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Abstract In this paper, we study the effect of Barrow
entropy on the thermodynamic properties and geometry of
specific black holes along with the nonlinear source. We
investigate the mass, temperature, thermodynamic variable,
and electric potential of the black hole as well. Further-
more, we examine the behavior of heat capacity to check the
stability of a black hole. Geometrothermodynamics allows
us to describe interactions between thermodynamics, criti-
cal points, and phase transitions by considering the geomet-
ric characteristics of the thermodynamic equilibrium space.
Our analysis demonstrates that these findings are consistent
with the results derived from the classical thermodynamics
of black holes.

1 Introduction

Gravity and nonlinear electrodynamics theories have gener-
ated various regular black hole (BH) solutions [1,2]. Magnet-
ically charged black holes (BHs) is an example of a regular
and extremal system. The theory of anti-de Sitter BH (AdS-
BH) that take into account the so-called Power Maxwell
Invariant (PMI) [3–6] field is also included in this frame-
work. The electromagnetic action, i.e. (FμνFμν) has a power
term represented by a parameter s, this leads to Maxwell field
when s = 1. The studies of quantum electrodynamic effect
loop corrections and heterotic string theory at the low energy
limit have utilized nonlinear electrodynamic theory effec-
tively [7]. The research on BH thermodynamics is a major
component of theoretical physics. One of the most solid rea-

a e-mails: shamtoor181@outook.com;
drshamailarani@cuilahore.edu.pk
b e-mails: jawadab181@yahoo.com;
abduljawad@cuilahore.edu.pk (corresponding author)
c e-mail: mazhar205eb@gmail.com

sons to use BHs in quantum gravity research is that their
thermodynamics will allow us to understand more about the
microscopic structure.

The study of asymptotically AdS-BH thermodynamics is
based on Maldacena’s [8] norm/gravity connection, which
connects BHs on the gravity side with temperatures on the
field theory. The research carried out by Hawking and Page
[9] showed that BHs could be allocated entropy, making it
possible to investigate thermodynamic features like phase
transitions and interaction. For instance, it was discovered
to have phase transitions in n + 1 dimensions Reissner–
Nordström–AdS (RNAdS) BH [10] or cosmological con-
stant is a new thermodynamic variable in AdS-BH [11,12].
Unfortunately, the complete implications of the relationship
between gravitation and thermodynamics are not yet clear
[13,14]. Different methods of the geometric representation of
BH thermodynamic properties have been used, such as Wein-
hold and Ruppeiner’s thermodynamic geometry approach
[15,16] and which is known as geometrothermodynamics
(GTD) [17].

When constructing an equilibrium state space for ther-
modynamic processes, both of these formalizations utilize
the Riemannian manifold. The Ruppeiner and Weinhold are
not invariant under Legendre transformation [18], which
means a thermodynamic system’s properties may be based
on the thermodynamic potential. In classical thermodynam-
ics, GTD formalism is a geometric approach that takes into
account Legendre invariance and characterizes the thermo-
dynamic system regardless of its potential. Recently, Alberto
described the GTD of BHs with a nonlinear source [19].
The order of homogeneity in the basic equation is not gen-
erally considered in BH thermodynamics, because it tells us
whether the thermodynamic variables are sub-extensive and
supra-extensive.

Recently, Barrow [20] was motivated to examine the
prospect that the surface of a BH may have a complicated
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structure down to arbitrarily microscopic scales as a result
of quantum-gravitational phenomena. He did this after being
inspired by the visualizations of the Covid-19 virus. In this
fractal construction, the horizon has limited volume but an
infinite/finite surface area. Since thermodynamics states that
BHs are infinitely complex systems, this new entropy relation
will arise from the aforementioned probable impacts on the
horizon area of the quantum-gravitational spacetime foam
which is called Barrow entropy. A power Maxwell invariant
field will be used to examine the characteristics of BHs in this
paper. The impact of thermal fluctuation and the dynamics
of particles around a regular BH with a nonlinear electrody-
namic source are studied by Jawad et al. [21–24].

This paper is arranged in the following manner. The
detailed analysis of BHs with non-linear sources and also
examine the thermodynamics of such BHs are covered in
Sect. 2. We have discussed the basic formalism for the
geometrothermodynamics and also present its graphical rep-
resentations in Sect. 3. In the end, we have presented our
conclusive remarks in Sect. 4.

