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Abstract This document contains lectures on SMEFT,
which is an effective field theory of the degrees of freedom of
the Standard Model. The material is at a basic, introductory
level, without assuming any prior knowledge of effective field
theory techniques. The main focus is on phenomenological
applications of SMEFT in collider, flavor, and low-energy
physics.
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0 Goals, notation, conventions

This is a write-up of my lectures given on several occasions
(Saclay’17, Orsay’20, Les Houches’21, Bhubaneswar’22,
Orsay’22, Les Houches’23) about a specific effective field
theory (EFT) called the Standard Model Effective Field The-
ory or SMEFT in short. My intention was to prepare these
lectures at a very basic, introductory level, without assum-
ing any prior knowledge of EFT techniques. On the other
hand, I assume the reader is versed in Quantum Field Theory
(QFT) roughly at the Peskin–Schroeder level [1]. The focus
is on phenomenological applications of SMEFT, especially
in Higgs, electroweak, flavor, and low-energy physics. This
document is notmeant to be a SMEFT review. It leaves out or
barely touches upon many important topics (running, match-
ing, Hilbert series, collider simulations, on-shell techniques,
…), it does not try to summarize all recent developments in
this field, and it does not attempt to provide references to
all the important papers in the vast SMEFT literature. For a
more general introduction to EFT, I recommend Refs. [2–4].
For a broader scope of SMEFT topics and more references
see Refs. [5,6].

Here is the layout of these lectures. Section 1 describes
the place of SMEFT in the ladder of effective theories, from
extremely low energies to large scales that are not directly
accessible by experiment. In Sect. 2 I will discuss in some
details the assumptions under which SMEFT is the relevant
formalism to describe physics above the electroweak scale.
Next, in Sect. 3 I explain how to systematically construct the
SMEFT Lagrangian. Various equivalent representations of
the SMEFT Lagrangian, the so-called bases, are discussed
in Sect. 4. In Sect. 5 I will discuss how the observables, at
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the Large Hadron Collider (LHC) and in other experiments,
depend on the Wilson coefficients of higher-dimensional
SMEFT operators. Finally, Sect. 6 is devoted to the phe-
nomenological importance of new SMEFT sources of CP
violation.

I work with the mostly minus Minkowski metric ημν =
(1,−1,−1,−1). The metric is used to raise and lower
indices, e.g. Aμ = ημν Aν . As usual, repeated Lorentz
and other indices are implicitly summed over, unless oth-
erwise noted. Since the Lorentz contractions are unambigu-
ous, sometimes I may write contracted Lorentz indices on the
same level (e.g. AμAμ instead of AμAμ) if this improves the
aesthetics (usually when there are many other indices). The
sign convention for the totally anti-symmetric Levi-Civita
tensor εμνρα is ε0123 = 1, which implies ε0123 = −1. When
I refer to a vector I always mean a Lorentz 4-vector. For
3-vectors I use the bold notation rather than an arrow top:
x ≡ �x .

I always use the natural units, h̄ = c = 1. Energy, momen-
tum, area, distance, time, etc. are expressed in appropriate
powers of electronvolts (eV).

The SU (3)C × SU (2)L × U (1)Y gauge fields of the
Standard Model (SM) are denoted by Ga

μ, Wk
μ, Bμ, where

a = 1 . . . 8, k = 1 . . . 3. The corresponding gauge couplings
are called gs , gL , gY , and the corresponding field strengths
are defined as Ga

μν = ∂μGa
ν − ∂νGa

μ − gs f abcGb
μG

c
ν ,

Wk
μν = ∂μWk

ν −∂νWk
μ−gLεabcWb

μW
c
ν , Bμν = ∂μBν−∂νBμ.

I use the plus sign covariant derivative convention: DμX =
∂μX + iGa

μT
a X + iWk

μ
σ k

2 X + i BμYX X . The (sine of the)
weak mixing angle is related to the electroweak coupling
as sin θW = gY√

g2
L+g2

Y

, and the electromagnetic coupling is

e = gL gY√
g2
L+g2

Y

. After electroweak symmetry breaking, the pho-

ton field is denoted by Aμ, and its field strength by Fμν . The
massive electroweak vector bosons are denoted W±

μ and Zμ,
and in this case I define Vμν ≡ ∂μVν − ∂νVμ, without any
non-abelian piece. The vector boson eigenstates are related

to the SU (2)L × U (1)Y gauge fields by W 1
μ = W+

μ +W−
μ√

2
,

W 2
μ = i

W+
μ −W−

μ√
2

, W 3
μ = gY Aμ+gL Zμ√

g2
L+g2

Y

, Bμ = gL Aμ−gY Zμ√
g2
L+g2

Y

.

I use the 2-component spinor formalism, following the
conventions of Ref. [7]. A Dirac fermion is described by a
pair anti-commuting fields fα , f̄ cα̇ transforming respectively
under the first and the second component of the SU (2) ⊗
SU (2) Lorentz algebra. The spinor index can be raised and
lowered by the anti-symmetric ε tensor, f α = εαβ fβ , ε12 =
−ε21 = 1, and then Lorentz invariant contractions can be
easily constructed by marrying the upper and lower undotted
and dotted indices. For example, f c f ≡ f c α fα and f̄ c f̄ ≡
f cα̇ f α̇ are Lorentz invariant, whereas f cα fα , f cα̇ fα̇ , or fα f̄ α̇

c
arenot Lorentz invariant. The fermion kinetic and mass terms
are written asL = i f̄ σ̄ μ∂μ f +i f cσμ∂μ f̄ c−m f c f −m f̄ f̄ c,

where σμ = (1, σ ), σ̄ μ = (1,−σ ), f̄ ≡ f ∗, f̄ σ̄ μ∂μ f ≡
f̄α̇[σ̄ μ]α̇α∂μ fα . f cσμ∂μ f̄ c ≡ f c α[σμ]αα̇∂μ f̄ cα̇ . If you’re
not familiar with this notation…that’s very bad, you should
learn this as soon as possible, it’s an essential part of modern
education of a particle physicist. But if you don’t want to
learn, you can always quickly translate to the 4-component
Dirac fermion using the map

F =
(

f
f̄ c

)
, F̄ ≡ F†γ 0 = (

f c f̄
)
, γ μ =

(
0 σμ

σ̄μ 0

)
.

(0.1)

For example, f̄ σ̄ μ∂μ f = F̄γ μ∂μPL F , f cσμ∂μ f̄ c =
F̄γ μ∂μPRF , f c f = F̄ PL F , f̄ f̄ c = F̄ PRF , where PL ,R =
1∓γ5

2 are the Dirac chirality projectors.
The 1σ uncertainty on theoretical or experimental quan-

tities is often expressed either using the bracket notation,
e.g. x = 1.234(56) is the same as x = 1.234 ± 0.056. The
former notation is especially useful when precision reaches
many digits.

All abbreviations are defined the first time they are intro-
duced, but in case you forget they are all collected in
Appendix A.

1 EFT ladder

In the previous century the Holy Grail of theoretical parti-
cle physics was the Theory of Everything. Physicist would
imagine that internal consistency of quantum theories of mat-
ter and gravity selects essentially a unique theory, with very
few or none at all free parameters. The Theory of Every-
thing would be valid at all energies, up to the Planck scale
and beyond, and it would lead to the SM as its low-energy
approximation, possibly with some intermediate supersym-
metric or grand-unified theories emerging between the elec-
troweak and the Planck scales. Alas, this top-down approach
has not quite delivered, and the quest for the Theory of Every-
thing is now largely abandoned. Around the turn of century
the focus shifted to the less ambitious but more practical
Theories of Something. These theories are meant to be valid
only in a restricted energy range, and often the degrees of
freedom they describe are emergent rather than fundamen-
tal. For these reasons they are commonly referred as effective
fields theories, or EFTs in short.

The central idea behind EFT is that things may appear
simpler when viewed from a distance. For countless physi-
cal systems complexity is dramatically reduced by focusing
on the large-scale behavior. Take for example a system of
many static electric charges confined to a region of space of
size R, see Fig. 1. A near observer positioned at a distance
L ∼ R must trace the position of each charge to accurately
determine the electric field in her vicinity. However, for a
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Fig. 1 Simple illustration of
the EFT idea using the example
of multipole expansion of the
potential produced by electric
charges

far observer at r 
 R the details of the charge distribution
are not essential. Instead, the electric field at large r can be
described using the multipole moments of the charge distri-
bution: the total charge, the dipole moment, the quadrupole
moment, etc. The error of this approximation is controlled by
the ratio (R/r)n , where n is the number of multipoles taken
into account. For large enough r only a first few multipoles
need to be included to adequately describe the electric field,
and this way the description of a possibly complex system
with many degrees of freedom is reduced to a small number
of discrete parameters.

This reduction of degrees of freedom with increasing dis-
tance is so pervasive in physics that is often taken for granted.
Indeed, the far observer could be a humble engineer tuning
his antenna, who would be shocked when told that his actions
have anything to do with EFT. It is easy to evoke other famil-
iar examples: a gas in equilibrium, where the enormous mess
of gazillions of atoms bouncing against each other can be
summarized by a small number of thermodynamic quantities
like temperature, pressure, entropy; planets rotating around
the star, all of which may be complicated objects, with a finite
radius, not-exactly-spherical shapes, and non-trivial density
profiles, but for the purpose of planetary dynamics they can
be perfectly approximated as point particles, while tidal cor-
rections due to their sizes are calculable in a quickly con-
verging expansion; and then the whole universe at the scales
larger than that of galaxy clusters is described by the sim-
ple Friedmann equations depending only on the density of
matter, radiation, and dark energy. We could go on with sim-
ilar classical examples for hours. Instead, we will now head
straight to particle physics and quantum field theory (QFT).

In relativistic QFT, instead of distance scales L , it is more
convenient to refer to energy scales E . The two are simply
connected via the uncertainty relation, E ∼ 1/L (in natural
units h̄ = c = 1), thus long distance translates low energy,
or infrared (IR) in our jargon, while short distance translates
to high energy, or ultraviolet (UV). As understood long ago
by Wilson, Weinberg, and other giants of the past century,
changes in complexity of QFT as we move towards lower
energies can be nicely formalized in the language of “inte-
grating out the UV degrees of freedom”. The concept is per-
haps most succinctly summarized using the path integral for-
mulation of QFT. Consider a QFT with low-energy degrees
of freedom denoted collectively as φ, and with high-energy

degrees of freedom denoted as H . Here, φ and H can refer
to, respectively, light and heavy particles in the theory, or to
low- and high-frequency modes of the same particle. Quite
generally, the full UV theory of φ and H can be defined by
the Lagrangian LUV from which the partition function ZUV

is calculated:

ZUV[Jφ, JH ] =
∫

[Dφ][DH ]

× exp

[
i
∫

d4x
(
LUV(φ, H) + Jφφ + JH H

)]
. (1.1)

All correlation functions of φ’s and H ’s (and thus all S-
matrix elements) can be obtained by differentiating ZUV with
respect to the auxiliary sources J . At low energies, such that
the H modes cannot be excited, we only need the correlators
of φ to calculate observables, hence we can set JH = 0. From
this IR perspective we can define

ZEFT[Jφ] ≡ ZUV[Jφ, 0]
=

∫
[Dφ] exp

[
i
∫

d4x
(
LEFT(φ) + Jφφ

)]
.

(1.2)

The first equality is a definition of the EFT partition function
ZEFT. It is adequate for our purpose since ZEFT, trivially,
leads to the same correlation functions of φ as ZUV. How-
ever, this is a tad formal as in QFT we rarely know the full
partition function. The second equality is far more useful
for practitioners. It defines the EFT Lagrangian LEFT, which
captures the effective interactions of the light degrees of free-
dom.1 These interactions should reproduce the correlation
functions and scattering amplitudes in the full theory. An
important point is that LEFT can be determined algorithmi-
cally, order by order in perturbation theory, if LUV is known
and weakly coupled. The effective Lagrangian is sufficient
to calculate all low-energy observables involving φ without
ever referring to H . This often leads to conceptual and cal-
culational simplifications compared to working with the full
UV theory.

1 Note that, in this picture, integrating out H literally consists in inte-
grating over the H degrees of freedom in the path integral.
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In general, LEFT defined by Eq. (1.2) is a very compli-
cated non-local object.2 Indeed, even though it depends only
on φ, it must somehow contain information about the scatter-
ing amplitudes in the full UV theory, including the effects of
propagating virtual H degrees of freedom at all loop levels.
However, a dramatic simplification occurs in the presence
of scale separation, when the mass M (or the characteristic
frequency) of H is parametrically larger than the relevant
energy scale, E � M . In such a case, LEFT can be approx-
imated by a local Lagrangian, that is by polynomial of φ

and its derivatives. Mathematically speaking, the full LEFT

will contain non-local expressions such as e.g. (�+ M2)−1,
which for E � M can be Taylor-expanded into local ones,
(� + M2)−1 ≈ M−2 − M−4� + · · · . This is where the
power of EFT shows up: the possibly very complicated short-
distance physics mediated by H is summarized by a discrete
set of local interactions of φ suppressed by increasing powers
of M , in close analogy with the multipole expansion in elec-
trodynamics. The expansion can be truncated at some fixed
order n in 1/M , depending on the precision required.

The philosophy sketched above has been applied over and
over again in many areas of particle physics. One important
example is the SM below the electroweak scale. At energies
E � mW  80 GeV (giga-electronvolt, that is 109 eV), one
can integrate out theW and Z bosons, together with the Higgs
boson and the top quark. The resulting EFT, which I will call
Weak Effective Field Theory (WEFT, also known as WET or
LEFT in the literature), has the photon, the gluon octet, the 3
generations of SM leptons, and the 5 lightest flavors of SM
quarks as the degrees of freedom, and is valid in the range
2 GeV � E � mW . In this case the UV theory is known and
weakly coupled, therefore the effective Lagrangian defined
by Eq. (1.2) can be calculated and all Wilson coefficients can
be determined as functions of the SM parameters. Because
the massive electroweak gauge bosons are absent, the WEFT
Lagrangian is invariant only under the SU (3)C×U (1)em sub-
group of the SM SU (3)C ××SU (2)W ×U (1)Y gauge sym-
metry. The memory of the larger gauge symmetry survives
only in the specific pattern of the WEFT interactions and cor-
responding Wilson coefficients. In particular, the weak inter-
actions, which in the SM are mediated by the exchange of W
and Z , emerge in WEFT as 4-fermion effective interactions
between the quarks and leptons. Many of these effective oper-
ators violate the (approximate) flavor symmetry and thus can
mediate transitions between different quark flavors. WEFT
is thus the theory underlying the vast phenomenology of fla-
vor physics, that is the studies of transitions between mesons
and baryons made of different quarks. Another well-known

2 In the particle physics jargon, non-local typically means non-
polynomial in the fields and their derivatives; for example, for a scalar
field φ, the quartic interaction terms φ4 or φ2�φ2 are local, whereas
φ2�−1φ2 or φ2

√
�φ2 or φ2 log �φ2 are non-local.

example is the so-called Chiral Perturbation Theory (ChPT)
describing the physics of light mesons (pions, kaons, eta) at
energies below the ρ resonance mass, E � mρ  775 MeV
(mega-electronvolt = 106 eV). In this case the UV theory is
known, but because the SM SU (3)C interactions become
strongly coupled at E ∼ 2 GeV, the effective Lagrangian
cannot be calculated analytically. Nevertheless, the approxi-
mate chiral symmetry of Quantum Chromodynamics (QCD)
with light quarks, which resurfaces in another form in ChPT,
allows one to systematically construct LEFT as a derivative
expansion in ∂/(4πF), where F ∼ 100 MeV is called the
pion decay constant. A less familiar example is the so-called
General Relativity EFT (GREFT), which is an EFT exten-
sion of the Einstein theory of general relativity. Here the
quantum field encoding the gravitational degrees of freedom
is the spacetime metric gμν , which describes, in the limit
of the flat Minkowski background, a massless spin-2 parti-
cle called the graviton. The Lagrangian is invariant under
general coordinate transformations, which is necessary to
decouple the unphysical degrees of freedom in the metric.
The lowest order term is the Einstein-Hilbert Lagrangian,
LGREFT ⊃ 1

2 M
2
PlR, corresponding in the classical limit to

the usual Einsteinian general relativity. Higher order correc-
tions are constructed from powers of the Riemann tensor
Rμναβ (more precisely, from its Weyl tensor part), with the
EFT expansion organized in powers of Rμν/�, where � may
or may not be equal to the Planck scale. The validity regime
of this EFT is 0 � E � min(MPl,�).3 Unlike in the two
previous examples, we only have vague speculations about
the UV completion of GREFT: it may be some form of string
theory, or something completely different. For this reason, we
do not know the coupling constants multiplying the higher-
derivative interactions terms in the GREFT Lagrangian; they
have to be treated as free parameters to be determined one
day from experiment.

Yet another important example is SMEFT, which is the
main topic of these lectures. The SMEFT philosophy has
been employed in high-energy physics since more than
40 years [8], but only quite recently, around the year 2010, the
theory gained large prominence. SMEFT is an EFT of the SM
degrees of freedom: the photon, the gluon octet, the W and Z
bosons, the Higgs boson, and the 3 generations of quarks and
leptons. Much as in the SM, the action is exactly invariant
under the local (gauge) SU (3) × SU (2) × U (1) symmetry.
The SMEFT Lagrangian contains the SM one, but also an
infinite set of higher-dimensional gauge-invariant interaction

3 GREFT is a counterexample to the nonsense you may often hear that
quantummechanics and general relativity cannot be reconciledGREFT
obeys the principles of general relativity and is a consistent quantum
theory in a humongous energy range, much larger than for other EFTs
used in physics.
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Fig. 2 The ladder of EFTs describing nature, assuming SMEFT is a
valid description of nature in the regime 100 GeV � E � �, with
� 
 100 GeV

terms,4 The latter interactions, which are non-renormalizable
in the old parlance, describe the effects of heavy particles
from beyond the SM. Under very broad assumptions, which
will be spelled out in Sect. 2, SMEFT is the theory of funda-
mental interactions in the energy range 100 GeV � E � �,
where � 
 mW is the scale at which non-SM particles
appear. The Lagrangian is organized in a systematic expan-
sion based on the canonical dimensions of the interaction
terms, with the operators of canonical dimension D sup-
pressed by �D−4. The operators with D = 5 and D = 6
are expected to provide the leading deformations of the SM
Lagrangian. Most often, the expansion is truncated at D = 6,
with the D > 6 operators deemed as irrelevant at the cur-
rently available energies.

Let us discuss the place of SMEFT in the larger scheme of
things. The ladder of effective theories is sketched in Fig. 2.
On top of the ladder, for E � �, we have a hypothetical the-
ory that UV completes SMEFT (which itself may be an EFT
of another, more fundamental theory). At the time of writing,
we have no clue what it is, what its degrees of freedom are,
or what its mass scale � is. Nevertheless, given the lack of
discovery of non-SM particles at the LHC, it is a reasonable
assumption that � 
 1 TeV (tera-electronvolt = 1012 eV).
The validity domain of SMEFT is 100 GeV � E � �, and
our assumption about � implies in particular that SMEFT is

4 In the EFT jargon, these higher-dimensional interactions terms are
often referred to as operators for no good reason. The coupling con-
stants multiplying these operators are often referred to as the Wilson
coefficients. I will use this jargon in the following.

the relevant theory to describe processes at the LHC col-
lider. Since the UV completion of SMEFT is unknown,
much as for GREFT, the Wilson coefficients in the SMEFT
Lagrangian should be treated as free parameters to be deter-
mined from experiment. Below the electroweak scale, for
1 GeV � E � 100 GeV, SMEFT reduces to WEFT men-
tioned earlier, but now due to more general assumptions
regarding the UV completion the WEFT Wilson coefficients
should be treated as free parameters. Moving to lower ener-
gies, something dramatic happens around 1 GeV. The number
of degrees of freedom and complexity explodes due to the
onset of strong QCD coupling and emergence of baryons and
hadrons as bound states of quarks. When the smoke clears, for
100 MeV � E � mρ , we are left with ChPT describing the
lightest mesons coupled to electrons, muons, photons, and
neutrinos. The local symmetry is reduced to U (1)em, while
the color SU (3)C and the associate gluons are no longer rel-
evant degrees of freedom at these energies. Below 100 MeV
we have a series of EFTs with less and less degrees of freedom
and complexity. First we have an EFT extension of QED cou-
pled to neutrinos. Then electrons can be decoupled, and we
are left with massless photons, and almost massless neutri-
nos, interacting with the former via highly suppressed dipole
interactions. Finally, below the mass of the lightest neutrinos
(which is also unknown, but I’m assuming here it is non-
zero) we have the EFT of pure light. As far as we know,
photons are exactly massless, therefore the theory preserves
the U (1)em local symmetry, and its validity extends down
to the scales of the order of the inverse size of the universe.
In this ultimate EFT, photons still interact with each other,
albeit very weakly, via dimension-8 and higher operators in
the so-called Euler–Heisenberg (EH) Lagrangian.

Each rung of this ladder deserves a series of lectures on
its own, but in the following I will focus almost exclusively
on SMEFT.

2 Assumptions behind SMEFT

In theory, SMEFT is a perfectly consistent EFT of the SM
degrees of freedom. However, it is not guaranteed that there
is any energy range where SMEFT is the relevant EFT
to describe physical processes. For this to happen, several
broad assumptions have to be satisfied. Let me first list these
assumption, and then we will discuss them in some detail.

#1 QFT. Physics above the electroweak scale is described
by a manifestly Poincaré-invariant local quantum theory.

#2 Mass Gap. The mass scale � of the non-SM particles is
much larger than the electroweak scale, � 
 mW .

#3 Gauge Symmetry. The Lagrangian describing interac-
tions above the electroweak scale is invariant under the
SM gauge symmetry SU (3)C × SU (2)W ×U (1)Y .
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In Assumption #1, Poincaré-invariant entails Lorentz and
translational invariance in four spacetime dimensions. This
is often taken for granted. QFT is a surprisingly rigid struc-
ture, and there are very few ways to modify it without
wrecking some fundamental principles, such as unitarity and
causality for example. Within QFT, one consistent departure
from Assumption #1 would be to introduce extra space-time
dimensions, but these are very unlikely to be relevant any-
where near the electroweak scale. Consistent non-QFT quan-
tum frameworks are rare and far between; one such example
is string theory, but, again, it is unlikely to be relevant any-
where near the electroweak scale. At the same time, there is
no single hint from experiment that the standard QFT tech-
niques may break down at the energy scales available in the
foreseeable future. All in all, the first assumption seems a very
safe one. Even though we do not know until which energy
scale QFT can be used, we will assume it works at all the
scales relevant for these lectures.

