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Abstract We show that it is possible to steer clear of a
spacetime singularity during gravitational collapse by con-
sidering time-variation of a fundamental coupling, in this
case, the fine structure constant α. We study a spherical dis-
tribution of cold dark matter coexisting with other fluid ele-
ments, collapsing under its own gravity. The dark matter is
written as a scalar field interacting with electrically charged
matter. This leads to a time variation of α and as a conse-
quence, a breakdown of local charge conservation within the
sphere. The exterior has no such field and therefore, Ein-
stein’s GR and standard equivalence principles remain valid.
We derive the lowest possible bound on the collapse of this
sphere beyond which there is a bounce and dispersal of most
of the accumulated matter. We discuss the critical behavior
of the system around this point and show that the bound is
connected to a length scale of the order of Planck, introduced
in the theory for dimensional requirements.

1 Introduction

Theories of fundamental interactions usually carry a sense of
mathematical completeness, indicating (i) underlying prin-
ciples governing the equations of motion (e.g. a Lagrangian
formalism) and/or (ii) degrees of freedom as in symmetries
and fundamental couplings. Most of these couplings are pre-
assigned parameters with no derivation, taken as ‘fundamen-
tal constants’ to assign a characteristic scale of the theory.
Therefore, time-variation of any of these constants should
lead to modifications in ‘what is and isn’t natural’. This idea
of variation was first proposed as a hypothesis by Dirac, pop-
ular as the ‘Large Numbers hypothesis’ [1,2]. Since then the
scientific community has amassed quite a few attempts to
accommodate this hypothesis (see for instance [3–6]) within
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theories of fundamental interactions. The most well-known
attempt is perhaps the field-theoretic approach allowing vari-
ations of gravitational constant [7], namely, the Brans–Dicke
(BD) theory [8].

A variation of the fine structure constant α = e2

h̄c is more
radical in comparison; as it is directly related to the variation
of either e, permittivity of free space or the speed of light
c. There are some models on varying speed of light provid-
ing possible resolutions to some cosmological issues [9,10],
however, inevitably they introduce a breakdown of Lorentz
invariance [11,12]. In comparison, accepting a time-variation
of e seems more practical as long as we take care of local
gauge invariance and causality. A general relativistic frame-
work with this variation allows a breakdown of local charge
conservation. This means a modified principle of Equiva-
lence, i.e., standard laws of physics are not the same every-
where. Whether or not α can vary with cosmic time at a
Hubble rate has been an interesting question asked since the
works of Gamow [13]. However, for more accurate analyses
one must look into fine structure splittings in radio galaxy
emission lines [14], nuclear mass systematics [15,16] and
reactor-generated fission product isotopes [17]. The present
estimates of the variation, �α

α
∼ 10−6 H0, is based on stud-

ies of active galactic nucleii (e.g. a BL-Lacertae object [18]),
flux ratio analysis of galaxy clusters [19] and relativistic
transitions in molecular absorption lines of Quasar spec-
tra at different redshifts [20–25]. It is a natural intuition to
assign this variation to a slowly varying scalar field. This new
scalar field is therefore, motivated by requirements of funda-
mental interaction, not adhawk and can serve an interesting
purpose. It is now been widey accepted, thanks to observa-
tions such as luminosity distance measurement of Supernova
[26,27], that at present the universe is expanding with accel-
eration. The best possible theory to explain this is to bring in
an exotic Dark Energy component, (often written as scalar
fields!) which can exert a negative pressure and oppose grav-
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ity. Nothing concrete can be produced regarding its’ origin
or distribution other than the claim that it does not cluster
below Hubble scale. It is possible for this Dark energy field
to be related to the scalar field(s) responsible for fundamental
coupling variation. This also insinuates a feedback mecha-
nism between gravitation and particle physics. A few similar
insights can be found in theories of unification, where con-
stants of a theory exist only in higher dimensions while their
effective four-dimensional projections can be described as
scalar fields having variations in space and time [28].

We focus on a theory proposed by Bekenstein [29] that
combines Maxwell’s theory and GR [30]. It allows α to vary
through a scalar field interacting with electrically charged
matter. This is a special case of the more recently proposed
scalar-matter interacting models, popular as Chameleons
[31,32]. They are remarkably successful in addressing cos-
mological issues, through standard as well as their extended
formalisms [33–35]. Generalization of Bekensteins’ varying
α theory has also received some success in explaining cos-
mological issues [36,37]. For instance, it has been proved
quite recently that the theory can also be generalized suc-
cessfully to accommodate a simultaneous variation of grav-
itational constant and fine structure constant [38,39]. This
brings us to an important question: is it always necessary
to introduce an exotic field by hand to account for the dark
sectors of our universe? For example, in the varying α the-
ory, we can imagine that the scalar field responsible for a
generalization of Maxwell’s electrodynamics also provides
an origin of Dark Energy or Dark Matter, depending on its’
interactions with other matter components. In other words,
different laws of conservation or different sets of equiva-
lence principle might have complied the universe to behave
differently in different epochs. For example, a varying α the-
ory can be used to describe cold dark matter with magnetic
fields dominating electric fields [36]. This leads to a domina-
tion of magnetostatic energy driving the α-variation during
matter-dominated epoch. However, the variation becomes
negligible as the universe starts to accelerate and the scalar
field interaction changes its profile. It is also possible to
link any such variation with Higgs vacuum expectation value
and in turn, to quark mass variations [40,41]. Phenomeno-
logically, quark-mass variation is constrained using Quasar
spectroscopy through a measurement of varying proton-to-
electron mass ratio μ, also related to α-variation through
[42–44,46–48]

�μ

μ
∼ ��QC D

�QC D
− �ν

ν
∼ R

�α

α
. (1)

ν is the vacuum expectation value, directly related to Quark
masses and �QC D is a characteristic scale. R, a negative
parameter is connected to the high-energy scales related to a
theory of unification and must be estimated phenomenolog-
ically (R ∼ −50 according to Avelino et al. [45]).

