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Abstract The problem of the speed of the objects inside the
Schwarzschild black hole is considered. The general result
is that the value of the relative speed of the objects fol-
lowing their non-zero angular momentum trajectories, both
of geodesic and non-geodesic character, when approaching
the ultimate singularity, tends to the value of speed of light.
There is only one exception when both objects move in the
same plane and have parallel angular momenta. This outcome
appears to have a deeper sense: it reflects the anisotropic char-
acter of the dynamics of interior of this particular black hole.
The result in question means that near the singularity, colli-
sions of two particles lead to an indefinitely large energy in
the center of mass frame. Aforementioned properties have
their counterpart in the phenomenon of an indefinitely large
blueshift near the singularity. Thus the angular momentum
of a particle turns out to be an important feature that affects
the final behavior of particle near the singularity. Motivated
by this fact, we generalize the Lemaître frame under the hori-
zon in such a way that reference particles themselves have
nonzero angular momentum. Our results apply not only to the
Schwarzschild singularity but also to other space-like ones
for which the scale factor g → ∞. We also analyze another
type of singulairites for which the circumference radius van-
ishes but g remains finite.

1 Introduction

The studies of the properties of the strong gravitational fields
and in particular the properties of the black holes (BH) have

a e-mail: andrzej.radosz@pwr.edu.pl
b e-mail: atopor@rambler.ru (corresponding author)
c e-mail: zaslav@ukr.net

got in a recent decade a significant not only theoretical but
also experimental impact. The first ever picture of the BH
namely, supermassive M-87 BH [1], gravitational waves
emission following two BHs merger [2] and the intrigu-
ing temporarily varying radiation emission of the accretion
disk of the sources of the strong gravitational field [3–6] are
the most important recent experimental aspects of the pres-
ence of the strong gravitational fields. The theoretical stud-
ies of black holes have been also continuing. Among other
interesting things, a special role is played by the so-called
Bañados-Silk-West (BSW) effect: under certain conditions,
two-particle collisions undergoing in the vicinity of the BH’s
horizon would lead to the unbounded energy release [7].

Meanwhile, there exists another singled out space-time
region. This is the vicinity of the singularity. For the naked
singularity it was shown that high energy collisions are
indeed possible there (see, e.g. [8]). However, in the case
of black holes it is hidden beyond the horizon. We show that
a similar effect near the singularity happens even without
rotation, i.e. for the Schwarzschild black hole. Such colli-
sions can, in principle, change the fate of a black hole and
potentially lead to a new type of the horizon instability due
to backreaciton of particles on metric.

For spherically symmetric space-times, there exists also
another type of space-like singularity, apart from the
Schwarzschild one. It occurs in the metric of so-called T-
spheres [9]. The geometry near the singularity is highly
anisotropic both for the Schwarzschild metric and T-sphere
but in the first case one of two scale factors tends to infinity
whereas the second one vanishes. For T-spheres one of two
scale factors remains finite. Collisions of massive particles
is the counterpart of red/blue shift inside a black hole when
corresponding particles are massless (photons). It leads to a
bright ring around a singularity (see page B-25 of [10]). A
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careful analytical study of red/blue shift for such massless
particles have been recently done in [11]. In doing so, the
crucial role of angular momenta reveals itself that changes
overall picture radically as compared to a pure radial motion
(see e.g. [12,13]).

In recent paper [14] a general radially freely falling frames
are described and the formula for 3-velocity with respect to
these frames have been derived. If one particle is comoving
with the frame in question, the considered 3-velocity of the
second particle is just a relative velocity of such particles. If
we are going further and describe a mutual motion of two
particles, both having non-zero angular momentum, we can
proceed in two ways. First, we can use known formulae for
a radially falling frame and apply them to both particles,
after that extract their mutual motion from this information.
In such a way it is reasonable to use the simplest possible
choice for the frame. A natural choice is the static frame.
We should however mention that a velocity with respect to
this frame has particular properties, for example, the radial
velocity of a particle following geodesic and approaching the
horizon tends to that of light, V → 1, but after crossing the
horizon the speed turns out to be decreasing to zero [15], as
if the test particle being hampered inside horizon.

It is worth noting that this non-monotonic behavior of
a 3-velocity is a specific property of the observers, static
outside and resting inside horizon [15] and does not appear
in the frame connected with Lemaître coordinates. Indeed, it
was shown that the 3-velocity with respect to the Lemaître
frame at a horizon can take any value from 0 to 1, and this
velocity decreases in a monotonic way (if it is not equal to
zero identically) in the Schwarzschild black hole reaching
0 at a singularity (if the angular momentum is zero) [16].
When we are interested in the asymptotics near a singularity
the behavior of the velocity near horizon does not matter, so
we use the static frame.

As for the second possibility, we can consider a frame
connected with the first particle, thus, falling non-radially.
This frame is convenient when we are interested not only
in asymptotic but in the overall particle motion under the
horizon. This requires generalization of formulae from [14]
for non-radially falling frames. Thus in the present paper we
make a next step in which we generalize the results of the
previous paper and get the most general formulae for velocity
with respect to an arbitrary freely falling frame.