Assumption #2 is more tricky because, strictly speaking,
it is false. Indeed, the degrees of freedom at the electroweak
scale include not only the SM spectrum, but also a massless
spin-2 particle called the graviton, which mediates the grav-
itational interactions. Thus, in order to describe all known
physics at that scale we should also include the graviton in
our EFT, which leads to the construction called GRSMEFT
[9]. Nevertheless, gravity is expected to be very weak around
the electroweak scale. Consistency of the theory requires the
leading order coupling of matter to gravitons to be univer-
sal and controlled by the scale MPl  1018 GeV, leading
to the suppression factor of TeV/MPl ∼ 10−15 at the LHC
energies. Subleading graviton couplings are controlled by
the GRSMEFT expansion scale �, which is unknown, but
the (rather safe) assumption here is that � 
 mW , per-
haps even � ∼ MPl. If that is satisfied, graviton emission
is totally irrelevant at the LHC and in other experiments
that focus on non-gravitational interactions. For those exper-
iments, SMEFT provides an adequate description. On the
other hand, for observables where gravity plays a central role,
for example for gravitational wave emission and detection,
GREFT or GRSMEFT should be used.

Are there any other light non-SM degrees of freedom
except for the graviton? This is an open question at present.
Theorist have hypothesized countless light particles, some of
which are even well motivated, and sometimes even hinted
at by some experiments. As examples one could mention the
sterile neutrinos, the axion, and a light dark matter particle.
An affirmative answer to our question will be provided if
we are very lucky and such a particle is discovered in some
ongoing or future experiment. However a negative answer
may never be established, because in many scenarios the cou-
pling of the new particle to the SM matter is a free parameter
that can be adjusted to arbitrary small values. From our point
of view, a more immediate question is whether the non-SM

degrees of freedom are relevant at the LHC energies. Again,
this is an open question that may be difficult to settle in the
near future. For all we know, a new light particle could for
example couple to the Higgs boson, and could lead to an
invisible Higgs branching fraction up to O(10)%. Using the
SMEFT framework one misses such a possibility. All in all, it
is reasonable to assume that the graviton is the only non-SM
light degree of freedom, however it certainly requires a cer-
tain leap of faith. SMEFT practitioners should always keep
their eyes and minds open and follow experimental develop-
ments in collider physics and elsewhere. In case the existence
of a new light particle is established, the SMEFT approach
may have to be abandoned.

We arrive at Assumption #3, which is the most mysteri-
ous one. In the SM, the action is exactly invariant under the
SU (3)C × SU (2)W × U (1)Y local symmetry, which in the
global limit acts as a linear transformation on the fields in
the Lagrangian. At the level of the spectrum this symme-
try is not visible, because it is spontaneously broken by a
vacuum expectation value (VEV) of the Higgs field. With
some experimental input about the quantum numbers of SM
matter, the gauge principle has led to highly non-trivial and
successful predictions. For example, the interactions strength
of all left-handed fermions with the W boson are predicted to
be universal (in the tree-level approximation) and controlled
by the SU (2)L gauge coupling gL , while the interactions
with the Z boson are predicted non-universal but controlled
only by the fermion’s quantum numbers and one universal
parameter called the weak mixing angle sin θW .

All in all, gauge symmetry has proved to be one of the
deepest foundational ideas in QFT, and the SM gauge sym-
metry has time and again proved to be extremely success-
ful phenomenologically. That’s all very impressive, but why
should SMEFT respect the same gauge symmetry as the SM?
In the end, the goal of SMEFT is to provide a model inde-
pendent description of heavy new physics beyond the SM.
The discussion is further complicated by the fact that, in the
modern view, gauge symmetry is not a real symmetry of the
physical system, but merely a redundancy of ifs description.
Why do we insist on imposing that particular redundancy on
SMEFT?

First, let us recall what is the true purpose of gauge symme-
try, or gauge redundancy [10]. The point is that a consistent,
unitary QFT that is manifestly Lorentz invariant and con-
tains massless spin-1 particles must be equipped with gauge
redundancy, one generator for each massless spin-1 particle.
Heuristically, this is because a spin-1 particle is described
in QFT by a 4-component vector field Aμ, μ = 0 . . . 3,
or equivalently by the associated polarization wave func-
tion εμ(p). Since, an on-shell massless spin-1 particle has 2
degrees of freedom, corresponding to the two helicities, two
of the four components must be somehow projected from
εμ(p). One can be taken care of in a Lorentz invariant way
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by the transversality condition pμεμ(p) = 0. It turns out
that the only Lorentz invariant way to project out the other
spurious degree of freedom is to identify the states described
by the polarization wave functions εμ(p) and εμ(p) + pμ,
that is by imposing gauge redundancy on the theory.

In the SMEFT we have two kinds of massless spin-1 parti-
cles: a photon and a gluon octet. Accordingly, we need 9 gen-
erators of local symmetry to have a consistent and manifestly
Lorentz-invariant theory. An input from phenomenology is
needed to identify that SU (3)C ×U (1)em provides a correct
description of these degrees of freedom, because the gluons
all self-interact with each other, thus they are described by
the non-abelian SU (3) factor, while the photons do not have
self-interactions, thus they are described by the abelianU (1)

factor. But this raises another question: why do we insist on
the larger SU (3)C × SU (2)W ×U (1)Y local symmetry if the
smaller SU (3)C × U (1)em is enough to satisfy the consis-
tency principles of QFT?

In fact, an EFT for the SM degrees of freedom, where
only the SU (3)C × U (1)em gauge symmetry is realized
linearly, does exist and is most often referred to as HEFT
(as in Higgs EFT). In HEFT, the generators of the larger
SU (3)C × SU (2)W × U (1)Y gauge symmetry that do not
belong to SU (3)C×U (1)em are realized as a non-linear trans-
formation of the scalar Goldstone bosons eaten by W and Z ,
akin to the realization of the SU (2)L × SU (2)R/SU (2)V
in ChPT. While the formal difference between HEFT and
SMEFT is clear, the physical difference between the two
EFTs is more subtle and was elucidated only recently [11,12].
The long story short: HEFT is an effective theory for non-
decoupling UV physics, that is for theories where the masses
of non-SM particles are dominated by contributions from
electroweak symmetry breaking. A simple toy model for
such a UV completion is a real scalar field S without a mass
term but with the quartic interaction with the Higgs field:
L ⊃ −λ|H |2 S2. After electroweak symmetry breaking S
acquires mass m2

S = 2λ|H |2, which can be large if the quar-
tic coupling λ is O(1) or larger. Integrating out S will lead
to an EFT described by the HEFT framework rather than
SMEFT. Another less artificial example is the SM with 4
generations of chiral fermions, in which case all fermions
are massless in the limit of the Higgs VEV going to zero.
Integrating out the 4th generation will again lead to HEFT
rather than SMEFT. On the other hand, integrating out the
4th generation of vector-like fermions, where the masses of
the non-SM fermions are dominated by a vector-like mass
term M 
 v, will lead to SMEFT rather than HEFT.

In the end, the gauge symmetry Assumption #3 turns out
to be closely related to the mass gap Assumption #2. Indeed,
in non-decoupling theories masses of non-SM particles are
of the form mi ∼ giv, where gi is some gauge or Yukawa
coupling. Since couplings are restricted by perturbativity to
be |gi | � 4π , the masses are mi � 4πv. This means the new

particles in non-decoupling theories are within the reach of
the LHC or just around the corner. Conversely, if new physics
enters at the scale � � 4πv ∼ 3 TeV, then the physics
below � is necessarily described by SMEFT and not HEFT.
By imposing Assumption #3 we make an implicit decision
to neglect the possibility of non-decoupling UV comple-
tions. Note that large swathes of non-decoupling theories
have already been experimentally excluded; for example, the
chiral 4th generation was definitely excluded by the Higgs
production rate measurements at the LHC. Even though, at
present, one cannot formally exclude the existence of non-
decoupling new physics, and some wiggle room remains
for certain constructions, it is a very unlikely possibility in
my opinion. Focusing on decoupling new physics, and thus
restricting our scope to SMEFT, seems a very reasonable
assumption.

Note that assumptions #1– #3 do not restrict the SMEFT
Lagrangian to be renormalizable. There was a time in the his-
tory of particle physics when renormalizability was hailed
as a sacred principle that every successful quantum theory
should obey. Now the pendulum has swung in the opposite
direction, and we think that every QFT description of a real-
life physical system corresponds to a non-renormalizable
EFT. Now, in some case that EFT may be well approxi-
mated by a renormalizable QFT, as is the case for physics
at the electroweak scale. We think of this as an accident due
to a large separation between the electroweak scale and the
scale suppressing the non-renormalizable interactions. How-
ever we expect that these non-renormalizable interactions are
present in the Lagrangian, and that they will become apparent
when enough experimental precision is achieved.

3 Constructing SMEFT

This section reviews a systematic prescription to construct
the SMEFT Lagrangian. The fields corresponding to the SM
particles and their representations under the gauge symme-
try are summarized in Table 1. Using these fields as building
blocks, we will write down the most general Lagrangian con-
sistent with the assumptions spelled out in Sect. 2.

3.1 Power counting

Because the SMEFT Lagrangian is non-renormalizable, it
contains an infinite number of interaction terms. Even if we
wanted to arbitrarily restrict to a finite number of interactions,
loop corrections would force us to introduce an infinite num-
ber of counterterms to cancel the UV divergences. In order
to make the theory usable in practice we need power count-
ing, which is the EFT jargon for an organizing principle that
allows us to establish a relative importance of different inter-
action terms. In SMEFT, a natural power counting is based
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Table 1 Transformation properties of the SM fields under the SM
gauge group. We also display the spin of the associated particle and
the canonical dimension of the field. The matter fields (rows 4–8) are 3-
vectors in the generation space: Q = (q1, q2, q3),Uc = (uc1, u

c
2, u

c
3) ≡

(uc, cc, tc), Dc = (dc1 , dc2 , dc3) ≡ (dc, sc, bc), L = (l1, l2, l3) =( (
νe
e

)
,

(
νμ

μ

)
,

(
ντ

τ

) )
, Ec = (ec1, e

c
2, e

c
3) ≡ (ec, μc, τ c). I work in

the basis where q1 =
(
uJ V ∗

Jd
d1

)
, q2 =

(
uJ V ∗

Js
d2

)
, q3 =

(
uJ V ∗

Jb
d3

)
,

where d1 ≡ d, d2 ≡ s, d3 ≡ b, and uJ , ucJ , dJ , dcJ , νJ , eJ , ecJ are mass
eigenstates. The generation indices will be often suppressed to reduce
the clutter

Field SU (3)C SU (2)L U (1)Y Name Spin Dimension

Ga
μ 8 1 0 Gluons 1 1

Wk
μ 1 3 0 Weak SU(2) bosons 1 1

Bμ 1 1 0 Hypercharge boson 1 1

Q 3 2 1/6 Quark doublets 1/2 3/2

Uc 3̄ 1 −2/3 Up-type anti-quarks 1/2 3/2

Dc 3̄ 1 1/3 Down-type anti-quarks 1/2 3/2

L 1 2 −1/2 Lepton doublets 1/2 3/2

Ec 1 1 1 Charged anti-leptons 1/2 3/2

H 1 2 1/2 Higgs field 0 1

on the canonical dimension of an interaction. We organize
the SMEFT Lagrangian as

LSMEFT =
∞∑
D=2

LD, (3.1)

where each term LD in this series contains operators Oi,D of
canonical dimension D:

LD =
∑
i

Ci,DOi,D. (3.2)

Above, i indexes all independent gauge-invariant operators
constructed out of the SM fields at a given dimension (more
about it in Sect. 4), and Ci,D are field-independent coupling
constants called the Wilson coefficients. By definition, the
dimension of Oi,D is D, which we write as [Oi,D] = D.
Since the Lagrangian has dimension four, [L] = 4, it fol-
lows that [Ci,D] = 4 − D. We can write down the Wilson
coefficients in the form

Ci,D = ci,D
�D−4 , (3.3)

where ci,D are dimensionless, and � is a common mass scale
entering all Wilson coefficients. At this point Eq. (3.3) is
completely general. The scale � can be identified with the
mass scale of new particles in the UV completion of SMEFT.
Then the dimensionless coefficients ci,D are functions of the
couplings and mass ratios in the UV completion of SMEFT,
as well as of the SM couplings. Now, the standard SMEFT
power counting relies on the assumption that |ci,D| ∼ 1, that
is to say

Ci,D ∼ 1

�D−4 , (3.4)

which is basically dimensional analysis. In such a case we
have a simple estimate of the relative relevance of different
Wilson coefficients. Matching the dimensions in tree-level
scattering amplitudes (which are dimensionless) one finds
that, for the relevant scattering energy E much larger than
the particles’ mass, a Wilson coefficient at a given D will
enter as

M ∼ Ci,DE
D−4 ∼

(
E

�

)D−4

. (3.5)

For example, the effects of dimension-4 operators are unsup-
pressed, the effects of dimension-5 operators are suppressed
by E/�, the effects of dimension-6 operators are suppressed
by (E/�)2, and so on. The higher the dimension of the opera-
tor, the larger is the suppression. Thus, operators with lower
dimensions will have a larger impact on phenomenology,
assuming E � �, that is when SMEFT is used at the energy
scale well below the mass scale of the UV completion. We
can thus truncate the SMEFT Lagrangian at some partic-
ular D, ignoring the contributions of all but a finite num-
ber of operators. Conversely, for E ∼ � the suppression
of higher-dimensional operators is no more, and one should
take into account the whole infinite series of operators in the
Lagrangian to correctly evaluate the amplitude. Obviously,
in this regime SMEFT in unusable, and thus � is the cutoff
scale of SMEFT, beyond which it should be replaced by a
more fundamental theory.

One important consequence of the standard power count-
ing is that it allows one to define SMEFT at the quantum
level. Recall that SMEFT is non-renormalizable, thus in prin-
ciple an infinite number of unknown counterterms has to be
introduced to properly define loop corrections to amplitudes
of physical processes. However, working at E � �, we can

123



Eur. Phys. J. C (2023) 83 :656 Page 9 of 41 656

declare that we drop from the amplitudes all the contributions
that are O(�4−Dmax−1) or smaller. By dimensional analysis
it is easy to see that the counterterms corresponding to oper-
ators of dimension Dmax + 1 are moot and we can neglect
them in our analysis. This leaves a finite number of opera-
tors of dimension D ≤ Dmax, together with the associated
counterterms. Thus, SMEFT with the standard power count-
ing and truncated at a finite Dmax is as renormalizable as the
renormalizable theories in the standard sense (Dmax = 4).

From the SM it differs only by a larger number of countert-
erms (if Dmax > 4), thus a larger number of free parameters
that have to be fixed by experiments.

The standard power counting sketched above has the
advantage of being simple and self-consistent. One should
remember however that it is not the only option, and it may
not be the most sound one from the physics point of view. A
run-of-the-mill UV completion will not generate all Wilson
coefficients universally; typically it will generate a handful
of operators at tree level, while others will be suppressed by
loop factors, leading to hierarchies not captured by Eq. (3.5).
Moreover, certain types of operators can never be generated
at tree level, independently of the UV completion. Next, fla-
vor or other symmetries in the UV completion may lead to
special patterns in SMEFT, leading to additional suppres-
sion of Wilson coefficients. For example, Eq. (3.5) suggests
that Wilson coefficients corresponding to analogous opera-
tors involving say, up and top quarks scale in the same way,
however if the UV completion incorporates something akin
to SM flavor hierarchies (which is very likely) one expects
the former will be suppressed compared to the latter by a
small factor (mu/mt )

n . Finally, Eq. (3.5) ignores the depen-
dence of the Wilson coefficients on the coupling strength in
the UV theory. Consider a UV theory with a single coupling
g∗. Very often, Wilson coefficients of dimension-6 and -8

operators will scale Ci,6 ∼ g2∗
�2 and Ci,8 ∼ g2∗

�4 . In the stan-

dard power counting, C2
i,6 is always of the same order as

Ci,8, which is indeed the case for g∗ ∼ 1. But for g∗ � 1
we have Ci,8 
 C2

i,6, whereas for 1 � g∗ � 4π we have

Ci,8 � C2
i,6, in both case the parametric hierarchy being

missed in the standard power counting.
Nevertheless, let us brush aside these caveats for the time

being and proceed under the assumption that the canonical
dimension of an operator is the central determinant of its
relevance for the low-energy phenomenology at E � �.
Consequently, we will build the SMEFT Lagrangian starting
from the operators of lowest dimensions, and working up
towards higher D.

3.2 D ≤ 4

The sum in Eq. (3.1) starts at D = 2 because there is
nothing at lower dimensions: D = 0 would be a field-

independent constant, which has no physical consequences
in non-gravitational theories, while there is no gauge invari-
ant D = 1 operators because there are no singlet scalars in
the spectrum in Table 1. At D = 2 there is a single gauge
invariant operator, the Higgs mass squared:

LD=2 = μ2
H H†H. (3.6)

The Wilson coefficient in this case has mass dimension 2
and is denoted as μ2

H . According to our power counting in
Eq. (3.4), we should have μH ∼ � 
 v. In reality we expect
μH � v because the Higgs mass term triggers electroweak
symmetry breaking by the Higgs VEV. In the SM, where
there are no free unknown parameters anymore, we know
precisely the tree level value μH  88 GeV. In SMEFT I
cannot give you a number for μH because unknown higher
dimensional operators also affect the Higgs VEV. Neverthe-
less, μH 
 v would be unnatural as it would require large
cancelations between μH and higher-dimensional operators
to arrive at the correct value of v. We thus have a puzzle.
On one hand, power counting predicts μH ∼ � 
 v. On
the other hand, phenomenological and naturalness arguments
imply μH � v. This clash is nothing else but the hierar-
chy problem.5 Not so long ago, the hierarchy problem was
considered an almost certain indication that there are new
degrees of freedom at the electroweak scale, for example the
supersymmetric partners or the Kaluza–Klein modes of the
SM particles. If that were the case, SMEFT would not be a
useful theory in any energy range. However, the results from
the LHC strongly suggest that the SM degrees of freedom are
all there is near the electroweak scale, and that SMEFT is the
correct description of physics, at least in the energy range
from 100 GeV up to a few TeV. That’s good for SMEFT
and fortunate for my lectures, however the hierarchy prob-
lem remains puzzling. Have we somehow missed the degrees
of freedom responsible for stabilizing the electroweak scale?
Can the hierarchy problem be addressed with no new degrees
of freedom at the electroweak scale? Do we misunderstand
something about how QFT works? Is the SM more fundamen-
tal than we think? It is fair to say that no one has presented a
convincing solution so far.

So, we start with high ideals: everything is EFT, physics
is basically dimensional analysis, etc., but at the first oppor-
tunity reality slaps us in the face…Nevertheless let us press
on and apply the standard power counting to SMEFT oper-
ators of dimensions higher than two. At D = 3 again there
are no gauge invariant operators because there are no sin-

5 In fact, the hierarchy problem can be formulated in the most transpar-
ent fashion in the EFT language as a breakdown of dimensional analysis.
In the SM on the other hand, the hierarchy problem cannot be properly
formulated. There, it is often explained via the quadratic divergences in
the calculation of the Higgs mass, but that is a regularization-dependent
statement; for example using dimensional regularization there is no
quadratic dependence on a dimensionful regulator.
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glet fermions in the spectrum in Table 1.6 At D = 4 there
are multiple gauge-invariant operators. Here is the complete
list7

LD=4 = −1

4

∑

V∈B,Wi ,Ga

VμνV
μν

+
∑
f ∈Q,L

i f̄ σ̄ μDμ f +
∑

f ∈U,D,E

i f cσμDμ f̄ c

−
(
Q̄ H̃YuŪ

c + Q̄HYd D̄
c + L̄ HYe Ē

c + h.c.
)

+ DμH
†DμH − λ(H†H)2

+ θ̃Ga
μν G̃

a
μν, (3.7)

where V a
μν = ∂μV a

ν − ∂νV a
μ − g f abcV b

μV
c
ν , DμX =

∂μX+igsGa
μT

a X+igLWi
μ

σ i

2 X+igY BμY X , H̃a = εabH∗
b ,

G̃a
μν ≡ 1

2εμναβGαβ a , and Y f are 3 × 3 matrices in the gen-
eration space. Dimensional analysis dictates that all the cou-
plings in the dimension-4 Lagrangian: the gauge couplings
gX , the Yukawa couplings Y f , and the quartic coupling λ,
are dimensionless. The standard power counting in Eq. (3.4)
treats them all as O(�0) couplings. In reality, this is reason-
ably well borne out for the gauge and quartic couplings, but
not for most of the elements of Y f . Clearly Eq. (3.4) does not
know about flavor hierarchies. Some of the D = 4 Wilson
coefficients are extremely suppressed, e.g. [Ye]11  3×10−6

(in a convenient basis). It is conceivable that contributions of
some D > 4 operators to certain scattering amplitudes will
be larger than the effects proportional to the electron Yukawa
coupling, which would represent another break down of the
standard power counting. But, overall, the standard power
counting is a very successful principle at D = 4: all but
the last term in Eq. (3.7) have been experimentally shown to
exist (again assuming that hey are not somehow mimicked
by higher-dimensional operators). Of course, LD=2 +LD=4

is nothing else than the SM Lagrangian, so the success of
SMEFT with the standard power counting is to reproduce the
SM as the leading terms in its EFT expansion. Concerning the
last term in Eq. (3.7), the current constraints are |θ̃ | � 10−12.
The lack of experimental evidence for the θ term, which is
referred to as the strong CP problem, is as much puzzling
from the EFT perspective as it is within the SM. Fortunately,
unlike for the hierarchy problem, we have some reasonable
ideas about the solution. The smallness of θ̃ likely means that
there is a new particle called the QCD axion, which effec-

6 Dimension-3 operators are present for example in the extension of
SMEFT featuring singlet (right-handed) neutrinos.
7 We only wrote the so-called θ-term Ga

μν G̃
a
μν for the SU (3)C gauge

bosons because analogous terms for other group factors have no physical
effect. The θ -term is moot for U (1) gauge groups, while for SU (2)W
the term Wμν :k W̃ k

μν can be redefined away via a chiral transformation.

tively makes θ̃ a dynamical quantity settled in a minimum
where θ̃ ∼ 0. But at this point one cannot completely exclude
the possibility that we misunderstand something fundamental
about QCD, and in reality the θ̃ term has no physical effects.8

Or that the parameter θ̃ is very small by pure accident.

3.3 D = 5

We move to D = 5, that is beyond the SM. At this order in
the SMEFT expansion we have the following gauge-invariant
interactions [8]:

LD=5 = −(L̄ H†)C5(L̄ H
†) + h.c. (3.8)

The Wilson coefficients C5 form a 3 × 3 matrix in the gen-
eration space. Here and in most of the following, the genera-
tion indices are implicitly contracted, so that one should read
Eq. (3.8) as LD=5 = −∑3

J,K=1(l̄ J H
†)[C5]J K (l̄K H†) +

h.c.. Dimensional analysis dictates that [C5] = mass−1, and
standard power counting treats them as O(�−1) parameters.
The SU (2)W indices of the lepton and Higgs doublets are
contracted via the epsilon tensor: lH ≡ εabla Hb. After elec-
troweak symmetry breaking, Eq. (3.8) gives rise to Majorana
neutrino masses:

LD=5 → −v2

2
ν̄J [C5]J K ν̄K + h.c. (3.9)

Incidentally, neutrinos are known to be massive particles.9

While we do not know the absolute values of the masses, we
know the mass differences (squared) with a good accuracy,
see e.g. [15]. Given this, one can estimate C5v

2 ∼ 10−1 eV,
that is to say C5 ∼ 1

1015GeV
.

