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Abstract In this paper, we investigated the space-time
obtained by quotients of the AdS4 space-time. Further quo-
tient with specific Z2 is considered. Taking up the first-order
perturbation in metric, we estimated the backreaction of
the matter field on space-time geometry. We can calculate
the expectation value of the stress-energy tensor by pulling
it back onto the covering space. The average null energy
becomes negative when the suitable boundary condition is
chosen, resulting in a traversable wormhole.

1 Introduction

Wormholes have been a topic of interest for both scientists
[1,2], and the general public as they provide a way for rapid
transit between two distant points in space or also for commu-
nication over long distances. Wormholes are Einstein equa-
tion solutions that use a throat to connect two otherwise
different space-times or two widely separated areas of the
same space-time. Several studies showed that wormholes
also present themselves as exact solutions in the context
of modified gravity [3–8]. Classically, wormholes are not
traversable, meaning that a causal curve cannot pass through
the wormhole’s throat, connecting the two different regions.
A traversable wormhole is possible only if the geodesics
entering the wormhole on one side (and thus converging
as they approach the throat) will emerge on the other side,
diverging from each other. Raychaudhuri’s equation showed
that it can only happen if certain energy conditions are vio-
lated – the null energy condition (NEC) and the averaged null
energy conditions (ANEC). The ANEC asserts that, there
must be an infinite number of null geodesics with a tangent
vector kμ and affine parameter λ passing through the worm-
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hole to satisfy the condition
∫ ∞

−∞
Tαβk

αkβdλ < 0. (1.1)

The ER = EPR conjecture [9] states that whenever two parti-
cles are entangled, they must be connected through a worm-
hole. Reference [10] originally addressed the issue of worm-
hole traversability for static, spherically symmetric worm-
holes, and it has been shown that wormholes must have exotic
matter for traversability. References [2,11,12] further inves-
tigated this issue and established the violation of the average
null energy condition (ANEC) as an essential requirement
for wormhole traversability. The ANEC has been demon-
strated to hold for achronal null geodesics [13–15]. As a
result, space-times with only achronal null geodesics do not
allow for traversable wormholes. The topological censor the-
orem [16] and its generalization to asymptotically localized
anti-de Sitter spaces [17] declare that any causal curve whose
endpoints reside in the boundary at infinity (I) can be trans-
formed to a causal curve that wholly lies in (I).

Gao, Jafferis, and Wall [18] recently made a significant
advance in this direction. By adding a time-dependent cou-
pling between the two asymptotic regions of an eternal BTZ
black hole, they were able to create a traversable wormhole.
Using the point-splitting method, they calculated the one-
loop stress-energy tensor. By correctly choosing the sign of
the coupling, the vacuum expectation value of the double null
component of the stress-energy tensor may be made negative,
allowing the wormhole to be traversable. These findings were
then generalized in [19] to investigate the effect of rotation on
wormhole size. In [20], a connection between the two bound-
aries were used to create an eternally traversable wormhole
in nearly-AdS2 space-time.

In the presence of massless fermions, [21] constructed
a four-dimensional traversable wormhole by connecting the
throats of two charged extremal black hole geometries. This
construction did not rely on any non-local external cou-
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pling between the two boundaries, and the result was what
is known as self-supporting wormholes, which form purely
from the local dynamics of the fermion fields existing in the
bulk of space-time. In [22], authors have constructed eter-
nal AdS4 traversable wormhole by coupling CFT3 boundary
theories. In [23], authors have constructed the traversable
wormhole without adding any coupling between its asymp-
totic regions. They have presented an alternative analysis to
ascertain traversable wormholes from bulk dynamics by con-
sidering a free scalar field in quotients of AdS3 and AdS3×S1

by discrete symmetries. The authors calculated the gravita-
tional backreaction and demonstrated that causal curves that
cannot be deformed to the boundary exist in space-time. Tak-
ing the quotient by a discrete symmetry is essential in that it
destroys the globally specified Killing field, which is crucial
for attaining the average null energy condition. This finding
was later extended [24] to include fermions in bulk and [25]
to include massive spin one, resulting in traversable worm-
holes.