The paper is organized as follows. In Sect. 2 we define
the line element and the tetrad for resting observer inside
Schwarzschild BH and we apply them (Sect. 3) for descrip-
tion of the kinematics of a freely falling test particle. In
Sect. 4 the anisotropy of the this space-time is described.
Particle collisions are analyzed in the following three sec-
tions: Sect. 5—general setup, Sect. 6—in-plane collisions,
Sect. 7—collisions of particles moving in different planes.
In Sects. 8 and 9 the effects of action of external force are

described. In Sect. 10 we analyze another type of singularity
when the scale factor in the longitudinal direction remains
finite. In Sect. 11 we generalize the Lemâitre frame to include
reference particles with nonzero angular momentum. In Sect.
12 we compare properties of local velocity with respect to
a frame with those of non-local velocity, defined as a time
derivative of a proper distance between two different points.
Discussion and final remarks are presented in Sect. 13.

2 Metric, tetrad

Let us consider the black hole metric

ds2 = − f dt2 + dr2

f
+ r2dω2. (1)

Here, f (r+) = 0, where r+ is the radius of the event horizon.
Our main concern is the Schwarzschild metric for which f =
1 − r+

r , though we need not to fix f for most of our results.
Inside the horizon, the mutual role of temporal, t and spatial,
r , coordinates interchanges. We can choose T = −r , y = t ,
where −r+ ≤ T ≤ 0, −∞ < y < ∞ [17]. Then

ds2 = −dT 2

g
+ gdy2 + T 2dω2, (2)

where g = − f .
In what follows, it is convenient to use the tetrad attached

to a resting observer with constant spatial, y, θ, φ coordi-
nates. Such an observer follows a geodesic that has no ana-
logue in the outer part of space-time [18]. Namely, in the
coordinates (T, y, θ, φ)

ĥ(0)μ = − 1√
g
(1, 0, 0, 0), (3)

ĥ(1)μ = (0,
√
g, 0, 0), (4)

ĥ(2)μ = (0, 0, |T | , 0)

ĥ(3)μ = (0, 0, 0, |T | sin θ). (5)

3 Motion of a free particle

Outside the horizon there exists the time-like Killing vec-
tor that corresponds to the time translation and it leads to
the conservation of a particle’s energy. Inside the horizon it
becomes a space-like one and this leads to the conservation
of the y-component of momentum. The angular momentum
is conserved everywhere.

Then, the four-velocity uμ of a particle that moves within
the plane θ = π

2 has the form in the coordinate system (2)

uμ =
(
P , − p

g
, 0,

L

T 2

)
, (6)
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where

P =
√
p2 + g

(
L2

T 2 + 1

)
, (7)

p = −uy is the specific conserved momentum (the sign
minus is chosen to keep the maximum similarity with the
region outside the horizon), L = uφ is the specific, conserved
angular momentum.

The corresponding tetrad components read

u(a) = uμh(a)
μ =

(
P√
g
,− p√

g
, 0,

L

|T |
)

. (8)

Then, one can obtain (see Sect. 8 in [19]) that the three-
velocity has components

V (1) = − p

P
, (9)

V (3) = L
√
g

|T | P . (10)

The absolute value of the velocity V =
√(

V (1)
)2 + (

V (3)
)2,

V =
√

1 − g

P2 . (11)

The Lorentz gamma factor

γ = 1√
1 − V 2

= P√
g
. (12)

For given p and L , the velocity under discussion obeys
the condition

V 2

1 − V 2 = p2

g
+ L2

T 2 . (13)

If the singularity is being approached, T → 0, g → ∞.
Then, if L �= 0, we have

|V | ≈ 1 − 1

2

(
T

L

)2

. (14)

In doing so, V (1) → 0, V (3) → ±1.
If L = 0, V (3) = 0. In the limit under discussion V (1) →

0.
Thus, in any case V (1) → 0.

4 Geometry and dynamics

The above result can be given the following geometric
interpretation. The space-time described by the line element
(2) may be referred to as a T -“sphere” [9]. It has got
some particular properties: it is non-static, homogeneous,
finite in time extent. It has a hypercylindrical a space-like
section V 3 = R1 × S2 with no symmetry center, open
(−∞ < y < ∞) in radial, homogeneity direction R1.
This may be regarded as an anisotropic cosmological model,

expanding longitudinally and contracting transversely in a
two-sphere S2 of radius |T | (see also [18–20]). Expansion
along y axis is finally getting extremely violent: all of the
objects are carried away in such a manner that their “own”
speeds are getting negligible - they are finally in a relative
rest. And that is the meaning of the first of the results of the
former section: the resting (in y axis) observer measures the
speed of the test object travelling along this axis as dimin-
ishing to zero, V → 0, as is seen from (13) when L = 0 and
the singularity is approached, so g → ∞.

