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Abstract We study the greybody factors, quasinormal
modes, and shadow of the higher dimensional de-Sitter
(dS)/anti de-Sitter (AdS) black hole spacetimes derived from
the Einstein-bumblebee gravity theory within the Lorentz
symmetry breaking (LSB) framework. We specifically apply
the semi-analytical WKB method and the time domain
approach to study the scalar and Dirac perturbations of the
black hole. In-depth researches are done on the effects of
the LSB and dimensionality on the bosonic/fermionic grey-
body factors, quasinormal modes, and shadow of the higher
dimensional bumblebee black hole. The results obtained are
discussed, tabulated, and illustrated graphically.

1 Introduction

Since the Standard Model (SM) of particle physics [1]
and older theories like general relativity (GR) [2], which
describes how matter warps spacetime, cannot explain every-
thing in the universe, including what occurs in the vicinity of
a black hole, physicists are continually working to develop
new and better ideas. Investigating that any retained concept
such as Lorentz symmetry [3] may not be true in extreme
cases is a very fruitful approach to explore for new physics.
According to some gravitational wave models, the cosmos is
not entirely symmetrical. Because of these ideas, the cosmos
will always have extra elements that prevent it from per-
fectly adhering to the Lorentz symmetry. In other words, the
cosmos would have a unique or favored orientation. These
new models explain a theory known as “bumblebee gravity
(BG)” [4–6]. Its name comes from the alleged remark made
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by experts that bumblebees should not be allowed to fly since
we did not know how their wings produced lift. Specifically,
we do not fully comprehend how these gravity theories func-
tion and how they may be consistent with the universe that
we currently observe. The possible use of bumblebee grav-
ity models to explain dark energy [7], the phenomena that
causes the cosmos to expand at an accelerated rate [8], is one
of their most effective applications. It turns out that an effect
that causes our universe to expand faster can be related to how
much Lorentz symmetry our universe breaches. In addition,
this notion seems very enticing because we do not know what
is generating dark energy. In short, this is the direction that
the bumblebee gravity theory is anticipated to contribute to
GR and subsequently to the quantum gravity theory (QGT)
[9,10].

Lorentz violations (LVs) affect both the predictions of the
SM of particle physics and the basic predictions of special
relativity, including the concept of relativity, the constancy
of the speed of light in all inertial frames of reference, and
time dilation. Test theories for special relativity and effec-
tive field theories, like the Standard Model Extension (SME)
[11], have been developed to evaluate and forecast any viola-
tions [12]. SME relates the SM to GR and includes additional
features such as the LVs operating at the Planck scale [13]. In
other words, SME is an effective field theory integrating GR
and SM on low energy scales. Other theories that propose the
LVs besides SME include string theory [14], Einstein-aether
theory [15,16], non-commutative field theory [17–19], loop
QGT [20,21], brane-world scenarios [22,23], and massive
gravity [24], also check [25]. For the purpose of examining
potential visible signs of a breach of particle Lorentz sym-
metry, the SME is experimentally accessible. In the model
of SME, a spontaneous symmetry breaking potential caused
by self-interacting tensor fields having vacuum expectation
values (VEV), yields to the background tensor fields, which
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provides the local LV. An example of such a particular the-
ory is the bumblebee field Bμ, a self-interacting tensor field
with a non-zero VEV with bμ that specifies a preferred direc-
tion in spacetime and spontaneously breaks the Lorentz sym-
metry. The potential of a bumblebee field can take many
different forms. Among the other bumblebee’s potentials,
V (X) = kX2/2 is a smooth and functional potential, where
k is a constant [26] and X = BμBμ ± b2. When the bum-
blebee field matches its VEV, it has a minimum: V = 0 and
V ′(X) = kX = 0 when X = 0. With this particular poten-
tial, the static black hole solutions in the Einstein-bumblebee
gravity theory (EBGT) were derived by Bertolami et al. [27]
and by Casana et al. [28]. It was revealed by [37–39] that the
solution obtained by Ding et al. [40], who claimed to have
found a rotating black hole in the BG gravity model, was
actually wrong. The first physically accepted slowly rotat-
ing black hole solution in the EBGT was wrong. The first
physically accepted slowly rotating black hole solution in the
EBGT was obtained by Ding and Chen [37]. Subsequently,
Jaha et al. [41] and Poulis and Soares [42] have recently
managed to derive an arbitrarily spinning bumblebee black
hole solution, which means crossing a difficult threshold in
the EBGT. Another milestone in this regard was passed by
[43], who achieved an exact higher dimensional anti-de Sit-
ter (AdS) black hole solution in the EBGT. This AdS black
hole can only exist with a special bumblebee potential having
a linear functional form with a Lagrange-multiplier field λ.
It is worth noting that, this additional field can be absorbed
by the construction of an effective cosmological constant �e

and is rigidly restricted by the equation of bumblebee motion.
Furthermore, the obtained higher dimensional black hole of
the EBGT is nothing but a Schwarzschild-AdS-like black
hole solution since it cannot asymptotically approach anti-
de Sitter spacetime, just as the Schwarzschild-like black hole
[28]. The bumblebee field has an impact on the black hole
horizon location, in contrast to the Schwarzschild-like black
hole [28]. For the higher dimensional bumblebee metric, we
compute very important observables in order to relate the
bumblebee field to the spacetime geometry: the greybody
factors (GbFs), quasinormal modes (QNMs), and shadow
angular radius. Let us now briefly recall what the observables
in question are: GbFs, which distinguish a black hole’s ther-
mal emission spectrum from a pure black-body spectrum,
are functions of frequency, angular momentum, and black
hole parameters. In other words, GbF is a quantity related to
the quantum nature of a black hole, and there are different
approaches to computing the GbF [29–36].

The modes of energy dissipation of a perturbed black
hole or field are known as QNMs, and they characterize the
perturbations of a field that dissipates with time. The solu-
tions of the relevant perturbation equations that fulfill the
boundary conditions necessary for purely incoming waves
at the horizon and purely outgoing waves at infinity are

represented by a black hole’s QNMs. One must obtain the
gravitational QNMs’ spectra in order to examine the stabil-
ity of higher-dimensional black hole solutions that might be
present in nature. The stable and unstable black holes have a
relationship with the damped and undamped states, respec-
tively. Numerous techniques have been used to examine the
QNMs frequencies, including the analytical method [44–49],
WKB method [30,50–52], Frobenius method [53], continu-
ous fractions method [54], Mashhoon method [55], feedfor-
ward neural network method [56], and many more (for topical
reviews, the reader is referred to [57–59]). In our work, we
mainly focus on the WKB approximation method [50–52]
to compute the QNMs. The QNMs up to third order were
first computed by Iyer and Will [51]. Then, Konoplya [60]
made it possible for us to compute the QNMs frequencies
without using laborious numerical techniques, this resulted
in a higher order contribution.

