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Abstract In this article, we present a new family of solu-
tions to the Einstein field equations of an uncharged spher-
ically symmetric anisotropic matter distribution in the con-
text of f (Q) gravity by choosing f (Q) = Q + aQ2, a
being the coupling constant. Along with the fundamental
quintessence dark energy defined by the equation of state
parameter −1 < ωq < − 1

3 , we have generated the field
equations in modified gravity. Using the linear relationship
between radial pressure and energy density along with the
Krori–Barua (KB) metric potential, we are able to solve
the field equations. Next, we discuss the smooth matching
between the exterior Schwarzschild spacetime and the inte-
rior spherically symmetric spacetime. We have presented a
thorough physical analysis of several factors analytically and
graphically to show the physical viability of our suggested
model. For the compact star SAXJ 1808.4-3658, our entire
graphical analysis was carried out in the context of our solu-
tions for various values of the coupling constant connection
to the f (Q) gravity. The influence of coupling constant “a”
on different model parameters has been numerically deter-
mined and is presented in tabular form. We checked the radial
and tangential sound speeds, the stability factor, the adia-
batic index, etc. to determine whether our model was stable.
It is evident from our analysis that the model is potentially
stable when coupling constant a ∈ [0, 5]. The maximum
allowable mass and radius from our present model have been
obtained through the mass–radius (M − R) plot for different
values of a.

1 Introduction

Despite the enormous success of Newtonian gravity, it
entirely failed in several situations when there were strong
gravitational effects, such as when Mercury’s movement was
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taken into account [1]. In 1915, Einstein discovered the Gen-
eral Theory of Relativity (GR), which enabled the Mercury
problem to be resolved [2]. Since then, GR has gained recog-
nition as the fundamental theory of gravitational physics.
However, GR contains a variety of shortcomings such as the
dark energy issue that demonstrate that it is not a compre-
hensive theory of gravity [3,4]. Moreover, GR contradicts
current discoveries as well as the strong gravitational field [5–
7]. Therefore, appropriate modifications to GR are needed.
Einstein predicted his formulation of GR on the curvature
of spacetime, but there are two more comparable formula-
tions that use torsion and nonmetricity for spacetime. Cur-
vature and torsion disappear in the nonmetricity approach,
and only the contribution of nonmetricity is used to convey
gravitational information. Jiménez et al. [8] have suggested
symmetric teleparallel gravity, namely f (Q) gravity, which
is a well-motivated theory of gravity in which the gravita-
tional interaction in spacetime is governed by nonmetricity.
Research on f (Q) gravity has been growing continuously
since it was first proposed. A convincing set of constraints
are imposed on f (Q) gravity by Lazkoz et al. [9], where
Lagrange f (Q) is written as a polynomial function of red-
shift z. The constraints of these models have been effectively
determined using observational data such as type Ia super-
novae, baryon acoustic oscillation data, quasars, gamma-ray
bursts, and cosmic microwave background distance data.

In f (Q) symmetric teleparallel gravity, Errehymy et al.
[10] investigated the characteristics of anisotropic, spher-
ically symmetric compact stars, particularly electrically
charged strange stars. From the perspective of the Friedmann–
Laîmatre–Robertson–Walker (FLRW) evolution history, Gad-
bail et al. [11] propose a number of fascinating explicit recon-
structions for f (Q) gravity. In the context of f (Q) gravity,
Maurya et al. [12] have studied the gravitationally decou-
pled anisotropic solutions for strange stars by combining
the Massachusetts Institute of Technology (MIT) bag model
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equation of state for hadronic matter with the Tolman metric
ansatz. Lymperis [13] investigated the cosmic implications
in f (Q) gravity, motivated by the interesting characteris-
tics and a recently proposed general form of the function
of nonmetricity scalar Q. In f (Q) gravity, Hassan et al.
[14] discovered a new class of wormhole solutions. Arora
and Sahoo [15] look into the possibility of crossing a phan-
tom dividing line in the extension of symmetric teleparallel
gravity or f (Q) gravity, where Q is the nonmetricity. Expo-
nential, logarithmic, and combined f (Q) theories are used
to examine the evolution of the effective equation of state
parameter for dark energy throughout cosmic evolution. Hu
and Katsuragawa [16] showed how to correct the coincident
gauge condition and perform a Hamiltonian analysis of f (Q)

gravity. They demonstrate that the f (Q) gravity has 8 phys-
ical degrees of freedom using the common Dirac–Bergmann
algorithm. Capozziello [17] believes that nonmetricity, with
vanishing curvature and torsion, controls gravity. In order to
describe the consequences of dark energy, the gravitational
action is examined, incorporating an arbitrary function of the
nonmetric scalar. In the context of f (Q) gravity, Anagnos-
topoulos et al. [18] proposed a novel model that includes a
gravitational modification class that results from the inclu-
sion of nonmetricity. The model has the same number of free
parameters as the �-cold dark matter (CDM). In another
work, in order to extract constraints on various classes of
f (Q) models, Anagnostopoulos et al. [19] used the Big Bang
Nucleosynthesis (BBN) formalism and observations.

The universe is expanding more rapidly than initially
assumed, as indicated by observations made by high-redshift
supernova Ia and later verified by cosmic microwave radia-
tion [3,4]. One possible explanation for the fast expansion of
the universe takes into account the existence of dark energy
or dark matter [20]. Although a telescope cannot detect dark
matter, its gravitational effects on visible matter and gravita-
tional lensing of background radiation provide us evidence
of its existence. Dark energy (DE) is characterized by a state
parameter ω = p/ρ. If −1 < ω < −1/3, then it is referred
to as quintessence DE, and if ω < −1, then it is called phan-
tom DE, producing the Big Rip singularity and violating the
null energy condition. There are numerous references that
discuss the phantom DE [21–23]. ω = −1 in particular pro-
vides the equation of state of “Gravastar.” With the normal
matter that surrounds a black hole, Kiselev [24] presents a
new static, spherically symmetric exact solution to the Ein-
stein equations. It is possible to obtain exact limits to the
known solutions for the electromagnetic static field, which
suggests the relativistic relation between energy density and
pressure, as well as for the extraordinary case of the cosmo-
logical constant, by introducing a condition of additivity and
linearity in the energy–momentum tensor. Simeon Hellerman
[25] explains the challenges in establishing the set of observ-
able properties that would be required to define string theory

