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Abstract A heavy-ion collision facility called the cooler
storage ring (CSR) external-target experiment (CEE) is
scheduled in Lanzhou, China. The time measurement of the
charged particles at the forward angle will be conducted
by the external time-of-flight (€TOF) subsystem, which is
built with multigap resistive plate chambers (MRPC). This
work describes the tasks, performance criteria, detector lay-
out, and prototype test results while outlining the technical
design and development status of the CEE-eTOF wall. The
effectiveness of the wall design has been validated using a
FairRoot-based simulation, which is an essential part of the
verification. With a 3.2 x 1.6 m? coverage, a 60 ps over-
all time resolution, and a 2.6 m distance from the collision
point, the eTOF wall enables the particle identification, sys-
tem triggering, and event selection in cooperation with other
related detectors. A novel structure called sealed MRPC will
be applied to the subsystem. The design considerations of
this type, prototype test, and results are also described in this

paper.

1 Introduction

The full phase diagram of nuclear matter, represented with
temperature and net-baryon density, turns out to contain sev-
eral structures that await further understanding and investiga-
tion via both theoretical and experimental approaches [1]. In
the high-temperature, high-density region, the Quark-Gluon
Plasma (QGP) phase of matter has been predicted by Quan-
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tum Chromodynamics (QCD), and also experimental results
increasingly point to its existence [2—4]. It is believed that a
smooth cross-over between the nucleon phase and the QGP
occurs at low density and a first-order phase boundary occurs
at high density. Exotic phases like color superconductivity,
which may exist in neutron stars, are suspected at low tem-
perature and extremely high baryon density [5]. An ideal
method for investigating the QCD phase structure on Earth
is to construct and operate heavy-ion collision facilities [6].
With the elaborate design of the collision systems and energy,
nuclear matter can be compressed to the region of specific
interest.

The heavy-ion experiments that currently take datainclude
RHIC-STAR [7], LHC-ALICE [8], sPHENIX [9], and so
on. There are also scheduled ones such as NICA-MPD [10]
and FAIR-CBM [11]. The particularity of the Cooler stor-
age ring External-target Experiment (CEE) is the focus on
the phase transition from the low energy up, making use of
the beam from the Heavy-Ion Research Facility in Lanzhou
(HIRFL) [12] for collisions with a fixed target. The inci-
dent beam energy is between 0.5 and 1.2 GeV/u, and the
heaviest collision system can reach U-U. CEE aims to study
the phase diagram in the low-temperature and high-density
regions and to explore the critical point at the end of the tran-
sition line. It can also provide a supplementary constraint for
the asymmetry energy in the Equation of State (EoS) [13] for
nuclear matter, especially with a polarized deuteron beam
[14]. Other goals of studying the production of the exotic
particles, hyper-nucleus, are also proposed for CEE [15].

CEE as an advanced spectrometer employs a time-of-
flight (TOF) method [16] for the identification of the sec-
ondary charged particles which are produced from collisions
and deflected by a large dipole magnet. The spectrometer is
designed to operate with a 10* Hz level event rate, which is
reached from a 10° Hz beam flux and 1% interaction ratio.
The majority of the charged particles in the CEE energy
region are baryons, which are easier to identify than mesons.
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Because of the low energies for CEE, Kaon production shall
be suppressed [17]. A requirement of 3-o separation between
m/p up to 1.5 GeV/c is set to the detectors according to
the simulated momentum distribution [18]. As a fixed target
experiment, the momentum of the particles differs signifi-
cantly with respect to polar angles, which leads to the design
of two sets of tracking and timing detectors: a Time Pro-
jection Chamber (TPC) [19,20] and an inner TOF (iTOF)
system [21] are placed inside the magnet for the identifi-
cation in intermediate rapidity region, while a Multi-Wire
Drift Chamber (MWDC) array of three layers and an exter-
nal TOF (eTOF) wall are installed downstream of the mag-
net, covering the forward angle for high momentum particle
identification. Figure 1 shows the layout of the CEE spec-
trometer. In addition to the subsystems mentioned above, a
TO [18] counter and a Zero Degree Calorimeter (ZDC) [22]
are marked.