Recently, the shadows of black holes have become one
of the primary issues in physics. The reason for that is the
Event Horizon Telescope Collaboration’s debut photograph
of a black hole, which was first released in 2019 [61–63,108].
In fact, those pictures captured with the cutting-edge tech-
nology depict the shadow of M87 [64] and SgrA* [65,66],
which are the supermassive black holes in the galaxy M87
and in the Milky Way Galaxy, respectively. But it was only
during the last century that the first black hole’s shadow was
estimated. Synge [67] acquired what is known as the shadow
of the Schwarzschild black hole today in the 1960s. Bardeen
[68], thereafter extended Synge’s work to the Kerr geome-
try. Recently, shadows have been considered for a number of
black holes in a variety of scenarios. Recent researches sug-
gest that there might be relationships between the shadow
and black hole properties in general relativity or even in con-
texts outside of the Einsteinian paradigm [69–72]. Shadow
for the slowly rotating Kerr-like black hole in Einstein bum-
blebee gravity has been studied [73]. We will be looking the
effect of bumblee gravity on the shadow in higher dimension
dS/AdS spacetime.

The main purpose of this paper is to study the perturbations
of scalar and fermion fields in the higher dimensional dS/AdS
black hole geometries of the EBGT and the shadows of those
higher dimensional black holes. For the perturbations, we
shall consider the Klein-Gordon and Dirac equations. The
obtained wave equations allow for semi-analytical methods
to be used for GbF and QNM analyses. Then, we consider the
photon’s orbit and radius of the shadow of the black hole. This
article is structured as follows: In Sect. 2, we briefly introduce
the higher dimensional dS/AdS black hole solutions in the
EBGT [43]. Then, we discuss the GbFs of bosons in Sect. 3.
Section 4 is devoted to Dirac equation of massless fermions
on the higher dimensional dS/AdS black hole spacetime. We
also compute the rigorous lower bounds on the fermionic
GbFs. Then, the QNMs are studied in Sect. 5. Null geodesics
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and shadow radius problems are discussed in Sect. 6. The
purpose of Sect. 7 is to investigate the connection between
shadow radius and QNMs. In Sect. 8, we check the effect
of the bumblebee parameter on the shadow diameter via the
real black holes. We draw our conclusions in Sect. 9.

2 Higher dimensional dS/AdS black holes in EBGT

The bumblebee vector field Bμ in the EBGT, has included
a vacuum expectation value which is nonzero, in order to
define a unconstrained Lorentz symmetry breaking via a
given potential. The action of Einstein-bumblebee gravity
in higher dimensions D ≥ 4 is given by [37,43],

S =
∫

dDx
√−g

[
R − 2�

2κ
+ �

2κ
BμBνRμν

−V (BμB
ν ∓ b2) + LM

]
, (1)

where, � is the cosmological constant. κ = 8πGD/c4,
whereGD = G�D−2/4π [74] and�D−2 = 2

√
π
D−1

/	[(D−
1)/2] is the area of a unit D − 2 sphere. From now on we
will take GD = 1 and c = 1 for simplicity. b is a positive
constant and LM represents the matter Lagrangian form.

The strength of the non-minimal coupling of gravity with
the bumblebee field Bμ is determined by the coupling con-
stant �. The potential term V (BμBν ∓b2) represents Lorentz
or CPT (charge, parity and time) violation. The potential has
a minima at BμBν ± b2 = 0 and V ′(bμbμ) = 0, which
destroy the U (1) symmetry. The bumblebee field Bμ takes
a nonzero vacuum expectation value (VEV) < Bμ >= bμ

at these minima which tells us that vacuum of this model
has a preferred direction in the spacetime. The vector bμ

here is a constant function of spacetime which has a value
bμbμ = ∓b2, where the ± signs denote timelike or spacelike
forms of the vector bμ. The bumblebee field strength is given
by

Bμν = ∂μBν − ∂νBμ. (2)

We get the following constraint on the Bμν due to its anti-
symmetric nature [26],

∇μ∇νBμν = 0. (3)

Varying the action (1) with respect to the metric yields the
following field equation:

Gμν + �gμν = κT B
μν + κT M

μν, (4)

where Gμν = Rμν − gμνR/2 and T B
μν is known as the bum-

blebee energy momentum tensor, which is expressed by

T B
μν = BμαB

α
ν − 1

4
gμνB

αβBαβ − gμνV + 2BμBνV
′

+�

κ

[
1

2
gμνB

αBβ Rαβ − BμB
αRαν

]

+�

κ

[
1

2
∇α∇μ(BαBν) + 1

2
∇α∇ν(B

αBμ)

−1

2
∇2(BμBν) − 1

2
gμν∇α∇β(BαBβ)

]
. (5)

In the above expression, V ′ represents the differentiation
of V computed at x = BμBμ ± b2. Then, varying the action
(1) with respect to t , the bumblebee field gives the following
field equation by assuming that there is no coupling between
the bumblebee field and the Lagrangian of matter:

∇μBμν = 2V ′Bν − �

κ
BμRμν. (6)

We now suppose that there is no matter field and the bum-
blebee field is frozen at its VEV. Namely, we have (see, for
example, [27,28])

Bμ = bμ. (7)

Now, since we intend to include the cosmological constant in
our theory, the non-zero cosmological constant requires the
linear form of the potential as being stated in [43]:

V = λ

2
(BμB

μ − b2), (8)

where, λ is a non-zero constant and considered as a Lagrange-
multiplier field. The potential vanishes for condition (7) and
the derivative of the potential V ′ = λ

2 modifies the Einstein
field equation. Hence, Eq. (4) recasts in [37,43],

Gμν = κ(λbμbν + bμαb
αν − 1

4
gμνb

αβbαβ)

+�

(
1

2
gμνb

αbβ Rαβ−bμb
αRαν−bμb

αRαν+B̄μν

)
,

(9)

where,

B̄μν = �

2

[
∇α∇μ(bαbν) + ∇α∇ν(b

αbμ) − ∇2(bμbν)

−gμν∇α∇β(bαbβ)
]
. (10)

Now, we would like to construct a D-dimensional static
and spherically symmetric metric in the EBGT. To this end,
let us consider the following metric anstaz:

ds2 = −e2φ(r)dt2 + e2ψ(r)dr2 + r2d�2
D−2. (11)

Since, the spacetime considered has a strong radial varia-
tion compared to the temporal changes, we consider that the
bumblebee field has a radial finite vacuum expectation value.
Hence, the spacelike bumblebee field turns out to be

bμ = (0, beψ(r), 0, 0...., 0), (12)
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where, b is a positive constant. The bumblebee field strength
is defined by

bμν = ∂μbν − ∂νbμ, (13)

whose components and their divergences are now all zero.
Therefore,

∇μbμν = 0. (14)

From Eq. (6), we can see the projection of the Ricci tensor
along the bumblebee field:

bμRμν = κλ

�
bν . (15)

Using Eq. (9), we will have three independent equations:

(D − 2)(1 + L)[2rψ ′ − (D − 3)]
+e2ψ [(D − 2)(D − 3) − 2�r2] = 0, (16)