2 Black holes with nonlinear sources and their
thermodynamics

The Einstein-PMI gravity is described by the following
action [3]

I = − 1

16π

∫
M

[
R + n(n − 1)

l2
+ (

FμνF
μν

)s]
dn−1x

√−g.

(1)

The nonlinearity parameter is denoted by s and Fμν is the
electromagnetic field tensor. The relationship between l and
the cosmological constant is given by the formula � = − 3

l2
.

The action Eq. (1) is applicable for any n ≥ 3 dimension, but
the value of the parameter s can provide different results. For
example, we get Maxwell’s theory by taking s = 1 in PMI
theory and get (n + 1)-dimensions conformally invariant for
s = n+1

4 [4]. After this point, we choose random values of
parameter s and evaluate its role for the thermodynamic anal-
ysis of this model. The line element of spherically symmetric
are as follow

ds2 = − f (r)dt2 + dr

f (r)
+ r2d�2

d−2. (2)

The standard element on Sd is denoted by d�2
d−2. The varia-

tion of action in Eq. (1) yields the BH solution for PMI source
[4,5]

f (r) = 1 + r2

l2
− m

rn−2 +
(2s − 1)2

[
(n−1)(2s−1)2q2

(n−2)(2s−1)2

]s

(n − 1)(n − 2s)r
2(ns−3s+1)

2s−1

. (3)

Here, the ADM mass M and scalar charge Q are linked to m
and q with the connection

m = 16πM

(n − 1)ωn−1
, (4)

q =
[

8π√
2ωn−1

] 1
2s−1

[
n − 2

n − 1

] 1
2 (2s − 1)

2s−2
2s−1

n − 2s
Q

1
2s−1 , (5)

with ωn−1 = 2π
n
2

�( n2 )
. Using Eqs. (2) and (3), a BH with

a cauchy horizon (r−) and an event horizon (r+) can be
described [14]. It is possible to determine mass M of BHs
in terms of r+ using f (r+) = 0, which has the largest real
positive root.

M(r+, Q) = (n − 1)ωn−1

16π

[
rn−2+ + rn+

l2
− fnr

2s−n
2s−1+ Q

2s
2s−1

]
,

(6)

with

fn = (2s − 1)2−2s(n − 1)s−1(2s − n)2s−1

(n − 2)s

×
[

8π√
2sωn−1

] 2s
2s−1

[
n − 2

n − 1

]s
(2s − 1)

2s(2s−2)
2s−1

(n − 2s)2s . (7)

Barrow proposed a fractal geometry for the horizon of a BH
horizon, which increases its surface area. Based on Barrow’s
modifications, the modified entropy relation is expressed as
[20]

S =
(

A

A0

)1+ �
2

, (8)

where BH horizon area is denoted by A, A0 is the Planck’s
area, and � stands for the new exponent having range 0 ≤
� ≤ 1. There are some characteristic values for �. We get
Bekenstein–Hawking entropy when � = 0 and for � = 1 we
have maximal distortion. In this paper, we consider A0 = G

with G = 1 and A = ωn−1r
n−1+

4 after replacing in Eq. (8), we
get the relation between area and entropy

S =
(

ωn−1r
n−1+

4

)1+ �
2

. (9)

After substituting Eq. (9) in (7), we obtain mass in terms of
entropy S

M(S, Q) = (n − 1)ω
1

n−1
n−1

4
n

n−1 π

[
S

2n−4
(n−1)(2+�) + l−2

(
4

ωn−1

) 2
n−1

× S
2n

(n−1)(2+�) − �Q
2s

2s−1 S
4s−2n

(n−1)(2s−1)(2+�)

]
, (10)

where

� =
[

4

ωn−1

] 6s−2ns−2
(n−1)(2s−1)

fn . (11)
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Fig. 1 Plot of mass M versus entropy S

In Fig. 1, we have plot equation of mass M with respect
to entropy S with fix values of s = 3, n = 4,� = 0.4 and
Q = 1. Mass function shows the increasing behavior with
increasing values of S. The Eq. (10) is the basic equation of
BH along with the PMI source. In the BH metric, all thermo-
dynamic variables are connected to this equation. The first
law of BH thermodynamics is satisfied by the BHs physical
parameters with a PMI source [22],

dM = TdS + 	dQ + Ldl. (12)