We do not study cosmological solutions or the constraints
on variation of standard model parameters in this work. There
are quite a few unresolved puzzles in gravitational physics
that requires counter-intuitions. We focus on one such par-
ticular question, related to the phenomenon of Gravitational
Collapse and a subsequent formation of spacetime singular-
ity. Any stellar distribution eventually burns out, i.e., exhausts
its nuclear fuel supply. If their energy-momentum distri-
bution is studied according to the field equations of stan-
dard GR, one can prove that after the exhaustion they will
shrink to a zero proper volume. The formation of zero vol-
ume comes along with a geodesic incompleteness, diver-
gence of curvature scalars or simply, a singularity. This pro-
cess is best demonstrated by considering idealized collaps-
ing spherical stars such as massive neutron cores [49,50],
perfect/imperfect fluids [51–53] or scalar fields [54–57]. In
principle, singularities indicate a breakdown of classical prin-
ciples and a general loss of predictability [58–60]. A singular
state may or may not communicate with an observer depend-
ing on a number of factors, such as, initial size of the distri-
bution and more importantly, formation of a horizon. This
leads to the issue of Cosmic Censorship [61], whose resolu-
tion has been another popular brain-twister for more than five
decades, but unfortunately, it has mostly remained inconclu-
sive. There is one possibility, that a well-motivated extension
of GR with a modified stress-energy distribution would gen-
erate a dominant repulsive effect during the end-stages of a
spherical collapse. This can rule out a formation of singu-
larity classically and drive the star into bounce every time,
dispersing away all of the accummulated matter.

We prove that this modified stress-energy distribution
need not be exotic. It can be found naturally if we consider a
theory of gravity accommodating the variation of fundamen-
tal couplings, in this case, the fine structure constant α. In
reality, we are studying a spherical distribution of ordinary
matter, radiation fluid, cold dark matter consisting of elec-
tric and magnetic fields and a dark energy fluid. Inside the
sphere the magnetostatic energy dominates the other com-
ponents. The scalar field responsible for α variation leads
to modified field equations and a breakdown of local charge
conservation. Outside, there is no such field and therefore,
Einstein’s GR and standard equivalence principles remain
valid. We show that for this collapsing system of ‘interact-
ing scalar field dark matter’, there can be no formation of
singularity even with spatial homogeneity. There is always a
lowest possible bound on the radius of the two-sphere beyond
which most of the collapsed matter distribution must bounce
and disperse. This cutoff scale is connected to a length scale
of the order of Planck which is introduced in the theory for
dimensional requirements at the outset.

The sections are organized as follows: Sect. 2 includes
our discussion on the generalized Bekenstein’s theory in
brief. Section 3 gives the formalism, equations and solution
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describing a collapsing sphere of α-varying matter. Section
4 includes a detailed discussion on the matching of this col-
lapsing sphere with a suitable exterior geometry across a
boundary hypersurface. A few additional comments and a
summary is given in Sect. 5.

2 Generalization of Bekenstein’s theory

We write the charge of an electron as e = e0ε(xμ). ε acts
as a dimensionless scalar field while e0 provides informa-
tion related to dimension. In effect, ε(xμ) works as a uni-
versally evolving field through which any fundamental par-
ticle charge can vary, provided that parameters such as e0

are assigned to take care of the dimensions. We call this
field an e-field. We further assume that velocity of light and
Planck’s constant have no variation and therefore, the result-
ing α-variation leads to a departure from ‘Maxwellian elec-
trodynamics’. This is better understood from a characteristic
α-evolution equation which should be derived from an invari-
ant action. The evolution equation must be second-order and
hyperbolic in nature to avoid issues such as non-causality or
runaway solutions. We review the mathematical formulation
following Bekenstein’s original work on the dynamics of a
charged particle in flat spacetime [29,36].

With a rest mass m and charge e0ε, a particle has a Lorentz-
invariant Lagrangian

L = −mc(−uμuμ)
1
2 + e0ε

c
uμ Aμ. (2)

We use τ to express proper time and define uμ = dxμ

dτ
as

four-velocity. The vector potential term is minimally cou-
pled, making the Lagrangian invariant under a gauge trans-
formation

ε Aμ = ε Aμ + χ,μ. (3)

From the action we can write the Lagrange equation as

d

dτ

[
muμ + e0

c
ε Aμ

]
= −m,μc2 + e0

c
(ε Aν),μuν, (4)

where the normalization uμuμ = −c2 is used. Equation (4)
can be simplified into

d(muμ)

dτ
= −m,μc2 + e0

c

[
(ε Aν),μ − Aμ),ν

]
uν . (5)