The relative momentum resolution should be within 5%
for both TPC and MWDC. Performance requirements for
the timing detectors are defined according to their distance
from the collision center. For iTOF detectors to be posi-
tioned inside the magnet, a higher time precision of 30 ps
is required. The time resolution should be 60 ps for eTOF
detectors placed at 2.6 m downstream from the collision cen-
ter, outside the magnet. Extending the distance of the eTOF
wall leads to a looser requirement of time resolution, but the
accordingly larger coverage area will increase the cost. TO is
a scintillation detector in front of the target. It measures the
time of the incident beam ions with 32 independent readout
channels and has an improved time precision of 30 ps.

The iTOF and eTOF systems are both constructed with
Multigap Resistive Plate Chambers (MRPC) [24], which can
reach a time resolution of tens of picoseconds and have been
extensively employed in many High Energy Physics experi-
ments [25-27]. At STAR, MRPCs have been operating stably
with a 60 ps level resolution since their initial installation in
2003. Thanks to the timing detectors, the particle identifica-
tion capability improved significantly which contributed to
a number of observations, such as the detection of “He [28].
Despite the success of scientific discoveries, the operation
of the MRPC gaseous detector has recently raised concerns
due to the emission of gas with a severe greenhouse effect
[29-31]. The ‘standard’ working gas mixture for MRPCs
in CEE-eTOF and many other experiments is composed of
Freon-134a, iC4H ¢ (isobutane), and SF¢ with a fraction of
around 90/5/5. The global warming potential values for Freon
and SFg¢ are 1300 and 22,800 respectively. The regulations of
reducing the production, usage, and emission of HFC gases
have directly raised the cost of Freon. To address the environ-
mental issues and the budget risk, a novel structure named
the Sealed MRPC [32] is adopted to form the eTOF wall at
CEE. The main advancement that the sealed MRPC brings,
is the enclosing structure for each stack of the glass elec-

@ Springer

2000
£
£
1500 X
1000
500 IIIII
0 I X
0 TPC MwoC
500
iTOF
-1000 Zbe
1500
1 1 1 1 eTor 1 ZIm m
—2000=—"1500 0 1000 2000 3000

Fig. 1 Upper: the schematic layout for CEE. Subsequent descriptions
will also follow the Cartesian coordinate established in this figure. The
coordinate origin is in the center of the TPC. The target is placed at
z = —35 m. Lower: the X—Z transversal view, modified and generated
from [23]. The detectors are shown as their active volumes

trodes and gas gaps, as demonstrated in Fig. 7. In the sealed
chamber, the outermost glass electrodes act as panels with
their edge sections affixed with a 3D-printed sealing frame.
The total gas volume for the sealed MRPC has drastically
dropped to the level of the sensitive volume compared with
the earlier MRPCs housed in gas-tight boxes, which results
in the operation with a low flow rate. Moreover, the sealed
MRPC shows stability in high counting rates thanks to the
promoted gas exchange in the sensitive volume by the inlet
gas pressure. Tests with an initial prototype have validated
this new concept, reaching performances similar to the tra-
ditional MRPCs [32,33].

To give a detailed description of the CEE-eTOF wall, in
terms of simulation, system design, and development status,
this work will be organized as follows: in Sect. 2, a Fair-
Root [34] based simulation was carried out to give Monte-
Carlo estimations of the key parameters, and to assess how
eTOF will contribute to CEE’s trigger and Data Acquisition
(DAQ); Sect. 3 shows the design of the eTOF wall including
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Table 1 Simulation data description

Table 2 Envelopes and z positions for forward detectors

Model UrQMD  1IQMD Layer Detector Z [cm] Size [cm?]
Number of events 1M 100 K 1 MWDC 80 136 x 63
Collision system Au—Au U-u 2 MWDC 115 190 x 88
Energy [GeV/u] 1.23 0.5 3 MWDC 195 274 x 126
Average number of main particles produced in p 70.1 B 0.03 4 MRPC 225 320 x 160
each event n527  Be0.09
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ations; Sect. 4 discusses the status of the detector develop-
ment, showing the cosmic and in-beam test results. The work
is then summarized and concluded in Sect. 5.