In this paper, we generalize the aforementioned conclu-
sions to the four dimensions. In the case of AdS4, an exact
analytic equation for the propagator in closed form is not pos-
sible. We computed the expectation value of the stress tensor
by fixing different values of mass m and show that this leads
to traversable wormholes when sufficient boundary condi-
tions are imposed. The preliminaries for developing self-
supporting wormholes from free scalar fields are summarised
in the following section. By quotienting out the AdS4, we get
the space-time in Sect. 3. The expectation value of the stress
tensor for the scalar field is then computed using the images
approach. The choice of co-ordinate is discussed in appendix
A, and the linearized Einstein’s equation up to first order is
discussed in appendix B.

2 Preliminaries

The AdS3 metric in Kruskal-like coordinates (U, V, φ) is

dS2 = gαβdx
αdxβ

= 1

(1 +UV )2

(
− 4l2dUdV + r+(1 −UV )2dφ2

)
,

(2.1)

where φ is the azimuthal angle. By identifying φ ∼ φ + 2π ,
it gives rise to a non-rotating BTZ black hole with horizon
radius r+. U = 0 and V = 0 are the horizons of black hole
and 1 + UV = 0 indicates the boundary of black hole. The
RP

2-geon [26] is generated by multiplying this geometry by
the Z2 isometry J , which has the following effect on the
co-ordinates: J : (V,U, φ) → (V,U, φ + π). The above
solution was constructed and discussed in [27]. From the
gauge-gravity perspective, the solution has been discussed

in [28]. In the case of wormhole discussed in [29]. This is
the first solution in which the authors of [18] have discussed
the traversability issue of the wormhole by taking an appro-
priate double trace deformation coupled to two boundaries.
The appropriate double trace deformation in boundary CFT
amounts to adding a stress tensor in bulk, resulting in a per-
turbation of the space-time geometry

We’ll start with the fact that is discussed in [18]. By using
the fact that the background metric (2.1) has constant gUV

along the horizon (V = 0), which implies that the geodesic
equation at linear order implies a null ray starting from the
right boundary in the far past to have

V (U ) = −(2gUV (V = 0))−1
∫ U

−∞
dUhUU , (2.2)

= 1

2l2

∫ U

−∞
dUhUU , (2.3)

where hkk is the norm of ka after first-order back-reaction
from the quantum stress tensor. By taking one of the hori-
zons into account, let’s take V = 0 horizon with the horizon
generator kλ such that kλ∂λ = ∂U . The null geodesics tan-
gent to this horizon can be parametrized by choosing U as
the affine parameter. For the metric perturbation on the cho-
sen horizon (V = 0), the linearized Einstein’s equation for
hμν = δgμν ∼ O(ε) is written as1

1

2

[ 1

l2
(hUU + ∂U (UhUU )) − 1

r2+
∂2
Uhφφ

]
= 8πGNTUU ,

(2.4)

By integrating the Eq. (2.4) overall U to get the shifts in the
ray from far past to far future. While integrating and using
the asymptotically AdS boundary conditions, the equation
reduces to

8πGN

∫
dU 〈Tkk〉 = 1

2l2

∫
dUhkk, (2.5)

the shift at the far future is

�V (+∞) = −8πGNl2

gUV (0)

∫ ∞

−∞
dU 〈Tkk〉

= 4πGN

∫ ∞

−∞
dU 〈Tkk〉. (2.6)

The time delay of the null geodesics starting from U = −∞
and ending at U = ∞ can be measured using the quantity
�V (∞). This quantity also provides a measure for the size of
the wormhole’s opening. The wormhole becomes traversable
iff the ANEC is violated or, equivalently, �V (∞) < 0.
By choosing an appropriate non-local coupling between the
boundaries, it has been shown in [18] that taking a one-loop

1 Detailed discussion in appendix B.
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stress tensor can violate the ANEC and result in wormhole
traversability.

The above construction relies on the addition of any non-
local boundary interaction. Another method has been pro-
posed in [23] to give rise to a traversable wormhole without
adding non-local coupling. This method relies on choosing
a suitable Z2 quotient of BTZ black hole space-timeM̃ ; it
results in a smooth, globally hyperbolic manifold, called as
RP

2-geon [26], M . The manifold M̃ is also called the cover-
ing space. A new homotopy cycle in manifold M arises due
to the introduction of the Z2 quotient and, it allows to take the
scalar field in M to be either periodic or anti-periodic around
this circle. By using the method of images, one can relate the
state on M and M̃ . The points x̃ ∈ M̃ can be projected into
M by taking an isometry, let’s say J , i.e., the pairs (x̃, J x̃)
project on point x ∈ M . By using the Method of images, the
scalar quantum fields φ̃(x) in M̃ are used to construct the
quantum fields in M as

φ±(x) = 1√
2

(
φ̃(x̃) ± φ̃(J x̃)

)
, (2.7)

where ± corresponds to the periodic and anti-periodic bound-
ary conditions. The points x̃ and J x̃ can’t coincide as M is
smooth. Thus they are spacelike separated and the quantum
fields at these points commute.