We identify the term m,μc2 on the RHS as an anomalous
force term. The Lorentz force term on the RHS provides a
gauge-invariant electromagnetic field and lagrangian, written
as

Fμν =
{
(ε Aν),μ − (ε Aμ),ν

}

ε
, (6)

Lem = −Fμν Fμν/4. (7)

A separate lagrangian to govern ε-evolution was intro-
duced by Bekenstein,

Lε = −1

2
ω

(ε,με,μ)

ε2 . (8)

ω = h̄c
l2 is a parameter required to satisfy dimensional consis-

tency. l is treated as a length scale of the theory which defines
a lower limit below which the electric field for a point charge
can not be Coulombic. As a consequence, the corresponding
energy scale h̄c

l is also constrained. We use a transformed
gauge to generalize this setup

aμ = ε Aμ, (9)

fμν = εFμν = ∂μaν − ∂νaμ. (10)

We replace ε by a ψ-field, where ψ = lnε. The combined
action can be written as

S =
∫

d4x
√−g

(
Lg + Lmat + Lψ + Leme−2ψ

)
, (11)

Lψ = −ω

2
∂μψ∂μψ, (12)

Lem = −1

4
fμν f μν. (13)

Lg = 1

16πG
R. (14)

The action has a similarity with dilatonic scalar field the-
ories [62–64], however, this Lagrangian is different because
ψ couples only with the electromagnetic part. A lagrangian
component for ordinary matter Lmat , is also kept for gener-
ality. The usual metric variation and a ψ variation lead to the
field equations of the theory

Gμν = 8πG
(

T mat
μν + T ψ

μν + T em
μν e−2ψ

)
, (15)

�ψ = 2

ω
e−2ψLem . (16)

There are discussions on cosmological solutions of the
above set of field equations and possible extensions are pro-
posed in literature. However, formation of collapsed objects
in this class of theories has never been addressed before.

3 A collapsing spherical distribution

We study the dynamics of an idealized collapsing star in
this theory. This idealization means spherical symmetry and
spatial homogeneity of the constituent matter components.
We do not necessarily mean a spherical region consisting of
α-variation generating dark matter particles alone and that
is perhaps not practical. In reality, any dark matter distribu-
tion appears to be in a clustered state around galaxies. They
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slow down the rotational motion of galaxies by contributing
to the inward gravitational pull. This clustering effect com-
petes with the dark energy field/fluid, which plays the role of
a driver of cosmic acceleration. It is generally believed that
more than 85% of every cluster’s mass is contributed in the
form of dark matter [65]. It has also been found that these
clumps in distant clusters of galaxies can warp background
light from other objects [66]. We believe it is reasonable
to assume that an evolving over-dense region of dark mat-
ter can co-exist with about ∼ 10% of ordinary matter and
dark energy. The cold dark matter is written as a scalar field
interacting with electrically charged matter. The dark energy
component is written as a pressureless non-interacting field
ρφ(t). We choose a spatially flat homogeneous metric

ds2 = −dt2 + a(t)2(dr2 + r2d�2). (17)

For this geometry the independent field equations are

ȧ2

a2 = 8π

3

{
ρm

(
1 + ζme−2ψ

)
+ ρr e−2ψ

+ω

2
ψ̇2 + ρφ(t)

}
, (18)

ψ̈ + 3
ȧ

a
ψ̇ = − 2

ω
e−2ψζmρm . (19)

The equations are in natural units, i.e., G = c = 1.
ζm = Lem

ρm
is a parameter that determines the percentage

of dark matter within the collapsing cluster, compared to
the total baryon energy density. Different values to ζm can
be assigned depending on the comparative strength of elec-
tric and magnetic field in the cold dark matter distribution.
Cases with ζm < 0 can describe a cluster of cold dark matter
dominated by magnetic coupling, for instance, superconduct-
ing cosmic strings [67]. Cosmologically, this choice is more
favored as it can describe the mild variation of α with redshift
as observed in molecular absorption spectra of Quasars and
at the same time, provide good match with late-time cosmo-
logical observations [39]. In comparison, ζm > 0 cases fail
to represent the accurate scale of α variation [38]. At this
moment, we do not assign any values to ζm and just keep it
as a free parameter. The non-interacting ordinary matter and
the radiation component satisfy their conservation equations,
written as

ρ̇m + 3

(
ȧ

a

)
ρm = 0, (20)

ρ̇r + 4

(
ȧ

a

)
ρr = 2ψ̇ρr . (21)

Equations (18), (19), (20) and (21) describe the evolution
of the collapsing sphere. The fine structure coupling evolves
as

α = exp(2ψ)e2
0/h̄c, (22)

within the sphere and should remain a constant outside. The
radius of the two-sphere (coefficient of d�2) is supposed to
decrease with time, therefore, ȧ < 0. We also work under
a condition that the ψ-field evolution Eq. (19) is integrable.
This idea is motivated from a mathematical property of a
group of second order non-linear differential equations clas-
sified as classical anharmonic oscillator equations [68–70].
Any Klein–Gordon type differential equation governing a
scalar field evolution falls within this class. The analysis
involves transforming Eq. (19) into an integrable form [71].
To give an outline we write the general equation as