2Lr2(φ′′ + φ′2 − φ′ψ ′) − 2L(D − 2)r(ψ ′ + φ′)
−2(D − 2)rφ′ + e2ψ [(D − 2)(D − 3) + 2κλb2r2

−2�r2] − (1 + L)(D − 2)(D − 3) = 0, (17)

(1 + L)[r2(φ′′ + φ′2 − φ′ψ ′) + (D − 3)(D − 4)

2
+(D − 3)r(φ′ − ψ ′)]
+e−2ψ

[
�r2 − (D − 3)(D − 4)

2

]
= 0, (18)

where the prime symbol denotes differentiation of a func-
tion with respect to its argument and the Lorentz-violating
parameter is given by L = �b2 ≥ 0. Now, Eq. (16) leads to
the following metric function:

e2ψ = 1 + L

f (r)
, (19)

where,

f (r) = 1 − 16πM

(D − 2)�D−2r D−3 − 2�

(D − 1)(D − 2)
r2,

(20)

where M is the mass of the black hole. To have the
Schwarzchild-like solution [28] for � = 0, we set

e2φ = f (r). (21)

Hence, the bumblebee field reads

bμ = (0, b
√

(1 + L)/ f (r), 0, 0, ...., 0), (22)

and from Eqs. (15) and (18), one can see that the following
expression for the cosmological constant should hold:

� = (D − 2)κλ

2�
(1 + L), (23)

which puts a constraint on the parameter λ from the potential
(8). Therefore, λ is not a new degree of freedom in the theory.

Moreover, one can define an effective cosmological constant
�e as follows

�e = (D − 2)κλ

2�
, (24)

which means that � = (1 + L)�e. After all those computa-
tions, we get the final form of the metric as

ds2 = − f (r)dt2 + 1 + L

f (r)
dr2 + r2d�2

D−2, (25)

where the metric function reads

f (r) = 1 − 16πM

(D − 2)�D−2r D−3 − 2(1 + L)�e

(D − 1)(D − 2)
r2.

(26)

It is clear from the metric function (26) that the event
horizon is affected by the bumblebee field. The behavior of
the metric function is illustrated in Fig. 1 for both dS and AdS
spacetimes with different dimensions. One can observe that
we have one horizon (event) for the AdS case however for
the dS case double horizons appear: event horizon (inner)
and cosmological (outer) horizon (see Fig. 1). It is worth
noting that we have found the similar kinds of behaviors for
the varying LSB parameter, which are depicted in Fig. 2, in
which D = 4 is fixed for both for AdS and dS cases.

3 GbFs of bosons

Among the various methods for deriving the GbFs of the
relevant black hole spacetimes, only a small number of cases
renders possible to derive their precise analytical expressions.
In this section, we will apply the rigorous bounds technique to
procure the GbFs of higher dimensional dS/AdS black hole in
EBGT. To this end, the excitation of uncharged and massless
scalar fields is going to be determined by the Klein–Gordon
equation:

�� = 0, (27)

where � denotes the D’Alembert operator. So, Eq. (27) can
be rewritten as

1√−g
∂μ(

√−ggμν∂ν)� = 0, (28)

in which for our D-dimensional metric (25)
√−g is given

by

√−g = r D−2
√

(1 + L)

D−2∏
i=1

sinθi . (29)

In order to get separate radial and angular Klein–Gordon
equations, let us apply the following ansatz [75]:

� = e−iωtφ(r)Ylm(�), (30)
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Fig. 1 Graph of the metric component f (r) versus r for various dimensions: D = 4 (red), D = 5 (blue), and D = 6 (yellow). The physical
parameters are chosen as L = 2, M = l = 1 and �e = −0.01 (left), �e = 0.01 (right)

Fig. 2 Graph of the metric component f (r) versus r for various bumblebee parameters: L = 2 (red), L = 4 (blue), and L = 8 (yellow). The
physical parameters are chosen as D = 4, M = l = 1 and �e = −0.01 (left), �e = 0.01 (right)

Fig. 3 Graphs of the effective potential for scalar field for various dimensions: D = 4 (red), D = 5 (blue), and D = 6 (yellow) with LSB parameter
L = 2. The physical parameters are chosen as M = l = 1 and �e = −0.01 (left), �e = 0.01 (right)

where ω indicates frequency, l represents the azimuthal
quantum number, and m(−l ≤ m ≤ l) is the spherical har-
monic index. The angular equation yields the eigenvalue (λ)
[76] as

λ = −l(D + l − 3). (31)
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Fig. 4 Graph of effective potential for scalar particle for various bumblebee parameters L = 2 (red), L = 4 (blue) and L = 8 (yellow) and
dimension D = 4. The physical parameters are determined as M = l = 1 and �e = −0.01 (left), �e = 0.01 (right)

Fig. 5 Graph of scalar GbFs for �e < 0 (AdS) and various D-
dimensions. The physical parameters are chosen as M = l = 1 and
�e = −0.01

Using all of the above equations we can write the radial equa-
tion for the scalar field,

φ
′′ +

(
D − 2

r
+ f

′

f

)
φ

′

+
(

ω2(1 + L)

f 2 − (1 + L)(l(D + l − 3))

f r2

)
φ = 0,

(32)

where a prime mark denotes a derivative with respect to the
radial coordinate, r . Applying the following transformation

φ = u

r
D−2

2

, (33)

Fig. 6 Graph of scalar GbFs for �e > 0 (dS) having various D-
dimensions and the bumblebee parameter L . As the solid lines are for
L = 1, the dashed lines stand for L = 20. The physical parameter are
chosen as M = l = 1 and �e = 0.01

one can rewrite Eq. (32) as

f 2

1 + L
u

′′ + f f
′

1 + L
u

′ +
[
ω2 −

(
D − 2

2

)
f f

′

1 + L

1

r

− (D − 2)(D − 4)

4r2

f 2

1 + L
− l(D + l − 3) f

r2

]
u = 0.

(34)
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At this stage, by using the tortoise coordinate dr∗ =√
1 + L dr

f , we get a Schrödinger-like wave equation:

d2u

dr2∗
+

[
ω2 − Vef f

]
u = 0, (35)

where

Vef f

= f

[
(D − 2)(D − 4)

4r2

f

1 + L
+ (D − 2) f

′

2(1 + L)r

+ l(D + l − 3)

r2

]
.

(36)

To understand the potential behaviors, we have plotted Eq.
(36) for AdS and dS spacetimes in different dimensions (see
Fig. 3). We have observed that for the AdS spacetime, the
potential vanishes only once while for the dS spacetime, it
vanishes twice, which is the outcome of the double horizons
obtained in the dS spacetime. We have found similar behav-
iors for the LSB parameter (see Fig. 4 with fixed D = 4-
dimension for AdS and dS backgrounds).