If the velocity vector of a test object has got a transverse
(to y axis) component, i.e. its angular momentum is non-
zero, L �= 0, it is also carried away transversely due to the
transverse contraction. This transverse contraction is of crit-
ical character: hypercylinder V 3 collapses to the line as the
radius of the two-sphere tends to zero. All of the massive and
massless particles are carried away in the following manner.
The value of the speed of the massive test objects as measured
by resting observers goes to that of light, V → 1, and the
light rays (massless test objects) are perceived by the resting
observer as indefinitely blueshifted [11].

Then, the following interesting question arises: what is
relative speed of the two observers depending on their angu-
lar momenta? If particles collide, whether their energy in the
center of mass frame remains finite or grows indefinitely?
In particular, it concerns particles travelling with (a) paral-
lel, (b) antiparallel angular momenta. These questions are
considered below.

5 Particle collisions: general setup

Now, we consider collisions of two particles of masses m1

and m2 and briefly analyze the behavior of the energy Ec.m.

in the center of mass at the point of collision. By definition,

E2
c.m. = −PμP

μ, (15)

where Pμ = m1u
μ
1 + m2u

μ
2 is the total four-momentum.

Then,

E2
c.m. = m2

1 + m2
2 + 2m1m2γ12, (16)

where w has the meaning of the relative speed, the Lorentz
factor of relative motion

γ12 = −u1μu
2μ = 1√

1 − w2
(17)

should not be confused with the individual gamma factor of
each particle (12).

Below, we discuss two cases separately.
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6 Particles move in the same plane

Then, it follows from (6) and (17) that

γ12 = P1P2 − p1 p2

g
− L1L2

T 2 , (18)

It is instructive to describe collisions in terms of kinematic
characteristics. One can define the angle ψ between particles
1 and 2 according to

cos ψ = �V1 �V2

V1V2
, (19)

where �V1 �V2 = V (1)
1 V (1)

2 + V (3)
1 V (3)

2 . Then, it follows from
(9), (10) that

cos ψ = 1√
p2

1 + g
L2

1
T 2

√
p2

2 + g
L2

2
T 2

(
p1 p2 + L1L2g

T 2

)
,

(20)

γ12 = γ1γ2(1 − cos ψ). (21)

Our main concern is the behavior of γ12 near the singular-
ity. For fixed L1, L2, the absolute velocity of each particle
in the limit when the singularity is approached, can take only
two values: either V = 0 or V = 1 [14,19]. Below, we
enumerate different sub-cases separately depending on the
angular momentum of each particle.

A L1 = 0 = L2

Then,

P =
√
p2 + g. (22)

For g → ∞ we have

γ12 ≈ 1 + w2

2
, (23)

where

w ≈ |p1 − p2|√
g

→ 0. (24)

Also,

V1 → 0, V2 → 0, (25)

cos ψ → sign(p1 p2), (26)

If a particle entered the interior of the horizon from its exte-
rior, p > 0. If it entered from the left (mirror) region, p < 0.
Thus in a physically relevant case when both particles came
from infinity, ψ → 0.

B L1 = 0, L2 = L �= 0

γ12 ≈
∣∣∣∣ LT

∣∣∣∣ → ∞, (27)

w2 ≈ 1 − T 2

L2 → 1, (28)

V1 → 0, V2 → 1, (29)

cos ψ → 0. (30)

C L1L2 > 0

γ12 → L2
1 + L2

2

L1L2
, (31)

w →
∣∣L2

1 − L2
2

∣∣
L2

1 + L2
2

< 1, (32)

V1 → 1, V2 → 1, (33)

cos ψ ≈ 1 − T 2

g

(p1L2 − p2L1)
2

L2
1L

2
2

. (34)

Particles move almost parallel to each other near the sin-
gularity.

D L1L2 < 0

γ12 ≈ 2
|L1L2|
T 2 → ∞, (35)

w ≈ 1 − T 4

4L2
1L

2
2

→ 1, (36)

V1 → 1, V2 → 1, (37)

cos ψ → −1. (38)

This means that head-on collision occurs, ψ → π .
Now, we can summarize the results of the present section

in Table 1.

7 Particles move within different planes

As is well-known, in the case of conserved angular momen-
tum a particle moves within a plane. According to above con-
sideration, we can choose this plane to be θ = π

2 for, say,
particle 1. However, in general, this is not the case for particle
2, the variable θ will be varying in time. Will it significantly
affect the results for the relative velocity and Lorentz factor
γ12 near the singularity? To answer this question, we general-
ize the results of the previous section. Omitting the details of
derivation, we give the corresponding formulas below. Now,

uμ =
(
P , − p

g
,
σQ

T 2 ,
L

T 2 sin2 θ

)
, (39)

where σ = ±1,

Q =
√
L2
tot − L2

sin2 θ
, (40)

P =
√
p2 + g

(
1 + L2

tot

T 2

)
, (41)
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it is implied that

Ltot ≥ |L|
sin θ

. (42)

Here, the integral of motion Ltot has the meaning of the
total angular momentum of a particle, while L is its compo-
nent corresponding to a variable φ. Then, for V (a) = (V (1),