Here, T stands for Hawking temperature, which is connected
to horizon gravity, L stands for thermodynamic variable dual
to l and 	 is electric potential. To ensure that the fundamental
equation depends only on extensive variables, the variable l,
which is related to the cosmological constant, must be taken
into account. As a result, one can managed to develop a fun-
damental equation with properties that are similar to those
found in classical thermodynamic systems. The existence
of a thermodynamic variable necessitates the expansion of
the equilibrium space by one dimension. Thus, thermody-
namic Variable dual L extends the space of equilibrium by
one dimension. The following formulations provide the lim-
itations imposed by thermodynamic equilibrium

T = ∂M

∂S
, 	 = ∂M

∂Q
, L = ∂M

∂l
. (13)

Taking the derivative of Eq. (10) with respect to S, Q and
l then Substituting in Eq. (13), we get the following expres-
sions

T = �n

[
2(n − 2)S

�−n�−2
(�+2)(n−1)

(n − 1)(� + 2)
+

2
n+3
n−1 n

(
1

ωn−1

) 2
n−1

S
2n

(�+2)(n−1)
−1

(� + 2)l2(n − 1)

− 2�(2s − n)Q
2s

2s−1 S
2(2s−n)

(n−1)(�+2)(2s−1)
−1

(n − 1)(� + 2)(2s − 1)

]
, (14)

	 = − 2s�n

2s − 1
�Q

1
2s−1 S

2(2s−n)
(n−1)(2s−1)(2+�) , (15)

L = −2
n+3
n−1 �n

l3
S

2n
(n−1)(2+�) , (16)

with

�n = (n − 1)�
1

n−1
n

4
n

n−1 π
.

In Fig. 2, we have discussed the behavior of temperature
T with respect to entropy S for fixed values of s = 3, n =
4,� = 0.4, l = 1, and Q = 1. The trajectory of tempera-
ture initially shows positively rising behavior and reaches its
maximum point, after that it starts declining with increasing
S. The red lines indicate the maximum and minimum values
of temperature for different intervals of entropy S. The ther-
modynamic variable L and electric potential 	 are plotted in
Fig. 3 for fixed values of s = 3, n = 4,� = 0.2, l = 1, and
Q = 1. We can see 	 and L represent negatively decreasing
behavior as increasing entropy S. The behavior of temper-
ature for fixed values of parameters s = 4, n = 5,� =
0.4, l = 1, and Q = 1 is illustrated in Fig. 4. From this
figure, the temperature indicates the same behavior as we
discussed in Fig. 2 and red lines show the point of maxi-
mum and minimum temperature. In Fig. 5, we represent the
behavior of electric potential 	 and thermodynamic variable
L for constant values of s = 4, n = 5,� = 0.2, l = 1,
and Q = 1. We observed that 	 and L indicate the same
behavior as in Fig. 3.

The expression that is used to compute the heat capacity
at specific amounts of Q and l is as follows

CQ,l = T

(
∂S

∂T

)
Q,l

=

(
∂M
∂S

)
Q,l(

∂2M
∂2S

)
Q,l

. (17)

Here, the subscript denotes the derivatives are computed
while Q and l remain constant throughout the process. Tak-
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Fig. 2 Plot of temperature T versus entropy S

Fig. 3 Plot of electric potential 	 versus entropy S
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Fig. 4 Plot of temperature T versus entropy S

Fig. 5 Plot of electric potential 	 versus entropy S
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ing the single and double derivatives of Eq. (10) with S and
replacing them in Eq. (17), we obtain the equation for heat
capacity by keeping Q and l constant.