The general semi-analytic bounds for the GbFs are given
by

σ(ω) ≥ sec h2
[∫ +∞

−∞
℘dr∗

]
, (37)

where

℘ =
√

(h′2) + (ω2 − Vef f − h2)2

2h
. (38)

We have two conditions for the certain positive function
h : 1) h(r∗) > 0 and 2) h(−∞) = h(+∞) = ω [29]. After
applying the conditions to Eq. (38), one may observe a direct
proportionality between the GbFs and the effective poten-
tial, where the metric function plays a significant part in this
process. Since there is no upper border in the integral of Eq.

(37), without loss of generality one can set h =
√

ω2 − Vef f .
Thus, Eq. (37) becomes

σl(ω) ≥ sech2
[

1

2

∫ +∞

−∞
|h

′

h
|dr∗

]
, (39)

which results in

σl(ω) ≥ sech2
[
ln(

h peak

h
)

]
, (40)

where h peak =
√

ω̃2 − Vpeak . Equation (40) can also be
rewritten as

σl(ω) ≥ 4ω2(ω2 − Vpeak)

(2ω2 − Vpeak)
. (41)

For evaluating Vpeak , first rpeak should be determined for
different sub-cases. The behaviours of the obtained GbFs for
the scalar particles are depicted in Fig. 5 for the AdS black

hole of the EBGT. What is interesting in Fig. 5 is that while
the 4-dimensional black hole has the highest GbF values, the
5-dimensional black hole has the weakest GbF values. How-
ever, the other higher dimensions (D > 5) have GbF val-
ues between the 4th and 5th dimensions. In D > 5 dimen-
sional black holes, the GbF values decrease as the dimen-
sion increases. Moreover, it is seen that the bosonic GbFs of
the AdS bumblebee black hole are almost unaffected by the
change in the LSB parameter.

For positive cosmological constant, by considering the
second condition, Eq. (37) is expressed by

σl(ω) ≥ sec h2

[√
1 + L

2ω

∫ rH

rh

Vef f
f (r)

dr

]
, (42)

whose integration is solvable. Thus, we have

σl ≥ sech2

[√
1 + L

2ω

(
−

(
(D − 2)(D − 4)

4(1 + L)

+ l(D + l − 3))
1

rH − rh
−

(
D�e

2(D − 1)

)
(rH − rh)

+
(

4πM(D − 4)

(1 + L)�D−2(D − 2)

− 8πM(D − 3)

(1 + L)�D−2(D − 2)

) (
1

r D−2
H

− 1

r D−2
h

))]
.

(43)

The behaviour of GbFs for �e > 0 (dS) is depicted in
Fig. 6 to show the influences of the dimension and the LSB
parameter on the GbFs of the higher dimensional dS black
hole in the EBGT. The most important finding from Figs.
5 and 6 is that the GbF of the 4-dimensional black hole in
the EBGT theory is higher than those of its higher dimen-
sional versions. Namely, the GbF drastically reduces with
the increasing dimensions, which means that the probability
for detecting the thermal radiation of the higher dimensional
black holes in the EBGT gets lower with D > 4.

4 GbFs of fermions

In this section, we shall investigate the GbFs of the Dirac par-
ticles i.e., fermions. To derive the 1-dimensional Schrödinger
like wave equation, we apply a particular conformal trans-
formation, which contains the Dirac Lagrangian invariant
[77,78]. Under the aforementioned conformal transforma-
tion [79,80], one has

gμν → ¯gμν = �2gμν, (44)

ψ → ψ̄ = �−(D−1)/2ψ, (45)

and

γ μ∇μψ → ¯γ μ∇̄μψ̄ = �(D+1)/2γ μ∇μψ. (46)
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If we consider � = 1/r , the metric (25) becomes

ds̄2 = − f (r)

r2 dt2 + 1 + L

r2 f (r)
dr2 + d�2

D−2, (47)

and

ψ̄ = r (D−1)/2ψ. (48)

Thus, the t − r and (D− 2)-sphere parts of the metric are
separated and whence the Dirac equation can be rewritten as

¯γ μ∇̄μψ̄ = 0, (49)

which has the following expansion

[(γ̄ t ∇̄t + γ̄ r ∇̄r ) ⊗ 1]ψ̄ + [γ̄ 5 ⊗ (γ̄ a∇̄a)SD−2 ]ψ̄ = 0, (50)

where (γ 5)2 = 1: we can now omit the bar. Furthermore, let
us consider χ

(±)
l as the eigenspinors for the (D − 2)-sphere

[81]. Then, we have

(γ a∇a)SD−2χ
(±)
l = ±i

(
l + D − 2

2

)
χ

(±)
l , (51)

where l = 0, 1, 2, 3.... We can also consider ψ as the orthog-
onal eigenspinors:

ψ =
∑
l

(φ
(+)
l χ

(+)
l + φ

(−)
l χ

(−)
l ). (52)

Therefore, the Dirac equation (50) can be written as fol-
lows[

γ t∇t + γ r∇r + γ 5
[
±i

(
l + D − 2

2

)]]
φ

(±)
l = 0, (53)

where γ 5 is the interaction term presented in the two dimen-
sional Dirac equation. To tackle with the Dirac equation, we
get help from the following auxiliary expressions:

γ t = r√
f (r)

(−iσ 3), (54)

and

γ r = r
√

f (r)√
1 + L

(σ 2), (55)

where the σ i are the known Pauli matrices,

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
, (56)

γ 5 = (−iσ 3)(σ 2) = −σ 1. Therefore, we can write the spin
connections as

	t = σ 1
(

r2

4
√

1 + L

)
d

dr

(
f

r2

)
. (57)

We will use the positive sign from now on, as both signs
work similarly and we can use either one. Hence, we can
explicitly rewrite the Dirac equations as follows
[

r√
f (r)

(−iσ 3)

[
∂

∂t
+ σ 1

(
r2

4
√

1 + L

)
d

dr

(
f (r)

r2

)]

+r
√

f (r)√
1 + L

σ 2 ∂

∂r
+ (−σ 1)(i)

(
l + D − 2

2

)]
φ

(+)
l = 0,

(58)

σ 2
(
r
√

f (r)√
1 + L

)[
∂

∂r
+ r

2
√

f (r)

d

dr

(√
f (r)

r

)]
φ

(+)
l

−iσ 1
(
l + D − 2

2

)
φ

(+)
l = iσ 3

(
r√
f (r)

)
∂φ

(+)
l

∂t
.