φ̈ + f1(t)φ̇ + f2(t)φ + f3(t)φ
n = 0. (23)

f1, f2 and f3 are general functions of any variable, let’s
say t . A pair of transformations convert this equation into
an integrable form and are introduced as (provided n /∈
{−3,−1, 0, 1})

�(T ) = Cφ (t) f
1

n+3
3 (t) e

2
n+3

∫ t f1(x)dx , (24)

T (φ, t) = C
1−n

2

∫ t

f
2

n+3
3 (ξ) e

(
1−n
n+3

) ∫ ξ f1(x)dx
dξ. (25)

C is a constant. It can be proved [69] that for this transfor-
mation to hold true, the coefficients must obey the following
condition

1

(n + 3)

1

f3(t)

d2 f3

dt2 − (n + 4)

(n + 3)2

[
1

f3(t)

d f3

dt

]2

+ (n − 1)

(n + 3)2

[
1

f3(t)

d f3

dt

]
f1 (t) + 2

(n + 3)

d f1

dt

+2 (n + 1)

(n + 3)2 f 2
1 (t) = f2(t). (26)

This condition of integrability actually means enforcing an
additional symmetry upon the spacetime geometry. Whether
or not a scalar field evolution should always be integrable,
remains an interesting question. However, it has provided
solutions of considerable interest time and again, see for
instance recent discussions on scalar fied collapse [56], self-
similarity [57], cosmology in modified gravity [72] and col-
lapse of QCD inspired axions [73]. We solve Eq. (26) directly
and use the other field equations to determine the profiles
of ψ and the fluid energy density components. We make
an approximation e−2ψ � γ (t)ψm − γ0ψ , where γ (t) is a
slowly varying function of time and γ0 is a very small con-
stant (γ0 � 10−10). Therefore scalar field evolution equation
becomes

ψ̈ + 3H ψ̇ = −2ζm

ω
γρmψm + 2ζm

ω
ρmγ0ψ. (27)

For m = −6, this equation falls within the class of anhar-
monic oscillator equation with the terms f2(t)φ + f3(t)φn

being comparable to to 2ζm
ω

ρmγ0ψ − 2ζm
ω

γψ−6. Using the
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Fig. 1 Evolution of the radius of two-sphere as a function of time

value of m, we write and simplify Eq. (26) as

ä

a
+ 7

ȧ2

a2 + 2ζmρ0γ0

ω

1

a3 = 0. (28)

A first integral of the above differential equation can be
derived as

ȧ = −
(

a0a−14 − 4ζmρ0γ0

13ωa

) 1
2

, (29)

where a0 is a constant of integration. From Eq. (29), it is
straightforward to infer that for a real ȧ,

a0a−14 ≥ 4ζmρ0γ0

13ωa
, (30)

or

a(t) ≥
(

4ζmρ0γ0

13ωa0

)− 1
15

. (31)

This provides a minimum allowed value of the time evolv-
ing factor a(t) until which the stellar body can collapse. After
this, the nature of ȧ must change and there should be a bounce
as we show in Fig. 1 through a numerical solution of Eq. (29).
The exact solution for a(t) is found as

a
{

1 − a13b0
a0

} 1
2

8
{

a0−a13b0
a14

} 1
2

2 F1

[
1

2
,

8

13
; 21

13
; a13b0

a0

]
= t0 − t,

b0 = 4ζmρ0γ0

13ω
. (32)

It is not trivial to invert this equation and write a(t) explic-
itly as a function of time. The parameter b0 is crucial as it car-
ries the parameters ζm and ω. Just to recall, the choice of ζm

signifies the nature of cold dark matter within the collapsing
sphere. A negative value of ζm indicates magnetic interac-
tion dominating the cold dark matter, as in superconducting
cosmic strings. On the other hand, ω = h̄c

l2 is the parameter
introduced to satisfy dimensional consistency of the extended
theory. l works as a length scale, a lower limit below which

the electric field for a point charge is non-Coulombic. We
find from Eq. (32) that for a real evolution,

ζmρ0γ0

ω
< 0, a0 < 0. (33)

This requirement does not produce any inconsistency in
the lower limit of a(t) derived earlier as in Eq. (31). The
first requirement, in particular, means that ζm < 0 is the
only suitable choice for the theory to accommodate a spa-
tially homogeneous Oppenheimer-Snyder-type gravitational
collapse model, since by definition ρ0, ω are positive and
γ0 is a pre-defined positive quantity. For all the numerical
solutions, we have chosen a particular set of parameters for
which ζmρ0γ0

ω
= −0.035.

The fact that a formation of zero proper volume is not pos-
sible in this theory even for a spatially homogeneous geom-
etry can also be derived by studying the evolution of kine-
matic quantities. This is usually done on a slice, or a spacelike
hypersurface orthogonal to a congruence of geodesics (see
for instance [74]). To discuss in brief, we write an induced
metric hαβ to describe this slice

hαβ = gαβ − uαuβ, (α, β = 0, 1, 2, 3). (34)

The vectors uα are tangent to the points on each geodesic and
timelike. The velocity gradient tensor is defined as

Bαβ = ∇βuα. (35)

It is the standard procedure to split Bαβ into three parts. These
are ‘symmetric traceless’, antisymmetric and the trace part.