CQ,l = (n − 1)(2s − 1)(� + 2)

×
[
2�l2(n − 2s)Q

2s
2s−1 S

−2(n−2s)
(n−1)(2s−1)(�+2)

−1

+ 2l2(n − 2)(2s − 1)S
2(n−2)

(�+2)(n−1)
−1 + n(2s − 1)2

n+3
n−1 ω

−2
n−1
n−1

× S
2n−(n−1)(�+2)

(n−1)(�+2)

]
/D1, (18)

where

D1 = 2�l2(2s−n)Q
1

2s−1 +1{�(n−1)(2s−1)+4(n−2)s+2}
× S

−2(n−2s)
(n−1)(2s−1)(�+2)

−2 − 2(n − 2)(2s − 1)2l2(�(n − 1) + 2)

× S
2(n−2)

(n−1)(�+2)
−2 − n(1 − 2s)2(�(n − 1) − 2)2

n+3
n−1 ω

− 2
n−1

n−1

× S
2n−(�+2)(n−1)

(n−1)(�+2) . (19)

In Fig. 6, we have discussed the behavior of heat capacity
CQ,l versus entropy S with fixed values of s = 3, n =
4, � = 0.2, l = 1, and Q = 1. A phase transition occurs
when the heat capacity diverges, i.e. for D1 = 0, according to
Ehrenfest’s [25,26]. Consequently, equation Eq. (19) cannot
be solved to determine analytically where the phase transition
points exist. In order to better understand how it works, we
can perform numerical analysis. Figure 6 provides an illus-
tration of this with regard to some specific values. The heat
capacity diverges at two points S1 ≈ 0.033, and S2 ≈ 4.6,
which indicate phase transition points (C → ∞). The BH
system is in a stable phase at 0 < S < S1, S > S2. For
the range of entropy S from 0 < S < 4.5, which represents
BH is in an unstable phase. The behavior of heat capacity for
fixed values of s = 4, n = 5, � = 0.2, l = 1, and Q = 1
is depicted in Fig. 7. The phase transitions take place at these
points S3 ≈ 0.014, S4 ≈ 16 where the CQ,l converges to
infinity. At the range of 0 < S < S3, S > S4, the BH is
in a stable phase, while the BH is in an unstable phase at
0.015 < S < 16. Figures 5 and 6 provide various examples
of how the heat capacity behaves when s = 1 is not used.
The phase transitions happen for s = 3 and s = 4 in any
dimension n.

A linear source theory can be obtained by taking into
account the power s = 1. Then, the heat capacity in Eq. (18)
has the following form

CQ,l = (n − 1)(� + 2)S

×
[

2
2n+2
n−1 π2l2Q2ω

− 2
n−1

n−1 S
4−2n

(n−1)(�+2) + l2(n − 1)(4 − 2n)

× S
2n−4

(n−1)(�+2) − n(n − 1)2
n+3
n−1 ω

− 2
n−1

n−1 S
2n

(n−1)(�+2)

]
/

×
[

2l2(n − 1)(n − 2)(�n − � + 2)S
2n−4

(n−1)(�+2)

+n(�n − � − 2)(n − 1)2
n+3
n−1 ω

− 2
n−1

n−1 S
2n

(n−1)(�+2)

−(3� + �n − 6)π2Q2l22
2(n+1)
n−1 × ω

− 2
n−1

n−1 S− 2(n−2)
(n−1)(�+2)

]
.

(20)

In this case, when the following equation are satisfied then
the heat capacity divergence point exist,

2l2(n − 1)(n − 2)(�n − � + 2)S
2n−4

(n−1)(�+2)

+ n(�n − � − 2)(n − 1)2
n+3
n−1 ω

− 2
n−1

n−1 S
2n

(n−1)(�+2)

− (3� + �n − 6)π2Q2l22
2(n+1)
n−1 ω

− 2
n−1

n−1 S− 2(n−2)
(n−1)(�+2) = 0,

(21)

which indicates phase transitions. Again, equation Eq. (21)
cannot be solved analytically to determine phase transitions.
There are no phase transitions when l = Q = 1 is used in
numerical analysis. In Fig. 8, this condition is depicted. In the
case of l = 2, Q = 4 and � = 0.4, again phase transition
does not exist. This fact is illustrated in Fig. 9. These results
indicate how l and Q affect the presence of phase transitions.
To study this fact, consider n = 3 and Eq. (20) has the form

CQ,l = −
(� + 2)S

[
l2

(
ωn−1S

2
�+2 − 4π2Q2

)
+ 12S

4
�+2

]

l2
[
(�+1)ωn−1S

2
�+2 −4π2(�+3)Q2

]
+12(�−1)S

4
�+2

.

