either

a1 ∝ t, a2 ∝ constant, or a1 ∝ t−
1
3 , a2 ∝ t

2
3 .

The cosmological behaviour of Kv± correspond to the
cosmological behaviour of K± of LRS BIII cosmology.

• Rv (�m = 1, � = 0,�� = 0): This point will exhibit
spatially flat, isotropic, decelerating or accelerating uni-
verse on the basis of parameter α. For α ≥ 0, the point
will correspond to the decelerating universe expansion,
since ω = α. The deceleration parameter is given by
q = 1

2 (3α + 1). For α = 0, the point corresponds to
the matter-dominated universe. For α = 1

3 , the point
will correspond to the radiation dominated universe. The

eigenvalues are given by
{

3(α−1)
2 , 3(α + 1), 3α + 1

}
.

The point will be stable (unstable) for α < −1 (α > 1)

respectively and saddle for −1 < α < 1. The crite-
ria for the classically stable universe will constrain α as
0 ≤ α ≤ 1 and thus the matter dominated phase may

correspond to � = 2
t and, a ∝ t

2
3 . The directional scale

factors may follow either

a1 ∝ constant, a2 ∝ t
1
3 , or a1 ∝ t−

2
3 , a2 ∝ t

2
3 , or

a1 ∝ t
2
3 , a2 ∝ constant.

For the radiation dominated phase, the mean scale factor

will scale with t
1
2 and the directional scale factors may

follow either

a1 ∝ constant, a2 ∝ t
1
4 , or a1 ∝ t, a2 ∝ t−

1
4 , or

a1 ∝ t
1
2 , a2 ∝ constant.

The cosmological behaviour at this point correspond to
the point R of LRS BIII cosmology.

• Cv (�m = 0, � = 0,�� = 0): The spatially curved uni-
verse having �k = −1 will neither accelerate nor decel-
erate corresponding to the phase governed by this point.
And, thus the solution correspond to the Milne universe
solution. The eigenvalues are given by {−2, 2,−3α−1}.
The point is saddle in nature and the values of α will not
affect the stability character of this point. The universe
will have q = 0 and the corresponding equation of state
parameter is given by ω = − 1

3 . The mean scale factor
will scale with a ∝ t and the directional scale factors
may scale with either

a1 ∝ constant, a2 ∝ t
1
2 , or a1 ∝ t, a2 ∝ constant.

For α > − 1
3 , point is attractor in the shear-free �m −��

plane and trajectories emerging from Kv− evolve to Cv

in � = 0 plane.
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Fig. 8 a Phase plane of the 3-D autonomous system of the LRS Bianchi V model where points are shown by blue (Kv∓), green (Rv), orange (Cv)

and red (dSv) dots respectively, b projection on � − �� plane

Table 4 Cosmological quantities in the LRS BV model

Point �k q ω a(t) H(t) �(t) r s

Kv± 0 2 1 t
1
3 1

3t
1
t 10 2

Rv 0 1
2 (3α + 1) α t

2
3(1+α) 2

3(1+α)t
2

(1+α)t 1 + 9
2 α(α + 1) 1 + α

Cv −1 0 − 1
3 t 1

t
3
t 0 2

3

dSv 0 −1 −1 eH0t H0 3H0 1 0

• dSv (�m = 1, � = 0,�� = α + 1): The point will cor-
respond to the spatially flat, homogeneous and isotropic
universe. The eigenvalues are given by {−3,−2,−3(α+
1)}. The point is late-time attractor of the model for
α > −1 and therefore it may explain the accelerating
universe expansion in the model. The universe is domi-
nated by the cosmological constant like fluid at this point
given by ω = −1 with q = −1, �k = 0. It simply
means that the de Sitter dominated phase may be real-
ized in the model. This is a consequence of non-zero ��

in the present case. Since, the deceleration parameter is
q = −1, the expansion scalar is constant and the direc-
tional scale factors will scale with a1, a2 ∝ eH0t . The
cosmological behaviour of this point correspond to the
point dS of LRS BIII cosmology.

The fixed points Cv, Rv and dSv belong to the �m − ��

sub-manifold having � = 0 and thus the universe is isotropic
corresponding to the phases of these points. The fixed point
Cv corresponding to the Milne universe solution existing in
the dynamical system of LRS BV cosmology, which was not
present in the dynamical system of LRS BIII cosmology. The

fixed point M existing in the contracting shear region of the
LRS BIII cosmology does not exist in the case of LRS BV
cosmology. The LRS BIII and LRS BV cosmologies may
explain the late-time accelerating universe expansion since
the fixed points dS and dSv exist in respective cosmologies.
The three dimensional phase space behaviour of the dynam-
ical system (37–39) and the corresponding projection on the
� − �� plane has been given in Fig. 8. One may observe
that there are two class of evolution scenarios possible in the
model, namely Kv+ → Rv → dSv and Kv− → Cv → dSv.