V (2), V (3)) one finds

V ((a) =
(

− p

P
,
σQ

√
g

|T | P ,
L
√
g

|T | P sin θ

)
, (43)

Equation (12) is still valid but now with (41). Obviously,

V⊥ =
√(

V (2)
)2 + (

V (3)
)2 =

√
g

|T | P Ltot . (44)

We assume that for particle 1 θ = π
2 , Q1 = 0, L1tot =

|L1|. Then, in the point of collision both particles have the
same coordinates, so θ = π

2 for particle 2 as well. It is
convenient to introduce an angle α for particle 2. so that
L2 = Ltot cos α, where cos α can have any sign. Then, in the
point of collision we have for particle 2

uμ =
(
P , − p

g
,
L2tot sin α

T 2 ,
L2tot cos α

T 2

)
. (45)

Equations (18) and (21) are also valid but in P the quantity
Ltot appears instead of L .

Now,

cos ψ = 1√
p2

1 + g
L2

1
T 2

1√
p2

2 + g
L2

2tot
T 2

(
p1 p2 + L1L2g

T 2

)
,

(46)

γ12 = P1P2 − p1 p2

g
− L1L2

T 2 . (47)

When a singularity is approached, V (1) → 0 as before,
while V⊥ → 1, so V → 1 as well. Let us denote the cases A-
D depending on the L1, L2 in the manner similar to that in the
former section. Then, one can see that cases A and B coincide
with those from Table 1. Indeed, if one of angular momenta is
zero, one can choose the equatorial plane for another particle
to be θ = π

2 , so nothing new happens. Obviously, case D is
similar to that from Table 1. It remains to check what happens
in case C. Then,

cos ψ → L2

L2tot
= cos α, (48)

ψ = α. Taking into account that V1 → 1 and V2 → 1, we
see that according to (21), in case C a new possibility arises:

γ12 ≈ |L1| (L2tot − L2)

T 2 , (49)

so γ12 → ∞ in spite of L1L2 > 0. Such a possibility was
absent when both particles had been moving within the same

Table 1 Types of particles collisions near the singularity

L1 L2 w ψ

A 0 0 0 0

B 0 �= 0 1 π
2

C �= 0 �= 0, L2 parallel to L1 Separated from 1 0

D �= 0 �= 0, L2 antiparallel to L1 1 π

plane (see Table 1 above). The similar phenomenon for mass-
less particles was discussed in [21].

8 Motion under the action of force

Let now some force act on a particle. Then, the equations of
motion formally retain their form but the quantities p and
L cease to be integrals of motion and become the functions
of time. If there is an acceleration aμ, one finds its tetrad
components using (3)–(5) that (assuming θ = π

2 )

a(3) = |T | aφ = aφ

|T | , (50)

a(y) = √
gay = ay√

g
, (51)

a(t̂) = − aT√
g

= aT
√
g. (52)

If ξμ is the Killing vector, it is easy to notice that

d

dτ
(ξμuμ) = ξμaμ. (53)

Then,

dp

dτ
= ay = √

ga(y), (54)

dL

dτ
= aφ = |T | a(3), (55)

where we used the same definitions p = −uy and L = uφ

as for free particles. Now,

p2

g
−

(
uT

)2

g
+ L2

T 2 = −1, (56)

where

uT = dT

dτ
=

√
p2 + g(1 + L2

T 2 ) = P . (57)

It follows from equations of motion that

dp

dT
= −dp

dr
=

√
ga(y)√

p2 + g(1 + L2

T 2 )

, (58)

dL

dT
= −dL

dr
= |T | a(3)√

p2 + g(1 + L2

T 2 )

. (59)
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It is clear from (58), (59) that p and L remain finite, ifa(y) and
a(3) are finite.

This has important consequences for the properties of
velocities. In particular, in the tetrad (3)–(5) V (1) → 0 and
V (3) → ±1, if L �= 0 (V (3) = 0 for L = 0). These con-
clusions are valid for any finite E , L [14], so they apply to
the case under discussion as well. Therefore, we come to an
important conclusion: the presence of finite force does not
abolish the effect of high energy collision. This statement is
the counterpart of similar results for the BSW effect near the
horizon [22].

9 When particle velocity can approach the speed of light

It follows from the above consideration that eq. (13) indeed
retains its validity, if the constants of motion p and L are
replaced by their momentary values p(T ) and L(T ). In turn,
this has an important consequence. For a finite acceleration,
the velocity can reach the limiting value V = 1 only in two
cases: when approaching the horizon and/or singularity. In
the first case, the right hand side of (13) diverges due to the
first term where g → 0. In the second one it does so due to
the second term where T → 0.

All these conclusions are obtained with the assumption
that a(i) are finite and hence p and L are finite as well. If
we relax the requirement of finiteness of a(i), an additional
possibility opens that V → 1 due to unbounded accelera-
tion and, correspondingly, unbounded p and L . Thus there
are three possibilities for getting V → 1: (i) horizon, (ii)
singularity, (iii) infinite acceleration.