in an expanding universe. These properties would be simi-
lar to an S-matrix. They demonstrate that the quintessence
models with the equations of state −1 < ω < −1/3 con-
tain future horizons and may not be better suited to an S-
matrix or S-vector description. Review of the cosmic dynam-
ics of quintessence with a special focus on the develop-
ment of the dark energy equation of state ω, Shinji Tsu-
jikawa [26] constrains quintessence models using the obser-
vations of supernovae of type Ia, the cosmic microwave back-
ground, and baryon acoustic oscillations by using the ana-
lytical formulation of ω. Hussain and Ali [27] investigate
the marginally stable circular orbits (MSCOs) of a massive
test particle in the spacetime geometry of the Schwarzschild
black hole surrounded by quintessence. In order to address
this issue, the authors take into account three crucial situa-
tions in which the equation of state parameter, ωq , has one
of the following forms: (i) ωq = −1, (ii) ωq = −2/3, or (iii)
ωq = −1/3. The solution for a static, spherically symmet-
ric black hole with a cloud of strings (Letelier spacetime)
immersed in a quintessence fluid is found by Costa et al.
[28]. The authors describe some of its thermodynamics and
complete proceeding studies in the Schwarzschild spacetime
with quintessence and a solid deficit angle. The quintessential
matter surrounding a black hole has an additional parameter
(ω) due to the quintessential matter, in addition to the mass
(M), which Ghosh [29] discussed in terms of spherically sym-
metric exact solutions of the Einstein equations. For a stat-
ically charged black hole (Reissner-Nordström black hole)
surrounded by quintessence and a cloud of strings, Toledo
and Bezerra [30] found the solution, investigated its ther-
modynamics, and determined the quasinormal frequencies
for a scalar field in this background spacetime. Anisotropic
compact stars have been studied by Das and Debnath [31]
within the context of modified Gauss–Bonnet gravity, usually
known as the f (G) theory of gravity. The equations charac-
terizing the interior geometry of the compact stellar object,
the anisotropic mode of the matter distribution in the pres-
ence of the electromagnetic field, and the quintessence field
were established. Pradhan [32] considered an anisotropic vis-
cous cosmological model having locally rotationally sym-
metric (LRS) Bianchi type I spacetime with f (Q) gravity.
According to Agostino et al. [33], if the thermodynamics
for a generalized scalar (dark) matter field is expressed in
terms of a quasi-quintessence representation, the vacuum
energy contribution can be removed. For the scalar field dark
energy models, Roy et al. [34] suggested a simple generalized
parameterization approach of the Hubble parameter. With
their method, it is possible to write down relevant cosmo-
logical parameters that are independent of the scalar field’s
nature while incorporating both the quintessence and phan-
tom scalar fields into a single analytical scheme. In their
study, Mandal et al. [35] take into account an anisotropic
fluid distribution in a spherically symmetric spacetime. To
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investigate the solution of compact stars in f (Q) gravity, the
quintessence field is used in the energy–momentum tensor, in
particular. A quintessence scalar field on the brane was taken
into account by Ravanpak [36] as the dark energy component
of a normal branch of the Dvali–Gabadadze–Porrati (DGP)
cosmological model. They investigate the stability character-
istics of the model using the dynamical system technique and
discover that λ, one of their new dimensionless variables that
are specified in terms of the quintessence potential, plays a
significant role in the development of the universe. Ndongmo
[37] proposed the thermodynamics of a revolving, nonlinear
magnetically charged black hole in the quintessence field.
Compact stars were proposed to exist in the context of f (T )

modified gravity, where T is a scalar torsion, by Saha and
Debnath [38]. Within the context of modified f (T ) gravity,
they obtain the equations of motion using the anisotropic
property of the spherically compact star’s electromagnetic
field, quintessence field, and modified Chaplygin gas. Exam-
ples of two exact solutions are given that can be used to
illustrate inflation and a significant decline of the dynami-
cal “cosmological constant,” which is provided by the scalar
quintessence proposed by Kiselev [39]. Three exact solutions
to the Einstein gravity equation that are minimally connected
to a quintessence field are shown by Zhou [40] to possess cer-
tain characteristics. Guo [41] uses the third-order Wentzel–
Kramers–Brillouin (WKB) approximation approach to eval-
uate the Schwarzschild black hole’s quasi-normal frequen-
cies in the quintessence background. Bhar [42] developed a
new model of an anisotropic superdense star that allows con-
formal motions in the presence of a quintessence field that is
defined by the parameter ωq . Inspired by all of this previous
work, in this paper we want to propose a new anisotropic
compact stellar model in the presence of a quintessence field
characterized by ωq in f (Q) gravity.

The structure of this paper is as follows: In Sect. 2, we
derive the field equations in the context of quadratic f (Q)

gravity with anisotropic matter distribution in the presence
of a quintessence field. For solving the field equations, we
also took into account the linear equation of state along with
the gravitational potentials of Krori and Barua. The matching
condition is employed in Sect. 3 to determine the parameter
values that are necessary for our construction. We examine
the physical study of our developed star model by choosing
the compact star SAXJ1808.4-3658, in Sect. 4. A physical
analysis is discussed including the mass function, compact-
ness factor, and redshift function. To check the viability of
the model, many physical properties like the nature of the
metric potential, matter density and pressure components,
anisotropy, causality, Herrera’s stability analysis, the behav-
ior of the quintessence field, equation of state parameters, and
anisotropy are discussed in details. The mass–radius relation-
ship and variation of mass with the help of contour plots are
presented in the next section. Finally, by combining all the

findings, we conclude our analysis of the compact star in
Sect. 6.