(59)

After letting the following ansatz

φ
(+)
l =

(√
f (r)

r

)−1/2

e−iωt
(
iG(r)
F(r)

)
, (60)

we get a simplified form of the Dirac equation:

σ 2
(
r
√

f (r)√
1 + L

)(
i dGdr
dF
dr

)
− iσ 1

(
l + D − 2

2

) (
iG(r)
F(r)

)

= iσ 3ω

(
r√
f (r)

) (
iG(r)
F(r)

)
. (61)

From the above expression, we get

f (r)√
1 + L

dG

dr
−

√
f (r)

r

(
l + D − 2

2

)
G = ωF, (62)

f (r)√
1 + L

dF

dr
+

√
f (r)

r

(
l + D − 2

2

)
G = −ωG. (63)

Recalling the tortoise coordinate dr∗ = √
1 + L dr

f (r) and

setting W =
√

f (r)
r

(
l + D−2

2

)
, Eqs. (62) and (63) are sim-

plified to
(

d

dr∗
− W

)
G = ωF, (64)

(
d

dr∗
+ W

)
F = −ωG. (65)

We can now decouple the above equations as
(

− d2

dr2∗
+ V1

)
G = ω2G, (66)

(
− d2

dr2∗
+ V2

)
F = ω2F, (67)

where

V1,2 = ±dW

dr∗
+ W 2. (68)

These two potentials V1,2 belong to the particle and anti-
particles of Dirac fermions. We have shown the behaviour of
the potentials V1,2 for the different dimensions in dS and AdS
space (see Figs. 7 and 8). Depending on the existence of the
cosmological horizon in AdS/dS spacetimes, the potential
vanishes at some radial distance as being observed in the
scalar potential.
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Fig. 7 Graph of effective potential V1 for Dirac particle for various dimensional values D = 4 (red), D = 5 (blue), and D = 6 (yellow), and
L = 2. The physical parameters are chosen as M = l = 1 and �e = −0.01 (left), �e = 0.01 (right)

Fig. 8 Graph of effective potential V2 for Dirac anti-particle for various dimensional values D = 4 (red), D = 5 (blue), and D = 6 (yellow), and
L = 2. The physical parameters are chosen as M = l = 1 and �e = −0.01 (left), �e = 0.01 (right)

Now, by considering the above potentials (68) in Eq. (42),
the fermionic GbFs of the EBGT, for various dimensions, are
obtained as the following: For D = 4:

σl,D=4(ω) ≥ sech2

[
1

2ω

(
±3(l + 1)√−3γ

[
M

r3
h

(
1 + 9

10γ r2
h

)

− 1

2r2
h

(
1 + 3

4γ r2
h

)]
+

√
1 + L(1 + l)2

rh

)]
, (69)

for D = 5:

σl,D=5(ω) ≥ sech2

[
1

2ω

(
±6(l + 3

2 )√−6γ

×
[

M

πr4
h

(
1 + 4

3γ r2
h

)
− 1

2r2
h

(
1 + 3

2γ r2
h

)]

+
√

1 + L(l + 3
2 )2

rh

)]
, (70)

and for D = 6:

σl,D=6(ω) ≥ sech2

[
1

2ω

(
± (l + 2)√−0.1γ

×
[

M

πr5
h

(
50

18.62γ r2
h

+ 0.752

)
− 1

2rh

(
1 + 5

2γ r2
h

)]

+
√

1 + L(l + 2)2

rh

)]
. (71)

In the above results [Eqs. (69)–(71)], γ = �e(1 + L), the
asymptotic series approach is utilized in order to facilitate
the integration evaluations. That is why the GbFs are served
in discrete forms for different dimensions.

Since the integration is bounded between the outer and
cosmological horizons, to define the GbFs of the dS black
hole, we directly evaluate the integration (42) and get

σl (ω) ≥ sech2

[
1

2ω

(
±

(
l + D − 2

2

)(
1

rH
− 1

rh

)
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×
√√√√1 − 16πM

(D − 2)�D−2

(
1

r D−3
H

− 1

r D−3
h

)
2(1 + L)�e(r2

H − r2
h )

(D − 1)(D − 2)

+√
1 + L

(
l + D − 2

2

)2 (
1

rH
− 1

rh

))]
. (72)

The behaviors of the Dirac GbFs for various dimensions
and LSB parameters are illustrated in Fig. 9 for negative
(left) and positive (right) cosmological constants. It can be
deduced from the associated figures that the most highest
fermionic GbFs in both cases (dS/AdS) belong to the D = 4
case. The increase in the dimension decreases the GbFs. In
order to have a wider perspective also on the impression of
parameter L in the GFs of the bumblebee model refer to [29]
as an example of constant dimension D = 4.

5 QNMs

The WKB (Wentzel, Hendrik Kramers and Léon Brillouin)
approach is an approximate technique to solve the linear
differential equations. The most significant utilization of
the WKB approximation is to solve the time independent
Schrödinger equation. In general, the equations conducting
different types of non-rotating or static black hole QNM per-
turbations form in terms of the radial coordinate: see Eq. (35),
in which ω stands for the complex QNMs.

As is well-known, in quantum mechanics, the ω2 param-
eter corresponds to 2m

h̄2 E , where E indicates the particle
energy. In this context, the effective potential is nothing but
a barrier. In order to compute the QNMs, the appropriate
boundary conditions must be considered at (r∗ → −∞)

and (r∗ → ∞), which stand for the event horizon and spa-
tial infinity, respectively. The ingoing modes represent waves
moving away from the potential barrier. Namely, the ingoing
waves (r∗ → −∞) correspond to the radiation which crosses
the horizon into the black hole. On the other hand, since a
QNM is occurred from a black hole’s free oscillation, the
ingoing modes at spatial infinity are ignored. In other words,
only outgoing waves exist at spatial infinity, (r∗ → ∞).

To compute the QNMs with the WKB approach, we
employ the following complex frequency expression [30]

ω2 =
[
V0 +

√
−2V ′′

0 �(n) − i(n + 1

2
)

√
−2V ′′

0 (1 + �(n))

]
, (73)

by which

�(n) = 1√−2V0
′′

[
1

8
(
V (4)

0

V ′′
0

)(
1

4
+ α2)

− 1

288
(
V ′′′

0

V ′′
0

)2(7 + 60α2)

]
, (74)

and

�(n) = 1

−2V ′′
0

[
5

6912

(
V ′′′

0

V ′′
0

)4 (
77 + 188α2

)

− 1

384

(
V ′′′2

0 V (4)
0

V ′′3
0

) (
51 + 100α2

)

+ 1

2304

(
V (4)

0

V ′′
0

)2 (
67 + 68α2

)

+ 1

288

(
V ′′′

0 V (5)
0

V ′′2
0

) (
19 + 28α2

)

− 1

288

(
V (6)

0

V ′′
0

) (
5 + 4α2

)]
, (75)

where the primes and superscript (n = 4, 5, 6; for the higher
order derivatives) denote the differentiation with respect to
r∗. Furthermore, the subscript 0 represent the maximum point
for the potential. To derive the QNMs of scalar and Dirac par-
ticles, we have used the effective potential expressions which
are represented in Eqs. (36) and (68), respectively. The results
of the 6th order WKB approach for bosonic particles QNMs
are tabulated in Table 1, which reveals that both frequency
and damping modes for bosonic QNMs rise (when l = 0)
by increasing the dimension D and/or the LSB parameter L .
Contrarily, the picture alters after D ≥ 6. Table 1 also shows
that for l = 1 the damping rate grows by rising both D and
L parameters, but the real part fluctuates. In more concise
evaluation, the results tabulated in Table 1 are depicted by
Fig. 10.