This result is valid for the velocities with respect to the
Lemaître frame as well. Moreover, it is valid with respect to
a general radially free falling system formed by particles with
the specific energy e0. It is known that in such a general case
the radial component of velocity of a particle with specific
energy e is given by (see [14])

V (1) = P0e − Pe0

e0e − PP0
(60)

and the angular component is

V (3) = L f

r(e0e − PP0)
, (61)

where

P0 =
√
e2

0 − f . (62)

Formulae of the present paper for the components of
velocity of an individual particle can be thought of as a par-
ticular case e0 = 0 (corresponding to a resting observer with
y = const under the horizon) of these general formulae.
Assuming that e is finite, we see that V (3) < 1 as it should
be and V (3) → 1 at singularity. As for the radial component,

substituting P and P0 into the condition V (1) = 1 and con-
sidering finite e we get, after a simple algebra, that f = 0.
This means that V (1) can take the value 1 at the horizon
only, provided e is finite. It is worth noting that this result is
valid for any spherically symmetric static space-times since
we do not specify the function f . The coordinate system
e0 = 0 considered here becomes singular at the horizon
itself. The discussion contained in Sect. 6 of [14] explains,
why V (1) = 1 for other systems, regular at a horizon, is safe
from physical point of view (note, that unlike a singularity
we have equality, not a limit here!).

10 Another types of space-like singularity: finite g

Up to now, we considered the singularity of the Schwarzschild
type. This implied that in the limit when T = −r → 0,
the scale factor g → ∞. In this section, we consider what
happens if g remains finite there. In particular, this case
is encounted in so-called T-models [9]. Note, that we still
assume a metric without inner horizons. Now, in (18) the
only potential source of divergences is the term with T in
the denominator. Analyzing this expression and (9, 10), we
arrive at the following conclusions.

Consider motion of two particles within the same plane.
If a particle has L = 0,

∣∣V (1)
∣∣ → |p|√

p2+g(0)
< 1, V (3) ≡ 0.

This differs from the singular case where V (1) tends to zero.
However, if L �= 0,

∣∣V (1)
∣∣ → 0, V (3) → ±1 as in the

singular case. Correspondingly, if L1 = 0 = L2, γ12 is finite
(though does not equal to 1 in the case when particles have
different values of p). If L1 = 0, L2 �= 0, γ12 → ∞. If
L1L2 < 0, γ12 → ∞ as well. If L1L2 > 0, γ12 is finite.
Straighforward calculation shows that the formula (32) for a
relative velocity changes quantitatively:

w = |L2
2(1 − p1/g(0)) − L2

1(1 + p2/g(0))|
L2

2(1 + p1/g(0) + L2
1(1 + p2/g(0))

. (63)

In the limit g(0) → ∞ Eq. (63) turns into Eq. (32) as it
should be. Comparing with Table 1, we see that there is no
qualitative difference between the Schwarzschild case and
the one under discussion.

11 Generalizing Lemaître reference frame

In the above consideration, we mentioned the Lemaître frame
that is used sometimes for the description of the black hole
interior. Its standard use implies that reference particles com-
pose the set of observes free falling from infinity from the
state of rest, so their specific energy e0 = 1. Meanwhile, this
frame can be generalized if the role of reference particles is
played by observers with e0 �= 0. This is done in [14] where
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even cases with e0 < 0 and e0 = 0 were included in a general
scheme. This leads to formulae like (60) and (10). Now, we
make the next step and build the generalized Lemaître frame
based on particles with nonzero specific angular momentum
L0. For brevity, we call it L -Lemaître frame. It is relevant, in
particular, under the horizon where, as we saw, radial parti-
cle motion is unstable, so if we want to know how dynamics
looks like from the viewpoint of a falling particle, it is natural
to use the L-Lemaître frame. Below, we list main formulas
for it. In principle, in order to describe mutual motion of
two freely falling particle, we can use a standard frame and
perform the Lorentz rotation, as we did when we got the
singularity asymptotic for mutual velocity. Considering the
L-Lemaître frame is an alternative and more direct way to
get the results.

As consideration runs along the same lines as above and
in [14], we give the main formulas briefly.

We choose the reference particle to move in the plane
θ = π

2 and restrict ourselves by the region under the horizon.
We attach to it a zeroth vector of a tetrad and choose the other
three ortogonal to it. In coordinates (T, y, θ , φ)

uμ
0 = hμ

(0) =
(
P0, − p0

g
, 0,

L0

T 2

)
, (64)

h(0)μ =
(

− P0

g
,−p0, 0, L0

)
. (65)

Here, the parameters of a reference particle have the subscript
0,

P0 =
√
p2

0 + g

(
1 + L2

0

r2

)
. (66)

Also,

h(1)μ = 1√
1 + L2

0
r2

(
p0

g
, P0, 0, 0

)
, (67)

h(2)μ = |T | (0, 0, 1, 0), (68)

h(3)μ =
⎛
⎝− P0L0

g |T |
√

1 + L2
0

r2

,

− p0L0

|T |
√

1 + L2
0

r2

, 0, r

√
1 + L2

0

T 2

⎞
⎠ . (69)