2 The eTOF wall simulation
2.1 Data and framework

The simulation in this work is conducted under CeeRoot
[23], which is a competent framework empowered by Fair-
Root for not only Monte-Carlo simulation but future works
in experimental data analysis and event visualization. A sim-
plified geometry has been implemented containing envelopes
of each subsystem. Primary particles, which in the context of
this work refer to the ones produced directly through a colli-
sion, are generated by experimental data or theoretical mod-
els, e.p., the Quantum Molecular Dynamics (QMD) models.
A magnetic field map based on the actual situation is reg-
istered to the framework. When executing a simulation, the
Virtual Monte Carlo (VMC) [35] concept in FairRoot calls
the Geant4 [36] engine for particle transport calculations. The
information on the interaction between primary particles and
detectors will be organized and stored in ROOT files.

Two particular data sets of collision products are prepared
for the study, the details of which are listed in Table 1. To
evaluate the rate condition and event selection, the IQMD
[37] model is used for its good description of heavy-ion col-
lisions. However, the production of mesons is not consid-
ered. In order to evaluate the identification power for typical
charged particles, a data set from the UrQMD [38] model
is used, and an extreme system of Au—Au collision at 1.23
GeV/u is chosen to demonstrate the 77 /K /p separation of the
forward detectors.

PRI L
0 150 200
HitPosition_X [cm]

Fig. 2 Hit distribution of charged particles at eTOF location 7 =
225 cm. The Red square encloses the active area of the eTOF wall. This
simulation run contains 10k events generated in the IQMD model

2.2 Coverage and particle identification

The central task of the eTOF wall is to provide high-precision
time measurement for incident charged particles, especially
the ones whose track can be reconstructed from the MWDC
array. In this cooperation, the proper coverage for forward
detectors is 30° of half flare angle at the X direction and
20° at the Y direction, and areas beyond this range will be
covered by TPC and iTOF. The active areas of the forward
detectors are shown in Table 2. Figure 2 shows the simulation
result of the x—y distribution of the charged particles at z =
225 cm which penetrates MWDC as well. The envelope with
a3.2 x 1.6 m? size covers most of the detection.

The particle identification is carried out with a simplified
treatment on the resolution from MWDC, TO, and eTOF. The
momentum and flight time of the particles, obtained from
simulation, are smeared with 5% relative resolution and 80
ps respectively. Figure 3 shows the identification result with
eTOF placed at z = 225 cm. The separation of 7w /K/p are
visible in the plot. Furthermore, a 3-0 separation of (7 +K)/p
up to 2 GeV/c is validated in Fig. 4. It completely fulfills the
requirement for eTOF. The 3-¢ identification of Kaons at 1.4
GeV/c momentum is also shown in the result.

2.3 Triggering and counting rate

It is natural to notice that the MRPC, as a timing detector, is
featured with a signal shaping in nanoseconds via the prin-
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Particle Identification of eTOF
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Fig. 3 Particle identification of eTOF, with UrQMD data
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Fig. 4 Upper: the 7 /K/p separation at momentum range from 1.2
to 1.4 GeV/c. Lower: the (mr + K)/p separation at momentum range
from 1.8 to 2.0 GeV/c. The kaon production is minimal in the latter
momentum range, so the result represents the 7 /p separation as well.
The areas with color depict the 3-0 boundaries for the corresponding
particles

ciple of electron avalanche in gas gaps. Therefore, it is able
to execute an online summation of the number of fired elec-
tronic channels within a given time window with the aid of
fast readout chains. The summation, called as the channel
multiplicity, can then be treated as an effective probe for trig-

@ Springer

gering the collision because it provides a good description of
the secondary particle multiplicity at the forward angle.

The typical time evolution of a collision is around tens of
fm/c. Compared with the precision of the time measurement,
it is reasonable to assume a simultaneous emission for pri-
mary particles. Yet, the stop time of hitting eTOF varies due
to the velocity difference. According to the simulation, the
flight time distributes within a 20 ns width, which is much
lower compared with the 10* Hz event rate. The time char-
acteristics above lead to the ability for trigger generation and
a 3—4 times width of the flight time is assumed as the time
window for multiplicity.