One cannot emphasize enough what an enormous success
of the SMEFT paradigm this is. In SMEFT, the most rele-
vant phenomenological effects at E � � are expected from
the D = 2 and D = 4 operators, which are those of the

8 Such claims appear on arXiv in regular intervals. However, these are
at odds with the preliminary evidence from lattice calculations [13,14],
which observe nucleon electric dipole moments (EDMs) proportional
to θ̃ at large pion masses.
9 There is no doubt that at least two neutrinos have masses, but their
precise nature is experimentally an open question. There are two differ-
ent mechanisms to implement the neutrino masses in the Lagrangian.
The simplest option is to write down the so-called Majorana mass term
for a left-handed neutrino ν: �L = − 1

2mMνν +h.c.. Another option is
to add a new degree of freedom to the SM – the right-handed neutrino
νc – together with the Dirac mass term �L = −mDνcν + h.c.. The
two options lead to different contributions to the neutrinoless double
beta decay. The jury is still out whether the SM neutrino masses are of
the Majorana, or the Dirac, or the mixed type. In the following I will
be assuming without any further comment that the masses are purely
Majorana.
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SM, and which are indeed seen in nature. Furthermore, the
standard power counting predicts that the most relevant devi-
ations from the SM should be due to D = 5 operators. This
prediction was spectacularly confirmed by the discovery of
neutrino masses in the Super-Kamiokande detector in 1998
[16], almost 20 years after Weinberg’s paper [8].

At the same time, this very success carries a premonition
of doom. The neutrino masses turn out to be quite small, lead-
ing to the appearance of a very large scale in the denominator
of C5. Since in the standard power counting C5 ∼ �−1, it
would be most natural to conclude that the SMEFT expansion
parameter � = 1015 GeV. This would not be a problem for
SMEFT – on the contrary, it would mean that the expansion is
very quickly convergent, and thus the operators up to D = 5,
maybe plus a handful of operators at D = 6 are enough
to describe all physics at available energy scales. But this
would be a problem for you and for me. It would mean that
the gap between the electroweak scale and the new physics
scale is enormous, which would make the options for funda-
mental research very limited. The directions worth pursuing
would be neutrino physics, and perhaps proton decay. Other-
wise one could switch to astrophysics, cosmology, quantum
computing, nuclear fusion, climate science, or banking. Not
much point for future colliders, flavor physics, charged lep-
ton flavor violation, which would only serve to confirm ad
nauseam the SM predictions.

This may be the future, but it does not have to be. Even
within the SMEFT paradigm (no new light degrees of free-
dom), it is quite possible that the expansion parameter �

is much smaller than 1015 GeV. New physics responsible
for the operators in Eq. (3.8) may be much lighter, perhaps
even near the TeV scale, but coupled very weakly to the SM
fermions. A sharper argument can be formulated by notic-
ing that the operators is Eq. (3.8) are very special, as they
violate the lepton number symmetry acting as L → eiαL ,
Ec → e−iαEc. This is an accidental symmetry at the D ≤ 4
level, as one simply cannot construct a gauge invariant oper-
ators with D ≤ 4 that violates it, and thus D = 5 is the
lowest dimension where lepton-number-violating operators
can appear. One can modify the standard power counting by
assuming that there are two scales governing the SMEFT
expansion. One, call it �L , corresponds to the mass scale of
B− L-violating new physics, and it happens to be very high,
�L ∼ 1015 GeV. Another, let’s keep calling it � without a
sub-index, corresponds to the mass scale of B−L-conserving
new physics. It is then perfectly natural to have a huge gap
between these two scales, � � �L . Symmetry consider-
ation forbid new physics at the scale � to generate D = 5
operators, and the lowest dimension it can show up is D = 6.
This assumption of the two-scale expansion gives us a ratio-
nale for exploring the SMEFT Lagrangian at D = 6 and
higher, and we will tacitly adopt this point of view in all of
the following.

3.4 D = 6

We have arrived at dimension-6 operators, which is the nexus
of the SMEFT research. At D = 2 there is a single operator;
the D = 4 Lagrangian can fit a t-shirt; at D = 5 there is
basically a single operator but, taking into account the gen-
eration structure, it counts as 12 operators.10 At D = 6, all
hell breaks loose: we have…wait for it…3045 independent
operators. They contribute to phenomenology in virtually all
areas of particle physics, such as Higgs physics, electroweak
precision observables, flavor physics, nuclear physics, elec-
tric dipole moments, and much more. Below I will present
a quick survey of dimension-6 operators using the set pro-
posed in Ref. [17] and known under the name of the Warsaw
basis. To organize the presentation, let me divide them into
several classes:

LD=6 = Lbosonic
D=6 + LYukawa

D=6 + Lcurrent
D=6 + Ldipole

D=6 + L4-fermion
D=6 .

(3.10)

The bosonic operators, as the name suggest, are constructed
out of the SM gauge and Higgs fields, without involving any
fermionic fields. In the Warsaw basis there are 15 bosonic
operators:

Lbosonic
D=6 = CH (H†H)3 + CH�(H†H)�(H†H)

+ CHD |H†DμH |2 + CHWBH
†σ k H Wk

μνBμν

+ CHGH†H Ga
μνG

a
μν + CHW H†H Wk

μνW
k
μν

+ CHBH
†H BμνBμν

+ CW εklmWk
μνW

l
νρW

m
ρμ + CG f abcGa

μνG
b
νρG

c
ρμ

+ CHG̃ H†H G̃a
μνG

a
μν + CHW̃ H†H W̃k

μνW
k
μν

+ CH B̃ H
†H B̃μνBμν + CHW̃ B H

†σ k H W̃ k
μνBμν

+ CW̃ εklm W̃ k
μνW

l
νρW

m
ρμ + CG̃ f abcG̃a

μνG
b
νρG

c
ρμ,

(3.11)

where � ≡ ∂μ∂μ and σ k are the three Pauli matrices.
Already this relatively small subset of dimension-6 opera-
tors contains rich phenomenology. CH changes the shape of
the Higgs potential, in particular it affects the cubic Higgs
boson self-coupling – perhaps the last landmark measure-
ment to be delivered by the LHC. CH� contributes to the
Higgs boson kinetic term and thus, indirectly, affects uni-
versally all Higgs boson production and decay rates. The
following two operators contribute to electroweak precision
observables measured long ago by the LEP collider. CHD

contributes to the Z boson mass, while CHWB contributes
to the kinetic mixing between the photon and the Z boson.

10 C5 in Eq. (3.8) is a symmetric matrix in the generation space, thus it
has six independent complex components. A complex operator, that is
to say one that is distinct from its hermitian conjugate, by convention
is counted as two operators.

123



656 Page 12 of 41 Eur. Phys. J. C (2023) 83 :656

Through these intermediaries, they affect the whole lot of
electroweak precision observables. In fact, these two are
just the famous oblique S and T parameters of Peskin and
Takeuchi [18] in another (more modern) guise. Furthermore,
CHWB as well as the Wilson coefficients CHG , CHW , CHB

in the second line contribute to the ever important Higgs
boson interaction strengths with gluons, W , Z , and photons,
which are measured at the LHC. In the third line, CW and
CG induce 3-derivative anomalous cubic interactions of elec-
troweak gauge bosons and gluons, respectively. The final two
lines contain CP violating interactions. They can be searched
for in colliders, but more easily discernible effects appear
via their loop contributions to electric dipole moments of the
electron or the neutron.

The next class of dimension-6 operators we discuss are
Yukawa-like interactions:

LYukawa
D=6 = H†H(L̄ HCeH Ēc) + H†H(Q̄ H̃CuHŪ

c)

+ H†H(Q̄HCdH D̄c) + h.c. (3.12)

Each C f H is a 3×3 complex matrix in the generation space,
thus each comes with 18 free parameters, which makes 54
parameters overall. These operators contribute to the fermion
masses, but that is unobservable because it merely renor-
malizes the unknown Yukawa matrices in Eq. (3.7). The
observables effect is the modification of the Higgs boson
Yukawa couplings to the fermions. In the SM, the Yukawa
coupling is not a free parameter but it is uniquely fixed by the
fermion’s mass. In the presence of the operator is Eq. (3.12)
that relation no longer holds, and the Higgs boson couplings
to fermions become free parameters independent of fermion
masses. Moreover, a qualitatively new effect of flavor vio-
lation in Higgs interactions may appear. That is to say, the
Higgs boson can couple to two fermions from different gen-
erations, e.g. LSMEFT ⊃ hēμ̄c, which does not occur in the
SM.

Next, we have what I call the current operators:

Lcurrent
D=6 = i H†←→D μH(L̄C (1)

Hl σ̄
μL)

+ i H†σ k←→D μH(L̄C (3)
Hl σ̄

μσ k L)

+ i H†←→D μH(EcCHeσ
μ Ēc)

+ i H†←→D μH(Q̄C (1)
Hq σ̄

μQ)

+ i H†σ k←→D μH(Q̄C (3)
Hq σ̄

μσ k Q)

+ i H†←→D μH(UcCHuσ
μŪ c)

+ i H†←→D μH(DcCHdσ
μ D̄c)

+
{
i H̃†DμH(UcCHudσ

μ D̄c) + h.c.

}
, (3.13)

where H†←→D μH ≡ H†DμH − DμH†H . The Wilson coef-
ficient CH f are matrices in the generation space, but now
only CHud is a general complex matrix, while the remain-
ing ones are Hermitian matrices (thus with 9 free parameters
each). This adds up to 81 free parameters in Eq. (3.13). These
operators contribute to the W and Z bosons interactions
with fermions, which have been precisely measured in the
LEP, Tevatron, and LHC colliders. Several qualitatively new
effects are introduced by Eq. (3.13). One is the W boson cou-
plings to right-handed quarks, e.g. LSMEFT ⊃ Wμ(tcσμb̄c),
whereas in the SM W couples only to left-handed quarks.
Another is tree-level flavor-changing neutral currents, that is
Z boson couplings to quarks or leptons of different genera-
tions, e.g. LSMEFT ⊃ Zμ(b̄σ̄ μs).

Next, we have the dipole operators

Ldipole
D=6 = (Q̄σ k H̃CuW σ̄ μνŪ c)Wk

μν + (Q̄ H̃CuB σ̄ μνŪ c)Bμν

+ (Q̄ H̃CuGT
a σ̄ μνŪ c)Ga

μν

+ (Q̄σ k HCdW σ̄ μν D̄c)Wk
μν + (Q̄HCdB σ̄ μν D̄c)Bμν

+ (Q̄HCdGT
a σ̄ μν D̄c)Ga

μν

+ (L̄σ k HCeW σ̄ μν Ēc)Wk
μν

+ (L̄ HCeB σ̄ μν Ēc)Bμν + h.c. (3.14)

Given that C f V are 3×3 complex matrices in the generation
space, the above introduces 144 free parameters. An impor-
tant effect of the operators in Eq. (3.13) is their contribution
to the anomalous magnetic dipole moments of fundamen-
tal particles. In particular, the Wilson coefficients [CeW ]22

and [CeB]22 contribute to the muon g − 2 which, at the time
of writing, may or may not deviate from the SM predic-
tion. The imaginary parts of these Wilson coefficients con-
tribute to electric dipole moments. Moreover, the operators
in Eq. (3.13) can mediate certain processes that are forbidden
in the SM, e.g. the μ → eγ decay.

The dimension-6 operators introduced so far come with
15 + 54 + 81 + 144 = 294 free parameters. It follows that
a large majority of dimension-6 operators are hiding in the
last term in Eq. (3.10), which contains 4-fermion operators.
For the sake of this discussion let me split them further into
four sub-classes:

L4−fermion
D=6 = L4L

D=6 + L2L2Q
D=6 + L4Q

D=6 + L3Q1L
D=6 , (3.15)

defined by the number of lepton and of quark fields. The first
sub-class in Eq. (3.15) is the 4-lepton operators:

L4L
D=6 = 1

2
(L̄σ̄ μL)Cll(L̄σ̄μL) + 1

2
(Ecσμ Ē

c)Cee

× (Ecσμ Ē
c) + (L̄σ̄ μL)Cle(E

cσμ Ē
c). (3.16)

This time and for all 4-fermion operators in the following,
the Wilson coefficients are 4-index tensors [CX ]J K LM in the
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generation space. The indices are implicitly contracted with
the generation indices of the fermions on the left and on
the right; for example, the first term in Eq. (3.16) should be
read as 1

2

∑3
J,K ,L ,M=1(l̄ J σ̄

μlK )[Cll ]J K LM (l̄L σ̄μlM ). Her-
miticity of the Lagrangian implies that the Wilson coeffi-
cients in Eq. (3.16) are Hermitian in the first two and the last
two indices: [CXY ]J K LM = [CXY ]∗K JML . For Cll and Cee

there is an additional complication stemming from the fact
that (l̄ J σ̄ μlK )(l̄K σ̄μlL) and (l̄K σ̄ μl J )(l̄ J σ̄μlK ) are the same.
Thus, for example, Eq. (3.16) contains

L4L
D=6 ⊃ 1

2
[Cll ]1221(l̄1σ̄

μl2)(l̄2σ̄μl1)

+ 1

2
[Cll ]2112(l̄2σ̄

μl1)(l̄1σ̄μl2)

= 1

2
([Cll ]1221 + [Cll ]2112)(l̄1σ̄

μl2)(l̄2σ̄μl1)

= Re [Cll ]1221(l̄1σ̄
μl2)(l̄2σ̄μl1). (3.17)

Therefore the components [Cll ]J K K J and [Cee]J K K J can
be declared real, as their imaginary parts do not enter
the Lagrangian.11 Four-lepton operators containing electron
fields are relevant for physics at LEP-2, where e+e− pair
were collided with the center-of-mass energy above the Z
pole. A subset of interactions in Eq. (3.16) mediate tree-level
charge-lepton-flavor violating processed, where the overall
lepton number is conserved, but the separate electron, muon,
or tau numbers are not. Such processes are forbidden in the
SM, while they are mediated at loop level via the D = 5 inter-
mediaries but with very suppressed rates due to the smallness
of the neutrino masses. For example, [Cee]1112 mediates the
μ− → e−e−e+ decay, which is subject to current experimen-
tal searches [20]. Finally, it is worth mentioning that [Cll ]1221

contributes to the usual muon decay μ− → e−ν̄eνμ, which in
the SM is a standard candle to determine the Fermi constant.
By disrupting this standard candle, [Cll ]1221 indirectly affects
SM predictions for countless precision measurements.

The next sub-class in Eq. (3.15) are semi-leptonic oper-
ators, that is 4-fermion operators containing two quark and
two lepton fields:

L2L2Q
D=6 = (L̄σ̄ μL)C (1)

lq (Q̄σ̄μQ) + (L̄σ̄ μσ k L)C (3)
lq (Q̄σ̄μσ k Q)

+ (Ecσμ Ē
c)Ceu(U

cσμŪ
c) + (Ecσμ Ē

c)Ced(D
cσμ D̄

c)

+ (L̄σ̄ μL)Clu(U
cσμŪ

c) + (L̄σ̄ μL)Cld(D
cσμ D̄

c)

+ (Ecσμ Ē
c)Ceq (Qσ̄μQ)

+
{
(L̄ Ēc)Cledq (D

cQ) + εkl(L̄k Ēc)C (1)
lequ(Q̄

lŪ c)

11 Another convention existing in the literature, see e.g. [19], is to set
[Cll ]J K K J and [Cee]J K K J to zero for J > K . This leads to a factor
of two difference in the dependence of observables on these Wilson
coefficients with J = K , as compared to the convention used in these
lectures.

+ εkl(L̄k σ̄ μν Ēc)C (3)
lequ(Q̄

l σ̄ μνŪ c) + h.c.

}
. (3.18)

The semi-leptonic operators affect myriads of important pre-
cision observables: hadronic cross sections at LEP-2, Drell–
Yan production of leptons in hadron colliders, electric dipole
moments, beta decays, and so on. They also play a major role
in flavor physics, where they contribute to semileptonic fla-
vor transitions. These are often under reasonable theoretical
control, such that reliable SM predictions can be established,
and thus stringent constraints on the dimension-6 operators
can de derived. Moreover, the importance of the operators
contributing to flavor-changing neutral currents is amplified
by the suppression of these processes in the SM. One of
many relevant examples of this kind is the Bs → μ+μ−
decay, whose branching fraction is currently measured with
10% precision, and the SM prediction is know with a similar
accuracy. That decay rate is affected, among others, by the
Wilson coefficient [C (1)

lq ]2232.
The third sub-class singled out in Eq. (3.15) are four-quark

operators:

L4Q
D=6 = 1

2
(Q̄σ̄ μQ)C (1)

qq (Q̄σ̄μQ)

+ 1

2
(Q̄σ̄ μσ k Q)C (3)

qq (Q̄σ̄μσ k Q)

+ 1

2
(UcσμŪ

c)Cuu(U
cσμŪ

c)

+ 1

2
(Dcσμ D̄

c)Cdd(D
cσμ D̄

c)

+ (UcσμŪ
c)C (1)

ud (Dcσμ D̄
c)

+ (UcσμT
aŪ c)C (8)

ud (DcσμT
a D̄c)

+ (Qcσμ Q̄
c)C (1)

qu (UcσμŪ
c)

+ (QcσμT
a Q̄c)C (8)

qu (UcσμT
aŪ c)]

+ (Qcσμ Q̄
c)C (1)

qd (Dcσμ D̄
c)

+ (QcσμT
a Q̄c)C (8)

qd (DcσμT
a D̄c)

+
{
εkl(Q̄kŪ c)C (1)

quqd(Q̄
l D̄c)

+ εkl(Q̄kT aŪ c)C (1)
quqd(Q̄

lT a D̄c) + h.c.

}
. (3.19)

These play arguably a lesser role in phenomenology. The rea-
son is that their effects have to compete with QCD processes,
which are typically abundant and poorly controlled theoret-
ically, especially at hadron colliders. Nevertheless, some of
the operators in Eq. (3.19) will appear later in our story in
the context of precision observables.

The final sub-class in Eq. (3.15) is perhaps the most excit-
ing one, as it consists of operators violating the baryon and
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lepton numbers:

L3Q1L
D=6 = (DcUc)Cduq(Q̄ L̄) + (QQ)Cqqu(Ū

c Ēc)

+ (QQ)Cqqq(QL) + (DcUc)Cduu(U
cEc) + h.c.

(3.20)

Above, the quark color indices are implicitly contracted
by epsilon tensors, e.g. qqq ≡ εabcqaqbqc. These oper-
ators violate the baryon number B defined as the global
symmetry transformation Q → eiβ/3Q, Uc → e−iβ/3Uc,
Dc → e−iβ/3Dc. Baryon number is a symmetry for all oper-
ators with D ≤ 5.12 They also violate the lepton number
defined as the global symmetry transformation L → eiαL ,
Ec → e−iαEc. The violation of baryon and lepton number
implies that these operators can mediate proton decay, in par-
ticular the p → π0e+ process can be mediated at tree level by
the operators involving the first generation fermions. Since
experimental bounds on proton decay are extremely strin-
gent, some of the Wilson coefficients in Eq. (3.20) must be
suppressed by a very high scale. To my knowledge, among all
processes mediated by higher dimensional operators, proton
decay probes the highest scale, not too far from the mythi-
cal Planck scale. Comparison of different scales probed by
different precision experiments is shown in Fig. 3.

3.5 Beyond D = 6

The sum in Eq. (3.1) extends to D = ∞, and one could
press on, but, more often than not, the discussion in SMEFT
stops at dimension six. What lies beyond? At D = 7 we
have 1542 independent operators, at D = 8 the number is
44807, at D = 9 it grows to 90456, and at D = 10 we have a
whopping 2092441 operators (two million!) [21]. There is a
good chance, however, that in your research you won’t ever
deal with this cornucopia of higher-dimension operators. The
exponential growth of the number of operators with increas-
ing D is one reason, as it quickly makes any systematic
analysis difficult. But that practical difficulty is not the only
reason. The philosophy of SMEFT with the standard power
counting is that, the higher the dimension of the operator,
the more suppressed its effect is. Since at present we do not
have any observational evidence of dimension-6 operators,
it is hard to believe that D > 6 operators might show up in
any experiment in a foreseeable future. This general conclu-
sion should hold for other reasonable power counting beyond
the standard one. There are a few exceptions, however, that
one should be aware of. First of all, if new physics is close

12 This kind of symmetry is called accidental: the choice of the gauge
symmetry and the field content in SMEFT automatically imply that
operators of dimension up to five cannot violate baryon number, without
any need to impose this symmetry by hand. Similarly, lepton number is
an accidental symmetry for D ≤ 4.

to the electroweak scale, the effect of higher-dimensional
operators may be non-negligible, especially for observables
probing the high-energy tail of differential distributions at
the LHC, such as for example the Drell–Yan production of
leptons, pp → �+�−. But that is of course also the situa-
tion where the SMEFT itself is least useful, since the central
assumption of the mass gap is not quite satisfied. A more rel-
evant case is when a qualitatively new phenomenon, which
cannot be induced by D ≤ 6 operators, appears at D > 6. For
example, tree-level contributions to light-by-light scattering
enter at D = 8 from operators such as (BμνBμν)2; another
D = 8 operator (l̄1H σ̄ μ H̃l1)(ucσμd̄c) might play an impor-
tant role in CP violation in nuclear beta decay [22]; neutron-
antineutron oscillations arise at D = 9 from operators such
as (ūcd̄c)3 [23]. When analyzing this kind of observables,
one should however pay attention whether new physics gen-
erating these higher-dimensional operators might not show
up in other observables via D ≤ 6 operators.

All in all, while every particle physicist should have at
least a rudimentary knowledge of the dimension-6 SMEFT
operators, excursions beyond that are necessary and justi-
fied only in rare circumstances. You should be aware of the
existence of higher-dimensional operators, and you should
be able to use power counting to estimate their effects rela-
tive to the ones coming from lower-dimensional operators.
But it is quite unlikely that the higher-dimensional opera-
tors can play a useful role in discovering or constraining new
physics. The situation will of course change if dimension-6
operators are observed in nature. In such a case, going to
higher dimensions will sharpen our low-energy description
of new physics, and may help to pinpoint the scale of new
physics [24].