Bαβ = 1

3
hαβ� + σαβ + ωαβ. (36)

� = Bα
α, (37)

σαβ = 1

2
(Bαβ + Bβα) − 1

3
hαβθ, (38)

ωαβ = 1

2
(Bαβ − Bβα). (39)

� is known as the expansion scalar. σαβ and ωαβ are the shear
and rotation tensors, respectively. They satisfy the following
relations

hαβσαβ = 0, hαβωαβ = 0, (40)

gαβσαβ = 0, gαβωαβ = 0. (41)

The spatial tensor Bαβ evolves as

uγ ∇γ Bαβ = −Bαγ Bγ
β + Rγβαδuγ uδ. (42)

The Riemann tensor is written as Rγβαδ . Trace part of Eq.
(42) leads to the famous Raychaudhuri equation [75]

d�

dτ
+ 1

3
�2 + σ 2 − ω2 + Rαβuαuβ = 0, (43)

σ 2 = σαβσαβ, (44)

ω2 = ωαβωαβ. (45)
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Fig. 2 Evolution of �(a) as a function of the radius of two-sphere

This equation dictates �-evolution and its’ connection
with the spacetime geometry. Unless one uses the Einstein
field equations to replace the Ricci tensor Rαβ with energy-
momentum tensor, this equation comes purely from Rieman-
nian geometry. �, the expansion scalar is very important in
particular, as it signifies the distance between two adjacent
geodesics on the hypersurface orthogonal. In standard GR,
this equation predicts that a family of initially converging
geodesics shall focus within a finite time – a result famous
as the focusing theorem [75]. The focusing is understood
through the expansion scalar approaching negative infinity,
a signature of the formation of a singularity. In any modi-
fied theory, this outcome depends on the metric solution, for
instance, in our case

� = uα
;α = −3

(
a0

a16 − 4ζmρ0γ0

13ωa3

) 1
2

. (46)

For a0 < 0 and ζmρ0γ0
ω

= −0.035, the plot of � as a func-
tion of a is shown in Fig. 2 and it suggests that � never
reaches −∞. No real value of expansion scalar is realized
near a(t) ∼ 0. In other words, the collapsing sphere can not
shrink too close to zero beyond the minimum cutoff. From the
Raychaudhuri Eq. (44), we infer that the fate of any geodesic
congruence of curves on a collapsing homogeneous sphere
(σ 2 = ω2 = 0) should be dictated by the signature of dθ

dτ
. If

dθ
dτ

< 0, an initially collapsing system will keep on collapsing

until θ ∼ −∞. Any transition of the system from collapse
into a bounce is understood by a change in signature of dθ

dτ

into positive which indicates that the geodesics have started
to move away from one another. For a family of time-like
geodesics, taking the affine parameter τ as time, we study
the evolution of dθ

dτ
as a function of a(t). The evolution is

shown in the lower panel of Fig. 2. It suggests that during the
initial phases of the collapse dθ

dτ
< 0 and the rate of collapse

increases almost exponentially until the minimum cut-off.
After this, dθ

dτ
starts increasing rapidly and at one point dθ

dτ

crosses zero to get into positive values. A zero of dθ
dτ

indicates
a critical point a(t) = ac of the system and can be derived
from the equation

dθ

dτ
=

{
a0−a13

c

(
4ζmρ0γ0

13ω

)

a14
c

} 1
2 {

3a13
c

(
4ζmρ0γ0

13ω

)
− 16a0

}

2a17
c

{
a0−a13

c

(
4ζmρ0γ0

13ω

)

a16
c

} 1
2

= 0.

(47)

Simplifying this equation (for all ac > 0) we find the
critical point to be

ac =
(

52a0ω

3ζmρ0γ0

) 1
13

. (48)

Since both a0 and ζm are negative, the critical point formation
is realized at a physical value of a(t). It is interesting to note
that the point of transition of the system depends on four
parameters

1. ζm which signifies the nature of cold dark matter within
the collapsing sphere.

2. ω = h̄c
l2 which is a characteristic length scale of the theory

below which the electric field for a point charge is non-
Coulombic.

3. ρ0 which is related to the pressureless dust matter distri-
bution within the collapsing sphere.

4. Constant of integration a0 which is most likely directly
connected to the initial volume of the collapsing sphere.

The scalar field ψ must evolve according to the point trans-
formation in Eq. (24) and at the same time be consistent with
the field Eqs. (18) and (19). Using the numerical solution of
Eq. (29) in Eq. (19) we find the consistent evolution of ψ .
We plot the evolution for different ranges of time in Fig. 3.
There is a curious onset of periodicity/oscillation of ψ as
the collapsing stellar body starts bouncing. However, The
frequency of this oscillation dies down and the scalar field
approaches a constant value asymptotically, as almost all the
other clustered matter distribution is dispersed away with
the bounce. Outside the overdensity, therefore, α or the fine
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Fig. 3 Evolution of ψ(t) as a function of time

structure constant remains a constant as ψ has no evolution
there. However, we must mention that this is a simplified
model. Intuitively, for a more general, inhomogeneous col-
lapse ψ should have an evolution ψ(r, t) ∼ ψ0e(r2

b −r2) f (r,t)

where rb is the boundary of the overdensity. In such a case
one should be able to match ψ and it’s first derivative across
the boundary hypersurface of the collapsing overdensity. The
fine structure coupling α evolves exponentially with ψ . We
plot α in Fig. 4, for different ranges of time. We can see that
the periodic behavior of ψ is naturally seen in α evolution as
well. Within the stellar body where the matter distribution is
dominated by magnetostatic energy, α evolves quite radically
and shows oscillations. However, as most of the collapsed
matter distribution is dispersed away through a bounce, α

asymptotically reaches a constant value ∼ 0.006, not too far
from the value of α we usually assign in classical physics.
From Eqs. (20) and (21), we also plot the evolution of ordi-
nary matter density and radiation density within the stellar
body. Their evolution is shown in Fig. 5 and quite naturally
shows an initial growth/accumulation during the collapse,
before an eventual dispersion to zero value once the bounce
takes place.