A trigger circuit will gather the signal counts, and make
trigger decisions with a proper criterion. In the case of CEE,
it can be formulated as the coincidence of the signal from
TO and that from TOF with the channel multiplicity beyond
a certain threshold. One of the primary purposes of trigger-
ing is to depress fake events caused by noise. The accidental
coincidence ratio with TO is around 7.5% given the 10° Hz
peak beam intensity and the 75 ns coincidence window. So
controlling the noise trigger ratio from the stop time side is
crucial. It can be seen from Fig. 5 that the eTOF covered mul-
tiplicity is about 30 on average, while for a TOF system con-
structed with MRPC the typical noise level is 0.5 Hz/cm?.
With a 75 ns time window, the estimated noisy count for the
eTOF wall shall be far less than 1. Generally speaking, the
coverage of eTOF provides a sufficient signal-to-noise ratio
to set trigger conditions.

Although the DAQ function works in trigger mode, the
readout chains work continuously with Fast-End Electron-
ics (FEE) and Time-to-Digital Modules (TDM) included, so
the counting rate condition must be understood. The result
in Fig. 5 is obtained from 10k collisions, which equals the
data amount of 1-second operation time. Taking the pad size
(shown in Sect. 3.1) into account, the maximum counting
rate of the readout channels is 4 kHz.

2.4 Event selection

The centrality or impact parameter fully determines a col-
lision during a beam time since it defines the number of
nucleon participants in the fireball. Thus, its reconstruction
is very important for selecting data with interest. Events with
a central and medium bias are of interest for research on fluc-
tuations in the particle multiplicity ratio and collective matter
flow [39,40], while events with a minimal bias might be of
interest for research on asymmetry energy [41]. Former prac-
tices [42,43] have confirmed that not only the full-space parti-
cle multiplicity but that at the forward angle is a good observ-
able in centrality determination. Figure 5 shows the IQMD
simulation of forward multiplicity distribution in different
impact parameters. The ambiguity of the dependence will
affect the result of the reconstructed centrality. Two methods
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Fig. 5 The distribution of eTOF hit multiplicity with respect to impact
parameters from 1 to 10 fm. Note that the event amounts for each cen-
trality are prepared approximately according to the differential cross-
section bdb of the collision

are suggested for improvement: one uses eTOF+iTOF hit
multiplicity to expand the input phase space, and the other
adds high dimensions of data input for reconstruction.

With regard to the latter, Fig. 6 gives an example of two-
dimensional input. With eTOF hit multiplicity divided into
zonal statistics, the recognition is expected to get improved
because a clear dependency as a curve is observed.

Feature recognition models may show power when the
data dimensions grow up. Machine learning has been used in
earlier works to determine impact parameters from simula-
tion data. Some works use the extracted physics observable
as input features, such as the charged particle multiplicity,
the total transverse energy, the charge of the largest frag-
ment, etc. [44], while others handle the hit-level variables like
sub-regional counts, position, charge-to-momentum ratio
[45,46]. These models show the impressive ability of feature
extraction with either type of data. However, it is also crucial
to research the compatibility of the data-driven models with
experimental uses, the processing speed, and so on.

3 Structural design
3.1 Detectors

We designed 2 kinds of the sealed MRPC detectors for CEE-
eTOF. The only difference of the two types is the number of
readout strips (and of course the resulting sizes). The larger
MRPC contains 32 readout strips while the smaller has 16.
Both types have the same double-stack geometry with 10
0.25 mm thick gas gaps. The readout strips are 1.5 cm in
width and 48 cm in length, arranged with 0.2 cm pitch. The
upper left of the Fig. 7 shows the arrangement of the readout
strips for the 16-strip MRPC.

AsFig. 7 shows, the working gas flows directly through the
active volume which is much more efficient than using a gas
box. The sealed chambers can be assembled independently
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Fig. 6 The sub-regional features of eTOF hit multiplicity. Each set of
point and error bars represents the statistics for data grouped by impact
parameters from 1 to 10 fm. The inner and outer wall are defined in
Sect. 3.3
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insulation readout strips  HV layer plates spacer frame

Gas flow

/

Fig. 7 Top: readout strip view (left) and picture (right) of the 16-strip
MRPC prototype. Bottom: schematic transversal view of the sealed
MRPC

and installed thereafter with other components. To assemble
a sealed chamber, the 3D-printed sealing frame is first glued
with one of the outermost glass electrodes. Then, the fish-
line spacers and glass plates are placed layer-by-layer in the
chamber. In the end, the other outermost glass electrode is
glued as the end panel.