2 Field equations for spherically symmetric objects
within f (Q) theory

We consider the action for f (Q) gravity given by [8],

S =
∫ [

1

2
f (Q) + Lm

] √−gd4x, (1)

where f (Q) represents a general function of Q, g is the deter-
minant of the metric gμν , and Lm is the matter Lagrangian
density. The nonmetricity tensor can be written as

Qαμν = ∇αgμν = −Lρ
αμgρν − Lρ

ανgρμ, (2)

where the two independent traces of the nonmetricity tensor
are given by

Qα = Q β
α β, Q̃α = Qβ

αβ, (3)

and the deformation term is given by

Lα
μν = 1

2
Qα

μν − Q α
(μν). (4)

The nonmetricity scalar is defined by

Q = −gμν
(
Lα

βνL
β
μα − Lβ

αβL
α
μν

)
= −Pαβγ Qαβγ , (5)

where Pαβγ is the nonmetricity conjugate, and the corre-
sponding tensor is written as

Pα
μν = 1

4

[
−Qα

μν + 2Qα
(μν) − Qαgμν

−Q̃αgμν − δα
(μQν)

]
. (6)

The field equation of f (Q) gravity is obtained by varying
(1) with respect to gμν as

− 2√−g
∇a

(√−g fQ Pα
μν

) + fQ
(
Pαβ

ν Qμαβ − 2Pαβ
μQαβν

)

+1

2
gμν f = κTμν, (7)

where κ = 8π fQ = ∂ f
∂Q , and the energy–momentum tensor

Tμν is given by

Tμν = − 2√−g

δ
√−gLm

δ
√
gμν

. (8)

Then by varying the action with respect to the affine connec-
tion, one can obtain the following equation:

∇μ∇ν

(√−g fQ Pμν
α

) = 0. (9)

The field equations ensure the conservation of the energy–
momentum tensor within the formalism of f (Q) gravity, and
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for the choice of f (Q) = Q, the Einstein equations are
recovered.

Let us now assume that our model includes an anisotropic
pressure that represents regular matter and a field that repre-
sents the quintessence, and therefore the energy–momentum
tensor becomes

T ν
μ = T ν

μ + τ ν
μ,

where τ ν
μ corresponds to the energy–momentum tensor for

the quintessence field, and its expression is given by

τ rr = τ tt = −ρq ,

τ θ
θ = τ

φ
φ = (3ωq + 1)ρq

2
,

where ρq represents the energy density for the quintessence
field characterized by the parameter ωq , with (−1 < ωq <

− 1
3 ), and T ν

μ represents the energy–momentum tensor of the
ordinary matter having the expression

Tμ
ν = (ρ + pr )u

μuν − pt g
μ
ν + (pr − pt )η

μην, (10)

with uiu j = −ηiη j = 1 and uiη j = 0. Here, the vec-
tor ui is the fluid 4-velocity, and ηi is the space-like vec-
tor which is orthogonal to ui , ρ is the matter density, pr
and pt are, respectively, the radial and the transversal pres-
sure of the underlying fluid, and pt lies in the orthogonal
direction to pr .

In this paper, our goal is to discuss a model that describes
an anisotropic matter distribution. The following line ele-
ment can be used to illustrate static, spherically symmetric
spacetime for this purpose:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2). (11)

Assuming G = c = 1, the field equations in f (Q) gravity
are given as follows:

κρTotal = e−λ

2r2

[
2r fQQQ

′(eλ − 1) + fQ
(
(eλ − 1)(2 + rν′)

+(1 + eλ)rλ′) + f r2eλ
]
, (12)

κpTotal
r = −e−λ

2r2

[
2r fQQQ

′(eλ − 1)

+ fQ
(
(eλ − 1)(2 + rλ′ + rν′) − 2rν′) + f r2eλ

]
,

(13)

κpTotal
t = −e−λ

4r

[
− 2r fQQQ

′ν′ + fQ
(

2ν′(eλ − 2)

−rν′2 + λ′(2eλ + rν′) − 2rν′′) + 2 f reλ
]
., (14)

where the expressions for ρTotal, pTotal
r , and pTotal

t are given
by

ρTotal=ρ+ρq , pTotal
r =pr−ρq , pTotal

t =pt+3ωq+1

2
ρq .

The nonmetricity scalar is given by [43]

Q = 1

r
(ν′ + λ′)(e−λ − 1). (15)

Now we define a quadratic function for f (Q) gravity, which
is expressed as

f (Q) = Q + aQ2, (16)

where “a” is a constant. This form of f (Q) was used earlier
by Lin and Zhai [43] to model compact stars in f (Q) gravity.

In the field Eqs. (12)–(14), there are six unknowns. For
four distinct values of the coupling constant “a,” our goal is to
develop an anisotropic uncharged solution and determine its
viability. To achieve this, we need to apply some constraints.
Hence, under the f (Q) scenario, we use the metric potentials
which Krori and Barua [44] proposed. These potentials were
originally utilized to analyze charged star formations, and
their non-singular character generated considerable interest
in astrophysics. The solution has the form

λ = Ar2, ν = Br2 + C. (17)

The ansatz contains three unknown constants, A, B, and C ,
whose values can be determined by boundary conditions. In
terms of the Krori–Barua ansatz, the field Eqs. (12)–(14)
become

κ
(
ρ + ρq

) = e−2Ar2

r2

[
eAr

2
(eAr

2 − 1 + 2Ar2)

−2a(A + B)(eAr
2 − 1)

×
{
(7A − B)r2 − 2 + eAr

2(
2 + (A + B)r2)}]

, (18)

κ
(
pr − ρq

) = e−2Ar2

r2

[
eAr

2
(1 − eAr

2 + 2Br2)

+2a(A + B)(eAr
2 − 1)

×
{
(3A − 5B)r2 − 2 + eAr

2
(2 + (A + B)r2)

}]
, (19)

κ

(
pt + 3ωq + 1

2
ρq

)

= e−2Ar2
[

− eAr
2(
A − 2B + (A − B)Br2)

+2a(A + B)
{

− A + 5B + (A + B)e2Ar2

−6ABr2 + 2B2r2 − 2BeAr
2(

3 + (−A + B)r2)}]
.

(20)

To better understand the physical properties of a massive
body, it is important to consider a number of constraints,
also known as the equation of state (EoS), that serve to link
the matter variables of the fluid configuration to the pressure.
For our present model, let us assume that the radial pressure
pr maintains a linear equation of state with the matter density
ρ as

pr = αρ − β, (21)
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where α and β are numeric constants, and their values will
be obtained in the coming section. The EoS proposed in (21)
is a generalized version of the MIT bag model EoS proposed
by De Felice et al. [45]. The physical characteristics of many
compact star models have been extensively studied using the
EoS (21) in both general relativity (GR) and modified gravity
scenarios.