3.6 Summary of the SMEFT Lagrangian

To summarize this section, SMEFT is a QFT with the spec-
trum given in Table 1 and the Lagrangian of the form

LSMEFT = LD=2 + LD=4 + LD=5 + LD=6 + · · · (3.21)

where the consecutive terms are given in Eqs. (3.6) to (3.8)
and (3.10) and the dots stand for higher dimensional interac-
tions. The interactions in LD=5 and LD=6 describe various
effects of the virtual exchange of exotic particles not included
in Table 1, and the scale � inherent in their Wilson coeffi-
cients is related to the mass scale M of these exotic particles.
Almost any BSM model you will encounter will induce some
D = 5 and D = 6 interactions.13 The Wilson coefficients
of the D ≥ 7 interactions are suppressed by higher powers

13 One exception is when the BSM degrees of freedom are massive
particles with spin two and higher. This would be the situation in the
Randall–Sundrum model [25] with all SM matter confined to one of the
branes.
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Fig. 3 The scale suppressing
higher-dimensional SMEFT
operators probed by selected
observables. From left to right:
proton decay, neutrino
oscillations, electron EDM,
μ → eγ , kaon mixing, neutron
EDM, B-meson mixing,
electron anomalous magnetic
moment, beta decay, Higgs
decay to tau leptons

of M , and they are rarely of phenomenological relevance as
long as M 
 v. SMEFT is an effective theory, implying
a finite validity range mZ � E � M . At the energy scale
E ∼ M it should be replaced with its UV completion, which
contains new weakly coupled particles and interactions, or
maybe a strong dynamics from which some of the particles
in Table 1 emerge. At the energy scale E ∼ mZ it is conve-
nient to integrate out the electroweak bosons, top quark, and
Higgs, to derive another effective theory called WEFT with
a smaller spectrum and a smaller gauge symmetry.

Since we do not know what is the UV completion of
SMEFT, the usual philosophy is to include all possible inde-
pendent interactions in Eq. (3.21) with completely arbitrary
Wilson coefficients. This is a sane approach, up to small
caveats. First, we should pay attention that the validity range
is not null. This could happen if the Wilson coefficients
are too large, as then the SMEFT amplitudes may violate
perturbative unitarity already at E ∼ v. Second, the exist-
ing experimental results already put important bounds on
some combinations of Wilson coefficients; more about it in
Sect. 5. Third, several interaction terms in Eq. (3.21), such
as e.g. εklmWk

μνW
l
νρW

m
ρμ or L̄ H σ̄ μν Ēc Bμν arise from inte-

grating out new particles at one loop level. Therefore we
should not expect their Wilson coefficients to be very small,
e.g. CW ∼ 1

v2 would imply BSM particles below the elec-
troweak scale, in contradiction with the assumptions behind
SMEFT. Finally, there exist more subtle constraints on EFT
Wilson coefficient arising from the mere assumption that the
UV completion is local, unitary, and Poincaré invariant [26].
These typically imply a definite sign of a Wilson coefficient
or a combination thereof, therefore they are referred to as
the positivity constraints. With completely general assump-
tions about the high-energy behavior of the amplitudes in
the UV completion, the positivity bounds are relevant for
dimension-8 operators and higher. Therefore their applica-
tion to SMEFT is limited to very specific cases, for example
to the study of quartic gauge boson interactions [27,28]. In

order to apply the positivity constraints to dimension-6 oper-
ators, additional assumptions about the UV completion are
necessary [29].

4 Bases of SMEFT

A basis is a complete, non-redundant set of operators in the
Lagrangian at a given order in the EFT expansion. Complete
means that the full parameter space of the EFT is accounted
for at that order. Non-redundant means that none of the oper-
ators in that set can be expressed as a linear combination of
the remaining ones. In the previous section we introduced
the dimension-6 SMEFT operators using one particular rep-
resentation called the Warsaw basis. In this section we take
a more general view, and discuss the technical side of estab-
lishing equivalence classes of higher-dimensional operator.
The issue is non-trivial because there is a huge redundancy
at the core of the Lagrangian formulation of QFT. We are
so used to working with Lagrangians that we unconsciously
assign a physical meaning to its interactions terms. However
Lagrangians are merely tools – very useful, but also very
crude ones. Seemingly distinct sets of interaction terms can
lead to the same on-shell scattering amplitudes, and thus to
exactly the same observable consequences.

One can distinguish three main ways we can reshuffle the
interaction terms in the Lagrangian:

1. Integration by parts,
2. Fierz transformations,
3. Field redefinitions.

These operations do not change on-shell scattering ampli-
tudes, which define the physical content of the theory,14

Below I discuss them in more detail.

14 For applications related to matching SMEFT to models beyond the
Standard Model (BSM) it is convenient to introduce off-shell equiva-

123



656 Page 16 of 41 Eur. Phys. J. C (2023) 83 :656

Starting with integration by parts, a simple example is

CH�(H†H)�(H†H) → −CH�∂μ(H†H)∂μ(H†H).

(4.1)

This transformation, which consist in reshuffling how the
derivatives act on the fields, changes the apparent form of
the interaction term. However, both interaction terms above
lead to the same Feynman rules once momentum conser-
vation is taken into account. At a more mathematical level,
integration by parts does not change physics because it shifts
the Lagrangian by a total derivative ∂μF , which shifts the
action S = ∫

d4xL by a boundary term, which does not
affect scattering amplitudes.15

Moving to the second point, Fierz transformations are
rearrangements of the way the spinor or gauge indices are
contracted. Let us illustrate them in a simple example, which
is relevant for constructing a set of independent dimension-6
operators. Naively, it seems one could supplement the four-
lepton operators in Eq. (3.16) by another one:

�L4L
D=6 = (L̄σ̄ μσ k L)C (3)

ll (L̄σ̄μσ k L), (4.2)

where the σ k matrices act on the SU (2)W indices of the
lepton fields (unlike σ̄ μ, which act on the Lorentz group
spinor indices). This is a legitimate interaction term, in par-
ticular it is gauge invariant. However, one can show that
it is redundant, in the sense it is already contained in the
term proportional to Cll in Eq. (3.16). In order to show
this, we first use the Fierz identity for the Pauli matrices,
[σ k]ab[σ k]cd = 2δadδbc − δabδcd . This allows us to rewrite

�L4L
D=6 = [C (3)

ll ]J K LM

×
{

2(l̄ J,a σ̄
μlK ,b)(l̄L ,bσ̄μlM,a) − (l̄ J σ̄

μlK )(l̄L σ̄μlM )

}
,

(4.3)

I only display the SU (2)W indices in the first term in the
bracket, where they contracted in an unobvious way. The
second term in the bracket has already the same form as the
L4 term in Eq. (3.16), but we still need to work on the first
term. To this end, we need another Fierz identity to rearrange
the spinor indices. For anti-commuting spinors ψi one can
prove (ψ̄1σ̄μψ2)(ψ̄3σ̄μψ4) = (ψ̄1σ̄μψ4)(ψ̄3σ̄μψ2). Using

lence classes, the so-called Green’s bases where operators related by
field redefinitions are not considered equivalent. See Refs. [30,31] for
a construction of a Green’s basis for dimension six and eight operators.
15 The D = 4 SMEFT Lagrangian in Eq. (3.7) contains a total deriva-
tive – the famous θ term – which does not affect perturbative amplitudes
but does affect physics via non-perturbative instanton contributions to
the path integral. To my knowledge, this is the only total derivative in
the SMEFT Lagrangian that has physical consequences.

this we rewrite

�L4L
D=6 = [C (3)

ll ]J K LM

×
{

2(l̄ J σ̄
μlM )(l̄L σ̄μlK ) − (l̄ J σ̄

μlK )(l̄L σ̄μlM )

}

= (
2[C (3)

ll ]JMLK − [C (3)
ll ]J K LM

)
(l̄ J σ̄

μlK )(l̄L σ̄μlM ).

(4.4)

This completes the proof that the operator in Eq. (4.2)
is equivalent to the L4 term in Eq. (3.16), and we also
found the mapping between the two tensor Wilson coeffi-
cients: [Cll ]J K LM = 2[C (3)

ll ]JMLK − [C (3)
ll ]J K LM ; in par-

ticular [Cll ]1111 = [C (3)
ll ]1111, and [Cll ]1221 = 2[C (3)

ll ]1122 −
[C (3)

ll ]1221.
Finally, we discuss the last point, which is the least triv-

ial one. In QFT, the so-called equivalence theorem [32,33]
stipulates that physics is invariant under arbitrary non-linear
redefinitions of bosonic and fermionic fields of the form

�X → �X + 1

�
F (1)
X (�) + 1

�2 F
(2)
X (�) + · · · , (4.5)

where F (i)
X (�) are function of all fields � in the theory with

the same Lorentz and gauge transformation properties as �X .
The expansion in some scale � is to ensure that one can
apply this transformation perturbatively, such that kinetic
terms in the Lagrangian do not change, but only the inter-
action terms do. In SMEFT, � can be naturally identified
with the cutoff scale controlling the dimensional expansion
of the Lagrangian. If we once again evoke the path integral
formulation, invariance under field redefinitions seems obvi-
ous, as Eq. (4.5) amounts to a change of variables under the
integral. In the context of effective theories the invariance of
on-shell Green’s functions under field redefinitions, also at
the loop level, was formally proven in Ref. [34]. However, at
the Lagrangian level this invariance seems far from obvious
and often counter-intuitive. Indeed, field redefinitions can
produce new interaction terms that were not present in the
original Lagrangian. Let as consider an extreme example of
a free scalar theory,

Lfree = 1

2
∂μφ′∂μφ′, (4.6)

and make a field redefinition φ′ → φ + 1
�

φ2. The shifted
Lagrangian reads

Lfree = 1

2
∂μφ∂μφ + 2

�
φ∂μφ∂μφ + 2

�2 φ2∂μφ∂μφ. (4.7)

This naively looks like a Lagrangian of an interacting the-
ory, with derivative cubic and quartic scalar self-interactions.
However we know it is a free theory in disguise, as it was
constructed via a field redefinition from the free Lagrangian

123



Eur. Phys. J. C (2023) 83 :656 Page 17 of 41 656

in Eq. (4.6). And indeed, if you derive Feynman rules from
Eq. (4.7) and calculate scattering amplitudes, you will always
obtain zero, whatever the number of loops or external legs.
It would be however difficult to search whether there exists a
field redefinition to a free theory, each time somebody hands
you a new Lagrangian, Fortunately, there is a simple hack to
quickly see that Eq. (4.7) is a free Lagrangian in disguise.
Using integration by parts we can rewrite the cubic interac-
tion term as

Lfree ⊃ − 1

�
φ2�φ. (4.8)

At the same time, the equation of motion for the field φ fol-
lowing from Eq. (4.7) is �φ = O(�−1). Inserting this equa-
tion of motion back into Eq. (4.8) makes the cubic terms van-
ish, leaving only an O(�−2) residue (which contains quar-
tic and higher interactions). This exercise demonstrates the
truth that, at least at the leading order in the 1/� expansion,
applying field redefinitions is equivalent to using equations of
motions at a lower order in 1/�. In fact, in the literature this
kind of equivalent Lagrangians are commonly referred to as
related via equations of motions, rather than via field redef-
initions. The two formulations are largely equivalent16 but
the former may be puzzling for some non-practitioners: why
should quantum fields be constrained to obey the equations
of motions, also in the context of loop calculations when they
are off-shell? The formulation via field redefinitions appears
much more intuitive.

All in all, QFT Lagrangians have this huge redundancy
due to field redefinitions. The redundancy exists also in the
SM but it is rarely discussed in this context, as there exists a
canonical choice of field variables where the SM Lagrangian
appears renormalizable, that is without higher-dimensional
operators. However in SMEFT, as in any garden-variety EFT,
the redundancy is very relevant, because there is no canonical
choice of field variables. As a consequence, Lagrangians with
apparently distinct interaction terms may belong to the same
equivalence classes, that is to say, they lead to the same scat-
tering amplitudes. The equivalence classes can be confusing
at times; for example a purely bosonic operator can be equiva-
lent to a linear combination of operators containing fermions!
Let us see in a concrete example how field redefinitions relate
different dimension-6 SMEFT operators. The bosonic oper-
ator in the Warsaw basis, cf. Eq. (3.11), contains two quartic
two-derivative self-interaction terms: (H†H)�(H†H), and
|H†DμH |2. There is another interaction term of this type:

�Lbosonic
D=6 = C ′

HD(H†H)(DμH†DμH), (4.9)

16 See Ref. [35] for the discussion of the differences between the use
of field redefinitions and equations of motion beyond the D = 6 level of
SMEFT.

which is perfectly legal and gauge invariant. However, using
integration by parts and field redefinitions one can show its
effects are already accounted for by other dimension-6 oper-
ators in the Warsaw basis. First we rewrite the operator mul-
tiplying C ′

HD as

�Lbosonic
D=6 = C ′

HD

{
− ∂μ(H†H)(H†DμH)

− (H†H)(H†D2H)

}

= C ′
HD

{
− ∂μ(H†H)(DμH†H)

− (H†H)(D2H†H)

}

= C ′
HD

{
− 1

2
∂μ(H†H)∂μ(H†H)

− 1

2
H†H

[
H†D2H + D2H†H

]}

= C ′
HD

2
(H†H)�(H†H)

− C ′
HD

2
H†H

[
H†D2H + D2H†H

]
. (4.10)

In the first two lines we integrated by parts in two different
fashions, and in the third line we summed the first two lines
with weight 1/2 each. We also used a generalized version
of the Leibnitz rule: ∂μ(H†H) = (DμH†H) + (H†DμH).
The first term above can be absorbed into the CH� Wilson
coefficient in Eq. (3.11), but the second term requires more
work. To get rid of it we can redefine the Higgs field as17

H → H ′ − C ′
HD

2
(H ′†H ′)H ′, (4.11)

where I put the prime on the right-hand side to mark that it is
a redefined field, but in the following I will omit it to reduce
clutter. Then the last term in Eq. (4.10) is canceled by the
shift of the Higgs kinetic term

DμH
†DμH → DμH

†DμH

+ C ′
HD

2
(H†H)D2H†H

+ C ′
HD

2
(H†H)H†D2H + O(�−4). (4.12)

However, the field redefinition in Eq. (4.11) also shifts other
D = 2 and D = 4 terms (it also shift D = 5 and higher

17 Equivalently, we can replace D2H in Eq. (4.10) using the Higgs
equation of motion D2Ha = μ2

H Ha − 2λ(H†H)Ha − εbaUcY †
u Qb −

DcY †
d Qa − EcY †

e La + O(�−2).
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operators, but that does not affect dimension-6 operators,
which we are focused on here). One finds

μ2
H (H†H) − λ(H†H)2

−
(
UcY †

u H̃
†Q + DcY †

d H
†Q + EcY †

e H
†L + h.c.

)

→ C ′
HD

{
− μ2

H (H†H)2 + 2λ(H†H)3 + 1

2
(H†H)

×
(
UcY †

u H̃
†Q + DcY †

d H
†Q + EcY †

e H
†L + h.c.

)}
.

(4.13)

Fortunately, all the terms that appear above are already in
the Warsaw basis. At the end of the day, the effects of the
dimension-6 operator in Eq. (4.9) can be simulated by con-
certed efforts of several dimension-4 and -6 operators in the
Warsaw basis with the Wilson coefficients

λ = −μ2
HC

′
HD,

CH = 2λC ′
HD,

CH� = 1

2
C ′
HD,

CuH = 1

2
YuC

′
HD,

CdH = 1

2
YdC

′
HD,

CeH = 1

2
YeC

′
HD. (4.14)

Note that multiple bosonic and fermionic operators are
needed to simulate a single bosonic operator. This may be
counter-intuitive, but again can be confirmed by an explicit
calculation of scattering amplitudes.

By the sort of exercises as the ones above, one can show
that every dimension-6 operator can be expressed by the ones
already present in the Warsaw basis. A proof seems like a
non-trivial task, and indeed it took a long time to complete.
While dimension-6 operators have been frequently used in
the literature since the influential work of Buchmüller and
Wyler in 1986 [36], a complete basis of dimension-6 opera-
tors appeared only in 2010 [17]. A more systematic road to
constructing a basis is offered by the Hilbert series techniques
[21,37].

The Warsaw basis is by no means a unique representation
of the parameter space of dimension-6 SMEFT operators. For
example, one could drop from the Warsaw basis the operator
proportional to Cll in Eq. (3.16) and replace it by the one
proportional toC ′

ll defined in Eq. (4.2). Or one could drop the
operator proportional toCH� in Eq. (3.11) and replace it with
the one proportional to C ′

HD defined in Eq. (4.9). Or keep
an arbitrary linear combination of the two. And so on. This
way, there are infinite ways to write a basis of dimension-6
SMEFT operators. Any such basis will have 3045 operators,

and will lead to completely equivalent predictions of physical
observables.

The Warsaw basis is widely used in the literature, and
it is nowadays an indispensable reference point for all phe-
nomenological studies of dimension-6 operators. Neverthe-
less, different bases may be more convenient for specific
applications. Another popular choice of operators is the so-
called SILH basis [38].18 In this basis, the bosonic operators
are

Lbosonic
D=6 = S6(H

†H)3 + SH ∂μ(H†H)∂μ(H†H)

+ ST (H†←→D μH)2 + SW (H†σ k←→D μH)DνWk
μν

+ SB(H†←→D μH)DνBμν + SHW (DμH†σ k DνH)Wk
μν

+ SHB(DμH†DνH)Bμν

+ SgH
†H Ga

μνG
a
μν + Sγ H

†H BμνBμν

+ S2W DμWk
μνDρW

ρν k + S2B D
μBμνDρB

ρν

+ S2GDμGa
μνDρG

ρν a + S3W εklmWk
μνW

l
νρW

m
ρμ

+ S3G f abcGa
μνG

b
νρG

c
ρμ

+ S̃HW (DμH†σ k DνH)Wk
μν + S̃H B(DμH†DνH)Bμν

+ S̃G H†H G̃a
μνG

a
μν + S̃γ H

†H B̃μνBμν

+ S̃3W εklm W̃ k
μνW

l
νρW

m
ρμ + S̃3G̃ f abcG̃a

μνG
b
νρG

c
ρμ.

(4.15)

In this case I denote the Wilson coefficients by the letter S, to
distinguish them from the Warsaw basis Wilson coefficients.
Some operators from the Warsaw basis – the ones propor-
tional to CH�, CHW , CHWB , CHW̃ , and CHW̃ B – are miss-
ing in Eq. (4.15) and their role is played by other operators.
A more striking fact is that there are 20 bosonic operators
in the SILH basis, compared to 15 bosonic operators in the
Warsaw basis. This is possible because, as discussed above,
field redefinitions relate bosonic operators to those contain-
ing fermions. The corollary is that some fermionic operators
present in the Warsaw basis must be absent in the SILH basis.
A possible choice [40] is to remove the operators multiply-
ing [C (1)

Hl ]11 and [C (3)
Hl ]11 in Eq. (3.13), the four-lepton opera-

tors multiplying [Cll ]1221 and [Cll ]1122 in Eq. (3.16), and the
four-quark operator multiplying [Cuu]3333, while keeping all
other two- and four-fermions operators the same as in the
Warsaw basis. From this discussion you can gather that the
SILH basis may be a bit awkward for the sake of describ-
ing new physics with a non-trivial flavor structure. On the
other hand, it is convenient to describe the so-called oblique
new physics, that is the one where the leading non-SM effects
enter via corrections to gauge boson propagators. Indeed, the
SILH basis connects in a simple manner to the oblique S, T ,

18 SILH stands for Strongly Interacting Light Higgs, because a subset
of the operators in this basis was first proposed to describe low energy
effects of strongly interacting BSM sectors from which the Higgs dou-
blet emerges as a light composite state [39].
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W , and Y parameters defined in Refs. [18,41]: the S param-
eter corresponds to a linear combination of the SW and SB
Wilson coefficients, while T , W , and Y translated directly
into ST , S2W , and S2B , respectively.

A somewhat different approach to parametrizing the space
of dimension-6 SMEFT operators was proposed in Ref. [42].
The connection between the Wilson coefficients in the War-
saw or SILH basis and observables can be quite compli-
cated (see later in Sect. 5). For phenomenological applica-
tions it is often easier to work with the SMEFT Lagrangian
expressed in terms of the fields that are mass eigenstates
after electroweak symmetry breaking: the photon, the W and
Z bosons, the Higgs boson. The idea is to pick a set of inde-
pendent couplings in the Lagrangian – the so-called BSM
primaries, which, at least at tree level, are simply related to
experimentally observable quantities. Typically, such a set
would include the Higgs boson couplings to matter (related
to the Higgs signal strength measured at the LHC) and the
W an Z boson couplings to fermions (related to cross sec-
tions, branching fractions, and forward–backward asymme-
tries precisely measured at LEP). With a judicious choice of
this set (see for example the Higgs basis [43]), there exists an
invertible map between the BSM primaries and the Wilson
coefficients of the Warsaw or SILH basis, Then one can trans-
late the theoretical predictions from the Wilson coefficient
language to the BSM primaries language, and vice-versa.
While the two are completely equivalent, the latter can be
more convenient for certain applications. In global SMEFT
fits to electroweak precision observables, the BSM primaries
allow one to easily separate strongly constrained directions
in the parameter space (typically, coming from the LEP mea-
surements at the Z pole) from the weakly constrained direc-
tion (for example, coming from the Higgs measurements at
the LHC), which improves stability of the fit.

Bases of SMEFT operators are also known beyond D = 6.
For D = 7 operators (which are B − L-violating, much
as those at D = 5 and at any other odd dimension) a
basis was constructed in Ref. [44]. More recently, bases at
D = 8, 9, 10, 11, 12 were constructed in Refs. [45–47]. A
code to generate a SMEFT basis at any dimension is now
available [48]. As I discussed in the previous section, oper-
ators of dimension higher than six currently have limited
phenomenological applications, and no one even dreams of
using a complete set of independent operators beyond D = 6.
Nevertheless, these constructions serve as proof-of-principle
demonstrations and useful look-up tables for specific appli-
cations.

Let me close this section by a couple of loosely related
comments. The first concerns the choice of basis in the
flavor space. Even when a specific operator basis is cho-
sen, for example the Warsaw basis as in Sect. 3, there still
remains freedom of making U (3) rotations separately for
each fermionic 3-vector in the generation space: Q, Uc, Dc,

L , Ec. The power of these U (3)5 rotations can be used for
good. The most convenient choice is to make the fermion
mass terms as diagonal as possible. This last clause is due to
the fact that we cannot simultaneously make the up and down
quark masses diagonal by these rotations without destroying
the manifest SU (2)L symmetry of the SMEFT Lagrangian,
that is without rotating differently the left-handed U and D
fields sitting in Q. One convenient choice, which is adopted in
these lectures, is the so-called down-type basis. In this basis,
the fields Uc, Dc, L , Ec are rotated such that their com-
ponents are mass eigenstates, for example Uc = (uc, cc, tc)
contains the right-handed up, charm, and top quark fields that
do not have any flavor-off-diagonal mass terms. Concerning
the quark doublet field Q, in the down-type basis it takes the
form

Q =
(
V †U
D

)
(4.16)

where U = (u, c, t) and D = (d, s, b) contain the left-
handed quark mass eigenstates, and V is the unitary 3 ×
3 CKM matrix. The latter must appear here so that, after
electroweak symmetry breaking, the kinetic term i Qσ̄ μDμQ
yields the usual quark-mixing interactions with the W boson:
LSMEFT ⊃ − gL√

2
W+

μ Ū σ̄ μV D + h.c.. Another logical and

equally good choice is the so-called up-type basis, where

Q =
(

U
V D

)
. The down-type basis is slightly more popular

in the literature, probably because more flavor physics is done
with the bottom and strange quarks than with the charm and
top quarks.