Then, using the general definition [23]

V (i) = V(i) = − h(i)μuμ

h(0)μuμ
, (70)

we have for a greely falling particle

V (1) = 1

γ g
√

1 + L2
0

T 2

(Pp0 − P0 p), (71)

Fig. 1 The angular component V (3) of velocity of a particle with L =
m2 and e = 2 with respect to the frame with L0 = m2 and e0 = 1. The
unit for V (3) is c

V (2) = σQ

γ |T | (72)

V (3) = 1

γ |T |
√

1 + L2
0

T 2

(
L

γ
− L0

)
. (73)

where γ is the individual Lorentz gamma factor of a particle

γ = −u(0)μu
μ. (74)

It follows from (6), (39), (65) that

γ = P0P − pp0

g
− LL0

T 2 . (75)

The quantity Q is given by Eq. (40) and contains Ltot .
These formulae give the most general expressions for 3-

velocity components with respect to an arbitrary freely falling
frame. At a singularity they reduce to the results obtained
above.

In is worth to note that in the case of L0 = L1 and
two equatorial planes coinciding, the angular component of
velocity V (3) vanishes only in a singularity, being non-zero
everywhere else (see Fig. 1), so the Eq. (32) is the limiting
equation even if two angular moments are the same.

12 Motion with respect to a frame versus motion of
nearby particles

Apart from the behavior of velocity with respect to a fixed
frame, another interesting question is mutual movement of
nearby points. The properties of such a motion can be very
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different from the motion with respect to a fixed frame, even
if one of the points considered is at rest with respect to the
coordinate system in question. The reason is that the velocity
with respect to a frame is a local entity, while a distance
between two points is a space-like variable. In the present
section we consider both local and non-local velocities. The
goal of the section is mostly pedagogical since it contains
a large part of known issures, though reinterpreted in our
notations.

First, consider the radial motion. The velocity along the
leg of a hypercylinder in metric (2) is known to decrease and
vanish in a singularity [14,19]. As for the distance to a nearby
point, it increases as it can be clearly seen from the form of
the metrics (1), (2). At the singularity the proper distance
diverges. This means that a velocity of nearby (but anyway
located in a different point!) particle should diverge if we
consider “velocity” as a rate of change of a proper distance.

A reasonable way to define a velocity of a distant object
is to consider the derivative of a proper distance with respect
to a proper time of an observer. The metric (2) is not a syn-
chronous one, so we introduce a proper time of an observer
being at rest from the viewpoint of the metric ( 2) as

dt̃ = dT/
√
g. (76)

With this definition we have for the velocity in question

dl

dt̃
= d(

√
gy)

dt̃
= d

√
g

dt̃
y + √

g
dy

dt̃
= 1

2

dg

dT
y + V (1), (77)

since
√
gdy/dt̃ = √

g(dy/dT )(dT/dt̃) = −p/(P) =
V (1), where Eqs. (6) and (9) were used. So that, we got a rela-
tion resembling the known one for cosmology – the overall
radial velocity is decomposed into a non-local part, which
can be rewritten as (1/2

√
g)(dg/dT )l being proportional to

the proper distance l = √
gy to the particle (an analog of

Hubble velocity in cosmology), and a local “peculiar veloc-
ity” V (1). The later term tends to zero in a singularity while
the first term diverges (being a non-local entity, it is not bound
by the speed of light). The picture is similar to the Big Rip
cosmological singularity, apart from the fact that the Big Rip
is isotropic.

In popular books, when describing influence of tidal forces
to an unhappy observer falling freely into a black hole,
authors usually illustrate the text by emotional pictures of
an observer “spaghettified” in the direction toward a singu-
larity. This has no sense in coordinates like T ,y since (i)
they are homogeneous inside a horizon, and (ii) a singular-
ity, being space-like and in absolute future for an observer,
is not present in any of an observer’s T = const slices. By
itself, “spaghettization” does occur but has another meaning:
if we make a series of snapshots of cross-sections T = const
for different T , the object extends more and more when T
grows approaching T = 0.

Another picture arises in the Lemaître coordinates. Sin-
gularity is present in the sections of constant Lemaître time,
so the direction towards a singularity makes sense. Since for
two radially separated particles the singularity occurs at dif-
ferent moments of the proper time τ along the trajectory, the
separation between two points reaches its finite maximum
when the “inner” particle hits a singularity (in this context
the word “hits” is conditional since the singularity is space-
like, we use it for brevity only).

It is easy to estimate this maximum for a pure radial
motion. For the Schwarzschild black hole this can be a stu-
dent seminar exercise. Suppose two particles, being at rest
with respect to the Lemaître system are separated by some
distance. Let a particle move with E = m, so it would start
its motion from the rest at infinity. Then, it is known (see,
e.g. Eq. 2.3.12 of [24]) that if a particle moves from some r
to r f < r , the proper time τ is equal to

τ(r, r f ) = (2/3)r−1/2
g (r3/2 − r3/2

f ). (78)

In particular, the proper time between a given position r and
the singularity r = 0 is obtained from (78) if we put there
r = 0, so

τ(r, 0) = (2/3)r−1/2
g r3/2. (79)

It is also worth mentioning that for such a particle the
Lemaître time coincides with the proper one (see, e.g. Eq. 14
of [19]). Also, the proper distance in this case is equal to the
difference of the coordinate values of r .