Now the Eqs. (18)–(20) are solved with the help of Eq. (21)
to obtain the expression of ρ, ρq , pr , and pt as follows:

ρ =
e−2Ar2

{
8a(A+B)2−2(A+B)

(
4a(A+B) − 1

)
eAr

2 +βe2Ar2
κ
}

(1 + α)κ
,

(22)

ρq = e−2Ar2

(1 + α)κr2

[
− eAr

2
(1 + α − 2Aαr2 + 2Br2)

+e2Ar2
(1 + α − βκr2) − 2a(A + B)(eAr

2 − 1)

×
{

3Ar2 − 2 − 2α + 7Aαr2 − 5Br2 − αBr2 + (1 + α)eAr
2

(
2 + (A + B)r2)}]

, (23)

pr =
e−2Ar2

{
8aα(A+B)2−2α(A+B)(4a(A+B) −1)eAr

2 −βe2Ar2
κ
}

(1 + α)κ
,

(24)

pt = e−2Ar2

2(1 + α)κr2

[
2a(A + B)

[
2 + 2α + 6ωq + 6αωq

−5Ar2 − 9Aαr2 + 15Br2 + 11αBr2 − 9Aωqr
2 − 21Aαωqr

2

+15Bωqr
2 + 3αBωqr

2 − 12ABr4 − 12AαBr4 + 4B2r4

+4αB2r4 + (1 + α)e2Ar2 (
2 + 6ωq + 3(A + B)(1 + ωq )r

2)

+2eAr
2
{(

A(1 + 3α)(1 + 3ωq ) − B(9 + 7α + 3(3 + α)ωq )
)
r2

−2(1 + α)(1 + 3ωq ) + 2(1 + α)(A − B)Br4
}]

+eAr
2
{

1 + 3ωq − 2
(
A − 3B(1 + ωq )

)
r2 + 2B(B − A)r4

+eAr
2
(1 + 3ωq )(βκr2 − 1) − α

(
− 1 + eAr

2
(1 + 3ωq )

+ωq (−3 + 6Ar2) + 2(A − B)r2(2 + Br2)
)}]

, (25)

and the anisotropic factor � = pt − pr for our present model
is obtained as

� = e−2Ar2

2(1 + α)κr2

[
eAr

2
{

1 + 3ωq − 2(A − 3B(1 + ωq ))r2

+2B(−A + B)r4 + eAr
2
(

− 1 − 3ωq + 3βκ(1 + ωq )r2
)

−α
(

− 1 − 3ωq + eAr
2
(1 + 3ωq )

+2A(4 + 3ωq )r2 + 2(A − B)Br4
)}

+2a(A + B)
{

2 + 2α + 6ωq + 6αωq − 5Ar2

−17Aαr2 + 15Br2 + 3αBr2 − 9Aωqr
2 − 21Aαωqr

2

+15Bωqr
2 + 3αBωqr

2 − 12ABr4 − 12AαBr4

+4B2r4 + 4αB2r4 + (1 + α)e2Ar2
(

2 + 6ωq

+3(A + B)(1 + ωq )r2
)

+ 2eAr
2
(

− 2(1 + α)(1 + 3ωq )

+
(

− 3(3 + α)B(1 + ωq ) + A
{
1 + 3ωq + α(7 + 9ωq )

})
r2

+2(1 + α)(A − B)Br4
)}]

. (26)

In the following section, each model parameter that was
obtained through this approach will be thoroughly studied.

3 Boundary condition

To preserve the continuity of spacetime, both the interior
and exterior of the stellar model are essential. As a result,
at the boundary r = rb, the interior and exterior spacetimes
must coincide. As the problem we have been considering is
static, non-rotating, and spherically symmetric, one can note
that the exterior solution is described by the Schwarzschild
vacuum solution provided by the following line element:

ds2+ =
(

1 − 2m

r

)
dt2 −

(
1 − 2m

r

)−1

dr2

−r2
(
dθ2 + sin2 θdφ2

)
, (27)

where “m” denotes the total mass within the boundary of the
compact star corresponding to our interior line element

ds2− = eBr
2+Cdt2 − eAr

2
dr2 − r2

(
dθ2 + sin2 θdφ2

)
,

(28)

where the (−) and (+) signs respectively denote the interior
and exterior of spacetime.

The continuity of the metric potentials at the boundary
surface r = rb leads to the following expressions:

1 − 2m

rb
= eBr

2
b+C , (29)

(
1 − 2m

rb

)−1

= eAr
2
b , (30)

m

r2
b

= Brbe
Br2

b+C . (31)

Equations (29)–(31) are simultaneously solved to determine
the Krori–Barua unknowns A, B, C as

A = − 1

r2
b

ln

(
1 − 2m

rb

)
, (32)

B = m

r3
b

(
1 − 2m

rb

)−1

, (33)

C = ln

(
1 − 2m

rb

)
− m

rb

(
1 − 2m

rb

)−1

. (34)
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Now, at the boundary (r = rb), the pressure in the radial direc-
tion inside star systems must vanish. On this basis, we arrive
at Eq. (35):

e−2Ar2
b

{
8aα(A+B)2−2α(A+B)(4a(A+B) −1)eAr

2
b−βe2Ar2

b κ
}

(1+α)κ
=0.

(35)

Along with this, we impose another condition that the pres-
sure anisotropic factor � vanishes at the center of the star,
which gives

�|r=0 = 3(A + 3Aα − 2B − βκ)(1 + ωq)

2(1 + α)κ
= 0. (36)

Now, solving Eqs. (35) and (36) simultaneously, we obtain
the expressions for α and β as follows:

α = (A − 2B)e2AR2

8aA2 + 16aAB + 8aB2 + 2AeAR2 − 8aA2eAR2 + 2BeAR2 − 16aABeAR2 − 8aB2eAR2 − 3Ae2AR2 , (37)

β = A + 3Aα − 2B

κ
. (38)

The unknowns A, B, and C have been calculated using exper-
imental data from five different strange stars and are shown
in Table 1, and the numerical values of α and β for different
values of the coupling constants are presented in Table 2.