In the first field Eq. (18), we kept one energy density com-
ponent equivalent to the so-called dark energy distribution
and wrote it as a non-interacting fluid/field, ρφ(t). Using the

Fig. 4 Evolution of α(t) as a function of time

Fig. 5 Evolution of ρm(t) and ρr (t) as a function of time
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Fig. 6 Evolution of ρφ(t) as a function of time

solutions of ψ and a(t) we can evaluate the evolution of this
field as a function of time. The evolution is shown in Fig. 6
and suggests something interesting. During the initial phases
of the collapse, this energy density is negative, perhaps play-
ing the role of a negative cosmological constant. However,
as the sphere moves into bounce and dispersal phase, ρφ(t)
goes through a transition from negative into positive domain.
Moreover, it becomes a very small positive constant asymp-
totically. This constant value, at least for this present model
is not on the scale of cosmological constant, however, it can
suggest of an alternative genesis of the dark energy compo-
nent. When a massive spherical stellar distribution consisting
of (i) cold dark matter driven by magnetostatic energy, (ii)
baryonic non-interacting fluid, (iii) radiation and (iv) a dark
energy field, collapses under extreme gravity, it will never
reach a zero proper volume. It will bounce after a finite time
and generate a periodicity of α. The periodicity will die down
asymptotically until α reaches a constant value. The dark
energy density is negative during the implosion, however, as
all of the collapsed matter starts dispersing, it evolves into
positivity and remains as a remnant with very small positive
constant value. Since ρφ(t) is not constant for all time, it is
better to imagine it interacting non-minimally with geometry
or ordinary matter during the initial phases of the collapse
and getting decoupled during later phase once the bounce
starts. From a simple intuition, the evolution of ρφ(t) can be
fitted with a functional form such as

ρφ(t) � ρφ0 + ρφ1

a3 , (49)

where ρφ1 is a negative parameter. The nature of this matter
component itself can be an interesting topic of discussion
as it generates a negative energy density contribution. We
comment in passing that the only system known to generate
negative energy density is a quantum inspired Casimir effect,
related to the zero point energy of quantum fields in vacuum.
Could such an effect produce the necessary repulsive effects
during the critical transition phases of a gravitational col-
lapse and mark the onset of a bounce and dispersal? This is

an important question and will be addressed by the author
in a separate discussion on quantum corrected gravitational
collapse.

We want to mention here that one can easily solve the
Klein–Gordon Eq. (27) for a different value other than
m = −6, and the allowed set is quite extensive. However, the
equation should fall within the anharmonic oscillator equa-
tion class. We give the results for a second example, the
m = −4 case for which Eq. (26) becomes

ä

a
+ 2

13

ȧ2

a2 − 4ζmρ0γ0

13ω

1

a3 = 0. (50)

The radius of the two-sphere for the collapsing star (Fig. 7)
describes a similar evolution compared to the m = −6
case, i.e., the qualitative non-singular nature of the collapse
remains the same. The scalar field ψ evolves as dictated by a
consistent solution of Eqs. (24), Eq. (18) and (19). A numeri-
cal solution of ψ is shown in Fig. 7 which suggests that, qual-
itatively the scalar field approaches a constant value asymp-
totically as all the clustered matter distribution starts to dis-
perse with the bounce. However, the periodicity/oscillation
of ψ within the collapsing stellar body is lost for m = −4.
The stellar evolution also sees an α evolution asymptotically
reaching a constant value ∼ 0.007 which is again, quite sim-
ilar to the value of α we usually assign in classical physics
(shown in Fig. 7). We also plot the evolution of ordinary
matter density and radiation density within the stellar body
in Fig. 8 and they show an initial growth/accumulation dur-
ing the collapse, before an eventual dispersion to zero value
once the bounce takes place.

The dark energy fluid ρφ(t) is evaluated numerically and
drawn in Fig. 9. Again, it shows a qualitatively same phys-
ical behavior compared to the m = −6 case, i.e., a nega-
tivity during the initial phases of the collapse, a transition
into positivity as the sphere moves into bounce and finally,
the asymptotic generation of a very small positive constant
value.

4 Matching with an exterior Vaidya spacetime

Any collapsing distribution is a system in equilibrium with
its exterior and therefore it is crucial to match the two geome-
tries (interior and exterior) across a boundary hypersurface
[76–78]. Since we have an interacting scalar field inside the
collapsing cluster, it is reasonable to assume that the exterior
solution can be written using a Vaidya metric. The interior
geometry is that of a spatially flat homogeneous metric

ds−2 = −dt2 + a(t)2dr2 + r2a(t)2d�2, (51)

while now we define the exterior as
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Fig. 7 Evolution of the radius of two-sphere, ψ(t) and α(t) as a func-
tion of time for a second set of initial condition (m = −4)

ds+2 = −
(

1 − 2M(rv, v)

rv

)
dv2 − 2dvdrv + rv

2d�2.