Table 2 represents the fermionic QNMs for l = 0, 1
for various dimensionalities and the LSB parameters. As it
is shown in Table 2, both real and imaginary parts of the
fermionic QNMs are growing while the dimension increases.
Almost the same behaviors are obtained for a rising L param-
eter except for the damping mode obtained at D = 8. The
behaviors of the associated QNMs are shown in Fig. 11. It is
worth mentioning that the bosonic QNMs for � > 0 yield
almost the same results as those for � < 0. In the case of
fermionic QNMs, we have observed that the real terms for
� < 0 correspond to the imaginary terms for � > 0. This
implies that both positive and negative values of � exhibit
similar behavior.

6 Null geodesics and shadow radius

In this section, we shall study the photon’s orbit and radius
of the shadow of the black hole [82]. Let us first consider the
Lagrangian L(x, ẋ) = (1/2)gμν ẋμ ẋν for the static spheri-
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Fig. 9 Graph of Dirac GbFs for �e = −0.1 (left) and �e = 0.1 (right) in various dimensions D ≥ 4. As the solid lines represent GbFs for spin-up,
the dashed and dotted lines stand for the GbFs of the spin-down particles. The physical parameters are chosen as M = l = 1

Table 1 Bosonic QNMs of various dimensional dS/AdS black holes

L l n D ωBosons L ωBosons

1 0 0 4 0.142524815−0.0271009441i 1.5 0.154034389−0.0293764932i

6 1.224706041−0.7060164222i 1.313934061−0.6188707214i

7 1.528815173−1.120609758i 1.427602066−1.283657004i

8 1.750953184−1.412550460i 1.580613654−1.602390607i

1 1 0 4 0.0525299867−0.0191011204i 1.5 0.0507239756−0.0219589547i

6 7.008944298−2.702402326i 9.515635233−2.793914762i

7 4.436000670−5.493917855i 5.015834961−7.581928057i

8 3.547057113−5.730052528i 3.718946501−7.713072092i

cally symmetric metric, which is given by (25)

L(x, ẋ) = 1

2

(
− f (r)ṫ2 + (1 + L)

f (r)
ṙ2 + r2d�2

D−2

)
. (76)

The spacetime has two conserved quantities which can
be calculated by solving the Euler–Lagrange equations in
the equatorial plane. Hence, the conserved quantities are
obtained as

E = f (r)ṫ, L̃ = r2φ̇, (77)

where E and L̃ are called the conserved specific energy and
conserved specific angular momentum. For the photons, we
can write the following equation:

0 = − f (r)ṫ2 + (1 + L)

f (r)
ṙ2 + r2d�2

D−2, (78)

which gives the following equation by the aid of the con-
served quantities

(
dr

dφ

)2

= Vef f , (79)

where

Vef f = r2 f (r)

(1 + L)

(
r2

f (r)

E2

L̃2
− 1

)
. (80)

Now we define the impact parameter b = L̃/E . At the
photon sphere radius r = rph , the conditions dr/dφ|rph = 0
(Vef f = 0) and V ′

e f f = 0 should be satisfied. Hence, the
impact parameter for the photon sphere is given by

1

b2 = f (rph)

r2
ph

. (81)
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Fig. 10 Graph of QNMs for the scalar particle for various dimensions;
Left figure stands for l = 0 in which the green line represents L = 1
and red line is for L = 1.5. Right figure stands for l = 1 in which the

orange line is for L = 1 and blue line exhibits L = 1.5. The physical
parameters are chosen as M = 1 and �e = −0.01

By using conditions dr/dφ|rph = 0 and d2r/dφ2|rph = 0
[83], we can find the radius of the photon sphere as

d

dr
B(r)2 = 0, (82)

where B(r) =
√

r2

f (r) . Therefore, Eq. (79) becomes

(
dr

dφ

)2

= r2 f (r)

(1 + L)

(
B2(r)

B2(rph)
− 1

)
. (83)

Now, we define an angle α [84] between the null light ray
and radial direction as follows

cot α =
√

1 + L√
r2 f (r)

dr

dφ

∣∣∣
r=r0

, (84)

which gives

cot2 α = B2(r0)

B2(rph)
− 1. (85)

Using some trigonometric relations, one can get the fol-
lowing equation:

sin2 α = B2(rph)

B2(r0)
. (86)

We define bcr as the impact parameter at the critical impact
parameter, thus we have

sin2 αsh = b2
cr

B2(r0)
. (87)

Ultimately, the radius of the shadow for the static observer
at r = r0 [85] is found to be

Rsh = r0 sin α =
√
r2
ph f (r0)

f (rph)
, (88)

and by considering a mathematical constraint f (r0) ≈ 1 for
a static observer located at a special location (see for example
[86,87] in which the appropriate normalization for the time-
like Killing vector was applied), we can write the shadow
radius [88] as follows

Rsh =
√

r2
ph

f (rph)
. (89)

Now, in terms of the celestial coordinate, the shadow
radius is obtained as

X = lim
r0→∞

(
−r2

0 sin θ0
dφ

dr

∣∣∣
(r0,θ0)

)
,

Y = lim
r0→∞

(
r2

0
dθ

dr

∣∣∣
(r0,θ0)

)
, (90)

where (r0, θ0) is the position of the observer at spatial infinity.
Moreover, since we analyze the shadow of the black hole in
the equatorial plane, the shadow of the radius is equivalent to
the critical impact parameter of the photon sphere. Therefore,
we have

Rsh =
√
X2 + Y 2 = bcr , (91)

which is explicitly written as
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Table 2 Fermionic QNMs of various dimensional dS/AdS black holes

L l n D ωFermionic L ωFermionic

1 0 0 4 0.0458857289−0.018095089i 1.2 0.109578578+0.0676419223i

6 0.1242495317−0.8544642331i 0.6694131812−0.7304785062i

7 2.732511256−2.545148685i 2.832991755−2.928508941i

8 3.973248774−1.565370350i 4.440682841−1.442269634i

1 1 0 4 0.0406050117−0.0158503234i 1.2 0.0922648051+0.0559755816i

6 0.1111233295−0.7679995927i 0.6038037915−0.6574441601i

7 5.228007931−5.923490838i 5.525117190−6.784020908i

8 8.055358919−2.285136166i 8.678911730−2.016127470i

Fig. 11 Graph of QNMs for a Dirac particle for various dimensions;
The left-hand side figure stands for l = 0 in which the green line rep-
resents L = 1 and red line is for L = 1.2. The right-hand side figure

stands for l = 1 in which the green line represents L = 1 and blue
line is for L = 1.2. The physical parameters are chosen as M = 1 and
�e = −0.05

Rsh =
(8π)−

1
3−D

(
(D−2)�D−2

D−1

)
1

3−D

√
− 2

1− 6
3−D π

− 2
3−D �e(L+1)

(
(D−2)�D−2

D−1

) 2
3−D

(D−2)(D−1)
−

16π

(
(8π)

− 1
3−D

(
(D−2)�D−2

D−1

) 1
3−D

)3−D

(D−2)�D−2
+ 1

.
(92)

We have shown the variation of the shadow radius of the
black hole with the space-time dimension in Fig. 12 (left)
for �e = −0.01. After initially declining, the shadow radius
then begins to rise. A similar effect is observed in the celes-
tial coordinate, which is shown in Fig. 13 (left). Similarly,
we have shown the variation of the shadow radius with the
bumblebee parameter (L) in Fig. 12 (right) for D = 4
and �e = −0.01. The shadow radius in this case keeps
on decreasing with L and the shadow of the black hole is
depicted in celestial coordinate in Fig. 13 (right).