A 32-strip and a 16-strip real-size prototype have been
assembled for the tests described in Sect. 4.

3.2 Readout electronics
A block diagram of the eTOF readout chain is shown in

Fig. 8, in which the FEE and TDM as crucial electronics
components are depicted [47]. In the FEE an Application

@ Springer
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Fig. 8 Block diagram of the readout chain of eTOF

Specific Integrated Circuit (ASIC) chip called NINO [48] is
used, which is integrated with pre-amplification and Time-
over-Threshold (ToT) discrimination. External resistors are
employed and combined with the internal circuit of the NINO
chip for impedance matching with the detector. The output
of FEE carries the leading and trailing time of the signal
and is recorded by the downstream TDM with Field Pro-
grammable Gate Array (FPGA) based Time-to-Digital Con-
verters (TDCs) on it. The FEEs are plugged into the double
ends of the detectors. FEE and TDM are physically con-
nected by two micro coaxial flat cables, with one for signal
transmission and the other for powering the FEE.

The in-channel dead time of this readout chain is less than
100 ns, which satisfies the 4 kHz counting rate condition
mentioned above. A prototype of the FEE and TDM pair
has been designed and tested in the laboratory with a signal
source. Other components that contribute to the time preci-
sion in real practices, e.p., the clock, are also included in the
test. The result in Fig. 10 indicates that the time resolution
of the readout electronics is better than 10 ps.

Figure 9 exhibits the picture of the FEE and TDM proto-
type. Each pair of FEE and TDM offers 16 readout channels.
For the tests in Sect. 4, the performances of detectors and
electronics will be evaluated jointly (Fig. 10).

3.3 Detector layout

The detector layout of the eTOF wall is shown in Fig. 11. The
design, composed of 24 MRPCs in 7 columns, fulfills the cov-
erage requirement in Sect. 2.2. From Fig. 2, the off-centered
distribution reveals the deviation of charged particles amid
magnetic fields, and the latter may differ in values and polar-

@ Springer

Fig. 9 Pictures of the FEE (left) and TDM (right) prototypes for the
eTOF wall. The FEE boards will be plugged directly on the detectors
through 2.54 mm pin headers
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Fig. 10 Time precision of the readout electronics with different input
charges generated by the signal source. The result is taken from [47]

ity among runs. For the above reason, the entire eTOF wall
is movable by a slideway in the X direction.

The 6 smaller detectors in the inner part of the wall are the
16-strip MRPCs, while the others are the 32-strip MRPCs that
forms the outer wall. The 16-strip MRPCs are designed verti-
cally movable from the mid-line for beam avoidance because
neither the detectors nor the FEEs can tolerate the direct pen-
etration by the beam flux. Such a transmission mechanism,
achieved by the pulley system, is visible in Fig. 12e.

3.4 Mechanical design

The mechanic design of the eTOF wall, shown in Fig. 12a,
is carried out following the simulation in Sect. 2. The size
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Fig. 11 The detector layout of the eTOF wall, constructed with 24
sealed MRPCs

of the entire wall is 3869 mm x 500 mm x 2383 mm. Fig-
ure 12a, b show the structures of the eTOF wall. The eTOF
is composed of 7 modules of 2 types. Each of the centered
3 modules contains two 32-strip detectors and two 16-strip
detectors. The 16-strip detectors can be shifted vertically for
beam avoidance through the pulley transmission mechanism.
The other 4 bilateral modules are composed of three 32-strip
detectors. Thanks to the application of the sealed MRPC, the
detector no longer needs an aluminum box to contain the
chamber fill gas. The module boxes are lightweight designs
for electromagnetic shielding and radiation protection from
beam-ionized electrons. Finally, overlap areas are designed
between adjacent detectors and modules not only to miti-
gate edge effects but also to prevent coverage loss in case of
oblique incidence.