(22)

As we can see, there is a phase transition of the second order
taking place at the points where

l2
[
(� + 1)ωn−1S

2
�+2 − 4π2(� + 3)Q2

]

+12(� − 1)S
4

�+2 = 0. (23)

This is similar to the situation that occurs with AdS-Bhs, in
which transitions phase were discovered [26].

3 Geometrothermodynamics formalism

A Riemannian contact manifold (τ,�,G) with (2n + 1)-
dimensions is the basis of the GTD approach. Where differ-
ential manifold denoted by τ , � ∧ (d�)n 	= 0 is the contact
form of � and G stands for Riemannian metric. Darboux
theorem states that, if the coordinates Z A = {	, Ea, I a} are
introduced in τ witha = 1, . . . n and A = 0, . . . , 2n, then the
contact form � may be expressed as � = d	 − δab I adEb.
However, The Legendre invariance is the most important part
of GTD, which is examined using the metric G and neces-
sitated by its invariance against Legendre transformations
[26]. The invariance of three specific metrics has been estab-
lished by Legendre [27]. The thermodynamics of BHs can
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Fig. 6 Plot of heat capacity C versus entropy S

be described using one of these equations

G = �2 + (δabE
a I b)(ηcddE

cd I d). (24)

Here ηab = diag(−1, 1, . . . , 1) and δab = diag(1, . . . , 1).
The smooth embedding map ϕ : ε → τ is related to pull-
back ϕ∗(G) = g and meets the constraint ϕ∗(�) = 0.
In the n-dimensional submanifold of ε ⊂ τ , a Legendre
invariant metric g is generated. There is a basic equation
	(Ea) that may be found by constructing the embedding of
ϕ : Ea → {	(Ea), Ea, I a(Ea)} with Ea as the coordinate
set, the resulting metric becomes

gI/I I = β		ηba	,bcdE
adEc, (25)

where 	,a = ∂	
∂Ea , β	 is a constant and for generalized

homogeneous function, we used Euler identity in the form
βa Ea	,a = βa	 [27]. Applying the above formalism to the
scenario of BHs with PMI sources is the next step. It is impor-
tant to remember that the fundamental equation Eq. (10) is
a generic homogeneous function of degree 1 that does not
change the physical characteristics of a thermodynamic sys-
tem [27,28]. We are fascinated about the way the curvature
behaves as it is indication of phase transitions.

Take a look at the metric gI for the equilibrium space

gI/I I = β		ηba	,bcdE
adEc, ηba = (1, 1, 1) (26)

where we have put β	 = 1 for simplification without sacri-
ficing any generality.

The 3-dimensional thermodynamic metric from Eq. (26)
reduces to
gI = g = �1

×
{[

2�(2s−n)Q
1

2s−1 +1{�(n−1)(2s−1)+4(n−2)s+2}
(� + 2)2(n − 1)2(1 − 2s)2S

2(n−2s)
(n−1)(2s−1)(�+2)

+2

−
2

n+3
n−1 n(�(n − 1) − 2)

(
1

ωn−1

)
2

n−1

(� + 2)2l2(n − 1)2S2− 2n
(n−1)(�+2)

− 2(n − 2)(�n − � + 2)

(� + 2)2(n − 1)2S2− 2(n−2)
(n−1)(�+2)

]
dS2

− 2s�Q
2−2s
2s−1

(1 − 2s)2S
2(n−2s)

(n−1)(2s−1)(�+2)

dQ2

+
3

(
1

ωn−1

)
2

n−1 2
n+3
n−1 S

2n
(�+2)(n−1)

l4
dl2

}
, (27)
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Fig. 7 Plot of heat capacity C versus entropy S

where

�1 = M(n − 1)ω
1

n−1
n−1

4
n

n−1 π
.