The action for free scalar field φ±(x) in M is

S =
∫

d4x
√−g

(
−1

2
gαβ∂αφ±(x)∂βφ±(x) − 1

2
m2φ2±(x)

)
.

(2.8)

The stress-energy tensor by varying the action with respect
to gαβ ,

Tαβ =∂αφ∂βφ −
[

1

2
gαβg

γ δ∂γ φ∂δφ+ 1

2
gαβm

2φ2
]

. (2.9)

To compute the expectation value of the double null compo-
nent of the stress tensor in the Hartle–Hawking state. Hartle–
Hawking state in M is represented as |HH, M〉 and in M̃

as
∣∣∣HH, M̃

〉
. As the quantity of interest is kαkβTαβ , the

term inside the parenthesis in Eq. (2.9) vanishes because of
Tαβkαkβ = 0. Finally we have [25]

〈HH, M |kαkβTαβ±|HH, M〉
= ±

〈
HH, M̃

∣∣∣kα∂αφ̃(x̃)kβ∂βφ̃(J x̃)
∣∣∣HH, M̃

〉

= ±
〈
HH, M̃

∣∣∣∂U φ̃(x̃)∂U φ̃(J x̃)
∣∣∣HH, M̃

〉
. (2.10)

This result emphasizes the main idea. Unless the integral of
the right-hand side disappears, it will be negative for some
boundary conditions (±). Backreaction will then make the
wormhole traversable with that decision. It is thus only nec-
essary to investigate this integral in certain circumstances,
demonstrating that it is non-zero and quantifying the degree

to which the wormhole becomes traversable. This has been
calculated for several smooth, globally hyperbolic, Z2 quo-
tients of BTZ and BT Z×S1 space-times [23–25]. The results
have been subsequently utilized to demonstrate the ANEC
violation.

3 BTZ black hole in 3+1 dimensions

A BTZ black hole is a space-time obtained by identifying
points in AdS-space. The BTZ black hole could be reviewed
as the quotient space [AdS]/GT . GT is a group generated by
: GT = {n; nεZ},  = eαξ for some fixed α,  represents
the discrete symmetry of AdS space and ξ is the killing field.
If ξ is timelike in some regions of AdS-space then the point
identified by eαξ results in the closed timelike curve (CTC).
So, an observer avoids entering the region where ξ is timelike.
When ξ is lightlike i.e., ξμξμ = 0 hypersurface is known as
singularity and interpreted as the horizon.

Let’s start with defining 3 + 1 AdS space as hyperboloid

− T 2
1 − T 2

2 + X2
1 + X2

2 + X2
3 = −l2, (3.1)

embedded in the flat 5−dimensional space with metric

ds2 = −dT 2
1 − dT 2

2 + dX2
1 + dX2

2 + dX2
3 . (3.2)

This surface given by the above equation, in particular, has a
Killing vector ξα∂α = r+

l (T1∂X1+X1∂T1), which is a boost in
the (T1, X1) plane with a norm of ξ2 = r2+(T 2

1 − X2
1), where

r+ is an arbitrary real constant. From now without loss of gen-
erality, we can fix l = 1. The Norm can be positive, negative,
or zero. That defines the existence of a Black hole. Locating
points along the orbits of ξα is necessary to build a black
hole. The orbits are timelike in the region ξ2 < 0. They will,
however, be closed (i.e., they contain closed timelike coordi-
nates) after the identification has been made. As a result, the
region ξ2 < 0 is not physical in this sense and no longer phys-
ical and its boundary ξ2 = 0 is singular. As a result, three
regions in spacetime are of interest: I := r+ < ξ2 < ∞,
I I := 0 < ξ2 < r+ and I I I := −∞ < ξ2 ≤ 0. The causal
structure has been discussed in [30–32].