Another comment concerns on-shell amplitude methods.
As discussed earlier in this section, the freedom of field
reparametrization adds a lot of complications to construct-
ing an EFT basis. It turns out that this excess baggage can
be dropped: one can practice QFT without referring to fields,
Lagrangians, gauge invariance, or other off-shell concepts.
Instead, the theory can be formulated at the level of scat-
tering amplitudes with all involved particles being on the
mass shell (that is to say, with their respective momenta p
constrained by p2 = m2). See Ref. [49] for a nice introduc-
tion. Unsurprisingly, the on-shell approach greatly simplifies
the task of constructing an EFT basis, see e.g. [50,51]. It
has been applied specifically to SMEFT [52], allowing one
to swap a basis of higher-dimensional operators for a more
tractable basis of independent amplitudes. This has lead to a
more transparent derivation of some known results, as well as
to several novel results. The advantages appear particularly
clear in relation to renormalization group running, see e.g.
[53–55], facilitating extension of the program beyond one
loop.
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5 From operators to observables

Currently, the SM is the reference point for any physical the-
ory at the electroweak scale. It enjoys huge success, correctly
accounting for a host of phenomena measured in colliders and
low-energy precision experiments. SMEFT differs from the
SM by the presence of interactions originating from opera-
tors with dimension D = 5, 6, and higher. In this section we
discuss, in more precise and quantitative terms, the observ-
able effects of these operators.

There are many ways in which higher-dimensional opera-
tors can affect observables. To organize the following discus-
sion, it is convenient to divide them into three broad classes:

1. New vertices: interaction vertices in the SMEFT
Lagrangian that do not occur in the SM Lagrangian, due
to symmetries or accidental reasons.

2. New Lorentz structures: interaction vertices that do
occur in the SM Lagrangian, but which appear in the
SMEFT with a different number of derivatives, different
contractions of Lorentz or spinor indices, etc.

3. Modifiedcouplings: corrections to the coupling strengths
of the interaction terms present in the SM Lagrangian.

In this following I will discuss each of these classes in turn.

5.1 New vertices

The most spectacular effects of SMEFT occur when higher-
dimensional operators violate an exact global symmetry of
the SM. One important example of this kind is baryon and
lepton number violation19 by the dimension-6 operators in
Eq. (3.20). Let us take one of these operators at random, say

LSMEFT ⊃ Cduu(d
cuc)(ucec) + C∗

duu(ū
cd̄c)(ēcūc), (5.1)

where I abbreviated Cduu ≡ [Cduu]1111 and explicitly dis-
played both the operator and its Hermitian conjugate. The
latter mediates the quark-level process uu → d̄e+. In a bit
hand-waving but intuitive way, one can think of this process
as transforming two up quarks from the proton (uud) into a
down antiquark, leading to a dd̄ meson state. Consequently,
the operator can mediate proton decay into meson states. One
important example is p → e+π0 - the decay to a positron
and a neutral pion (who is a combination of dd̄ and uū quark
states, the latter pair you can think of as being pulled from the
vacuum sea during the decay). To calculate the rate for this
process, one needs to take the on-shell matrix elements of

19 Strictly speaking, baryon or lepton number are an exact symmetry
only at the perturbative level in the SM, but they are both violated by
non-perturbative effects. Only one linear combination of the two, B −
L , is conserved at the non-perturbative level. This subtlety is however
irrelevant for the discussion in this section.

the operator in Eq. (5.1) between the initial and final states:

T (p → e+π0) = C∗
duu〈e+(k3)π

0(k2)|
∫

d4x(ūc(x)d̄c(x))

×(ēc(x)ūc(x))|p(p1)〉, (5.2)

where T is the non-trivial part of the S matrix, S = 1 + iT ,
p1 is the incoming momentum of the proton, k2, k3 are the
outgoing momenta of the pion and positron, and we also
define q = p1−k2. The electron field acts on the annihilation
operator of the positron final state, leaving the spinor wave
function x̄3 corresponding to the momentum k3. We get

T (p → e+π0) = C∗
duu x̄3

∫
d4xeik3x 〈π0(k2)|

×(ūc(x)d̄c(x))ūc(x)|p(p1)〉. (5.3)

The remaining matrix element between the proton and pion
states is non-perturbative, and we cannot calculate it using
the familiar textbook methods. Nevertheless, the Poincaré
and little group covariance of the S-matrix tell us that it has
to be proportional to a linear combination of the spinor wave
functions of the incoming proton (pion is a scalar particle):
We can thus parametrize

〈π0(k2)|(ūc(x)d̄c(x))ūc(x)|p(p1)〉
= 1√

2

(
W0 ȳ1 + W1

qμ

mp
σ̄μx1

)
ei(k3−p1)x , (5.4)

where W0 and W1 encode the information about the non-
perturbative brown muck. To know its value you have to ask
your lattice friends, and they may reply W0 ≈ 0.15 GeV2,
W1 ≈ −0.13 GeV2, with roughly a 20% error [56]. Thus

T (p → e+π0) = C∗
duu√
2

(
W0(x̄3 ȳ1)

+ W1
qμ

mp
(x̄3σ̄μx1)

) ∫
d4xei(k3+k2−p1)x

= C∗
duu√
2

(
W0(x̄3 ȳ1) + W1

qμ

mp
(x̄3σ̄μx1)

)

(2π)4δ4(k3 + k2 − p1), (5.5)

or trading the matrix element for the more familiar amplitude
via T = (2π)4δ4(

∑
i pi − ∑

j k j )M:

M(p → e+π0) = C∗
duu√
2

(
W0(x̄3 ȳ1) + W1q

μ(x̄3σ̄μx1)
)
.

(5.6)

The rest is standard QFT manipulations. Taking the square of
the amplitude, summing/averaging over the positron/proton
spins, and plugging the result into the formula for the decay
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width one gets

�(p → e+π0) = |Cduu |2mpW 2
0

32π

(
1 − m2

π0

m2
p

)2

. (5.7)

Above I approximated the electron mass by zero, which is
perfectly legitimate given the uncertainty on W0 (actually,
even approximating the much larger mπ0 as zero would be
fine). In this limit the contribution of the W1 form factor
drops out. I presented this calculation here so that you can
get familiar with hadronic matrix element, but as long as you
are not interested in precision calculation you could easily
obtain the order of magnitude of the result via dimensional
analysis: �(p → e+π0) ∼ m5

p|Cduu |2/16π .
Now, a sneak peak into the Particle Data Group booklet

[57] reveals that the limit on this proton decay channel is
�(p → e+π0) ≤ 1.3 × 10−66 GeV at 90% confidence level
(CL), which translates into the limit on the Wilson coefficient

|Cduu | ≤
(

1

3.5 × 1015 GeV

)2

. (5.8)

This limit is valid assuming only a single baryon-number vio-
lating operator is present in the Lagrangian; otherwise pro-
ton decay constrains a linear combination of various baryon-
number violating Wilson coefficients.

It is mind-blowing that low-energy experiments searching
for proton decay allow us to probe new physics up to scales
not so far from the Planck scale! To my knowledge, this is the
highest scale we can indirectly access via low-energy exper-
iments within a sane theoretical framework (unitary, causal,
local, Lorentz-symmetric). The reason for this extreme sen-
sitivity is that it is feasible to amass astronomical number
of protons for a long period of time in a controlled setting,
for example in a tank filled with water and surrounded by
photo-detectors [58]. Moreover, the detection capabilities are
impressive and would allow us to see the signal even if a hand-
ful of the protons in the tank decayed. Thanks to this com-
bination of favorable circumstances, the limit on the proton
lifetime can be orders of magnitude larger than the age of the
universe! The final fact making the limit so strong is that we
search for an effect that is predicted to be zero in the SM,
so we do not have to face the uncertainty due to imprecise
theory predictions.

Baryon and lepton number violation is certainly the
most spectacular prediction of SMEFT. Nevertheless, higher-
dimensional operators can also break other exact or approx-
imate global symmetries of the SM, with quite interesting
consequences. A nice example is the decay μ → eγ . In the
SM, not only the overall lepton number L is conserved, but
also the individual lepton numbers Lα for each generation,
α = e, μ, τ . The process μ → eγ preserves L , but breaks
Lμ and Le, that is to say, these quantum numbers are dif-

ferent for the initial and final states. Therefore in the SM
μ → eγ is forbidden, and the predicted branching ratio is
exactly zero. In the SMEFT, dimension-5 operators break
L and consequently each Lα , but the smallness of the neu-
trino masses (translating to the large scale suppressing the
dimension-5 Wilson coefficients) suppresses their contribu-
tion to μ → eγ to an unobservable level. On the other hand,
there are many dimension-6 operators that break Le and Lμ,
and their contributions may be more significant. In particular,
one of the dipole operators in Eq. (3.14) reads

LD=6 ⊃ [CeB]12(l̄1H σ̄ αβμ̄c)Bαβ + h.c., (5.9)

where l1 = (νe, e) is the doublet of left-handed first gen-
eration leptons. After electroweak symmetry breaking, this
operator leads to the interaction term

LSMEFT ⊃ cos θW√
2

[CeB]12v(ēσ̄ αβμ̄c)Fαβ + h.c. (5.10)

mediating μ → eγ at tree level, with cos θW ≈ 0.89 being
the cosine of the Weinberg angle. In the presence of this inter-
action, the branching ratio for the μ → eγ can be calculated
to be

Br(μ → eγ ) = cos2 θW
∣∣[CeB]12

∣∣2
v2m3

μ

8π�μ

, (5.11)

where �μ ≈ 3×10−19 GeV is the total muon decay width.20

We again peek into Particle Data Group, and find the 90%
CL experimental constraint Br(μ → eγ ) ≤ 4.2 × 10−13

coming from the MEG experiment [59]. This translates into
the constraint on the Wilson coefficient

∣∣[CeB]12
∣∣ ≤ 1(

6.5 × 107 GeV
)2 . (5.12)

The scale probed by μ → eγ is less impressive than that
probed by proton decay, but it is nevertheless several orders
of magnitude above the direct reach of the LHC. Again, it
helps that we consider a process forbidden in the SM, so we
avoid dealing with theoretical errors on the SM prediction.
Moreover, muons are relatively long-lived (�μ in the denom-
inator of Eq. (5.11) is small), and that we can easily produce
and handle large amounts of them.

There is one caveat concerning the scale probed by μ →
eγ . In typical BSM models, the mass of the new particles
that can be excluded by this constraint will be much smaller.
One reason is that in perturbative models the operator in
Eq. (5.9) cannot be generated at tree level, thus it will appear

20 In principle, new physics contributions to μ → eγ affect �μ, but
experimental constraints ensure this is a tiny effect that can be safely
ignored.
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Fig. 4 Feynman diagrams for Higgs production via gluon fusion. Left:
Via a fermion loop, as in the SM. Right: Via a contact interaction due
to the dimension-6 operator in Eq. (5.13)

with at least one loop suppression factor. Furthermore, the
BSM model is likely to have some form of the chiral symme-
try, with some small parameters suppressing the transitions
between left- and right-handed fermions. If that symmetry is
akin to the one in the SM (for example, if chirality is vio-
lated only by the SM Yukawa interactions), the operator in
Eq. (5.9) will be generated with the yμ ∼ 10−3 suppression
factor. But even if [CeB]12 = yμe

16π2�2 , with � identified as the

scale of BSM particles, μ → eγ still probes � ∼ 105 GeV,
comfortably above the LHC reach.

New SMEFT vertices violating established SM symme-
tries may be our best path to new physics at high energy
scales. Nevertheless, not all new SMEFT vertices are of this
type. There are many examples of SMEFT interactions that
preserve all SM symmetries but do not appear in the SM
Lagrangian, usually due to renormalizability of the latter. As
an example, consider this dimension-6 operator:

LD=6 ⊃ CHGH†H Ga
μνG

a
μν. (5.13)

Its effect is to induce the Higgs boson couplings to gluons:

LSMEFT ⊃ v2CHG
h

v
Ga

μνG
a
μν, (5.14)

which permits the Higgs boson to mutate into two gluons
or vice-versa. Such a contact interaction term between the
Higgs and gluons is absent in the SM. However, the process
where two gluons collide to produce a Higgs boson does
appear in the SM at the one-loop level, see Fig. 4. This is in
fact the most common way the Higgs is created at the LHC.
The SM loops and the contact interaction in Eq. (5.14) are in
principle distinguishable experimentally, in particular they
lead to a different pT distribution of the Higgs production in
hadron colliders. In practice, we can best distinguish them
indirectly via global fits to Higgs data, as the SM process
and the Eq. (5.14) are differently correlated with the asso-
ciated t th production rate. The resulting bounds are in the
ballpark of |CHG | � 1

(10 TeV)2 , see e.g. Ref. [60]. This is vis-
ibly less spectacular than the bounds discussed previously in

this subsection. The sensitivity to O(10) TeV scale is rather
typical for new SMEFT vertices not violating any exact or
approximate symmetries of the SM.

5.2 New Lorentz structures

We turn to another class of effects of higher-dimensional
operators, which are related to interaction terms with differ-
ent Lorentz structures compared to those in the SM. Perhaps
the most iconic example in this class are the interactions con-
tributing to the anomalous magnetic and electric moments of
elementary particles. The dimension-6 SMEFT Lagrangian
contains

LD=6 ⊃ [CeB]11(l̄1H σ̄ μν ēc)Bμν. (5.15)

In the presence of this operator, the Lagrangian after elec-
troweak symmetry breaking contains

LSMEFT ⊃ i ēσ̄ μ∂μe + iecσμ∂μē
c − [

mee
ce + h.c.

]

− qeeAμ(ēσ̄ μe) − qeeAμ(ecσμēc)

−
{

�μe − ide
4

Fμν(e
cσμνe) + h.c.

}
(5.16)

where qe = −1 for the electron and

�μe = −2
√

2v cos θWRe [CeB]11,

de = −2
√

2v cos θW Im [CeB]11 (5.17)

The first line in Eq. (5.16) contains the usual kinetic and mass
terms for the electron. In the second line we have electron’s
interaction with the electromagnetic field. The minimal cou-
pling proportional to qe is, of course, already present in the
SM. The effect of the operator in Eq. (5.15) is to introduce
another vertex with two electrons and one photon, but with
a different Lorentz structure, in particular with the photon
entering via the field strength Fμν .

As the name suggests, de in Eq. (5.16) is the electric
dipole moment of the electron, while �μe is its anomalous
magnetic dipole moment. It is worth pausing here to justify
this identification. The notion of dipole moments stems from
non-relativistic physics, therefore it is convenient to match
Eq. (5.16) to the non-relativistic EFT for the electron. This
can be achieved by this change of variables:

eα = 1√
2

{
e−imet

(
ψ + i

2me
σ · ∇ψ

)

α

− eimet
(

ψ†
c − i

2me
σ · ∇ψ†

c

)

α

}
+ O(∇2),

ēα̇
c = 1√

2

{
e−imet

(
ψ − i

2me
σ · ∇ψ

)

α

123



Eur. Phys. J. C (2023) 83 :656 Page 23 of 41 656

+ eimet
(

ψ†
c + i

2me
σ · ∇ψ†

c

)

α

}
+ O(∇2). (5.18)

Here, ψ and ψc are non-relativistic fermionic fields describ-
ing a spin-1/2 particle (electron) and a spin 1/2 antiparticle
(positron), respectively The spinor index α = 1, 2 counts the
two polarizations. The mismatch between the up and down
positions of the spinor indices in Eq. (5.18) is not a typo: this
transformation breaks manifest Lorentz symmetry. The point
of this change of variables is that it separates the electron and
positron degrees of freedom. Indeed, plugging in Eq. (5.18)
in the first line of Eq. (5.16) we get

i ēσ̄ μ∂μe + iecσμ∂μē
c − [

mee
ce + h.c.

]

= iψ†∂tψ + 1

2me
ψ†∇2ψ + iψ†

c ∂tψc

+ 1

2me
ψ†
c ∇2ψc + O(∇3). (5.19)

In other words, ψ and ψc do not mix at the quadratic level,
and they both satisfy the Schrödinger equation in the non-
relativistic limit ∇/me � 1.

Consider now the electromagnetic couplings in the second
line of Eq. (5.16) Plugging the change of variables Eq. (5.18)
and ignoring the couplings of the positron fieldψc one obtains

− qeeAμ(ēσ̄ μe) − qeeAμ(ecσ
μēc)

−
{

�μe − ide
4

Fμν(ecσ
μνe) + h.c.

}

= −qeeVψ†ψ − iqee

2m
Akψ†←→∇ kψ

+
(
qee

me
+ �μe

)
Bk(ψ† σ k

2
ψ) + deE

k
(

ψ† σ k

2
ψ

)
,

(5.20)

where V ≡ A0 is the Coulomb potential, E ≡ −∇V − ∂t A
is the electric field, and B ≡ ∇×A is the magnetic field. The
first two terms describe the interaction of electron’s charge
with the Coulomb and vector potentials. The remaining two
terms describes the interaction of its dipole moments with the
external electric and magnetic fields. We can compare them
with the textbook expressions for the dipole Hamiltonian:
Hint ⊃ −B · μ − E · d. We can thus identify21 the magnetic
and electric moments of the electron at tree level:

μe =
(
qee

me
+ �μe

)
s, de = des, (5.21)

where the spin vector is defined as sk = ψ† σ k

2 ψ . Further-
more, defining the g-factor for a charged particle via the

21 Recall that the sign of the potential terms is flipped between the
Hamiltonian, H = T + V , and the Lagrangian, L = T − V .

relation μ = g qe
2m s, we have

ge − 2

2
= gSM

e − 2

2
+ �μe

me

qee
, (5.22)

where gSM
e − 2 encodes the SM loop effects, and the contri-

butions from higher-dimensional operators are contained in
�μe.

In the following let us assume that [CeB]11 is real (the
imaginary part will be discussed later in Sect. 6), so that
de = 0 while �μe is allowed to linger. We want to
determine the constraint on [CeB]11 from the measure-
ment of the anomalous magnetic moment of the electron.
These days, ge is predicted and measured with the incred-
ible 10−13 accuracy, which is often hailed as a triumph
of both experimental and theoretical prowess and a power-
ful demonstration of the robustness of the QFT framework.
The most recent experimental result comes from Ref. [61]:
ge−2

2 = 0.00115965218059(13). To constrain new physics
we also need the SM prediction gSM

e . This can be calcu-
lated perturbatively, mainly in function of the fine struc-
ture constant α. Unfortunately, at this point in time there
is some confusion about α. Measurements using rubidium
atoms in Ref. [62] lead to 1/α(0) = 137.035999206(11),
while those using cesium atoms in Ref. [63] find 1/α(0) =
137.035999046(27), the two disagreeing at more than 5
sigma. Clearly, one or both experiments underestimated their
systematic errors. To deal with this kind of situations, Par-
ticle Data Group developed a completely ad-hoc but nev-
ertheless very useful procedure. The idea is to punish both
groups indiscriminately by inflating the error bars to the point
where the two measurements become consistent with each
other at 1 sigma. Using this procedure, I find the combined
value 1/α(0) = 137.035999183(56), where the errors are
inflated by S = 5.5. This is a loss of precision by a factor
of 5(2) compared to the more (less) precise input, but, unde-
niably, this combination better reflects our current knowl-
edge of α than the two individual results with the smaller
errors. With this value of α one can obtain the prediction
gSM
e /2 = 1.00115965218045(48). Note that the theoreti-

cal error is now almost 4 times larger than the experimental
one.22

At this point we have all the ingredients to constrain the
Wilson coefficient [CeB]11. Using Eq. (5.22) and replac-
ing �μe using Eq. (5.17) we get [CeB]11 = 1.4(5.0) ×

22 Because of that, it would make sense to actually fix α(0) using the ge
measurement, while the traditional α measurements using atom spec-
troscopy would then be used to constrain new physics. This would be
completely equivalent for the sake of constraining theCeB Wilson coef-
ficient, and just a tad more tricky at the level of the theoretical formalism,
see the discussion of input parameters in the following subsection.
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10−13 GeV−2 or

∣∣[CeB]11
∣∣ � 1

(940 TeV)2 (5.23)

at 95% CL. We can see that the anomalous magnetic moment
of the electron probes very high scales, although not as high
as, say, μ → eγ . Moreover, similar caveat as the one dis-
cussed below Eq. (5.12) applies: in natural BSM models the
chiral symmetry will typically be implemented, leading to
[CeB]11 ∼ ye

16π2�2 . The same scaling is true when [CeB]11

is induced by other dimension-6 operators via renormaliza-
tion group running. If that is the case, measurements of ge
currently probe the very unimpressive new physics scale
� ∼ 100 GeV, such that the validity range of SMEFT would
be null in this scenario. The most accurate precision exper-
iment in physics may not be accurate enough to reach new
physics above a TeV!

Let me also discuss a less spectacular but more typ-
ical example of new Lorentz structures in the SMEFT
Lagrangian. Consider one of the bosonic dimension-6 oper-
ators in Eq. (3.11):

LD=6 ⊃ CW εklmWk
μνW

l
νρW

m
ρμ. (5.24)

It contributes to self-interactions of the electroweak gauge
bosons, in particular, it affects the WWZ vertex. Cubic self-
interactions between electroweak gauge bosons are predicted
as a consequence of the non-abelian structure of the elec-
troweak gauge group, and the existence of the WWZ vertex
was spectacularly confirmed at the turn of century by the
LEP-2 experiment [64]. However, the SM predicts WWZ
interactions with a single derivative acting on one of the
fields, whereas Eq. (5.24) yields one derivative acting on
each field.