The curvature scalar related to Eq. (27), as follows

R = π7l8(1 − 2s)8(� + 2)42
8n−2
n−1 Q

4s−4
2s−1 S

−8(n(s−1)+s)
(n−1)(2s−1)(�+2) N (S, Q, l)

9(n − 1)3s2ω
3

n−1
n−1�2D3

2 D
2
1

,

(28)

where

D1 = 2l2�(2s − n)Q
2s

2s−1 {�(n − 1)(2s − 1) + 4(n − 2)s + 2}
×S

2(2s−n)
(n−1)(2s−1)(�+2)

−2 − 2l2(n − 2)(�n − � + 2)

×S
2(n−2)

(n−1)(�+2)
−2

(2s − 1)2 − n(2s − 1)2(�n − � − 2)2
n+3
n−1

×ω
−2
n−1
n−1S

2n
(n−1)(�+2)

−2
,

D2 = −�Q
2s

2s−1 S
2(2s−n)

(n−1)(2s−1)(�+2) + S
2(n−2)

(n−1)(�+2)

−4
2

n−1 ω
−2
n−1
n−1S

2n
(n−1)(�+2)

l2
. (29)

The N (S, Q, l) 	= 0 is a function that cannot be compactly
described when the denominator disappears. In this situation,

there are two curvature singularities. According to Eq. (10),
one of these occurs when D2 = 0, which is equivalent to
M = 0. Since there is no BH present because this singularity
is non-physical. According to Eq. (19), one can find a sec-
ond singularity at the points where D1 = 0. It corresponds
with CQ,l → ∞, which determines phase transition critical
points. This finding is invariant since its based on scalar anal-
ysis, not on coordinates. Figures 10 and 11 demonstrate how
the curvature scalar behaves numerically for various values
of n, l and Q. The curvature singularities can be found at
second-order phase transition locations, when denominators
of the curvature scalar and heat capacity overlap, according
to GTD [29,30].

Now, we discuss the behavior of scalar curvature for var-
ious values of parameters n, l, Q, and � with fix value of
electromagnetic parameter s = 1 is illustrated in Figs. 12
and 13. From Fig. 12, we observed that there exists a singu-
larity, for l = Q = 1 and � = 0.4 with n = 4, n = 5.
But we can see in Fig. 13 singularities are not present for
l = Q = 5 and � = 0.6 with n = 4, n = 5. There-
fore, forl = Q = 5 GTD accurately propagates this instance
as compared to l = Q = 1. In GTD, a nonzero curvature
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Fig. 8 Plot of heat capacity C versus entropy S

measures thermodynamic interaction. Our thermodynamic
curvature Eq. (28) was nonzero, indicating thermodynamic
interaction for this BH structure with a nonlinear source.
Physically, this effect can be attributed to the BH microstruc-
ture’s connection between nearby states explains in this phe-
nomenon by Wei et al. [31]. Another way to differentiate
between attracting and repelling interactions is to examine
the symmetry of the curvature [32]. In our scenario, the cur-
vature equation cannot be compactly stated to identify its
sign. Figures 10 and 11 indicate that there exists negative
curvature region based on the parameter values.

Now, the line element for metric gI I obtained by doing
some manipulation in Eq. (28) is given as [33]

Fig. 9 Plot of heat capacity C versus entropy S
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Fig. 10 Plot of curvature scalar R versus entropy S

gI I = �1

{[
2�(2s − n)Q

1
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The curvature scalar of Eq. (30) is written as
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Fig. 11 Plot of curvature scalar R versus entropy S
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Fig. 12 Plot of curvature scalar R versus entropy S

Fig. 13 Plot of curvature scalar R versus entropy S
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Figures 14 and 15 explains the conduct of curvature scalar
of gI I for numerous values of n, l, Q and �. It can observe
that there exist both regions negative and positive curvature
depending on the values of the parameter. The region of nega-
tive curvature indicates that the interaction between the parti-
cles of the black holes are repulsive while the positive region
demonstrates the interaction among the particles of the black
holes is repulsive.

The behavior of scalar curvature RI I for various values of
parameters n, l, Q, and � with a fixed value of electromag-
netic parameter s = 1 is demonstrated in Figs. 16 and 17.

From Figs. 16 and 17 it observed that there is no singularity
present for l = Q = 1, 5 and � = 0.4, 0.6 with n = 4, 5.
According to GTD, a non-zero curvature predicts thermo-
dynamic interaction. It is observed that the curvature scalar
in Figs. 16 and 17 indicates that the interaction between the
particles is repulsive.