From [33], for non-rotating BTZ black hole is obtained
by restricting to the region T 2

1 > X2
1 (i.e.,ξ2 > 0), where the

Killing vector is space-like, and quotienting by the discrete
isometry group results in black hole solution. By introducing
local coordinates of AdS space in the region ξ2 > 0 to write
down the identification along the orbits of ξα explicitly as

T1 = r

r+
cosh (r+φ)

X1 = r

r+
sinh (r+φ)

Xi = 2yi
1 − y2 , (3.3)
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with

r = r+
1 + y2

1 − y2 , y2 = −y2
0 + y2

2 + y2
3 (3.4)

where X ′
i s are T2, X2 and X3 for y0, y2 and y3 respectively.

Here −∞ < yi < ∞ and −∞ < φ < ∞ with restriction
−1 < y2 < 1. The boundaries, i.e., r → ∞, represent a
hyperbolic “ball” y2 = 1. The induced metric can be written
as

ds2 = (r2 + r2+)2

r2+

(
−dy2

0 + dy2
2 + dy2

3

)
+ r2dφ2. (3.5)

The killing field is ξ = ∂φ and ξ2 = r2. Quotient space can
be identified by φ ≡ φ + 2nπ . The topology of space-time
is R

3 × S1.
By introducing the coordinates on hyperplane {y0, y2, y3}

as

y0 = f (r) sinh (r+t)
y2 = f (r) cosh (r+t) cos (r+θ)

y2 = f (r) cosh (r+t) sin (r+θ) , (3.6)

with f (r) =
√

r2

r2+
− 1. Using this, the metric can be written

as2

ds2 = −
(
r2 − r2+

)
dt2 + dr2

r2 − r2+

+r2 − r2+
r2+

cosh2 (r+t) dθ2 + r2dφ2. (3.7)

One can notice that the metric is non-static. The space-time
has topology R

2 × T
2. Thus it describes a growing toroidal

black hole. By defining u2 = r2 − r2+ one can easily verify
that throat lies at u = 0. By calculating the Kretschmann
scalar K = Rαβγ δRαβγ δ , there is a symmetry of both sides
of the throat. At u = 0 we have minimum area 4πr2+.

Using embedding in A we can find the metric in Kruskal
like (U, V, θ, φ) co-ordinate is

ds2 = 1

(1 +UV )2

(
− 4dUdV + (U − V )2dθ2

2 The Cosmological constant for d-dimensional Anti-de Sitter space is

� = − (d − 1)(d − 2)

2l2
.

For d = 4 and l = 1, the above expression is reduced to � = −3.
The spacetime metric (3.7) is a solution of general relativity with the
cosmological constant, i.e.,

Gαβ + �gαβ = 0

Rαβ − 1

2
Rgαβ − 3gαβ = 0

Rαβ − 1

2
(R + 6) gαβ = 0.

+r2+(−1 +UV )2dφ2
)

. (3.8)

The further quotient of Z2 will give rise to an isometry J with
identification J : (U, V, φ, θ) → (V,U, φ, θ + π). Using
the linearized equation at V = 0, integrating over all U with
appropriate AdS boundary conditions reduces to3

∫
dUhUU = 32πGN

5

∫
dUTUU . (3.9)

To find the shift �V at U = ∞ we have

�V (+∞) = − 32πGN

5gUV (0)

∫ ∞

−∞
dU 〈Tkk〉

= 16πGN

5

∫ ∞

−∞
dU 〈Tkk〉. (3.10)

For the traversability of the wormhole, ANEC has to violate,
i.e., �V < 0.

4 The scalar field

From the above discussion, to examine the ANEC, we have
to compute the expectation value of the stress-energy tensor.
As the expectation value is evaluated in covering space M̃ ,
but due to the property that it is the quotient of AdS4 with
identification φ ∼ φ + 2nπ . From Eq. (2.10), using the
two-point function, one can compute the expectation value
of the stress-energy tensor. The scalar two-point function
in arbitrary dimension d has been discussed in [34]. We will
quickly summarise the aspects of their results that are relevant
to our goal in this section.