(52)

These two metrics are joined at a boundary hypersurface
given by �. The idea is to ensure continuity of the two fun-
damental forms, metric and extrinsic curvature at this hyper-
surface. For a general a(t) the metric or the first fundamental
form is continuous if

(rv)� = ra(t), (53)

and

Fig. 8 Evolution of ρm(t) and ρr (t) as a function of time for a second
set of initial condition (m = −4)

Fig. 9 Evolution of ρφ(t) as a function of time for a second set of
initial condition (m = −4)

(dv

dt

)
�

= 1√
1 − 2M(rv,v)

rv
+ 2drv

dv

. (54)

The second fundamental form or the extrinsic curvature
is continuous across � if

(
ra(t)

)
�

= rv

⎛
⎝ 1 − 2M(rv,v)

rv
+ drv

dv√
1 − 2M(rv,v)

rv
+ 2drv

dv

⎞
⎠ . (55)
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We can combine the above three equations to write
(

dv

dt

)

�

= 3ra(t)2 − r2

3(ra(t)2 − 2Ma(t))
. (56)

While Eq. (53) is popularly accepted as the first matching
condition, Eq. (56) serves as the second matching condition.
Using Eq. (55) we can write the Misner–Sharp mass function

M�=1

4

[
ra(t)+ r3

9a(t)3 +
√

1

ra(t)
+ r3

81a(t)9 − 2r

9a(t)5

]
,

(57)

which provides the total energy confined within the spherical
distribution at any value of time or any particular shell of label
r [79]. We also write the rate of change of M(v, rv) as

M(rv, v),rv
= M

ra(t)
− 2r2

9a(t)4 , (58)

using the extrinsic curvature continuity equation. The two
equations defining Mass function and it’s rate of change are
regarded as the third and fourth matching conditions.

We also discuss briefly how the exterior geometry should
evolve during the collapse of the cluster. If the exterior is
written as a generalized Vaidya geometry

ds2 = −
[

1 − 2M(u, R)

R

]
du2 + 2εdud R + r2d�2,

(ε = ±1), (59)

then M(u, R) gives the energy enclosed within R. ε = ±1 is
a parameter that describes different time coordinate choices,
namely, Eddington retarded time (ε = −1) and Eddington
advanced time u (ε = 1). These two choices are two different
coordinate representations. For ε = 1, r is decreasing along
u = Const towards the future. For ε = −1, r is increasing
along u = Const towards the future. We write the compo-
nents of Einstein tensor for this metric as

G0
0 = G1

1 = −2M ′(u, R)

R2 , (60)

G1
0 = 2Ṁ(u, R)

R2 , (61)

G2
2 = G3

3 = − M ′′(u, R)

R
. (62)

The dot is a partial derivative with respect to time coordinate
(Ṁ ≡ ∂ M

∂u ) and prime is a partial derivative with respect to
radial coordinate (M ′ ≡ ∂ M

∂ R ). We divide the total energy
momentum distribution of the exterior in two parts (for more
discussions see for instance [80–82])

Tμν = T (n)
μν + T (m)

μν . (63)

We are using two null vectors lμ and nμ to write the energy
momentum tensor components as

T (n)
μν = μlμlν, (64)

T (m)
μν = (ρ + P)

(
lμnν + lνnμ

)+ Pgμν. (65)

The coefficients (physical quantities) and the null vectors
are defined as

μ = 2εṀ(u, R)

κ R2 , (66)

ρ = 2M ′(u, R)

κ R2 , (67)

P = − M ′′(u, R)

κ R
.lμ = δ0

μ, (68)

nμ = 1

2

[
1 − 2M(u, R)

R

]
δ0
μ − εδ1

μ, (69)

lλlλ = nλnλ = 0, (70)

lλnλ = −1. (71)

This means T (n)
μν is effectively a matter distribution flow-

ing along u = Constant null hypersurface. We can use an
orthonormal basis [83] and write the energy momentum ten-
sor of the exterior as

Eμ
0 = lμ + nμ√

2
, Eμ

1 = lμ − nμ√
2

, (72)

Eμ
2 = 1

r
δ
μ
2 , Eμ

3 = 1

r sin θ
δ
μ
3 . (73)

Once simplified, this translates into the standard energy
momentum tensor representation for the exterior

Tab =

⎡
⎢⎢⎣

μ
2 + ρ

μ
2 0 0

μ
2

μ
2 − ρ 0 0

0 0 P 0
0 0 0 P

⎤
⎥⎥⎦ . (74)

This is a Type II fluid energy momentum tensor [84]. The
weak and strong energy conditions for this fluid depends
upon the mass function of the system through the equations

μ ≥ 0, ρ ≥ 0, P ≥ 0, (μ �= 0). (75)

The dominant energy conditions can be written as

μ ≥ 0, ρ ≥ P ≥ 0, (μ �= 0). (76)

For a special case M(u, R) = M(u), the energy condition
simply becomes a necessary condition

μ ∼ −2 d M(u)
du

κ R2 ≥ 0. (77)

During the collapse and dispersal, the matter distribu-
tion that remains in the exterior or is dispersed/ejected into
the exterior must satisfy this in order to obey the necessary
energy conditions.
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5 Conclusion