The equilibrium space’s third metric for GTD may be
expressed as

gI I I =
b=1∑
n

(δad E
d	,a)δab	,bcdE

adEc. (32)

In order to study the all the geometrical properties we just
need to find out the fundamental equation 	(Ea). Now, we
can derive our third metric from the Eq. (32) given as [34]

gI I I = S	,S	,SSdS
2 + (

S	,S + Q	,Q + l	,l
)

×(
	,SQdSdQ + 	,SldSdl

)
+Q	,Q	,QQdQ

2 + l	,l	,lldl
2, (33)
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Fig. 14 Plot of curvature scalar RI I versus entropy S

Fig. 15 Plot of curvature scalar RI I versus entropy S

where 	,S = ∂	
∂S and 	,SS = ∂2	

∂S2 . The curvature scalar
we obtained from Eq. (33) is quite difficult to write in com-
pact form [34]. Also, the curvature scalar obtained by the
condition from the metric gI I I did not satisfy the fundamen-
tal equation of Van der Waals. We come to the conclusion

that the metrics gI and gI I alone contain all the data in this
case concerning the curvature singularities of the equilibrium
space [34].

123



710 Page 14 of 15 Eur. Phys. J. C (2023) 83 :710

Fig. 16 Plot of curvature scalar RI I versus entropy S

Fig. 17 Plot of curvature scalar RI I versus entropy S

4 Conclusion

In this paper, we studied the thermodynamic quantities like
mass, temperature, and heat capacity spherical AdS-BH
along with PMI source through Barrow entropy, we exam-
ined geometrothermodynamics structure as well. We have
analyzed the behavior of temperature for different values
of parameters like n, l, Q, and �. We have observed
that the trajectories of temperature for n = 4 and 5 with
� = 0.4 showed only positive behavior which indicates
physical (T > 0) BH, also red lines represented the max-
imum and minimum temperature. The thermodynamic vari-
able L and electric potential revealed only negative behavior.
We also observed the stability of BH by means of heat capac-
ity, for s = 3, n = 4, and n = 5 with Barrow entropy expo-
nent � = 0.2 showed phase transition points on different
locations. The heat capacity does not exist in any singularity
in the case of s = 1 with l = Q = 1 and l = 2, Q = 4.

We also investigated the geometric structure of spherical
AdS-BH along with PMI source under the concept of GTD.
There exists a non-zero curvature scalar that represents ther-
modynamic connection. We also figured out that the heat
capacity transition point coincides with curvature scalar sin-
gular points. This is proven by applying GTD to a specific
metric in thermodynamic dimensional space. Due to its Leg-
endre transformation invariance, the features of our geomet-
ric thermodynamic explanation are unaffected by the selec-
tion of potential or representation used in thermodynamic
theory. The curvature scalar does not exist any singularity
for particular values of parameters s = 1, � = 0.6 with
l = Q = 5. We find that the GTD formalism appropriately
describes the thermodynamic features of this type of BHs
with a nonlinear source.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]

123



Eur. Phys. J. C (2023) 83 :710 Page 15 of 15 710

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. E. Ayon-Beato, A. Garcia, New regular black hole solution from
nonlinear electrodynamics. Phys. Lett. B 464, 25 (1999)

2. K.A. Bronnikov, Regular magnetic black holes and monopoles
from nonlinear electrodynamics. Phys. Rev. D 63, 044005 (2001)

3. M. Hassaine, C. Martinez, Higher-dimensional charged black hole
solutions with a nonlinear electrodynamics source. Class. Quantum
Gravity 25, 5023 (2008)

4. M. Hassaine, C. Martinez, Higher-dimensional black holes with a
conformally invariant Maxwell source. Phys. Rev. D 75, 027502
(2007)

5. S.H. Hendi, H.R. Rastegar-Sedehi, Ricci flat rotating black branes
with a conformally invariant Maxwell source. Gen. Relativ. Gravit.
41, 1355 (2009)

6. H. Maeda, M. Hassaine, C. Martinez, Magnetic black holes with
higher-order curvature and gauge corrections in even dimensions.
JHEP 1008, 123 (2010)

7. Y. Kats, L. Motl, M. Padi, Higher-order corrections to mass-charge
relation of extremal black holes. JHEP 0712, 068 (2007)

8. J.M. Maldacena, The Large N limit of superconformal field theories
and supergravity. Int. J. Theor. Phys. 38, 1113 (1999)