4 Physical analysis

In this section, we discuss an extensive number of the charac-
teristics of proposed stellar structures related to anisotropic
fluid distribution in f (Q) gravity. Using the relevant exper-
imental and calculated data from Tables 1 and 2, the state
variables for the compact star SAX J 1808.4-3658 are graph-
ically analyzed in order to verify the physical validity of
the proposed solution. For different values of the coupling
parameters a = 0, 5, 10, and 15, we investigate the behavior
of metric functions, anisotropic pressure, energy conditions,
mass, redshift and compactness, stability, etc.

4.1 Metric potential, density, and pressure

• Both metric potentials are singularity-free within the
star’s boundary as eλ|r=0 = 1 and eν |r=0 = eC . The
derivative of the metric coefficients results in the expres-
sions (eλ)′ = 2AeAr

2
r and (eν)′ = 2BeC+Br2

r . At the
core of the star, the derivative of the metric potentials is
equal to zero. Also, they are consistent and monotoni-
cally increasing inside the star. The profiles of the metric
coefficients are shown in Fig. 1.

• The profiles of total density and total pressures are shown
in Fig. 2 for different values of “a.” All these physical
parameters are singularity-free and well behaved inside
the stellar interior.

• As a function of the radial coordinate r, the profile of
physical quantities such as radial pressure pr , tangential
pressure pt , matter density due to normal matter ρ, and
matter density due to quintessence field ρq are shown
in Figs. 3 and 4. We can see from these graphs that the
three physical variables ρ, pr , and pt are maximum at
the origin and monotonically decrease to reach their min-
imum values at the surface, demonstrating the physical
viability of the predicted stellar model. These figures also
demonstrate that at the origin, the energy density and the
tangential and radial pressures are positive and regular,
confirming that our framework is free of mathematical
and physical singularities. On the other hand, ρq takes a

negative value throughout the interior for different values
of “a.” The central density (ρc) and central pressure (pc)
for our present model are obtained as

ρ|r=0 = ρc = 2A + 2B + βκ

κ(1 + α)
, (39)

pr |r=0 = pt |r=0 = pc = 2Aα + 2αB − βκ

κ(1 + α)
. (40)

For a physically acceptable model, the central pressure
and central density should be positive inside the stellar
interior.
Now, pc > 0 implies

2α(A + B)

κ
> β. (41)

Moreover, it must be ensured that any physical fluid meets
the Zeldovich [48] condition pc/ρc < 1, which gives

2α(A + B) − βκ

2(A + B) + βκ
≤ 1 ⇒ β >

(α − 1)(A + B)

κ
. (42)

Combining the two inequalities given in (41) and (42),
we get a suitable range of β as

(α − 1)(A + B)

κ
< β <

2α(A + B)

κ
. (43)

• The so-called equation of state (EoS) parameter is the
next physical quantity that will be investigated. For
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Table 1 The numerical values of A, B, and C for some familiar compact objects have been obtained

Star Observed
mass (M�)

Observed
radius (km)

Estimated
mass (M�)

Estimated radius (km) A (km−2) B (km−2) C

SAX J1808.4-3658 [46] 0.9+0.3
−0.3 7.95+1

−1 0.85 8.5 0.00594112 0.00371002 −0.697295

SMC X-4 [47] 1.29+0.05
−0.05 8.831+0.09

−0.09 1.29 8.8 0.00925394 0.00676338 −1.24038

Vela X-1 [47] 1.77+0.08
−0.08 9.56+0.08

−0.08 1.77 9.5 0.01164 0.0102998 −1.98007

4U 1538-52 [47] 0.87+0.07
−0.07 7.866+0.21

−0.21 0.87 7.8 0.00810485 0.00523819 −0.81179

LMC X-4 [47] 1.04+0.09
−0.09 8.301+0.2

−0.2 1.04 8.3 0.0083468 0.00564051 −0.963586

Table 2 The numerical values of central density, surface density, central pressure, α, β, u(R), and zs(R) for the compact star SAX J1808.4-3658
[46] for different values of “a,” i.e., a = 0, 5, 10, and 15

a ρc (g/cm3) ρs (g/cm3) pc (dyne/cm2) α β u(R) zs(R)

0 9.86606 × 1014 7.08705 × 1014 4.47243 × 1034 0.301427 0.000183571 0.174333 0.239077

5 9.72291 × 1014 6.46953 × 1014 5.76076 × 1034 0.251358 0.000133685 0.167115 0.225569

10 9.61332 × 1014 5.89022 × 1014 6.74714 × 1034 0.215553 0.0000980117 0.159861 0.21243

15 9.52671 × 1014 5.33711 × 1014 7.52659 × 1034 0.188677 0.0000712341 0.152581 0.199661

Fig. 1 Variation of metric potentials e−λ and eν versus radius “r”

our present model, the anisotropic EoS parameters are
defined as

ωr = pr
ρ

, ωt = pt
ρ

.

The profiles of both ωr and ωt are shown in Fig. 5. The
EoS plays an important role in describing the nature of
the underlying fluid. It should lie between 0 and 1, where
unitary refers to a Zeldovich stiff fluid and a disappearing
EoS refers to dust. From the profiles of ωr and ωt , one
can note that 0 < ωr , ωt < 1. Thus, both the tangential
and radial EoS exhibit properties of a viable cosmic fluid.

4.2 Nature of the anisotropy factor

In Eq.(26), the expression of the anisotropic factor is given,
and it is depicted in Fig. 6. The beauty of this quantity is that

it indicates whether the anisotropy will be directed inward
or outward depending on whether � < 0 or pt < pr , and
� > 0 or equivalently pt > pr , respectively. From the graph
corresponding to the anisotropy factor versus radial coordi-
nate r, it is simple to see that anisotropy vanishes at the ori-
gin when radial pressure and tangential pressure are equal
(pt = pr ). Also, for a = 0, 5, the anisotropy stress is posi-
tive and reaches its highest value at the boundary surface of
the stellar structure, which helps in the formation of a more
compact and massive stellar object. On the other hand, for
a = 10 and 15, some parts of � are negative. So one can
conclude that for the present model, for a smaller value of
“a,” the star becomes more compact.