The evolution law for the cosmological quantities at the fixed
points have been listed in Table 4. The behaviour of decel-
eration parameter, EoS parameter and the statefinders are
identical to the corresponding parameters of the LRS BIII
cosmology, which may be visualized from Figs. 2 and 3 for
Kv+ → Rv → dSv case.

6 Conclusions

We study the evolution scenarios for the universe with the
affine equation of state in the anisotropic spacetimes using
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qualitative approach. In particular, we study the locally rota-
tionally symmetric Bianchi I and B III metric in an uni-
fied way using the dynamical system approach. We also
investigate the Kantowski–Sachs model with affine equa-
tion of state to explore the dynamical evolution on the basis
of fixed points. Further, we study the locally rotationally
symmetric Bianchi-V model with affine equation of state to
explore the qualitative behaviour of the model and compare
with LRS BIII cosmology, since both of these geometries
are hyper-spherically curved geometries. These models may
yield physically interesting cases such as the de Sitter evo-
lution, existence of stable attractors which are also isotropic
and the accelerating universe evolution from the decelerating
phase etc, which are broadly consistent with the present day
observations [1–3]. In the LRS BI and BIII models, the sys-
tem possess seven fixed points. The points K∓ belong to the
BI boundary and correspond to the vacuum Kasner models.
The matter distribution is stiff fluid-like in an effective sense
and the universe expands with deceleration having q = 2.

These points are source for α < 1 and saddle otherwise.
The point R is dominated by the conventional matter and
belongs to the Bianchi I boundary having�k = 0.The expan-
sion behavior may depend on the parameter α. However, for
α = 1

3 , the point may exhibit the radiation-dominated, decel-
erating universe evolution. Point M represents the matter-
dominated phase in the effective sense but it is dominated
by the shear with the LRS BIII geometry. And, the point dS
acts as the stable attractor of the model corresponding the
accelerating universe expansion of the present times, which
is almost spatially flat and isotropic in nature. The radiation
and matter-dominated phases represent decelerating universe
expansion and the universe evolution in the model signifies
that the universe has transited from the decelerated phase into
the accelerated phase in the recent past. On the basis of fixed
points, two important kind of evolution scenarios possible
are as follows: K+ → R → dS and K− → M → dS.

Point U− may have �m > 0 for α < 0 but for α = 1
3 , the

point represent the dark-radiation dominated universe evolu-
tion with �k = −1 in the LRS BIII region of phase space.
The Kantowski–Sachs model with affine equation of state
possesses 14 fixed points. Out of these points, Cc∓ and Pα±
belong to the Kantowski–Sachs region of the phase space.
Points dS∓ and Pα∓ will represent the isotropic universe
evolution with �� = 0 and �� 	= 0 respectively. The points
corresponding to Q2 = 1, �2 = 1 will correspond to the
vacuum Kasner solutions belonging to the Bianchi-I model
boundary. The KS model yield fixed points corresponding
to the stiff-matter dominated and the dark energy dominated
phases of the universe evolution. For α < 0, the model may
exhibit the synchronous bouncing universe evolution con-
necting dS− to dS+ in the Q − � plane. It is worthwhile to
mention that the Kantowski–Sachs universe yields Q ∝ �

scenario (that is, shear is proportional to the expansion scalar)

during its intermediate phase of the evolution, without any
prior assumption in the model. However, this scenario may
not hold during the complete cosmological history of the
universe.

The LRS BV spacetime possess hyper-spherically curved
geometry but the 3-curvature scalar is different from the LRS
BIII geometry. The qualitative analysis of LRS BV model
with affine EoS shows that there will be five fixed points of
the corresponding dynamical system. The points Kv± lies
on the Kasner boundary and the universe will decelerate in
the corresponding phases. The cosmological dynamics cor-
responding to the point Rv depends on model parameter
α. For a classically stable universe, this point is saddle in
nature and may correspond either to a radiation- or matter-
dominated phase of the universe evolution. The fixed point
Cv is a point which was absent in the dynamics of LRS BIII
model and corresponds to the Milne universe solution having
�k = −1, � = 0,�m = 0 and q = 0 with ω = − 1

3 . The
existence of the point dSv having q = −1 with ω = −1
highlights that the effective fluid corresponding to this phase
in the universe will behave like the cosmological constant
and may drive the universe acceleration during late-times.
The affine EoS may be seen as the special case of polytropic
EoS [67–72]. The polytropic EoS may affect the cosmolog-
ical dynamics in a manner different from affine EoS at low
and high energy limits. We leave the qualitative description
of these issues for a future study.
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