9. S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-
de Sitter space. Commun. Math. Phys. 87, 577–588 (1983)

10. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Charged
AdS black holes and catastrophic holography. Phys. Rev. D 60,
064018 (1999)

11. D. Kastor, S. Ray, J. Traschen, Enthalpy and the mechanics of AdS
black holes. Class. Quantum Gravity 26, 195011 (2009)

12. B.P. Dolan, The cosmological constant and the black hole equation
of state. Class. Quantum Gravity 28, 125020 (2011)

13. P.C.W. Davies, Thermodynamics of black holes. Proc. R. Soc.
Lond. A 353, 499 (1977)

14. A. Sánchez, Geometrothermodynamics of black holes with a non-
linear source. Gen. Relativ. Gravit. 53(7), 71 (2021)

15. F. Weinhold, Metric geometry of equilibrium thermodynamics. V.
Aspects of heterogeneous equilibrium. J. Chem. Phys. 65, 558
(1976)

16. A. Jawad, M. Hussain, S. Rani, Applications of thermodynamic
geometries to conformal regular black holes: a comparative study.
Universe 9(2), 87 (2023)

17. H. Quevedo, Geometrothermodynamics. J. Math. Phys. 48, 013506
(2007)

18. G. Arciniega, A. Sánchez, Geometric description of the thermo-
dynamics of a black hole with power Maxwell invariant source
(2014). arXiv:1404.6319v1

19. A. Sánchez, Geometrothermodynamics of black holes with a non-
linear source. Gen Relativ Gravit 53, 71 (2021)

20. J.D. Barrow, The area of a rough black hole. Phys. Lett. B 808,
135643 (2020)

21. A. Jawad, M.U. Shahzad, Accretion onto some well-known regular
black holes. Eur. Phys. J. C 76, 123 (2016)

22. A. Jawad, M.U. Shahzad, Effects of thermal fluctuations on non-
minimal regular magnetic black hole. Eur. Phys. J. C 77, 349 (2017)

23. A. Jawad, A. Khawer, Thermodynamic consequences of well-
known regular black holes under modified first law. Eur. Phys. J. C
78, 1–10 (2018)

24. A. Jawad, F. Ali, M. Jamil, U. Debnath, Dynamics of particles
around a regular black hole with nonlinear electrodynamics. Com-
mun. Theor. Phys. 66, 509 (2016)

25. S.H. Hendi, M.H. Vahidinia, Extended phase space thermodynam-
ics and P-V criticality of black holes with a nonlinear source. Phys.
Rev. D 88, 084045 (2013)

26. H.B. Callen, Thermodynamics (Wiley, New York, 1981)
27. H. Quevedo, M.N. Quevedo, A. Sánchez, Homogeneity and ther-

modynamic identities in geometrothermodynamics. Eur. Phys. J.
C 77, 158 (2017)

28. V.I. Arnold, Mathematical Methods of Classical Mechanics
(Springer, New York, 1980)

29. D. Kubizňák, R.B. Mann, P-V criticality of charged AdS black
holes. J. High Energy Phys. 2012, 33 (2012)

30. H. Quevedo, A. Sanchez, S. Taj, A. Vazquez, Phase transitions in
geometrothermodynamics. Gen. Relativ. Gravit. 43, 1153 (2011)

31. S.W. Wei, Y.X. Liu, R.B. Mann, Ruppeiner geometry, phase tran-
sitions, and the microstructure of charged AdS black holes. Phys.
Rev. D 100, 124033 (2019)

32. H. Oshima, T. Obata, H. Hara, Riemann scalar curvature of ideal
quantum gases obeying Gentile’s statistics. J. Phys. A: Math. Gen.
32, 6373 (1999)

33. H. Quevedo, M.N. Quevedo, A. Sánchez, Geometrothermodynam-
ics of van der Waals systems. J. Geom. Phys. 176, 104495 (2022)

34. H. Quevedo, A. Sánchez, S. Taj, Thermodynamics of topological
black holes in Horava–Lifshitz gravity. J. Phys. 354, 012015 (2012)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1404.6319v1

	Impact of barrow entropy on geometrothermodynamics of specific black holes
	Abstract 
	1 Introduction
	2 Black holes with nonlinear sources and their thermodynamics
	3 Geometrothermodynamics formalism
	4 Conclusion
	References