Let us put this in a wider context. The CP-conserving triple
interactions of electroweak gauge bosons are traditionally
parametrized as [65]

LTGC = ie

{ (
W+

μ W−
μν − W−

μ W+
μν

)
Aν

+ gZ1
gL
gY

(
W+

μ W−
μν − W−

μ W+
μν

)
Zν

− κγ W
+
μ W−

ν Fμν − κZ
gL
gY

W+
μ W−

ν Zμν

− λγ

1

m2
W

W+
μνW

−
νρFρμ − λZ

gL
gYm2

W

W+
μνW

−
νρ Zρμ

}
,

(5.25)

where g1,Z , κV and λV are real and referred to as the
triple gauge couplings. It is worth knowing this parametriza-
tion because experimental collaboration more often than not
present their results in this language. One physical interpre-
tation of κγ and λγ is that they parametrize the dipole and

quadrupole moments of the W boson: μ = e
2mW

(κγ − λγ )s,

Qi j = − 3e
2m2

W
(κγ +λγ )si s j . In the SM, gZ1 = κγ = κZ = 1,

and λγ = λZ = 0, which corresponds to the W boson g-
factor being equal to two at tree level, and a particular non-
zero value of the quadrupole moment. In SMEFT, dimension-
6 operators may lead to deviations from these predictions,
while respecting the pattern κγ = κZ and λγ = λZ . For this
reason, let us define gZ1 = 1 + δgZ1 , κγ = κZ = 1 + δκ ,
λγ = λZ = λ, and we will treat δgZ1 , δκ and λ as O(�−2)

parameters in the SMEFT power counting. In particular,
in the presence of just the single dimension-6 operator in
Eq. (5.24) one has δgZ1 = δκ = 0 and

λ = 3gL
2

v2CW . (5.26)

How can one constrain the parameters δg1,Z , δκ and λ in
Eq. (5.25)? Unlike for the electron or muon, measuring elec-
tromagnetic moments for such a short-lived particle as the W
boson is not feasible. Instead, one good handle is the energy
dependence of the f f̄ → W+W− and f f̄ ′ → W±Z ampli-
tudes. In SMEFT with dimension-6 operators for E 
 mW

one expects M = MSM[1 + (c1δgZ1 + c2δκ + c3λ)E2/�2],
with ci ∼ O(1) and MSM asymptoting to a constant at large
energies. Therefore, the effects of the non-SM triple gauge
couplings should increase with the collision energy, which
provides a way to distinguish them from the SM pieces. It is
fortunate that the LEP-2 phase of the CERN’s e+e− collider
was operating at several different center-of-mass energies.
The measured e−e+ → W−W+ production cross section is
tabulated in 10 different energy bins in the 161–207 GeV
energy range [64]. Moreover, the triple gauge couplings
affect differently the polarization of the produced W bosons,
which is reflected in the distribution of the W production
angle. All in all, there is enough information to disentangle
all the three triple gauge couplings. It is a straightforward if
tedious to calculate the differential e−e+ → W−W+ cross
sections using the Lagrangian in Eq. (5.25) and then to com-
pare them with the data in Ref. [64]. Once the dust settles
one finds the result

⎛
⎝

δgZ1
δκ

λ

⎞
⎠ =

⎛
⎝

−0.96 ± 0.50
−0.09 ± 0.14
0.48 ± 0.37

⎞
⎠ ,

ρ =
⎛
⎝

1 0.773 −0.955
0.773 1 −0.921

−0.955 −0.921 1

⎞
⎠ . (5.27)

Above I show the 1σ confidence intervals in the simultane-
ous fit to the three triple gauge couplings in the Gaussian
approximation where O(�−4) effects in the WW cross sec-
tion are ignored. I also show the correlation matrix, which
is an important part of the result. From this result, using
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Eq. (5.26), one can obtain the LEP-2 constraint on CW inde-
pendently of other contributions to triple gauge couplings:
|CW | � 1

(220 GeV)2 at 95% CL. This is rather disappoint-
ing, and also surprising, given that the typical precision of
the LEP-2 experiment is O(1%), suggesting the reach up to
� ∼ 3 TeV. The reason for this loose constraint is that LEP-2
alone, for certain accidental reasons, cannot efficiently dis-
entangle all the three triple gauge couplings. The final like-
lihood has an approximately flat direction, as witnessed by
the large off-diagonal entries in the correlation matrix (more
precisely, the determinant of the correlation matrix is very
close to zero).

We can nevertheless obtain stronger constraints on C3W

assuming that this is the only Wilson coefficient affect-
ing WW production. All the necessary information for this
purpose is already encoded in Eq. (5.27). First, from that
equation we can reconstruct the complete likelihood: χ2 =
(x − x0) · σ−2 · (x − x0), where x = (δgZ1 , δκ, λ), x0 are
the central values in Eq. (5.27), [σ 2]i j = �xiρi j�x j is the
error matrix built from the 1σ uncertainties �x and the cor-
relation matrix ρ in Eq. (5.27), and σ−2 is the inverse of the
error matrix. In this 3-dimensional likelihood function we set
to zero δgZ1 and δκ , to obtain 1-dimensional likelihood for
λ. Minimizing that likelihood one finds λ = −0.049(27),
a much stronger constraint than in Eq. (5.27), although still
weaker than naively expected, which has to do with the sup-
pressed interference terms between the SM and λ contribu-
tions [66]. This translates to

|CW | � 1

(760 GeV)2 (5.28)

at 95% CL. The LHC also probes this Wilson coefficient.
There the relevant processes at the parton level are qq̄ →
W+W− and qq̄ ′ → W±Z , while the scanning of the center-
of-mass energy is automatically delivered via to the parton
distribution functions of the colliding protons. The recent
analysis by ATLAS quotes |CW | � 1

(1.6 TeV)2 at 95% CL, a
factor of four better than the LEP-2 bound in Eq. (5.28).

5.3 Modified couplings

We turn to yet another important class of effects of higher-
dimensional operators. The SM has merely 18 free param-
eters (not counting the theta term), and in terms of those
it predicts countless interaction strengths between particles
in the SM Lagrangian. For example, all interactions of the
Higgs boson are uniquely predicted in terms of the Higgs
VEV v and the SM particles masses:

LSM ⊃ h

v

{
2m2

WW+
μ W−

μ + m2
Z ZμZ

μ

−
∑

f =d,u,s,c,b,t

m f
[
f c f + f̄ f̄ c]

}
− m2

h

2v
h3 − m2

h

8v2 h
4.

(5.29)

All of the parameters above are well known. The experimen-
tal precision varies (e.g. mZ is measured with a relative 10−4

error, while for the up and down quark the accuracy is closer
to 10%) but is invariably better than what is needed to ade-
quately predict the LHC rates of Higgs production and decay.
Staying within the SM paradigm, the LHC measurements
of Higgs cross sections and branching ratios teach us next
to nothing about fundamental interactions. Things are com-
pletely different in SMEFT, where literally every interaction
strength in Eq. (5.29) can be altered by higher-dimensional
operators. As an example, consider the dimension-6 operator
in Eq. (3.11) that modifies the Higgs boson coupling to tau
leptons:

LD=6 ⊃ [CeH ]33H
†H(l̄3H τ̄ c) + h.c. (5.30)

After electroweak symmetry breaking this becomes

�LSM = [CeH ]33
(v + h)3

2
√

2
(τ̄ τ̄ c) + h.c.

= [CeH ]33
v3 + 3v2h + 3vh2 + h3

2
√

2
(τ̄ τ̄ c) + h.c.

(5.31)

The h2 and h3 are new vertices in the nomenclature of this
section. They have currently very limited phenomenological
relevance, so let us leave them aside. The first two terms shift
the τ mass term and the Higgs Yukawa coupling to τ :

LSMEFT ⊃ v√
2

(
[Ye]33 + v2

2
[CeH ]33

)[
τ cτ + τ̄ τ̄ c

]

+ h√
2

(
[Ye]33 + 3v2

2
[CeH ]33

)[
τ cτ + τ̄ τ̄ c

]
,

(5.32)

where, to simplify this discussion, I assume that [CeH ]33 does
not have an imaginary part. By convention, I always work in
a basis where Ye + (v2/2)CeH is diagonal and real, see the
comment at the end of Sect. 4. Therefore we can identify the
τ mass as mτ = v√

2

([Ye]33 + v2

2 [CeH ]33
)
, and rewrite the

Yukawa

LSMEFT ⊃ h√
2

(
[Ye]33 + v2

2
[CeH ]33

)

×
(

1 + v2

[Ye]33
[CeH ]33

)[
τ cτ + τ̄ τ̄ c

]

= mτ

(
1 + δyτ

)
h
[
τ cτ + τ̄ τ̄ c

]
,
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δyτ = v3

√
2mτ

[CeH ]33, (5.33)

where I’m neglecting O([CeH ]2
33) ∼ O(�−4) effects. Thus,

[CeH ]33 destroys the correlation between the Higgs boson
Yukawa coupling to the τ lepton and the τ lepton mass. In
other words, that coupling is modified, deviating from the SM
prediction. This is in fact the best way to constrain [CeH ]33.
Particle Data Group performs an average of the ATLAS and
CMS bounds on the h → ττ signal strength, finding �(h →
ττ)/�(h → ττ)SM = 1.15 ± 0.15 [57]. This translates to
δyτ = 0.08 ± 0.08, or

∣∣[CeH ]33
∣∣ � 1

(5 TeV)2 (5.34)

at 95% CL. The reach up to a few TeV is representative to
what one can currently squeeze out of Higgs physics.

There are two main lessons from this simple example.
One is the importance of precision measurements. CeH is
just one of many dimension-6 operators that shift interaction
strengths away from the SM value. Searching for such effects
relies not only on improving experimental accuracy, but also
on a good control of the theoretical predictions. This is often
challenging, but the payoff is important: increasing precision
of the measurements directly translates into increased scale
of higher-dimensional operators (thus, increased scale of new
physics) that we can probe. The second lesson concerns the
importance of properly identifying the input parameters in
SMEFT. In the above example, one had to take into account
that [CeH ]33 contributes not only to the hττ Yukawa, but
also to the τ mass term. Had we forgotten about it, and just
naively looked at the Yukawa term in Eq. (5.32), we would
have obtained a wrong answer for δyτ . In this case the error
committed would be of order one, but it can be much more
dramatic. Consider another example, where we switch on the
four-fermion operator

LD=6 ⊃ [Cll ]1221(l̄1σ̄
ρl2)(l̄2σ̄ρl1), (5.35)

where [Cll ]1221 is real in our conventions (see the comment
below Eq. (3.16)). This operator contains the interaction
terms LSMEFT ⊃ [Cll ]1221(ēσ̄ ρμ)(ν̄μσ̄ρνe) + h.c., which
contributes to muon decay, �(μ− → e−ν̄eνμ)/�(μ− →
e−ν̄eνμ)SM = 1 − v2[Cll ]1221. Now, muon decay is mea-
sured with impressive precision, with the relative error of
order 10−6. One might naively jump to the conclusion that
[Cll ]1221 is stringently constrained, v2|[Cll ]1221| � 10−6,
that is to say |[Cll ]1221| � 1

(300 TeV)2 . This would be ter-
ribly wrong. The reason is that, in the usual approach
to SM precision tests, muon decay is the standard can-
dle that determines one of the unknown parameters of the

SM - the Higgs VEV v. Indeed, the tree-level formula23

�SM
μ→eνν = m5

μ/(384π3v4) allows one to precisely fix v,
given that mμ is known with an even better accuracy. On the
other hand, in SMEFT in the presence of [Cll ]1221 one has
�SMEFT

μ→eνν = m5
μ(1 − v2[Cll ]1221)/(384π3v4). Since both v

and [Cll ]1221 are a-priori unknown parameters, muon decay
does not fix either, but just one combination of the two. Let
us repeat it loudly and clearly: muon decay alone leads to no
constraint at all on Cll !

Nevertheless, the effects of [Cll ]1221 do not jus disappear,
when regarded from a more global perspective. To understand
how [Cll ]1221 re-emerges we need to do a small detour first,
and discuss the input parameters for electroweak precision
tests. The latter can be defined as a set of observables that,
in the SM at tree level, depend on the parameters gL , gY and
v in the electroweak sector. The numerical values of these
parameters are traditionally fixed by three precisely known
input observables:

1. The Fermi constant GF , extracted from the mea-
sured muon lifetime using the formula �SM

μ→eνν =
G2

Fm
5
μ/(192π3) plus radiative corrections [67].

2. The electromagnetic structure constant α, currently
best extracted from the spectroscopy of rubidium [62]
and cesium [63] atoms.

3. The Z boson mass mZ , extracted from the position of
the corresponding resonance in e+e− scattering in the
LEP-1 collider [68].

In SMEFT, in the presence of [Cll ]1221, working at O(�−2)

and at tree24 level, these input observables are connected to
the SMEFT parameters as

GF = 1√
2v2

0

(
1 − v2

2
[Cll ]1221

)
, α = g2

L0g
2
Y0

4π(g2
L0 + g2

Y0)
,

mZ =
√
g2
L0 + g2

Y0v0

2
, (5.36)

where I re-labeled the parameters from the SM Lagrangian
using the subscript zero to distinguish them from the gL ,
gY and v parameters in the following, which will differ by
O(�−2), and which will be assigned definite numerical val-
ues. Note at, at O(�−2), it does not matter whether I write
v2Cll or v2

0Cll . If [Cll ]1221 = 0 then, as in the SM, Eq. (5.36)
relates 3 parameters to 3 observables and we can readily solve
for v0, gL0, and gY0. However when [Cll ]1221 �= 0 we have

23 Of course, at this level of precision, one should also take into account
the radiative and O(m2

e/m
3
μ) corrections when relating v to the observ-

able decay width. This does not interfere with the following discussion.
24 Once again, radiative corrections from D ≤ 4 operators must be
taken into account in the matching of the input parameters to observables
in order to meet the required precision level. The procedure is in fact
very similar to our treatment of higher-dimensional effects.
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3 equations for 4 parameters. In this case it is convenient
to use a trick: we can get rid of [Cll ]1221 from Eq. (5.36) by
absorbing it into the other parameters. These can be achieved
by defining

v0 = v(1 + δv), gL ,0 = gL(1 + δgL),

gY,0 = gY (1 + δgY ), (5.37)

where

δv = −v2

4
[Cll ]1221, δgL = g2

Lv2

4(g2
L − g2

Y )
[Cll ]1221,

δgY = − g2
Y v2

4(g2
L − g2

Y )
[Cll ]1221. (5.38)

The shift δv removes the [Cll ]1221 pollution from GF at
O(�−2). The other two shifts are then needed to prevent
[Cll ]1221 from popping up in mZ and α. After the shift
Eq. (5.36) becomes

GF = 1√
2v2

, α = g2
Lg

2
Y

4π(g2
L + g2

Y )
, mZ =

√
g2
L + g2

Y v

2
,

(5.39)

which means that gL , gY , and v are related to observables in
exactly the same way as the corresponding SM parameters,
and therefore they can be assigned exactly the same numer-
ical values. Plugging in the numbers into Eq. (5.39), GF =
1.1663787(6) × 10−5 GeV−2, α(mZ ) = 7.81549(55) ×
10−3, mZ = 91.1876(21) GeV [57], one finds25

v = 246.219651(63) GeV, gL = 0.648457(10),

gY = 0.357968(18). (5.40)

OK, we managed to assign numerical values to electroweak
couplings in SMEFT, but where is [Cll ]1221 now? The point is
that, due to the shift in Eq. (5.37), that Wilson coefficient will
pop in practically every other electroweak precision observ-
able. Let us focus on just one of them - the W boson mass.
Starting from the tree-level formula mW = gL0v0/2 and
applying the shift in Eq. (5.37) one finds that the correction
to the W boson mass in the presence of [Cll ]1221 is given by

�mW

mW
= g2

Y v2

4(g2
L − g2

Y )
[Cll ]1221. (5.41)

Now we are ready to constrain [Cll ]1221. Using the average
of experimental measurements from Particle Data Group,

25 Note that I use α(mZ ) rather than α(0) to extract the numerical values
of the electroweak couplings in SMEFT, even though the former has a
much larger error due to non-perturbative contributions to the running
from the low-energy up to the electroweak scale. This choice is more
convenient in practice, and the incurred error is negligible for most
applications.

mW = 80.377(12) [57], as well as their SM predic-
tion mSM

W = 80.361(6) [57], one obtains v2[Cll ]1221 =
1.8(1.5) × 10−3. This translates to

∣∣[Cll ]1221
∣∣ � 1

(3.5 TeV)2 (5.42)

at 95% CL. [Cll ]1221 contributes to many other electroweak
precision observables via the shift in Eq. (5.37), therefore
the true bound is somewhat stronger than what one obtains
based on the W mass alone. Using the global likelihood from
Ref. [69] I obtain

∣∣[Cll ]1221
∣∣ � 1

(5.7 TeV)2 at 95% CL.

5.4 One more thing

In this section, for the sake of simplicity, the discussion of
phenomenological effects of higher-dimensional operators is
divided into “new vertices”, “new Lorentz structures”, and
“modified couplings” parts. It is however important to men-
tion that sometimes there is no invariant way to make this dis-
tinction. Consider the following example of self-interactions
of the Higgs boson h:

LSMEFT ⊃ 1

2
(∂μh)2 − m2

h

2
h2 − m2

h

2v
(1 + δ1) h

3

−δ2

v
h∂μh∂μh + · · · (5.43)

where the dots denote terms with 4 and more Higgs bosons.
Two possible effects of higher-dimensional operators appear
above. The one proportional to δ1 changes the magnitude of
the triple Higgs self-coupling, which is already present in the
SM Lagrangian but with the magnitude strictly fixed by the
Higgs boson mass. This is a modified coupling in our nomen-
clature. The other effect proportional to δ2 is a two-derivative
Higgs self-interaction term which does not appear in the
SM Lagrangian in its canonical form. This is a new Lorentz
structure in our nomenclature. Both δi can be generated by
dimension-6 operators, therefore we will treat δi as O(�−2).
For example, switching on the Wilson coefficients CH and
CH� in Eq. (3.11), one gets δ1 = 3v2CH� − 5 v4

m2
h
CH ,

δ2 = 2v2CH�. Both δi contribute in a non-trivial way to the
Higgs scattering amplitudes, for example to hh → hh, or to
double Higgs production at the LHC once interactions of h
with the rest of the SM are taken into account. Nevertheless,
we can equivalently work with an effective Lagrangian where
the 2-derivative h(∂μh)2 interaction is completely eliminated
via field redefinitions. To this end we redefine the Higgs
boson field as

h → h + δ2

2v
h2. (5.44)
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After this redefinition the effective Lagrangian of Eq. (5.43)
takes the form

L = 1

2
(∂μh)2 − m2

h

2
h2 − m2

h

2v
(1 + δ1 + δ2) h

3 + · · · ,

(5.45)

where I ignored δ2
i ∼ O(�−4) terms resulting from the redef-

inition. Seemingly, the Lagrangians in Eqs. (5.43) and (5.45)
are different, as they contain different interaction terms.
However, the equivalence theorem ensures that field redef-
initions cannot change the physical content of the theory,
as was discussed in Sect. 4 in the context of SMEFT bases.
Therefore, the two Lagrangians give exactly the same pre-
dictions for physical observables, at any order in the pertur-
bation theory, which can be verified by explicit calculations.
This demonstrates that we can get rid of some of the new
Lorentz structures generated by higher-dimensional opera-
tors and absorb them into modified couplings. Conversely,
a shift h → h − δ1

2v
h2 applied to Eq. (5.43) would erase

the modified coupling in favor of the new Lorentz structure.
Once the fermions are included in the discussion, the above
shift of the Higgs boson field produces Yukawa-like inter-
actions between two powers of the Higgs boson and the SM
fermions. Such interactions are absent in the SM Lagrangian,
thus they are “new vertices” in our nomenclature. Therefore
the boundaries between new vertices and modified couplings
or new Lorentz structures are also blurred by field redefini-
tions. The sharp boundary persists only for the new vertices
violating the SM symmetries, as those can never be redefined
away into modified couplings or new Lorentz structures.

5.5 On the importance of global fits

In this section I have presented several examples of exper-
imental constraints on Wilson coefficients of dimension-6
operators. Most of the time, in the derivation I was assuming
that just a single Wilson coefficient was present at a time. This
was for the sake of simplicity and clarity. My main goal was to
sketch the path between the SMEFT Lagrangian and observ-
able quantities. One should be aware, however, that such
one-at-a-time results are rarely useful in practice. The higher-
dimensional SMEFT operators are meant to describe effects
of heavy BSM particles. But BSM models will never produce
a single operator. Typical ones will produce dozens already
at tree level. Even if not, renormalization group running and
other loop effects will make sure to generate additional oper-
ators. Note also that one-operator-at-a-time is inherently a
basis-dependent statement: what is a single operator in one
basis may map to several operators with correlated Wilson
coefficients in another basis.

For the practical purposes what you need is a global likeli-
hood function. This should be derived without assuming that
any particular Wilson coefficient in the SMEFT Lagrangian

vanishes. A single observable typically depends on several
Wilson coefficients but, at least at tree level and truncating
the analysis at O(�−2), the relevant linear combination of
Wilson coefficient can be determined by the similar tech-
niques as discussed in this section. Beyond tree level it may
be more challenging to proceed in full generality, but the
more and more widespread availability of automatization
tools should help to overcome the difficulties. The real power
of this approach is highlighted when multiple observables are
combined. More often than not, different observables will
depend on different linear combinations of Wilson coeffi-
cients, therefore they are complementary. If a large enough
number of observables is included in the global fit, multiple
Wilson coefficients can be independently constrained with-
out any simplifying assumptions. The taste of this procedure
was given around Eq. (5.27), where constraints from the LEP-
2WW cross section measured in different angular and energy
bins were combined to simultaneously determine three triple
gauge couplings of electroweak gauge bosons.

The likelihood function obtained in such global fits can
be easily shared in a numerical form. If the likelihood is
approximately Gaussian, the full information can be suc-
cinctly encoded by giving the central values, uncertainties,
and the correlation matrix for the constrained Wilson coeffi-
cients. This likelihood can then be used by other researchers
to constrain their preferred BSM models. There are many
groups extracting such likelihoods from different classes of
observables: Higgs physics, electroweak precision tests, fla-
vor physics, etc. Each such work can be regarded as a lego
block to create an even larger likelihood function covering
more aspects of physics beyond the SM. Combining differ-
ent likelihoods often brings forward important synergies. For
example, within the SMEFT framework there is an impor-
tant complementarity between measuring the triple gauge
couplings and the Higgs coupling. Combining the two sets
of observables allows one to lift approximate flat directions
that occur in each standalone set. An advanced example
of such brinkmanship is Ref. [69], where a wide selection
of electroweak precisions tests at low and high energies is
used to simultaneously constrain 73 linear combinations of
dimension-6 Wilson coefficients. This is still a bit less than
the complete set of 3045 dimension-6 Wilson coefficients in
the SMEFT Lagrangian, but we’re getting there:)

6 CP violation in SMEFT

Charge conjugation (C) and parity (P) are badly violated
in the SM. Their combination, CP , is not a symmetry of
the Lagrangian either, however, due to certain accidents of
nature, the observable effects of the SM sources of CP vio-
lation are feeble. This leaves ample room for CP-violating
higher-dimensional operators to leave an imprint.
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6.1 Formalism of CP violation

Let us begin by discussing how CP acts on the quantum
fields in SMEFT. The Higgs field H is scalar26 and the trans-
formation is quite simple:

(CP)H(t, x)(CP)−1 = H∗(t,−x). (6.1)

The action of P is responsible for x → −x, and the action
of C is responsible for the complex conjugation on the
right-hand side. This in particular implies that the Higgs
boson, which lives in the real part of H , is CP even:
(CP)h(t, x)(CP)−1 = h(t,−x).