Fig. 12 a Full view and b left
view of the eTOF wall. ¢ View
of the bilateral module which
shows how the FEEs are
connected to 2 of the MRPCs. d
View of the centered eTOF
module. e Pulley mechanism
which drives the 16-strip
detector for the centered module

4 Development and tests
4.1 Signal characteristics

Good knowledge of the features of MRPC signals is impor-
tant in order to optimize the design for FEE. Before the read-
out chain shown above, we used a fast preamplifier [49] and
a Tektronics digital oscilloscope to study the signal of the
MRPC prototype. The preamplifier has a voltage gain factor
of 20 and a bandwidth of 650 MHz, so it can well retain the
nanosecond width waveform of the MRPC. For a typical sig-
nal, the rise time amounts to a few hundreds of picoseconds
and the full width comes to about 2 ns.

A 32-strip eTOF prototype has been operated witha 6.9kV
working voltage, which translates to an electric field of 110
kV/cm in the gas gaps. A fast preamplifier and a Tektronix
oscilloscope were used for waveform readout and acquisi-
tion. Figure 13 shows a typical waveform of the MRPC pro-
totype. The signal keeps a fast leading edge which is essential
for high-precision discrimination, whereas after the peak a
long noisy tail appears, most likely due to reflections. As
observed in the tests, those noise patterns are not discrimi-
nated by the readout electronics for their low amplitudes.

The dynamic range is then studied to determine a proper
threshold for the NINO chip. The coincidence of two scin-
tillation detectors provides a triggering area of 5 x 20 cm?,
covering 3 readout strips on MRPC. 7 strips including the 3
were read out and for each event we recorded the maximum
amplitude of the MRPC signals as a representative of the
avalanche, as shown in Fig. 14. The data was used to derive
the MRPC efficiency as a function of the signal threshold. We
can set a proper threshold range of 150-200 mV to guarantee
a good efficiency of over 95%.

@ Springer
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4.2 Performance tests in cosmic rays

With the development of the readout chain, a cosmic test
stand has been set up in order to evaluate the overall perfor-
mance. Figure 15 shows the scheme of the setup. It includes
a 32-strip MRPC prototype, a 16-strip MRPC prototype, 32
channels of readout electronics, and two scintillating detec-
tors with related modules for discrimination and coincidence.
With the above components, 8 strips of each MRPC prototype
can be tested in an operation. The data taken from the tests is
processed also in CeeRoot, where the related methods, e.p.,
position correction along the readout strips, ToT gain correc-
tion, and time-slewing correction, have been implemented
[50]. MRPC prototypes are in serial gas connection and sup-
plied with a standard gas flow of 10 ml/min. During the High
Voltage (HV) scan, the FEE thresholds were set to 150 mV,
which is shown to be within the optimal range in the follow-
ing test. The performances of the two detectors agree well
within the measurement uncertainties during the HV scan
and also the following tests, so we show the results of the 16-
strip prototype as a representative. As shown in Figs. 16 and
17, the HV scan reveals a 97% efficiency for detectors at a
working point of 6.9 kV, and correspondingly the cluster size
is 1.5 and the time resolution is 56 ps. Cluster size is defined
as the average number of fired strips for each cosmic ray hit,
where 1.5 readout strips is a reasonable value related to the
size of the charge avalanche in the gas gaps. Time resolution
results are obtained assuming the same timing precision for
both MRPCs, as shown in Fig. 18. It is a reasonable assump-
tion since they are the same in gas gap thickness and readout
method. Figure 18 shows the flight time distribution deter-
mined by the difference of the independently measured time
between two prototypes. The g-Gaussian fit is carried out
since the distribution does not seem to follow a pure Gaus-
sian distribution, and such an effect has been reported as well
in [51]. The g-Gaussian distribution is described as [52]:
p(t) = Age, " g <3 M)
where A, is a normalization constant, e is the g-exponential
given by:

1
g A= g =0
1 0, else

@)

and the width of the distribution is characterized by
B, =13 )%™ q <3. 3)

In Fig. 18, an effort is made to explain the slow tail in the
flight time distribution. To exclude events with large inci-
dent angles and hits whose positions are imprecisely recon-
structed due to possible noises, a cut on the position x along
the readout strip of |x| < 9 cm was imposed, which removes
20% of the events. The resulting time resolution is then
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Fig. 13 A typical MRPC signal displayed by the oscilloscope
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Fig. 14 The dynamic range of MRPC signals with a voltage gain of
20 and a differential impedance of 100 2. Such parameters are close to
those of the NINO chips. The red curve shows the efficiency-threshold
correlation generated using the measured data in the histogram

84.38/ V2 =59.67 ps. However, the q-Gaussian fit seems to
well interpret the complete data, and gives a sigma of 80 ps,
56 ps overall resolution for a single detector.