Let we have two such particles initially separated by the
coordinate distance l. We want to find the location r f of
the “outer” particle initially located at r + l, at the moment
τ when the “inner” particle hits the singularity. Equating
τ(r + l, r f ) = τ(r, 0), assuming small l and expanding the
right hand side with respect to l/r we get

r f = [(3/2)l]2/3r1/3, (80)

which gives for the ratio

r f / l = (3/2)2/3(r/ l)1/3. (81)

Thus small absolute displacements remain small. However,
relative displacement may be arbitrary large.

As a trilling example we can consider the following situ-
ation: suppose that different parts of human body (l ∼ 1m)
start to move geodesically after tidal acceleration gt exceeds
the free fall acceleration at the surface of Earth (gE ∼
10m/s2 ∼ 10−16m−1 in natural units c = 1). For small
l, gt ≈ rgl/r3 (see, e.g. page B-20 of [10]). Thus free fall
begins at r = (rgl/gE )1/3. Using these data we can estimate

r f / l ∼ 60r1/9
g , (82)

where rg is expressed in meters. This indeed indicates
“spagettization” - the size in r -direction enlarges from about
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100 times for a stellar mass black hole to about 1000 times
for a supermassive (109 solar masses) one (note, that the
dependence upon black hole mass is rather weak).

We can add also that in the Lemaître coordinates the coor-
dinate velocity itself admit a decomposition

dr/d τ̃ = −v + V(r) (83)

where τ̃ is the Lemaître time, v = √
1 − f and Vr is a local

velocity with respect to the Lemaître frame (see the equation
(54) in [19]). It should not to be confused with V (1) in (77)
where the frame with p = 0 was used. Nevertheless, the
asymptotic of the terms in the right hand side of this equation
at a singularity are the same: v → ∞ and V(r) → 0 (see
corresponding formulae in [19]). On the other hand, in a
direct analog of (77) the non-local flow velocity (the first term
in the decomposition) is equal to difference of the values of
v at the positions of the particle and the observer, and this
difference is, in general, not factorizable, which means that
it is no longer proportional to the proper distance between
the particle and the observer.

For the motion in the angular direction the situation is
quite opposite. Suppose we have a particle with a zero angu-
lar momentum, so it falls along φ = 0 line, and a nearby
particle does so with some small but non-zero L . We know
that V (3) of the second particle tends to 1 when the singu-
larity is approached. Does this mean that the proper distance
between these two particles increase rapidly? The answer is
“no” as the direct dependence φ(r) in the Schwarzschild met-
ric shows (Fig. 2). In this picture we plot V (3) of a particle
with L = m2 inside a horizon. It tends to 1 near a singularity.
In the same plot we show the distance from the line φ = 0
to this particle (we assume that this particle crosses the line
φ = 0 at the horizon) which is equal to rφ = −Tφ. This
distance first increases due to non-zero L (as it would be
in a flat space also), then it starts to decrease despite grow-
ing velocity V (3). The contraction in the angular direction
overcomes, and the distance in the φ direction appears to be
always smaller than it would be without gravity.

This picture is qualitatively the same in the Lemaître coor-
dinates as well. The only difference is that V (3) in static coor-
dinate always vanishes at a horizon (this is a counterpart of
the statement that radial velocity is always 1 at a horizon),
while the analog of this value with respect to the Lemaître
system can take any value from 0 to 1.

As for the angle φ itself, it reaches a finite value at sin-
gularity. This value grows with growing L , tending to π for
L → ∞ (see Eq. 21 of [20]).

It is worthwhile to mention that static coordinates admit
a “Hubble-like” decomposition for angular motion as well.
Indeed, if the first particle has φ = 0, then using Eqs. (76),

Fig. 2 The angular component V (3) of velocity of a particle with
L = m2 inside a horizon (green) and distance to the particle in angular
direction from the radius φ = 0 crossed by this particle at a horizon
(blue). The unit for V (3) is c, the unit for the distance is rg

(6) and (10), we have

dl

dt̃
= −d(Tφ)

dt̃
= −√

gφ + L
√
g

T P
= −√

gφ + V (3), (84)

so an analog of the “Hubble flow” is directed inwards, its
velocity is proportional to φ of the second particle, and if
g(0) is singular, the corresponding velocity diverges. This
means that it dominates near a singularity since V (3), being
a physical velocity, is bounded by the speed of light while
the first term does not.

This decomposition takes place only for the “static” coor-
dinates (corresponding to the observer with p = 0, y =
const), in the Lemaître coordinates the spatial sections are
flat, so the distance in angular direction is l = r sin φ, and
the above property is lost since the angular component of
the peculiar velocity in the Lemaître frame does not depend
on the value of φ (see [19]) while the second term in the
decomposition of dl/d τ̃ does.