For the gauge fields, P and C act as

PV 0(t, x)P−1 = V 0(t,−x),

PV k(t, x)P−1 = −V k(t,−x),

CVμ(t, x)C−1 = −Vμ(t, x). (6.2)

The action of parity is the usual one for vectors. For electro-
magnetic fields it implies the well known fact that the electric
field E is P-odd, while the magnetic field B is P-even. The
minus in the action of C is intuitive: changing a particle into
its anti-particle flips the electric charge and thus the sign of
the potential. It follows that CP acts as

(CP)V 0(t, x)(CP)−1 = −V 0(t,−x),

(CP)V k(t, x)(CP)−1 = V k(t,−x). (6.3)

It is easy to show that the kinetic term VμνVμν is CP even.
On the other hand Vμν Ṽμν is CP odd:

(CP)

∫
d4xVμν Ṽ

μν(x)(CP)−1

≡ 1

2
εμναβ(CP)

∫
d4xVμνVαβ(x)(CP)−1

= 2εi jk(CP)

∫
d4xV0i V jk(x)(CP)−1

= 2εi jk(CP)

∫
d4x[∂0Vi − ∂i V0][∂ j Vk − ∂kVj ](x)(CP)−1

= 2εi jk
∫

d4x[∂0Vi + ∂i V0][∂ j Vk − ∂kVj ](t,−x)

= −2εi jk
∫

d4x[∂0Vi (t, x) − ∂i V0(t, x)][∂ j Vk(t, x) − ∂kVj (t, x)]

= −
∫

d4xVμν(x)Ṽ
μν(x). (6.4)

In the next-to-last step we changed the integration variables
x → −x. This shows that the θ term in the D = 4 Lagrangian

26 As opposed to pseudo-scalar, for which P and CP pick up an addi-
tional minus sign. Pseudo-scalars do exist in nature as composite parti-
cles made of SM constituents, the prime example being the pions.

Eq. (3.7) violatesCP . Likewise, the bosonic interactions pro-
portional to the Wilson coefficients CHG̃ , CHW̃ , CH B̃ , and
CHW̃ B in Eq. (3.11) are CP odd. By an analogous calcula-
tion one can show that also the ones proportional to CW̃ and
CG̃ are CP violating. Note that in these cases CP violation
is not associate with complex couplings in the Lagrangian.

Let us move to the fermionic fields. One can show that
parity and charge conjugation act on two-component fermion
fields as

Pψα(t, x)P−1 = ψ̄c α̇(t,−x),

Pψα(t, x)P−1 = −ψ̄c
α̇(t,−x),

Pψc
α(t, x)P−1 = −ψ̄ α̇(t,−x),

Pψc α(t, x)P−1 = ψ̄α̇(t,−x), (6.5)

Cψ(t, x)C−1 = ψc(t, x),

Cψc(t, x)C−1 = ψ(t, x). (6.6)

Parity, intuitively, exchanges left- and right-handed fermions.
The action of C provides the rationale for the ·c notation. It
follows that CP acts as

(CP)ψα(t, x)(CP)−1 = ψ̄ α̇(t,−x),

(CP)ψα(t, x)(CP)−1 = −ψ̄α̇(t,−x),

(CP)ψc
α(t, x)(CP)−1 = −ψ̄c α̇(t,−x),

(CP)ψc α(t, x)(CP)−1 = ψ̄c
α̇(t,−x). (6.7)

Now we are ready to investigate how CP acts on a
fermionic mass term in the action:

(CP)

∫
d4x

[
mψcψ + m∗ψ̄ψ̄c](t, x)(CP)−1

≡ (CP)

∫
d4xh

[
mψc αψα + m∗ψ̄α̇ψ̄c α̇

]
(t, x)(CP)−1

=
∫

d4x
[
mψ̄c

α̇ψ̄ α̇ + m∗ψαψc
α

]
(t,−x)

=
∫

d4x
[
mψ̄α̇ψ̄c α̇ + m∗ψc αψα

]
(t, x)

≡
∫

d4x
[
m∗ψcψ + mψ̄ψ̄c](t, x). (6.8)

In the last step we changed the integration variables x → −x,
and used that for anti-commuting fermion fields we have
ψαψc

α = −ψc
αψα = ψc αψα . It follows that complex mass

terms violate CP . This is however not the whole story. The
chiral transformation:

ψ → e−iArg[m]/2+iηψ,

ψc → e−iArg[m]/2−iηψc, (6.9)
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with an arbitrary phase η, removes the complex phase of the
mass term and restores CP conservation at the level of the
kinetics terms. ThusCP violation can only arise due to unre-
movable relative phases between fermionic mass and inter-
action terms. For example, by exactly the same calculation
as in Eq. (6.8), CP transformation of a Yukawa interaction
of the fermion with a real scalar field h is given by

(CP)

∫
d4xh

[
yψcψ + y∗ψ̄ψ̄c](t, x)(CP)−1

→
∫

d4xh
[
y∗ψcψ + yψ̄ψ̄c](t, x). (6.10)

If Arg[m] �= Arg[y] then the relative phase cannot be
removed and CP violation is physical. This simple example
illustrates the fact that CP is a collective endeavour. Phases
in a single interaction are not physical, as they can always
be transferred elsewhere by a phase redefinition of fermionic
fields. For this reason, the mathematically proper language to
discussCP involves invariants under phase and other unitary
transformations. In the SM there is only one such object: the
famous Jarlskog invariant. SMEFT proliferates the number
of physical phases and invariants; at the level of dimension-6
operators they were recently classified in Ref. [70].

6.2 CP violation at D = 4

To set the stage, I will now briefly discuss CP violation at
the level of D = 4 operators in SMEFT, which is the same
as CP violation in the SM. This will be the springboard to
describe observable CP-violating effects of selected higher-
dimensional SMEFT operators in the following subsections.

The D = 4 SMEFT Lagrangian in Eq. (3.7) contains the
so-called theta term:

LD=4 ⊃ θ̃Ga
μν G̃

a
μν. (6.11)

This is a total derivative, which does not affect any perturba-
tive amplitudes. However, at the non-perturbative level this
term does contribute to CP-violating hadronic observables,
in particular to the neutron EDM. The most recent lattice
evaluation in Ref. [14] estimates

dn = 0.158(36)θ̃ e fm. (6.12)

The current experimental limit is dn = (0.0 ± 1.1) ×
10−13 e fm [71], which leads to the 95% CL limit

|θ̃ | � 1.4 × 10−12. (6.13)

The smallness of CP violation due the theta term is one of
the biggest mysteries of contemporary particle physics.

The D = 4 SMEFT Lagrangian also contains the Yukawa
interactions:

LD=4 ⊃ Q̄ H̃YuŪ
c + Q̄HYd D̄

c + L̄ HYe Ē
c + h.c. (6.14)

As discussed around Eq. (6.10), Yukawa terms transform
under CP as Y f → Y ∗

f , therefore complex Yukawa phases
may lead to CP violation. However, phases in standalone
Yukawa terms are removable, therefore they have to be dis-
cussed in conjunction with other interactions in the SMEFT
Lagrangian. The leptonic part will be discussed later in the
context of D = 5 operators, and we focus on the quark
Yukawas for now. The usual way to isolate the physical
phases is to first write down the quark mass term after

electroweak symmetry breaking: LSMEFT ⊃ v√
2

(
ŪYuŪ c +

D̄cYd D̄c + h.c.

)
, where Q = (U, D). In full generality, one

can decompose any matrix as Y f = L f M f R
†
f , where L f

and R f are unitary, and M f is diagonal with real entries.
Then we can rotate the quark fields U → LuU , D → Ld D,
Uc → UcR†

u , Dc → DcR†
d .27 This transformation leaves

invariant most of the terms originating from the D = 4
Lagrangian, in particular R f cancel out completely. The only
place where L f emerge is in the charged current interactions
between the W boson and left-handed quarks:

LSMEFT ⊃ − gL√
2
W+

μ Ū σ̄ μV D + h.c., (6.15)

where the CKM matrix V is related to the left rotations
as V = L†

u Ld and therefore it is unitary, V †V = 1. By
an analogous calculation as the one in Eq. (6.8) one can
show that the CP transformation effectively takes V → V ∗,
thus phases of the CKM matrix may lead to CP violation.
A general unitary matrix has 9 free parameters: 3 angles
and 6 phases, however most of the phases are removable.
Indeed, we can make the transformations uJ → eiφJ u J ,
ucJ → eiφJ ucJ , dJ → eiηJ dJ , dcJ → eiηJ dcJ , which main-
tain real quark masses, and transform the CKM matrix
elements as [V ]J K → ei(φJ+ηK )[V ]J K . Physics does not
depend on conventions, therefore CP-violating observables
must depend on invariants of V under such phase redefi-
nitions. The non-trivial invariant that can be constructed is
JI J K L = Im [VI K VJ LV ∗

I LV
∗
J K ] (no summation of repeated

indices). It may seem that there are several invariants for dif-
ferent values of I, J, K , L = 1 . . . 3. However, it is easy to
see that JI J K L is antisymmetric in I J and in K L indices, and
it is symmetric under I J ↔ K L . Furthermore, using the uni-
tarity of V , one can show that JI J J K = −JI J I K = −JI J J I

27 Higher-dimensional terms can also contribute to the fermion masses.
Strictly speaking, in SMEFT one diagonalizes not Y f but Y eff

f = Y f +
v2

2 C f H + · · · . This subtlety does not affect the following arguments.
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for I �= J �= K . All in all, for 3 generations there remains a
single order parameter forCP violation via the CKM matrix,
the so-called Jarlskog invariant:

J ≡ J1223 = Im [VusVcbV ∗
ubV

∗
cs], (6.16)

while the other components of J are given by the for-
mula JI J K L = J

∑
M,N εI K MεJ LN . In the SM, this single

invariant controls CP violation observed in multiple pro-
cesses with mesons containing strange, charm, and bottom
quarks. From these observations, assuming negligible contri-
butions from higher-dimensional operators, one can extract
J = 3.08(14)×10−5 [57]. This is a small number but, actu-
ally, the phase itself in the CKM matrix is large, order one.
In particular, in the widely used Wolfenstein parametriza-
tion of the CKM matrix, where the phase is located mostly
in the Vub and Vtd elements, one gets Arg[Vub]  −1.1,
Arg[Vtd ]  −0.4. However the Jarlskog invariant is sup-
pressed by the smallness of the absolute values of the off-
diagonal CKM elements: |Vus | ∼ λ, |Vcb| ∼ λ2, |Vub| ∼ λ3,
where λ ∼ 0.2 is the Cabibbo angle. Due to this hierarchi-
cal structure, J ∼ λ6, leading to a severe suppression of
observable signals of CP violation. Although CP violation
was first discovered some 60 years ago [72], to this day exper-
imental detections ofCP-violating quantities are few and far
between, and each new detection is announced with fanfare.

The partly mysterious and partly accidental suppression of
CP violation at the level of the D = 4 Lagrangian opens the
playground for higher-dimensional CP-violating operators.
D = 5 operators introduce three moreCP invariants, includ-
ing the so-called PMNS phase, which is a subject of an intense
ongoing experimental program in neutrino physics. At the
level of D = 6 operators all hell breaks loose, and there are
literally hundreds of new CP invariants [70]. Dimension-6
operators can provide tree-level contributions to basically any
CP-violating observable, including the EDMs of elementary
(electron) and composite (neutron, nuclei, molecules) parti-
cles, and the neutral meson mixing (K K̄ , DD̄, B B̄). In the
rest of this section we discuss selected CP-violating observ-
ables and their dependence on higher-dimensional SMEFT
operators.

6.3 CP violation at D = 5

The dimension-5 operator in Eq. (3.8) after electroweak sym-
metry breaking yields the neutrino mass terms. Together with
the charged lepton masses from the D = 4 Yukawa interac-
tions, the lepton masses are given by

LSMEFT ⊃ − v√
2
ĒYe Ē

c − v2

2
ν̄C5ν̄ + h.c. (6.17)

An analogous calculation as in Eq. (6.8) shows that CP
takes Ye → Y ∗

e , C5 → C∗
5 , therefore the phases in C5 and

Ye are potentially CP-violating. As in the quark case ear-
lier, in order to identify the physical phases it is convenient
to make the masses diagonal and real. One can decompose
Ye = LeMeR

†
e , C5 = LT

ν MνLν (recall that C5 is symmet-
ric), where Le, Re and Lν are unitary, while Me and Mν are
diagonal, real, and positive. Rotating the fields as ν → Lνν,
E → LeE , Ec → EcR†

e , the phases then re-emerge in the
W boson interactions with left-handed leptons:

LSMEFT ⊃ gL√
2
W−

μ Ē σ̄ μUν + h.c., (6.18)

where the PMNS matrix U = L†
e Lν is unitary.

In general, a unitary matrix has 6 phases. We can remove
3 phases from U by redefining eJ → eiφJ eJ , ecJ → eiφJ ecJ .
Contrary to the CKM case, we cannot remove further two
phases, because the transformations νn → eiηnνn would feed
the complex phases back into the neutrino mass terms. Thus,
there are three physical phases in U . One corresponds to the
usual Jarlskog invariant,

ĴJ Kmn = Im [UJmUKnU
∗
JnU

∗
Km] = Ĵ

∑
L ,p

εJ K Lεmnp.

(6.19)

The phase controlling Ĵ is called the Dirac phase, and it
remains physical in the limit of vanishing neutrino masses.
It is measurable in oscillation experiments as it affects the
oscillation probabilities. Ignoring contributions from higher-
dimensional operators, these can be written as

P(νJ → νK ) =
3∑

m,n=1

ei
�2
mn

2Eν UJmUKnU
∗
JnU

∗
Km,

P(ν̄J → ν̄K ) =
3∑

m,n=1

e−i �2
mn

2Eν UJmUKnU
∗
JnU

∗
Km, (6.20)

where �2
kl ≡ m2

νk
− m2

νl
are the differences of the squared

masses of neutrino eigenstates. TheCP-violating observable
is the difference between oscillation probabilities of neutri-
nos and anti-neutrinos of a given flavor:

P(νJ → νK ) − P(ν̄J → ν̄K )

= −2
3∑

m,n=1

sin

(
�2

mn

2Eν

)
Im [UJmUKnU

∗
JnU

∗
Km]

= −2Ĵ
∑
L

εJ K L

3∑
m,n,p=1

εmnp sin

(
�2

mn

2Eν

)
. (6.21)
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This explicitly shows that CP violation in neutrino oscilla-
tions at the D = 5 level is controlled by the single Jarlskog
invariant Ĵ defined in Eq. (6.19). Determining whether Ĵ
is non-zero is subject to an intensive experimental program,
with several ongoing experiments (T2K, NOνA, Super-K)
placing non-trivial limits. Some of these even provide pre-
liminary hints that Ĵ �= 0, and that the phase in the PMNS
matrix, much like in the CKM matrix, is large [73]. The mat-
ter should be ultimately resolved in the coming years, or at
latest in the next decade, when the future DUNE and Hyper-
K experiments collect enough data. The importance of these
measurements go beyond measuring yet another parameter
in the PMNS matrix. If Ĵ �= 0, it will be another (after
the CKM phase) demonstration that phases are present in the
fundamental Lagrangians. Philosophically, it will be a strong
hint that phases are generic, that is to say, they arise when-
ever they are allowed to, and there is no physical principles
suppressing them. Adopting this point of view would have
tremendous consequences for BSM model building.28

The other two physical phases in the PMNS matrix can be
isolated by rewriting UJn = ÛJneiγn , where ÛJn contains
only the Dirac phase. The γn phases cancel out in ĴJ Kmn but
the two relative phases (the differences γn − γm) are phys-
ical. They are called the Majorana phases and they enter
into predictions for physical observables, such as neutrino
oscillations into anti-neutrinos, or neutrinoless double beta
decay. However they become unphysical in the limit of van-
ishing neutrino masses, as in this limit one is free to use
phase redefinitions of the neutrino fields to get rid of these
phases. Therefore, their effects on physical observables must
always be proportional to the neutrino masses, and therefore
extremely suppressed. For the moment, there is little hope of
ever measuring them in low-energy experiments.

6.4 Electric dipole moments

Electric dipole moments, abbreviated as EDMs, are mundane
in classical electrodynamics. Take two opposite charges ±Q,
put them very close together at a distance R, and what you
get from a sufficiently large distance r 
 R looks like a par-
ticle without an electric charge but with the electric dipole
moment |d| = QR. On the other hand, EDMs of elemen-
tary particles are dramatic because they signal CP violation.
To date, no such EDMs have been detected, in spite of the
existence of CP violation in the SM - the contributions pro-
portional to the CKM phase are still many orders of magni-
tude below the experimental sensitivity. The same remains

28 The usual sales pitch for advertising neutrino CP violation is the
question of the origin of matter and its dominance over anti-matter.
This is however very controversial: there is no model-independent or
natural way to connect the phase measured in neutrino oscillations to the
phases responsible for the asymmetry between matter and anti-matter.

true concerning the EDMs of sufficiently simple composite
particles: protons, neutrons, atoms in ground state in vacu-
um…To observe permanent EDMs one has to go up to the
molecule level, the prime example being the water molecule
with dH2O  2 × 10−5 eV−1.

Let us begin the discussion with the simple case of the
electron. The SMEFT Lagrangian contains the dimension-6
operators

LD=6 ⊃ [CeW ]11(l̄1σ
k H σ̄ μν ēc)Wk

μν

+ [CeB]11(l̄1H σ̄ μν ēc)Bμν + h.c. (6.22)

where l1 = (νe, e) is the first generation left-handed lepton
doublet. Once the Higgs gets a VEV this leads to

LSMEFT ⊃ −
{

�μe − ide
4

Fμν(e
cσμνe) + h.c.

}
, (6.23)

where

�μe = −2
√

2vRe

[
cos θW [CeB]11 − sin θW [CeW ]11

]
,

de = −2
√

2vIm

[
cos θW [CeB]11 − sin θW [CeW ]11

]
.

(6.24)

As the notation suggests, �μe is the anomalous magnetic
dipole moment of the electron, and de is its electric dipole
moment. Therefore, de �= 0 in the presence of imaginary Wil-
son coefficients in Eq. (6.22). See the derivation of Eq. (5.20)
to understand the precise connection between the coefficients
of the Fμν f cσμν f interaction, and the dipole moments of
spin-1/2 particles.

The current experimental constraint on the electric dipole
moment of the electron is de = (4.3±4.0)×10−30e cm [74],
which is de = (6.6 ± 6.2) × 10−17 GeV−1 in natural units.
Assuming CeW = 0, using Eq. (6.24) we can translate the
experimental constraint into a bound on the SMEFT Wilson
coefficient CeB :

∣∣Im [CeB]11
∣∣ � 1

(1.8 EeV)2 (6.25)

at 95% CL. A similar constraint holds for Im [CeW ]11. At
face value this is absolutely amazing, allowing us to probe
physics at the enormous scales of exa-electronvolt (EeV),
that is 106 TeV. In practice the sensitivity may be more mod-
est. First of all, for perturbative UV completions the CeB

Wilson coefficient is always generated at one loop level,
thus CeB ∼ gY /16π2. Moreover, most UV completions will
implement some sort of chiral symmetry, leading to [CeB]11

suppressed by the small Yukawa coupling of the electron
(otherwise there will be large contributions to the electron
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mass, leading to a new hierarchy problem). All in all, one
typically has Im [CeB]11 ∼ gYme

16π2v�2 , where � is the scale of
new physics generating the electron’s EDM. But even under
this conservative hypothesis one probes � ∼ 100 TeV, far
above the LHC reach.

It is worth stressing that the good sensitivity of de to new
physics is not restricted to the [CeB]11 operator. Indeed, by
renormalization group equations, certain other operators gen-
erated at a high scale can flow into [CeB] at lower energies,
and thus get constrained. For example, the evolution of CeB

contains the contribution [75]

dCeB

d log μ
= − gY

8π2

(
CHB + iCH B̃

)
Ye + · · · (6.26)

Thus, the bosonic operator CH B̃ defined in Eq. (3.11) renor-
malizes Im CeB . This leads to the constraint

|CH B̃(�)| � 1

(200 TeV)2 × log
(
�/mZ

) . (6.27)

Similar constraints can be obtained forCHW̃ , and some com-
ponents of Clequ are also strongly constrained by the elec-
tron’s EDM. The power of the electron EDM is such that
even operators contributing via two-loop effects are subject
to relevant constraints [76].

We move to discussing another important EDM. This time
it is about a composite particle – the neutron. Because of the
strong interactions involved, connecting the neutron’s EDM
to SMEFT Wilson coefficients is a complicated business,
involving difficult calculations in Chiral Perturbation The-
ory, lattice determination of nuclear matrix elements, phe-
nomenological extraction of nuclear parameters, etc. I am
not daring enough to review the necessary technology here.
Instead, I will just quote the result from Ref. [77]:

dn =
[
(43 ± 27)Im Cus us

1 LR + (210 ± 130)Im Cus us
2 LR

+ (22 ± 14)Im Cud ud
1 LR + (110 ± 70)Im Cud ud

2 LR

− (0.93 ± 0.05)Im Cuu
γ u − (4.0 ± 0.2)Im Cdd

γ d

− (0.8 ± 0.9)Im Css
γ d − (3.9 ± 2.0)Im Cuu

gu

− (16.8 ± 8.4)Im Cdd
gd + (320 ± 260)CG̃

]
v2

× 10−9e fm, (6.28)

where the Wilson coefficients above are defined by the fol-
lowing Lagrangian below the electroweak scale,

LWEFT ⊃
{

− Ci j lm
1 LR (d̄m σ̄μul)(u

c
i σ

μdcj )

− Ci j lm
2 LR (d̄m a σ̄μul b)(u

c
i bσ

μdcj a)

− gs
2

∑
i, j=u,c

mu j C
i j
guūiσ

μνT aūcjG
a
μν

− gs
2

∑
i, j=u,c

md j C
i j
gd d̄iσ

μνT ad̄cj G
a
μν

− equ
2

∑
i, j=u,c

mu j C
i j
γ uūiσ

μν ūcj Fμν

− eqd
2

∑
i, j=u,c

md j C
i j
γ d d̄iσ

μν d̄cj Fμν + h.c.

}

+ gs
3

f abcCG̃ G̃
a
μνG

b
μρG

c
νρ. (6.29)

Note that the operators multiplied by C1 LR and C2 LR dif-
fer by how the color indices are contracted. It is remarkable
that dn is sensitive to such a diverse selections of interac-
tion terms: electric and chromo-electric dipole interactions
of quarks, 4-quark terms, and anomalous triple gluon cou-
plings. This way the neutron EDM acts as a lightning rod
attractor to many kinds of new physics. For this reason, it is
an absolutely essential observable, in spite of the difficulties
due to strong interactions.

Let us study some examples to see how strongly neu-
tron EDM constrains SMEFT Wilson coefficients. Begin-
ning with [CuB]11 in Eq. (3.14), this Wilson coefficient is
related to the up-quark EDM coupling in Eq. (6.29) by
Cuu

γ u = − 3 cos θW v√
2emu

[CuB]11. Applying Eq. (6.28) and using

the current best measurement dn = (0.0 ± 1.1)× 10−26e cm
[71], we get the following 95% CL constraint

|Im [CuB]11| � 1

(13 PeV)2 . (6.30)

Thus, in sheer numbers, the scale of the SMEFT operators
probed by the neutron EDM is some two orders of magnitude
below the scale probed by the electron EDM, cf. Eq. (6.25).