The dependency of time resolution with HV in Fig. 17
seems to show different slope factors before and after 6.2
kV, which corresponds with a simulation result [53]. More-
over, discontinuity points are observed at 6.2 and 6.6 kV. The
phenomena might be explained by a study [54] which indi-
cates that the number of gas gaps with avalanches developed
in an event is the main source of time uncertainty at low HV,
and it rises rapidly before the working point. Figures 19 and
20 show the threshold scan results for a constant HV of 6.9
kV. From the results, the optimal threshold lies between 150
and 200 mV, corresponding with the study of the dynamic
range.

It is necessary to give further discussions on the contri-
butions to the measured time resolutions. Although the time
precision of the electronics is measured independently, a sim-
ple subtraction from the overall resolution is inappropriate
because the signals from the detector are in dynamic ampli-
tudes which can lead to dispersion in leading-edge discrim-
ination of the FEE. The time-slewing relationship with ToT
can give a partial correction to the time walk. However, for
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Fig. 15 The test setup. S1&2: scintillating detectors. Disc.: CAEN
N844 signal discriminator. CLK: 40 MHz global clock based on EMXO
EX-380. &: CAEN N455 coincidence module

1 2
0.9 1.8
T B ()]
>0.8 1.6 N
s ] T .
s ] { 8
EO7A } _1.45

0.6

| R
—eo—i
—eo—
—eo—

—e—

—e—i

—eo—

T T T

=

N

T R

0.5 T | T | T | T | T | T | T 1
56 5.8 6 62 64 66 6.8 7
HV [kV]
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Fig. 19 The efficiency and cluster size of the 16-strip prototype with
respect to NINO thresholds

signals with low amplitudes, the discrimination of FEE with
a relatively high threshold results in a leading time after the
exponential growth of the signal, which introduces an irre-
mediable uncertainty. Another contribution to the measured
resolution shall be the ones from the angular and momentum
distributions of the cosmic rays, but the related corrections
are not included in this work. We prevent selections based on
the reconstructed incident angles because they will affect the
correct estimation of efficiency. As a result, in terms of the
intrinsic time resolution of the MRPC, we can only estimate
that it is better than 50 ps. Nevertheless, the overall time res-
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Fig. 21 Stability testresults for the 16-strip prototype with a 10 ml/min
gas flow

olution obtained in this work guarantees a qualified timing
performance of the system in real operations.

For the examination of operational stability, the test con-
dition was kept to 6.9 kV, 150 mV for successive 7 days.
Figure 21 shows the efficiency and time resolution measured
each day, with at least 6k events. The result indicates that the
system of both detector and readout electronics is capable of
working continuously with excellent performance.

5 Conclusion

The CEE-eTOF wall detects the arrival time of charged parti-
cles in the forward region with a resolution better than 60 ps.
According to the simulation studies, the subsystem can reach
adequate v /K /pidentification, i.e. the maximum momentum
of 3-0 separation up to 1.4 GeV/c for 7/K and 2.0 GeV/c

@ Springer

for (w + K)/p. With the fast readout, large coverage, and
high granularity, eTOF plays an important role in trigger-
ing and event selection. In particular, the special features of
hits on the eTOF wall may benefit the prediction of collision
centrality. Besides the simulation and discussion, the tech-
nical design of eTOF is described in this paper, including
detectors, readout chains, and mechanics. Tests with cosmic
rays have been carried out to evaluate the performance of
the prototypes. The real-size prototypes, with detectors and
readout chains included, have a 97% efficiency and an overall
time resolution within 60 ps. The test system operated sta-
bly for the tested 7 days with a 10 ml/min low gas flow. The
results mark a readiness for further in-beam tests and mass
production which have been scheduled for the near future.
The operation of eTOF will not only contribute to the studies
of the EoS of nuclear matter but also take a step toward the
eco-friendly running of RPC-type detectors in future exper-
iments.
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