We also looked at the shadow size for the dS space and
took the observed cosmological constant value �e = 1.11×
10−52. We first showed the variation of the shadow size with
space-time dimension D in Fig. 14 (left) for M = L = 1. The
shadow size variation is similar to the case of Ads but with a
larger radius. A similar effect is observed in the celestial coor-
dinate, which is shown in Fig. 15 (left). We also observed that
the bumblebee gravity parameter does not affect the shadow
size at all in any dimension and we particularly have plotted
the shadow size for D = 4 case in Fig. 14 (right) for M = 1
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Fig. 12 In the left-hand side we have shown the shadow radius of the
bumblebee black hole versus D-dimension. The physical parameters
are chosen as M = L = 1 and �e = −0.01. On the right-hand side, we

have shown the shadow radius of the bumblebee black hole versus the
bumblebee parameter L . The physical parameters are chosen as M = 1,
D = 4, and �e = −0.01

Fig. 13 2D plot of the shadow in the celestial coordinate (X, Y ). Plots
are governed by Eq. (90). On the left-hand side, the physical parame-
ters are chosen as M = L = 1 and �e = −0.01. Each color represents
different space-time dimensions: red (D = 4), blue (D = 5), green

(D = 6), and magenta (D = 10). On the right-hand side, the physical
parameters are chosen as M = 1, D = 4, and �e = −0.01. Each color
represents different bumblebee parameter: red (L = 1), blue (L = 7),
green (L = 14), and magenta (L = 28)

and the shadow of the black hole is depicted in celestial coor-
dinate in Fig. 15 (right).

7 Relationship between shadow radius and QNMs

In this section, we will try to reveal the relation between
the shadow radius and QNMs. As shown in [89–93], the
real part of the QNMs at the eikonal limit corresponds to

the angular velocity of the critical null circular orbit �c and
the imaginary part of the QNMs is nothing but the Lyapunov
exponent λ, which is used to determine the unstable timescale
of the circular orbit [94]. Namely, we have

ωQNM = �cl − ι

(
n + 1

2

)
|λ|, (93)
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Fig. 14 In the left-hand side we have shown the shadow radius of the
bumblebee black hole versus D-dimension. The physical parameters
are chosen as M = L = 1 and �e = 1.11 × 10−52. On the right-hand

side, we have shown the shadow radius of the bumblebee black hole
versus the bumblebee parameter L . The physical parameters are chosen
as M = 1, D = 4, and �e = 1.11 × 10−52

Fig. 15 2D plot of the shadow in the celestial coordinate (X, Y ). Plots
are governed by Eq. (90). On the left-hand side, the physical parameters
are chosen as M = L = 1 and �e = 1.11 × 10−52. Each color rep-
resents different space-time dimensions: Red (D = 4), blue (D = 5),

green (D = 6), and magenta (D = 10). On the right-hand side, the phys-
ical parameters are chosen as M = 1, D = 4, and �e = 1.11 × 10−52.
Since the shadow size does not depend on the bumblebee parameter,
we have the same shadow size for all L

where the angular velocity is given by

�c = φ̇

ṫ

∣∣∣
r=rc

=
√

f (rc)

rc
. (94)

where rc is the radius of the circular null geodesics. Equation
(93) allows us to write a relation between the QNMs and
shadow radius at the eikonal limit [90]

Re(ω) = lim
l>>1

l

Rsh
. (95)

Expression (95) is only valid for the large orbital quantum
numbers (l). But, Konoplya and Stuchik [95] demonstrated
that this may not always be the case. The results seen in Table
3 are based on Eqs. (93) and (95). As can be deduced from
Table 3, the results obtained are in agreement with Eq. (95),
however they are inconsistent from the ones obtained for
scalar QNMs which are tabulated in Table 1. Nevertheless,
one can conclude that the relationship between the shadow

123



668 Page 16 of 19 Eur. Phys. J. C (2023) 83 :668

radius and QNMs is reliable for l  1, which covers the
majority of the cases in black hole physics.

8 Constraint on bumblebee parameter using EHT data
obtained for M87* and Sgr A*

A lot of effort has been paid to evaluating the effects of black
holes on the astrophysical environment [101–104]. In partic-
ular, we can point to supermassive black holes because they
are typically found near the center of galaxies [105,106]. The
supermassive black hole is located at the center of the nearby
gigantic elliptical galaxy Messier 87 (M87), also known
as M87∗, according to astrophysical measurements cited in
[107]. The Event Horizon Telescope (EHT) was constructed
in order to image the shadow of M87∗ and the supermassive
black holes in the heart of the Milky Way (Sgr A∗). Recent
investigations have shown that M87∗ has a shadow, as shown
by [108–110]. The results achieved, as we all know, were fan-
tastic.

In this section, we shall constrain the bumblebee param-
eter by using the data supplied by the EHT for M87∗ and
Sgr A∗. As it was reported in [108], angular diameter of the
M87∗ black hole shadow is θM87∗ = 42 ± 3 μas, distance
of M87∗ from the Earth is measured as dM87∗

s = 16.8 Mpc,
and mass of the M87∗ is MM87* = 6.5±0.90x109 M�. Sim-
ilarly, for Sgr A∗ the data for its shadow is given in the latest
EHT paper [111]. It is reported that the angular diameter of
the Sgr A∗ shadow is θSgrA∗ = 48.7±7μas, distance of the

Sgr A∗ from the Earth is dSgr A∗
s = 8277 ± 33 pc and mass

of the Sgr A∗ black hole is MSgrA∗ = 4.3 ± 0.013x106 M�.
Now by using those data and following the formula, one can
calculate the diameter of the black hole shadow [112],

dsbh = dsθ

M
. (96)

From above, radial diameters of the shadow images for
M87∗ and Sgr A∗ can be obtained as dM87*

sbh = (11 ± 1.5)M
and dSgr A∗

sbh = (9.5 ± 1.4)M , respectively. However, for
our metric, the diameter of the black hole shadow can also
be calculated from (92). Therefore, variation of the diameter
of the black hole shadow with the bumblebee parameter for
different dimensions can be easily studied as we depicted in
Fig. 16 for �e = −0.01 and in Fig. 17 for �e = 1.11×10−52.
We have considered 1σ and 2σ uncertainties to show the con-
straints properly. The pertinent figure clearly shows that the
bumblebee parameter has a range for D = 4 that falls within
a range of uncertainty, but for higher dimensions, this is not
the case for both M87∗ and Sgr A∗ for AdS case. However
for the dS case, as we saw in the earlier plots L does not
affect the shadow size and therefore for D = 4, we have
all possibility to consider any L value and for higher dimen-
sions, it again falls below the sigma regions. Consequently,

in the future, if some observations are made, which suggest
a smaller shadow size than what we have observed so far, the
current study can thus reveal the importance of the existence
of bumblebee gravity.