Let us also study another problem: what are the neu-
tron EDM constraints on the CHud Wilson coefficient in
Eq. (3.13) ? This may be a surprising question, since that
operator multiplied by CHud , which is H̃†DμH(ucσμd̄c),
couples the Higgs field to right-handed quarks, and at first
sight it has little to do with EDMs. It turns out that the effect
on the neutron EDM originates from the fact that this oper-
ator induces a coupling of the W boson to the right-handed
up and down quarks:

LSMEFT ⊃ − gL√
2
W+

μ

[
ν̄eσ̄

μe + Vud ūσ̄ μd

+v2

2
[CHud ]11u

cσμd̄c
]

+ h.c. (6.31)

Integrating out the W boson induces the 4-fermion opera-
tor −Vud [CHud ]11(d̄σ̄μu)(ucσμd̄c)+ h.c.. Matching that to
Eq. (6.29), we have Cud ud

1 LR = Vud [CHud ]11. Applying again
Eq. (6.28), ignoring the theoretical error for the sake of sim-
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plicity, and comparing with the experimental constraint we
find

|Im [CHud ]11| � 1

(100 TeV)2 (6.32)

at 95% CL. This is again an impressive sensitivity. As
remarked above, the result may be somewhat unexpected,
because the connection betweenCHud and EDMs is not obvi-
ous.

Finally, we also discuss another class of observables,
namely EDM of diamagnetic atoms (such as 199Hg) and
paramagnetic molecules (such as ThO). These are in fact the
same observables from which the electron EDM is extracted.
However, they are sensitive to other interactions beside the
electron-photon ones. In particular, they are instrumental to
probing the following SMEFT operators:

LSMEFT ⊃ [C (1)
lequ]1111ε

ab(l̄a ē
c)(q̄bū

c)

+[C (3)
lequ]1111ε

ab(l̄a σ̄
μν ēc)(q̄bσ̄μν ū

c)

+[Cledq ]1111(l̄a ē
c)(dcqa) + h.c. (6.33)

Above q and l are the 1st generation quark and lepton dou-
blet fields. These operators simultaneously generate charged
current interactions (relevant e.g. for nuclear beta decay, and
for pp → �ν signals at colliders) and the neutral current
ones:

LνWEFT ⊃ −[C (1)
lequ]1111Vud(ēē

c)(ūūc)

−[C (3)
lequ]1111Vud(ēσ̄

μν ēc)(ūσ̄μν ū
c)

+[Cledq ]1111(ēē
c)(dcd) + h.c. (6.34)

If the Wilson coefficients of these interactions have imagi-
nary parts, at even lower energies they match to the nucleon-
electron contact interactions i(N̄ N )(ēγ5e), which in turn
contributes to the EDM of diamagnetic atoms and paramag-
netic molecules. Using the theoretical expressions from Ref.
[78] and the EDM measurement using the ThO molecule [74]
we find the 95% CL constraints

|Im[C (1)
lequ]1111| � 1

(20 PeV)2 ,

|Im[C (3)
lequ]1111| � 1

(40 PeV)2 ,

|Im[Cledq ]1111| � 1

(20 PeV)2 . (6.35)

Once again we are sensitive to scales 4 orders of magnitude
above the LHC reach. Assuming the operators in Eq. (6.33)
have generic phases, the CP constraints exclude the possibil-
ity that they have any visible effects of in nuclear beta decay
or at the LHC,

6.5 Meson mixing

Mesons are bound states of a quark and an anti-quark. Of par-
ticular interest in this section are neutral kaons, who are spin-
zero mesons made of down (d) and strange (s) (anti-)quarks.
One can construct two neutral kaon states: |K 0〉 ≡ s̄d and
its antiparticle |K̄ 0〉 ≡ sd̄ . From these two one can con-
struct the CP eigenstates |K 0±〉 = 1√

2

(|K 0〉 ± |K̄ 0〉), such

that CP|K 0±〉 = ±|K 0±〉. Now, due to CP violating interac-
tions, the observed mass eigenstates KS and KL are not CP
eigenstates, but instead

|KS〉 |K 0+〉 + εK |K 0−〉,
|KL〉 |K 0−〉 + εK |K 0+〉. (6.36)

The “short” eigenstate KS decays mostly to two pions with a
lifetime of about 10−10 second, whereas the “long” eigenstate
KL decays mostly to three pions and lives about 1000 times
longer due to the phase space suppression. However, due to
CP violation parametrized by εK , one in a thousand of the
long eigenstates decays to two pions as well, as observed in
the Cronin and Fitch experiment in 1964. From the existing
KL → ππ data one can extract |εK | = 2.228(11) × 10−3

[57]. The decay KS → 3π has not been observed to date.
In the EFT below the electroweak scale, obtained from

the SM by integrating out the W bosons at one loop, one
generates the four-fermion operator

LWEFT ⊃ c(V ∗
tsVtd )

2 m2
W

32π2v4 (s̄σ̄μd)(s̄σ̄ μd) + h.c.

≈
(

1

(31 PeV)2 − i

(28 PeV)2

)
(s̄σ̄μd)(s̄σ̄ μd) + h.c.

(6.37)

with the numerical coefficient in front c ∼ 2.3. This operator
violates the strangeness quantum number by two units, there-
fore it has good quantum numbers to contribute to K–K̄ mix-
ing. Furthermore, the Wilson coefficient in Eq. (6.37) inherits
the complex phase from the CKM matrix, therefore it vio-
lates CP. Consequently, εK is predicted to be non-zero in the
SM: |εSM

K | = 2.027(195)×10−3 [79].29 While there is quite
some lattice hocus-pocus involved to translate Eq. (6.37) into
εK , the error of the SM prediction is largely due to the uncer-
tainty on the CKM elements. Note that the theoretical error
dominates the experimental one by an order of magnitude.

29 In the Wolfenstein parametrization of the CKM matrix, (V ∗
ts Vtd )

2 ∼
λ10A4ρ̄η̄  V 4

cbλ
2ρ̄η̄. As a result, the prediction for εK depends signif-

icantly on the value of Vcb we insert as the input. There are competing
determinations of Vcb: the so-called inclusive and exclusive ones, yield-
ing results in tension with each other, which has a large (magnified by
the 4th power) impact on εSM

K . The quoted prediction uses the inclusive
determination of Vcb, but note that the most recent exclusive determi-
nation [80] is in good agreement with the inclusive value.
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All in all |εK |/|εSM
K | = 1.099(97), that is the ratio is known

with a 10% error.
The suppression scale of the effective operator in Eq. (6.37)

is by the whopping O(10) PeV, rather than by 100 GeV char-
acteristic of the particles being integrated out. The additional
suppression, apart from the one-loop factor, is due to the so-
called GIM mechanism [81]. This forces the main contri-
bution to involve a top quark, and the effect is suppressed
by the small CKM mixing between the first two generations
and the third. The suppression of the SM contribution opens
the playing field for new physics. In SMEFT there are several
dimension-6 four-fermion operators changing strangeness by
two units [17]:

LSMEFT ⊃ [C (1)
qq ]2121(q̄2σ̄μq1)(q̄2σ̄

μq1)

+ [C (3)
qq ]2121(q̄2σ̄μσ kq1)(q̄2σ̄

μσ kq1)

+ [C (1)
qd ]2121(q̄2σ̄μq1)(s

cσμd̄c)

+ [C (8)
qd ]2121(q̄2σ̄μT

aq1)(s
cσμT ad̄c)

+ [Cdd ]2121(s
cσμd̄

c)(scσμd̄c), (6.38)

where the quark doublets above are q1 = (ukV ∗
kd , d), q2 =

(ukV ∗
ks, s) (that is, we use the down-type basis). The oper-

ators in the first line directly correct the Wilson coefficient
of the WEFT operator Eq. (6.37). The remaining operators
yield different chirality and/or color structures, but they also
contribute to εK at tree level. Reference [82] estimates the
contributions of the SMEFT Wilson coefficients in Eq. (6.38)
to εK as

|εK |
|εSM

K | = 1 + Im

{
− (13.3 PeV)2[C (1)

qq + C (3)
qq + Cdd ]2121

+ (105 PeV)2[C (1)
qd ]2121 + (127 PeV)2[C (8)

qd ]2121

}
.

(6.39)

Assuming only one Wilson coefficient is switched on at a
time, one finds the following 95% CL bounds

− 1

(25 PeV)2 � Im [C (1)
qq ,C (3)

qq ,Cdd ]2121 � 1

(44 PeV)2 ,

− 1

(350 PeV)2 � Im [C (1)
qd ]2121 � 1

(200 PeV)2 ,

− 1

(420 PeV)2 � Im [C (8)
qd ]2121 � 1

(240 PeV)2 , (6.40)

where the Wilson coefficients are defined at the electroweak
scale. These quantitative results again rely on some lattice
inputs, but their order of magnitude could have been guessed
without calculations.C (1)

qq leads to the same form of the inter-
action below the electroweak scale as the SM loop, and the
bound is similar as the magnitude of the operator in Eq. (6.37)

given the SM prediction is known only at the 10% level. Idem
for C (3)

qq . For Cdd , the low-energy operator differs from the
one in Eq. (6.37) by trading left-handed quarks for right-
handed, and the bound is again the same as for C (1)

qq because
QCD is vector-like and cannot tell left from right. It is a bit
less trivial to understand why the bounds onC (1)

qd andC (8)
qd are

an order of magnitude stronger. This is because these oper-
ators marry left- and right-handed quarks, and gain in the
course of low-energy running thanks to not having to rely on
quark masses for chirality violation.

All in all, CP violation in kaon mixing impressively probes
the scales up to almost EeV, five orders of magnitude above
the direct reach of the LHC. New physics at the TeV scale
typically requires some elaborate mechanism to suppress the
operators in Eq. (6.38), causing much headache for pre-LHC
model building. In supersymmetry it has motivated for exam-
ple the baroque edifices around gauge mediated supersym-
metry breaking. The situation was not much better in the
Randall–Sundrum family of models, even in spite of the nat-
ural mechanism of suppressing flavor-changing neutral cur-
rents that these models offered.

In a similar fashion, one can constrain the SMEFT opera-
tors affecting the mixing of neutral Bd and Bs mesons. The
analogous loop diagram to the one generating Eq. (6.37)
yields the 4-fermion WEFT operators violating the b number:

LWEFT ⊃ c
m2

W

32π2v4

{
(V ∗

tbVtd)
2(b̄σ̄μd)(b̄σ̄ μd)

+ (V ∗
tbVts)

2(b̄σ̄μs)(b̄σ̄
μs) + h.c.

}

→∼ − i

(1.2 PeV)2 (b̄σ̄μd)(b̄σ̄ μd)

+ i

(1.1 PeV)2 (b̄σ̄μs)(b̄σ̄
μs) + h.c. (6.41)

From this one can guess that CP violation in the neutral B-
meson mixing probes dimension-6 SMEFT operators sup-
pressed by 1 PeV, only a tad lower than the kaon mixing.
This is indeed borne out by more careful calculations [83].
Furthermore, one also generates the flavor-changing neutral
current operator (c̄σ̄μu)2, with the suppression scale simi-
lar to the one Eq. (6.37). Thus, CP violation in DD̄ mixing
also probes O(10) PeV scale [82]. The sensitivity of neutral
meson mixing to new physics is visualized in Fig. 5.

6.6 Nuclear beta decay

A less frequented path to CP violation leads through nuclear
beta decay. We will see it is a less promising place to find CP
violating new physics. Nevertheless, the discussion is use-
ful to highlight correlations and interdependencies between
different probes of CP violation in the context of SMEFT.
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Fig. 5 Illustration of the sensitivity of CP violation in neutral meson
mixing to the scale of the SM-like dimension-6 SMEFT operator
[O(1)

qq ]K LK L ≡ (q̄K σ̄ μqL )2. This is compared to the direct reach of
the LHC of about 5 TeV

Consider the process N → N ′e−ν̄e (β− decay) or
N → N ′e+νe (β+ decay). Here N and N ′ are called the
parent and daughter nuclei respectively, the electron and the
positron are jointly referred to as the beta particle, and both
neutrino and anti-neutrino are referred to simply as neutrino
in the following. The simplest example is the neutron decay,
where N is the neutron and N ′ is the proton, but many more
processes where N and N ′ are heavier nuclei are studied in
laboratories. We are dealing with a 3-body decay process,
thus there is a lot of kinematics and differential distributions
to play with. For the so-called allowed beta decays, at the
leading (zero-th) order in expansion in 1/mN , after sum-
ming over beta particle and daughter nucleus polarizations,
the differential distribution of the decay products takes the
most general form [84]

d�

dEed�ed�ν

∼ 1 + b
me

Ee
+ a

ke · kν

EeEν

+ A
J · ke
J Ee

+ B
J · kν

J Eν

+ ĉ
J (J + 1) − 3(J · j)2

J (J + 1)

(ke · kν) − 3(ke · j)(kν · j)
3EeEν

+ D
J · (ke × kν)

J EeEν

, (6.42)

where me is the electron mass, J is the polarization vector of
the parent nucleus and J is its spin, j is the unit vector in the
polarization direction, and ke, kν , Ee, Eν are the 3-momenta
and the energies of the beta particle and of the neutrino.

The correlation coefficients in Eq. (6.42) are denoted
somewhat inaptly as b, a, A, B, ĉ, and D. All of these coef-
ficients except for ĉ have been measured experimentally for
many transitions, sometimes with an accuracy better than
per-mille. Historically, these measurements have played a
crucial role in the development of the theory of fundamental
interactions. Since momenta are parity odd, whereas angular
momenta (hence J) are parity even, non-zero values of A and
B signal parity violation. The famous Wu experiment [85],
which demonstrated parity violation in weak interaction, was

in fact a measurement of the A coefficient in the beta decay
of 60Co.

For the sake of this section we will focus on the D coeffi-
cient. It quantifies the triple correlation between the polariza-
tion of the parent nucleus and the momenta of the beta particle
and the neutrino. Since both momenta and angular momenta
flip signs under T , a non-zero D signals violation of time
reversal invariance. Due to CPT conservation in QFT, CP
violation implies T violation, thereforeCP violating interac-
tions can contribute to the D parameter. Within the SM, D is
very suppressed and has not been observed in any transition
yet.30 This is just as good, as it leaves a lot of room to spot
the possible contributions to D from non-SM CP violation,
in particular from complex phases of dimension-6 operators
in SMEFT.

There are several SMEFT operators that contribute to the
D parameter at tree level. Below we only discuss a couple of
them, but the lesson we will draw is more general. Consider
first the dimension-6 operator

LSMEFT ⊃ i[CHud ]11 H̃
†DμH(ucσμd̄c) + h.c. (6.43)

This operator induces a coupling of the W boson to the right-
handed up and down quarks:

LSMEFT ⊃ − gL√
2
W+

μ

[
ν̄eσ̄

μe + Vud ūσ̄ μd

+v2

2
[CHud ]11u

cσμd̄c
]

+ h.c. (6.44)

in addition to the couplings to left-handed leptons and quarks
present in the SM. To understand the consequences for beta
decay we need to descend a few steps in the EFT ladder.
Integrating out the W boson at tree level, in the EFT below
the electroweak scale one obtains the quark-level charged-
current interactions mediating beta decay:

LWEFT ⊃ −2Vud
v2

{
(ēσ̄μν)(ūσ̄ μd) + εR(ēσ̄μνe)(u

cσμd̄c)
}

+h.c., (6.45)

εR = v2

2Vud
[CHud ]11. (6.46)

Beta decays occurs at the level of nucleons or nuclei, thus
we need to descend further. The nucleon-level Lagrangian
relevant for beta decay matching to Eq. (6.45) is

30 It is not completely zero because CP conserving interactions also
can contribute to D at one loop via the so-called final state interactions
[86], that is to say, electromagnetic interactions between the daughter
nucleus and the beta particle. This process leads to |DSM| � 10−4,
strongly depending on the transition. Contribution to DSM from the CP
violation in the SM is completely negligible.
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Lnucleon ⊃ −Vud
v2

{
gV (ēσ̄μνe)( p̄γ

μn)

−gAεR(ēσ̄μνe)( p̄γ
μγ5n)

}
+ h.c., (6.47)

where for nucleon we use the Dirac fermion notation. Our
ignorance of the non-perturbative aspects of the matching has
been swiped under the carpet of the gV and gA parameters.
Now, one can show that gV = 1 in the limit of unbroken
isospin symmetry, and moreover gV ≈ 1 up to O(10−4)

corrections quadratic in isospin breaking [87]. On the other
hand, gA is not protected by isospin symmetry, and we have to
resort to lattice determinations, gA = 1.246(28) [88]. From
Eq. (6.47), using standard techniques to calculate amplitudes
and distributions, a tedious but not impossible calculation
yields

Dn = 4gV gA
g2
V + 3g2

A

Im εR

= 2gV gA
Vud(g2

V + 3g2
A)

v2Im [CHud ]11 ≈ 0.4v2Im [CHud ]11.

(6.48)

The current limit on the D parameter in neutron decay is
Dn = −1.2(2.0) × 10−4 [57], while the SM contribution
predicts DSM

n ∼ 10−5. It appears that neutron decay is sen-
sitive to non-standard CP violation, probing the scales of
Im [CHud ]11 on the order of 10 TeV. There is an issue how-
ever: the same operator is better probed by EDMs [22]. We
discussed this in the context of the neutron EDM, finding
|v2Im [CHud ]11| � 6 × 10−6 at 95% CL, see Eq. (6.32). We
can rewrite Eq. (6.48) in the form

|Dn| ≈ 2 × 10−6 v2|Im [CHud ]11|
6 × 10−6 , (6.49)

which demonstrates that |Dn| � 2×10−6. This is two orders
of magnitude below the current experimental sensitivity, and
unlikely to be reached in the near future. One should not
expect a discovery of CP violation in nuclear beta decay, at
least in the scenario sketched above.

Can we avoid this negative conclusion? One way is to
ask for help our good old friend the fine-tuning. A larger D
parameter can be achieved if one allows for some fine-tuning
between different contributions to the neutron EDM. For
example, one can arrange for a partial cancellation between
the contributions proportional to Im [CHud ]11 and those pro-
portional to the QCD θ parameter [89]. Another way is to
resort to a more baroque model building.

6.7 Closing comments

In this section we have studied a couple of examples illustrat-
ing sensitivity of CP-violating observables to new physics.
These observables probe D = 6 operators suppressed by

scales much higher than the reach of current colliders – some-
times as large as EeV! Indeed,CP violation is the most sensi-
tive probe of generic new physics that does not violate the SM
symmetries.31 The non-discovery of non-SM CP violation
foreshadowed the non-discovery of new physics at the LHC.
It has been known for decades that new particles with TeV
scale masses and order one couplings to the SM can easily be
at odds with the EDM constraints. This is especially true for
frameworks addressing the hierarchy problem (supersymme-
try, composite Higgs, extra dimensions, etc.) as they invari-
ably come with many new interactions, which potentially
contain many new CP-violating phases. The past expecta-
tions of dozens new particles popping out at the LHC were
always relying on the belief that new physics, in stark con-
trast to the SM, is non-generic, that is to say, that the newCP
invariants associated to the new particle interactions vanish.
Well…now we are older and wiser. While new physics can
still be around the corner, and be discovered tomorrow at the
LHC, in my opinion a more probable scenario is that the new
particles are very heavy, perhaps 100 TeV, perhaps more. At
the same time, my expectation is that new physics, much like
the SM, comes with generic CP-violating phases. If these
expectations are correct, it is very likely that new physics
will first be discovered via CP-violating observables, in par-
ticular via the electron or neutron EDM.

One more comment is in order. We have seen that distinct
CP-violating observables may probe the same operator, but
the sensitivity may be different. For example, both the neu-
tron EDM and neutron beta decay constrain theCHud Wilson
coefficient, with the former having O(100) better sensitivity.
The gap is even larger, O(105), concerning the sensitivity
to CH B̃ from the electron EDM and from Higgs physics.
The logical conclusion is that some experiments are more
destined to discover new physics. Indeed, if CP violation
was detected in, say, Higgs decays to Z bosons, my theo-
rist bias would strongly suspect an unfortunate fluctuation or
an experimental error. One should however not jump to the
conclusion that only EDMs are worth pursuing. Less sensi-
tive experiments also play an important role. The SMEFT
parameter space is multi-dimensional, and one needs many
different probes to disentangle the different relevant param-
eters. For example, the neutron EDM is sensitive (among
others) to a linear combination of CHud and the theta term
θ̃ , while the D parameter measured in nuclear beta decay
is sensitive only to the former. We cannot exclude the pos-
sibility of large cancellations (accidental or implied by the
structure of the BSM theory) between CHud and θ̃ , and the
flat direction in this 2-parameter fit is only lifted by the D
parameter measurement. The less sensitive experiments will

31 Proton decay and neutrino oscillations are sensitive to higher scales,
but only for new physics violating the symmetries of the SM Lagrangian:
the baryon and lepton numbers.
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become even more vital if non-SM CP violation is finally
observed in an EDM experiment, as they will play the crucial
role in the task of identifying the UV completion of SMEFT.
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Appendix: Abbreviations

• BSM: Beyond the Standard Model. In these lectures I
define it as any theory with new particles in addition to
the ones present in the SM.

• ChPT: Chiral Perturbation Theory. The effective the-
ory of pions and sometimes kaons and eta mesons, valid
below the QCD resonance scale mρ  770 MeV.

• CL: Confidence level. This refers to the size of the con-
fidence intervals in the standard Gaussian statistics. In
particular, 68% CL is roughly one sigma, while 95% CL
translates roughly to 1.96 sigma.

• eV: Electronvolt. It cannot be logically explained why
this is the basic unit in particle physics.

• EeV: Exa-electronvolt = 1018 eV. The scale probed by
EDMs.

• EFT: Effective field theory. The theoretical framework
on which SMEFT and many other theories are based.

• GeV: Giga-electronvolt = 109 eV. Roughly the mass of
the proton.

• GREFT: General Relativity Effective Field Theory. The
EFT of a single massless spin-2 particle.

• GRSMEFT: General Relativity Standard Model Effec-
tive Field Theory. The EFT of a single massless spin-2
particle coupled to the SM particles.

• IR: Infrared. In the particle physics literature this is a
posh way to say low-energy.

• MeV: Mega-electronvolt = 106 eV. Roughly the electron
mass.

• LHC: Large Hadron Collider. The proton-proton collider
currently operating at CERN.

• PeV: Peta-electronvolt = 1015 eV. The scale probed by
many flavor observables.

• QCD: Quantum Chromodynamics. The theory of strong
interactions mediated by the SU (3)C gauge bosons of
the SM.

• QFT: Quantum Field Theory. Our fundamental frame-
work for relativistic quantum mechanics.

• SM: Standard Model. From the modern point of view, it
can be defined as SMEFT truncated at the level of D ≤ 4
operators.

• SMEFT: Standard Model Effective Field Theory. The
main focus of these lectures.

• TeV: Tera-electronvolt = 1012 eV. The energy scale probed
by the LHC.

• UV: Ultraviolet. In the particle physics literature this is
a posh way to say high-energy.

• VEV: Vacuum Expectation Value. A tool to describe a
ground state violating some of the symmetries of the the-
ory at the Lagrangian level.

• WEFT: Weak Effective Field Theory. The effective the-
ory of the SM degrees of freedom below the electroweak
scale, where W , Z , top, and Higgs are integrated out.
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