4.3 Mass, redshift, and compactness parameters

We are interested in studying the mass function of our model,
which is the solution to the following differential equation
with the assumption m(0) = 0.

dm(r)

dr
= κ

2
ρ(r)r2.

We derive the mass function of the model by solving the
aforementioned equation with the specified initial condition
as

m(r) = e−2Ar2

12A3/2(1 + α)

[
2
√
Ar

{
− 6a(A + B)2 + 3(A + B)

×( − 1 + 4a(A + B)
)
eAr

2 + Aβe2Ar2
κr2

}

−3(A + B)e2Ar2√
π

{( − 1 + 4a(A + B)
)

×erf(
√
Ar) − √

2a(A + B)erf(
√

2Ar)
}]

. (44)
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Fig. 2 Variation of ρTotal, pTotal
r , and pTotal

t versus radius “r”

Fig. 3 Variation of ρ and ρq
versus radius “r”

Fig. 4 Variation of radial and
transverse pressure versus radius
“r”

The physical characteristics of astronomical objects can be
investigated in order to learn more about their structural
makeup. One of these, the compactness factor u(r), describes
the relationship between the mass and radius of a compact
star. By matching the interior and exterior spacetimes at the
hypersurface r = rb, Buchdahl [49] presented the upper limit
ofu(r) and came to the conclusion that the system will remain
stable as long as its value is less than 4/9. The expression for
the compactness factor is obtained as

u(r) = m(r)

r
. (45)

Buchdahl [49] and Straumann [50] have demonstrated that
the gravitational redshift zs , in the absence of a cosmological
constant in stellar structure, is zs < 2. For an anisotropic star
structure along a cosmological constant, Bohmer and Harko
[51] have shown that the gravitational redshift can have a
noticeably greater value zs < 5. Ivanov [52] demonstrated
that the most extreme allowed value might be as high as zs =
5.211 by altering the last restriction. The surface redshift of

our present model is calculated as

zs = 1 − √
1 − 2u√

1 − 2u
. (46)

Figure 7 depicts the graphical behavior of mass, com-
pactness factor, and surface redshift inside the compact star
model for different values of “a.” The profiles of m(r), u(r)
and zs are monotonically increasing functions of “r”; there-
fore, they attain maximum value at the boundary of the star.
We have also obtained the numerical values of u(r) and zs at
the boundary for different values of “a” and presented them
in Table 2.

4.4 Causality criteria and cracking

The initial observer interprets the relativistic concept of
causality as demanding that the cause come before its effect.
Therefore there is a time-like gap between the cause and its
effect. When two occurrences are separated by a period of
time, it is possible for a signal to travel between them more
slowly than the speed of light. The causality will be broken
if the signal travels faster than the speed of light. Hence, spe-
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Fig. 5 Variation of ωr and ωt
versus radius “r”

cial relativity prevents an object from moving faster than the
speed of light. The following are the causality criteria for an
anisotropic structure:

0 ≤ V 2
r = p′

r

ρ′ ≤ 1, 0 ≤ V 2
t = p′

t

ρ′ ≤ 1,

where Vr and Vt respectively denote the radial and transverse
speed of sound. For our proposed model,

V 2
r = α, (47)

V 2
t = 1

ψ1(r)

[
− 4a(A + B)

[
1 + 3ωq + e2Ar2

×(1 + 3ωq) + 2A(1 + 3ωq)r
2

+
{

− 2B2 + 3AB(7 + 5ωq) − A2(5 + 9ωq)
}
r4

+4AB(−3A + B)r6 + eAr
2
{

− 2 − 6ωq

−2A(1 + 3ωq)r
2 +

(
A2 − 11AB

+2B2 + 3A(A − 3B)ωq

)
r4

+2A(A − B)Br6
}

+ α
{

1 + 3ωq + e2Ar2
(1 + 3ωq)

+2A(1 + 3ωq)r
2 +

{
− 2B2 + AB(17 + 3ωq)

−3A2(3 + 7ωq)
}
r4 + 4AB(−3A + B)r6

+eAr
2
(

− 2 − 6ωq − 2A(1 + 3ωq)r
2

+(
2B2 − 3AB(3 + ωq) + A2(3 + 9ωq)

)
r4

+2A(A − B)Br6
)}]

+eAr
2
{

− 1 − 3ωq + eAr
2
(1 + 3ωq)

−A(1 + 3ωq)r
2 + 2

(
A2 + B2 − AB(4 + 3ωq)

)
r4

+2A(A − B)Br6 + α
(

− 1 + eAr
2
(1 + 3ωq) − Ar2

+3ωq(−1 + Ar2)(1 + 2Ar2)

+2(A − B)r4( − B + A(2 + Br2)
))}]

, (48)

where

ψ1(r) = 4A(A + B)

Fig. 6 Variation of the anisotropic factor � versus radius “r”

×
{

− 8a(A + B) + (−1 + 4a(A + B))eAr
2
}
r4.

Figure 8 displays the causality condition plots for the
present model. It can be shown that the causality criteria
have been fulfilled for our model.

Herrera and collaborators [53–55] developed the idea of
cracking for self-gravitating isotropic and anisotropic mat-
ter configurations in a number of works. It was developed
to show how fluid distributions behave when they first begin
to deviate from equilibrium and total non-vanishing radial
forces of various signs begin to appear in the system. Accord-
ing to Herrera and colleagues, cracking occurs when a radial
force is directed inward in the inner part of the sphere. When
a radial force is directed outward in the inner part of the
sphere and changes sign in the outer part, that phenomenon
is known as overturning. Abreu [56] asserts that potentially
stable configurations should exist if δ�

δρ
≤ 0.

Now,

δ�

δρ
∼ δ(pt − pr )

δρ
∼ δpt

δρ
− δpr

δρ
∼ V 2

t − V 2
r . (49)

According to causality, 0 ≤ V 2
r ≤ 1 and 0 ≤ V 2

t ≤ 1, which
implies that |V 2

t − V 2
r | ≤ 1.