13 Discussion and conclusions

In this paper we have considered dynamical phenomena in the
vicinity of the singularity of the Schwarzschild-like space-
time. This concerns not only the Schwarzschild metric but
any singularity of the same type when r → 0 and g → ∞. In
this case one can regard horizon’s interior as an anisotropic,
dynamicalV 4 space-time with a hypercylinderV 3 = R1×S2
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space-like sections. There is a longitudinal, R1-expansion
and transversal, S2-contraction. Due to extremely violent R1-
expansion in its final stage one could expect the asymptotic
state of mutual rest of all the particles moving along y -
direction (see e.g [20]). This picture has been completed
by a Doppler’s blueshift, for the case of transverse compo-
nent of trajectories: a light-like, non-zero angular momen-
tum geodesics have been recorded blueshifted [11]. We have
verified here the kinematics of the test particles following
time-like, non-zero angular momentum trajectories of both
geodesic and non-geodesic character. If a test particle moves
along an arbitrary non-zero angular momentum trajectory,
then its speed as measured by resting observers, those with
constant spatial coordinates, approaches that of light, w → 1
as T → 0. Previously, it was found that this is valid for
geodesic trajectories [14,19]. Now, we showed that this is
valid for an arbitrary finite force. Moreover, the presence of
a finite force is compatible with high energy collisions near
the singularity.

If, instead of one particle, we take the two particles fol-
lowing non-zero angular momenta trajectories, their relative
velocity w → 1 with only one exceptional case. It occurs
if both particles move in the same plane and have parallel
angular momenta; then the value of their relative speed w

is smaller than that of light, w < 1. This also happens if
both particles have zero angular momenta. Otherwise, non-
zero angular momentum of a test particle is a necessary and
sufficient condition for w → 1.

It should be pointed out that there exists the reason, com-
mon for both the indefinite blueshift for the class of non-zero
angular momentum light-like geodesics and indefinite ten-
dency of the relative speed of the particles following their
non-zero angular momentum trajectories to the speed of
light when approaching the ultimate singularity T → 0
of Schwarzschild BH’s interior. This effect is caused by a
contraction in the course of highly anisotropic dynamics of
space-time. Indeed, when approaching T → 0, [9] the hyper-
cylinder is critically contracting, i.e. the radius |T | of the two-
sphere, diminishes to the zero value, T → 0. This critical
contraction carries all of the objects, massive and massless,
in such a way that the light recorded by a resting or moving
along y-axis observer turns out to be indefinitely blueshifted
and the speed of a test particle as measured by resting or mov-
ing along y axis observer tends indefinitely to the speed of
light, w → 1. When two colliding massive particles follow
their non-zero angular momenta trajectories, then in general
they experience head-on collision and their relative speed
approaches that of light. (For motion within the same plane
and the same directions of the angular momenta the effect
is moderate: the relative speed of the colliding particles is
found to be smaller than the speed of light, w < 1. This is
an analogy of the finding in [11] where for motion within the

same plane and the same directions of the angular momenta
of the observer and the light a finite blueshift is found).

The result w → 1 may be regarded as a center of mass
energy collision tending to infinity. This interpretation pro-
vides a particular perspective. All of the variety of the BSW
effect, unbounded energy collisions in the vicinity of the
black hole horizons, outer or inner, have lead to the con-
clusion about arbitrary large limit which, however, is not
reached in any particular collision, so an infinite limit cannot
be realized. This is called a principle of kinematic censorship
[25]. Meanwhile, in the case under discussion this principle
is violated when T → 0 (r → 0). This is probably quite nat-
ural since in the singularity itself all known laws of physics
can be violated and geometry as such ceases to exist.

Since exact vanishing of angular momentum and exact
coinciding of planes of motion for two particles represent
zero-measure set of initial conditions and cannot be exactly
satisfied in any realistic physical situation, we can conclude
that tending w to 1 at a singularity is unavoidable. Corre-
spondingly, indefinite growth of Ec.m. is general feature for
particle collisions near the singularity.

It is also shown for spherically symmetric space-times of
a quite general form that a particle velocity can approach the
speed of light only in three cases: (i) on the horizon, (ii) in
the singularity, (iii) when a proper acceleration diverges.

We also considered another type of singuarity when g(0)

is finite. This applies, for example to T-models of sphere
that represent a special type of the Kantowski-Sachs met-
ric. This includes the solution of for the collapse of dust
complimentary to the LTB models [9]. The comparison of
particle dynamics near both types of singulrity is carried out,
it showed the possibility of high energy collisions in both
cases.

We also generalized the Lemaître type of frame which is
built from particles with nonzero angular momenta. It can be
useful for description of particle flows under the horizon.

The most important and intriguing issue that arises from
our finding is the question about stability or instability of
the vacuum singularity if backreaction of matter is taken into
account. This remains an open question.
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