9 Conclusions

In this work, we have performed a comprehensive discussion
on GbFs in higher dimensional AdS/dS black hole spacetimes
of the EBGT. The study has provided impressive results in
higher dimensions when considering general relativity cou-
pled to the bumblebee gravity. To compute the GbFs, we have
considered the scalar and Dirac field perturbations. To ana-
lyze the obtained radial wave equations, we have employed
the WKB approach up to sixth order to derive the GbFs. The
effects of LSB or bumblebee parameter (L), cosmological
constant (�e), and dimension (D) on the GbFs have been
thoroughly investigated, which provide significant impacts
on the thermal radiation. It has been observed from Fig. 5 that
the 4-dimensional AdS bumblebee black hole has the high-
est GbF values, whereas the 5-dimensional black hole has the
weakest GbF values. Other higher dimensions (D > 5) have
GbF values between the fourth and fifth dimensions, though.
The GbF values drop as the dimension rises in D > 5 dimen-
sional black holes. On the other hand, the bosonic GbFs of dS
higher dimensional bumblebee black holes are shown in Fig.
6, which decrease regularly with increasing dimension. It is
also understood that at higher dimensions, the LSB effect on
the bosonic GbFs of the AdS higher dimensional bumblebee
black holes is very weak compared to the dimension effect.
The GbFs of the dS higher dimensional bumblebee black
holes are effectively reduced by the increasing LSB, though.

Figure 9 shows the fermionic GbF behaviors of the higher
(D ≥ 4) dimensional AdS/dS bumblebee black holes against
the change in dimension and the LSB parameter. In general,
irrespective of being a bosonic or fermionic perturbation,
the most important findings obtained from Figs. 5, 6, and
9 are that the GbFs of the 4-dimensional dS/AdS bumble-
bee black hole in the EBGT theory are higher than those for
D > 4 black holes. Namely, GbFs drastically reduce with
the increasing dimensions, which means that the probability
for detecting the thermal radiation of the higher dimensional
ds/AdS black holes in the EBGT gets lower with D > 4.
We have also noticed that the GbFs reach to 1 quicker in
the scalar field perturbations compared to the fermionic field
perturbations. This indicates that the bosonic thermal radia-
tions can more likely reach to spatial infinity in comparison
to the fermionic thermal emission.

Bosonic and fermionic QNMs with l = 0 and l = 1 cases
of the higher dimensional dS/AdS bumblebee black holes are
tabulated in Tables 1 and 2, respectively. We have inferred
from those tables that both real and imaginary parts of the
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Table 3 The radii of the photon sphere and shadow, and their corresponding QNMs. The physical parameters are chosen as M = l = 1 and
�e = −0.01

D rps Rsh Re[ω(rps)] Re[ω(Rsh)] Im[ω(rps)] Im[ω(Rsh)]
4 3.00000 4.977011373 0.1989044067 0.2009237924 0.09945220335 0.08205386720

5 1.303270425 1.837907203 0.5386286601 0.5440971113 0.3808679780 0.2867226005

6 1.060963736 1.368415271 0.7234276861 0.7307723183 0.6265067540 0.4540265306

7 0.9933515740 1.216002450 0.8141015610 0.8223667641 0.8141015615 0.5744345215

8 0.9764044529 1.154930363 0.857150798 0.8658530696 0.9583237370 0.6629370490

Fig. 16 The variation of the diameter of the shadow with respect to the bumblebee parameter for different dimensions. Here, we have considered
1σ and 2σ uncertainties for the M87∗ (left) and Sgr A∗ (right) for �e = −0.01

Fig. 17 The variation of the diameter of the shadow with respect to the bumblebee parameter for different dimensions. Here, we have considered
1σ and 2σ uncertainties for the M87∗ (left) and Sgr A∗ (right) for �e = 1.11 × 10−52

bosonic and fermionic QNMs increase with growing dimen-
sionality. Almost the same behaviors obtained for the rising
L parameter except for the damping mode are obtained at
D = 6 and D = 8 dimensions for bosons and fermions,
respectively. We have also extended our investigation to find
a direct link between the QNMs frequencies and the shad-
ows of the bumblebee black holes. The shadows of the higher
dimensional ds/AdS bumblebee black holes have been stud-
ied in terms of null geodesics and spherical photon orbits.
By changing the dimensionality, the black holes’ shadow

radii have been depicted and analyzed. It is clearly shown in
Fig. 12 (left) that an increasing dimension (D ≥ 4) decreases
the radius of the black hole’s shadow. We have also shown
that the latter result can also be obtained by means of the
real part of the QNMs frequencies, which are valid in the
eikonal limit. Finally, we have considered the null geodesics
and obtained the black hole shadow radius with different
dimension. Then, we have exhibited the outcomes in Fig. 13
(left). Similarly, we have shown the variation of the shadow
radius with the bumblebee parameter (L) in Fig. 12 (right)
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for dimension D = 4. It is clear that shadow radius decreases
with increasing the L . The same behaviour is depicted in the
celestial coordinate in Fig. 13 (right). In the sequel, we have
examined the variation of the black hole shadow diameter
with the bumblebee parameter based on the data of real black
holes [M87∗ and Sgr A∗ (see Fig. 16)]. At the end of the day,
we have shown that the bumblebee parameter has a reducing
effect on the diameter of the black hole shadow. This result
can be used as a tool to indirectly prove the existence of the
bumblebee gravity theory.

In recent times, the search for proof of the existence of
bumblebee gravity has has gained momentum. Especially,
the research of Gu et al. [96] based on real black hole X-ray
data is quite remarkable. In this context, this study will con-
tribute to the examination of EBGT with possible optical and
wave observations to be made in the future. Our research can
be expanded to charged bumblebee black holes, which will
require taking into account the bumblebee electrodynamics
[97–99]. A possible charged bumblebee black hole solution
will allow us to examine the EBGT with linear/non-linear
electrodynamics theories [100] and we will likely obtain
more detailed results on the thermal radiation (GbFs), grav-
itational ringing (QNMs), and optical observations (lensing
and shadow). This is the next stage of study that interests us.
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35. A. Al-Badawi, S. Kanzi, İ Sakallı, Eur. Phys. J. Plus 137, 94 (2022)
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