By using the Abreu criterion, we reach the following con-
clusion:

−1 ≤ V 2
t − V 2

r ≤ 1

⇒
{

− 1 ≤ V 2
t − V 2

r ≤ 0 → potentially stable

& 0 ≤ V 2
t − V 2

r ≤ 1 → potentially unstable
}
.
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Fig. 7 Variation of m(r), u(r),
and zs(r) versus radius “r”

Fig. 8 Variation of V 2
r and V 2

t
versus radius “r”

As a result, using the variation in sound propagation within
the matter configuration, we can now analyze potentially
unstable regions inside anisotropic models. Those regions
could be unstable if V 2

t > V 2
r . On the other hand, no crack-

ing will happen if V 2
t < V 2

r are found everywhere in a mat-
ter distribution. The profiles of V 2

r − V 2
t and |V 2

r − V 2
t | are

depicted in Fig. 9 for different values of coupling constant
“a.”

4.5 Energy condition

There are some specific restrictions, commonly referred to
as energy conditions, that must be followed for the mathe-
matical functions of stress-energy tensors to describe phys-
ically plausible matter fields. Energy conditions (ECs) are
crucial resources for understanding cosmic geodesics. The
well-known Raychaudhury equations can be used to establish
such conditions. A thorough study of the energy conditions
for f (Q) gravity models is provided by Mandal et al. [57].
The null energy condition (NEC), strong energy condition
(SEC), dominant energy condition (DEC), and trace energy

condition (TEC) are defined for the weak energy condition
(WEC) as follows:

NEC : ρ ≥ 0,

WEC : ρ + pr ≥ 0, ρ + pt ≥ 0, SEC : ρ + pr + 2pt ≥ 0,

DEC : ρ − pr ≥ 0, ρ − pt ≥ 0, TEC : ρ − pr − 2pt ≥ 0.

Figure 10 graphically shows that in the context of the
f (Q) gravity theory at different chosen values of “a,” the
progression of all these energy conditions against the radial
coordinate “r” for the compact stellar structure is well satis-
fied for our system.

4.6 Adiabatic index

Chandrasekhar [58] was the first to evaluate the stable and
unstable regions for spherical stars and to investigate the role
of the adiabatic index. Chan et al.’s proposal for the adiabatic
index for an isotropic fluid sphere was � = ρ+p

p
dp
dρ [59]. In

the situation of pressure anisotropy, the expression of the
adiabatic index changes as
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Fig. 9 Variation of V 2
r − V 2

t
and |V 2

r − V 2
t | versus radius “r”

Fig. 10 Variations of energy conditions versus radius “r”

� = ρ + pr
pr

dpr
dρ

, (50)

=
2(1 + α)(A + B)

(
− 4a(A + B) + (4a(A + B) − 1)eAr

2
)

−8aα(A + B)2 + 2α(A + B)
(

− 1 + 4a(A + B)
)
eAr2 + βe2Ar2

κ

dpr
dρ

. (51)

According to Bondi [60], stability occurs if the adiabatic
index is greater than 4/3. With the use of a graphical rep-
resentation, we shall examine the condition of the stability.
Figure 11 displays the � profile for various values of “a.” �

takes values greater than 4/3 throughout the fluid sphere, as
is evident.

5 Mass–radius relationship and contour plots

Figure 12 shows the total mass M normalized in M�, with
the radius R for various values of “a.” Figure 12 shows that
the maximum mass decreases as the values of “a” increase.
The maximum allowable mass and the corresponding radius
have been obtained for different values of “a” and are pre-
sented in Table 3. From the literature, we have chosen four

different compact stars, namely the lighter component of the
GW 190814 event with associated mass 2.50−2.67 M� [61],

Fig. 11 Variations of adiabatic index versus radius “r”
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Fig. 12 M − R relationship for different values of “a”

PSR J0952-0607 with associated mass 2.18−2.52 M� [62],
PSR J0740+6620 with associated mass 2.01−2.15 M� [63],
and PSR J1614-2230 with associated mass 1.93 − 2.01 M�
[64], and from our analysis via graphical representation, we
have shown that we have predicted the above mass from our
present model for different values of the coupling parameter
“a” associated with the f (Q) gravity.

As seen in the left panel of Fig. 13, where the equi-mass
contour is plotted for the a − α plane, the mass decreases in
both cases: (i) with an increased value of α when the cou-
pling parameter “a” is fixed and (ii) with an increased value
of “a” when α is fixed. As a result, we can infer that the
supermassive solution is preferable at lower values of α and
a smaller coupling constant “a.” The nature of the equi-mass
contour for the α − β plane is depicted in the right panel of
Fig. 13. This graph demonstrates how the mass grows as β

increases when α is fixed. At the same time, mass simulta-
neously decreases when α increases by keeping β fixed. The
nature of the equi-mass contour for the a−β plane is depicted
in the left panel of Fig. 14. This figure makes it clear that (i)
for a fixed value of “a,” mass increases as β grows, and (ii)
for a fixed β, mass decreases as “a” increases. The nature of
the equi-mass contour for the r − a plane is depicted in the
right panel of Fig. 14. From this figure, it is clear that for a
fixed value of “a,” the mass grows as “r” increases, and for a
fixed value of “r,” the value of mass nearly stays the same as
“a” increases.

6 Discussion

In this manuscript, we studied the compact stellar objects
in well-known modified f (Q) gravity with the presence of
a quintessence field. We focused on exploring the compact
star model SAX J1808.4-3658 corresponding to the exterior
Schwarzchild spacetime and anisotropic source of fluid. To
do this, we have considered a quadratic form of f (Q) as

Table 3 The maximum mass and the corresponding radius of different
values of a

a Maximum value of Corresponding Matched with the mass
mass M(M�) radius (in km) of the compact star

0 2.58 9.02 Lighter component

of GW 190814 event [61]

5 2.4 8.3 PSR J0952-0607 [62]

10 2.13 7.3 PSR J0740+6620 [63]

15 1.99 6.98 PSR J1614-2230 [64]

f (Q) = Q + aQ2 and formulated the field equations in
f (Q) gravity. Furthermore, the matching condition is used
at the boundary to find the different values of parameters, and
the numerical values are presented in tabular form. Besides
this, the coupling parameter “a” plays an important role in
our analysis, as the rest of our study depends on it, and we
choose four different values of “a,” namely a = 0, 5, 10,
and 15, to proceed our study where a = 0 corresponds to
Einstein’s general theory of relativity. The main results are
summarized here:

• The metric potential, radial, and transverse pressure all
are well behaved inside the boundary of the stellar object.
All the properties of those model parameters have been
described both analytically and graphically. One can note
that the metric potentials do not depend on the coupling
constant “a” of f (Q) gravity. The pressure and densities
depend on “a” as can be seen from Figs. 3 and 4. From
Table 2, we can check that both the central density and
surface density take higher values for the lower value of
“a.” On the other hand, for a higher value of “a,” central
pressure takes a larger value.