Formation and death of a star is a cataclysmic event that
can happen in our cosmos, particularly in locally overdense
regions. The more technical term to describe this event
is gravitational collapse, which, by virtue of GR can be
expressed through a set of non-linear differential equations.
A solution of these equations provides a picture of what a
collapse can produce and more often than not, the outcome
is a singularity, a geodesic incompleteness where space-time
curvature reaches infinity. If one considers a different theory
of gravity, the set of equations are modified and in principle,
the solution can portray a different story. We carry a motiva-
tion of finding a theory that can produce enough departure
such that a formation of spacetime singularity can be avoided.
Our proposal is that such a theory can be found by accom-
modating the idea of Dirac’s large number hypothesis within
the action of gravity. The hypothesis suggests that it is more
natural to allow universal constants to evolve in theories of
fundamental forces. We write a generalized theory of scalar-
matter interaction where the scalar field can interact only
with electrically charged matter and in the process, results in
a time evolution of fine structure constant α.

Ordinarily in GR, an idealized spherical star/stellar distri-
bution, after losing all of its’ internal energy, will collapse
to a zero proper volume and form a singularity (e.g. massive
neutron cores, perfect fluid, scalar fields). This is also real-
ized from the Raychaudhuri equation of congruences for any
such stellar distribution. We discuss that in a theory support-
ing a variation of fine structure constant α, formation of a
singularity can be avoided. In principle, an α variation can
be realized within a cold dark matter distribution dominated
by magnetostatic energy. We study an evolving over-dense
region of cold dark matter co-existing with ordinary matter
and a pressureless non-interacting dark energy field. Inside
the distribution, magnetostatic energy dominates the other
components and the α variation leads to modified field equa-
tions. Outside, there is no such field and therefore, Einstein’s
GR and standard equivalence principles remain valid. We
find an exact solution that describes a spatially homogeneous
spherical body collapsing only until a critical radius. Around
this critical point the collapsing sphere changes nature and
starts bouncing. We show that this lower bound on the radius
of the sphere depends on the nature of collapsing matter, in
particular, the cold dark matter distribution within the sphere.
It also depends on an energy scale of the order of Planck
scale (written through the parameter ω = h̄c

l2 ) which was
introduced in the theory for dimensional requirements. We
believe that this critical point may be connected to quantum
gravity constraints, also related to Planck scale. More analy-
sis on this particular question will be included in a subsequent
work.

The nature of cold dark matter in a varying α theory is
decided through the parameter ζm = Lem

ρ
, i.e., the percentage

of dark matter present in comparison with the total baryon
energy density. Ideally, one can assign different values to
ζm and that should lead to a different nature of dark mat-
ter. For instance, depending on the comparative strength of
electric and magnetic field in the cold dark matter distribu-
tion, ζm can be chosen between −1 and +1. Cosmologically,
ζm < 0 is more favorable as it can describe the expected
mild variation of α as a function of redshift as observed
in molecular absorption spectra of quasars and at the same
time provide good match with late-time cosmological obser-
vations. Through this work, we also prove that a realistic
Oppenheimer–Snyder-type collapsing solution is only pos-
sible for ζm < 0. It means that a cluster of cold dark matter
can collapse under gravitational pull and remain non-singular
only if it is dominated by magnetic coupling, as in supercon-
ducting cosmic strings.

The formation of critical point and a transition from col-
lapse into bounce, generates quite a few interesting behavior
in the matter constituents of the collapsing cluster. First of
all, a non-trivial periodicity in the evolution of α is noted.
The periodicity reaches a maximum frequency around the
critical point after which the frequency starts to decay and α

reaches a constant value asymptotically. This value, although
not exactly the value of α we know today, is not too dissimilar
either. The distribution of ordinary fluid and radiation density
which were clustered during the collapse disperses away to
zero along with the bounce. The so-called dark energy distri-
bution is written as a non-interacting field. During the initial
phases of the collapse, the energy density contribution of
this field is negative, perhaps playing the role of a negative
cosmological constant. However, as the sphere moves into
bounce and dispersal phase, this field goes through a tran-
sition and evolves into a very small positive constant. This
constant value, is not on the scale of cosmological constant,
but it provides a hint that a dark energy field can be gener-
ated as a remnant of collapsing overdense regions of clustered
matter. Spherical clusters made of cold dark matter and ordi-
nary matter can collapse, bounce and evolve into a constant
energy density correction to Einstein’s gravity, much like a
cosmological constant. Moreover, the origin of a negative
energy density can be an interesting topic of research. The
only other example of a negative energy density is found in
discussions related to zero point energy of quantum fields
in vacuum, through a quantum-inspired Casimir effect. It is
not a too far-fetched imagination that during gravitational
collapse, two adjacent layers of collapsing matter can get
arbitarily close to each other, atleast at some value of time
during the evolution. Then one might wonder if quantum
field theory effects come into play around a scale close to the
Planck length and allow the energy density of the inner layer
of the collapsing sphere to be negative with respect to the
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immediate outer layer. Could such an effect produce the nec-
essary repulsive effects during the critical transition phases
of a gravitational collapse and mark the onset of a bounce
and dispersal? At this moment we keep these comments as
possibilities to be explored in the near future.
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