• The total density and total pressures are shown in Fig. 2.
All of them depend on “a” and do not suffer from singu-
larities as can be seen from the figure. The matter density
related to quintessence field ρq is shown in Fig. 3, and it
is negative throughout the stellar interior for all chosen
values of “a.” The equation of state parameters lie in the
range (0, 1), which confirms that the underlying fluid is
non-exotic in nature.

• The anisotropic factor vanishes at the center of the star
as can be seen from Fig. 6. � > 0 everywhere inside
the stellar interior for a = 0 and 5 and positiveness of �

throughout the interior helps to construct a more compact
object which was studied in [65]. � does not maintain
a positive sign throughout the interior when a > 5. So,
from our analysis, we can conclude that for 0 ≤ a ≤ 5,
the anisotropic factor is positive, and the stellar structure
becomes more stable against gravitational collapse. For
a = 10 and 15, some portions of the curve of anisotropy
are negative, and it renders the configuration unstable at

123



Eur. Phys. J. C (2023) 83 :737 Page 13 of 15 737

Fig. 13 (Left) contour plot of mass function in the plane and (right) contour plot of mass function in the plane

Fig. 14 (Left) contour plot of mass function in the plane and (right) contour plot of mass function in the plane

the interior points. This implies that the coupling param-
eter “a” plays an important role in switching the stellar
model from being stable to that of an unstable config-
uration. We observe that � becomes negative when “a”
takes the value greater than 5 and becomes positive as “a”
decreases towards zero from a = 5. So we can conclude
that the configuration becomes more stable for a smaller
value of “a.” The anisotropic factor � shows the same
behavior in Refs. [66–68].

• Figure 7 illustrates the evolutionary behavior of the mass
function, compactness factor, and surface redshift for dif-
ferent values of “a.” It is clear that the mass function is
always finite at the center (i.e., as r → 0 as m(r) → 0)
and increases positively from the center towards the star’s
boundary surface. Evidently, both plots of u(r) and Zs(r)
reveal that nature is regular (finite) at its center and con-

tinues to be positive across its full region of the compact
sphere. From the figure, it is clear that m(R), u(R) and
zs(R) decrease with the increasing values of “a.” The
numerical values of m(R), u(R) and zs(R) are shown
in Table 2 for different values of “a.” Our proposed
anisotropic star candidate with its corresponding mod-
els is in a better configuration and consistent with the
analysis of Buchdahl [49], Bohmer and Harko [51], and
Ivanov [52]. This is because the values of u(R) and zs(R)

always remain within the limit.
• The causality condition for our present model is fully

met. From Fig. 8, one can check that in the case of radial
sound velocity, for a larger value of “a,” V 2

r takes a lower
value; on the other hand, for transverse sound velocity, for
a larger value of “a,” V 2

t takes higher value up to radius 5
km. At approximately r = 5, all the profiles of V 2

t merge,
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i.e., they take the same value for a while and again spread
from that point. One can notice an interesting thing here.
From this meeting point when the curves of V 2

t approach
to the boundary again for a larger value of “a,” V 2

t takes
a lower value up to the boundary of the star.

• Using the cracking concept proposed by Herrera and the
causality criterion, the stability analysis has been com-
prehensively explained. From Fig. 9, it can be noted that
the model is potentially stable for a = 0, 5 since for these
two values of “a,” V 2

r > V 2
t everywhere inside the stellar

interior. But for a = 10 and 15, the inequality V 2
r > V 2

t
does not hold throughout the stellar interior. Inside the
stellar model, there is some portion where V 2

r < V 2
t ;

therefore, the potential stability condition is not satisfied
inside the stellar body for a = 10 and 15. From this anal-
ysis, one can conclude that in f (Q) gravity, for lower
values of the coupling parameter “a,” the model is poten-
tially stable, and the instability occurs when a > 5. From
the graph, it is clear that |V 2

r −V 2
t | < 1 holds everywhere

inside the boundary. From Fig. 9, it is clear that for a = 0,
5, and 10, the profiles of V 2

t are positive throughout the
interior, including at the boundary, and for a = 15, the
profile of V 2

t is positive throughout the interior except
at the boundary. For a = 15, V 2

t vanishes at r = rb,
rb being the stellar boundary. Now if we take a > 15,
V 2
t will be negative, which is not physically reasonable.

Therefore, for our present model, for SAX J1808.4-3658,
the physically viable range for “a” is 0 ≤ a ≤ 15.

• All the energy conditions are well satisfied inside the
stellar structure and the relativistic adiabatic index � >

4/3 everywhere inside the stellar interior.

From our present analysis, we have discussed all the
model parameters for four different values a = 0, 5, 10,
and 15. The values of the free parameters A, B, C, α, and β

have been represented in terms of mass, radius, quintessence
parameter ωq , and coupling constant “a” of f (Q) gravity. As
soon as all the plots are drawn for compact star SAX J1808.4-
3658 by fixing ωq = −0.35, only one free parameter, “a,” is
left. The present discussion implies that the potential stabil-
ity condition is obtained when a ∈ [0, 5]. Finally, it is worth
mentioning that the model admits and shares all of the crucial
physical and mathematical characteristics that are essential
to the study of compact stars and which give circumstantial
evidence for the evolution of realistic stellar configurations
in the high-density regime in the presence of a quintessence
field within the framework of f (Q) modified gravity.
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