The scalar two-point function can be written as

G(x, x ′) = 〈ψ |φ(x)φ(x ′)|ψ〉. (4.1)

Here the state ψ is maximally symmetric, G(x, x ′) solely
depends on the geodesic distance μ(x, x ′) for spacelike sep-
arated points x, x ′. Since μ(x, x ′) is the proper distance
along a geodesic, the vectors nα(x, x ′) = ∇αμ(x, x ′) and
nα′(x, x ′) = ∇α′μ(x, x ′) have unit length. Because they are
pointing away from one another by the relation nαgα

β ′ =
−nβ ′ . The parallel propagator gαβ ′(x, x ′) along the geodesic
joining x to x ′ is unique for maximally symmetric spaces. It
possesses the following properties:

gαβ ′ (x, x ′) = gαβ (x) for x = x ′ (4.2)

gαβ ′ (x, x ′) = gβ ′α(x ′, x) (4.3)

gαβ(x) = gαγ ′(x, x ′)gβδ′(x, x ′)gγ ′δ′
(x ′). (4.4)

3 Detailed discussion in Appendix B.
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The derivatives of nα and gαβ may thus be represented in
terms of our fundamental set:

∇αnβ = A(μ)
[
gαβ(x) − nα(x, x ′)nβ(x, x ′)

]
(4.5)

∇αnβ ′ = C(μ)
[
gαβ ′(x, x ′) + nα(x, x ′)nβ ′(x, x ′)

]
(4.6)

∇αgβγ ′ = − [A(μ) + C(μ)] {gαβ(x)nγ ′(x, x ′)
+gαγ ′(x, x ′)nβ(x, x ′)}. (4.7)

and the similar expression for the derivatives with respect to
∇α′ . The functions A(μ) and C(μ) are

A(μ) = coth (μ) C(μ) = −csch (μ) . (4.8)

By using G ′ = dG
dμ

, we obtain

�G(μ) = ∇α∇αG(μ)

= ∇α(G ′(μ)nα)

= G ′′(μ) + 3G ′(μ)A(μ). (4.9)

In the second line we have used ∇αμ = nα and in last δ α
α =

4 and nαnα = 1. The equation of motion (�−m2)φ(x) = 0
can be written as (if x �= x ′),

G ′′(μ) + 3G ′(μ)A(μ) − m2G = 0. (4.10)

By changing variables as

z = Cosh2
(μ

2

)
, (4.11)

then the Eq. (4.10) reduces to
[
z(1 − z)

d2

dz2 + {c − (a+ + a− + 1)} d

dz
− a+a−

]

G(z) = 0, (4.12)

with the parameters 2a± =
[
3 ± √

9 + 4m2
]

and c = 2. The

two-point function G(z) as the solution of (4.12) in terms of
hypergeometric functions can be written as

G(z) = pz−a+F(a+, a+ − c + 1; a+ − a− + 1; z−1),

(4.13)

with normalization constant p is given by

p = (a+)(a+ − c + 1)

16π2(a+ − a− + 1)
. (4.14)

In the case of AdS3, the hypergeometric function is summed
up to an exact analytic expression. But in the case of AdS4,
we don’t have the exact analytic form (Figs. 1, 2). In the
terms of the conformal weight � = √

9 + 4m2, the above
parameters reduces to 2a± = 3 ± � and c = 2.

A standard calculation using the embedding in Eq. (A.5)
the geodesics distance is

μ = 1

(1 +UV )(1 +U ′V ′)

×
[
(U + V )(U ′ + V ′) − (U − V )

×(U ′ − V ′) cos
(
r+(θ − θ ′)

)

+(−1 +U ′V ′)(−1 +UV ) cosh
(
r+(φ − φ′)

) ]
.

By definingC = cos
(
r+[θ − θ ′]) andK = cosh

(
r+[φ − φ′])

the above expression can be written as

μ = 1

(1 +UV )(1 +U ′V ′)

×
[
(U + V )(U ′ + V ′) − (U − V )(U ′ − V ′)C

+(−1 +U ′V ′)(−1 +UV )K
]
.

Working on the horizon V = 0, we define

f (K,U, C,�) = 〈0|∂Uφ(x)∂Uφ(x ′)|0〉, (4.15)

with x = (U, V, θ, φ) and x ′ = (U ′, V ′, θ ′, φ′) points in
AdS4

4.1 Calculations of stress energy tensor

As we claimed above, we don’t have a closed form for the
two-point function in the case of AdS4. We will compute a
two-point function for different values ofm2. From Eq. (4.13)
for different values of m2 we will have two point function.
For (m2 = 0)

G(z) = (3)(2)

(4)16π2 z
−3F

(
3, 2, 4,

1

z

)
= 1

16π2z(z − 1)[
−1 + 2z + (2z2 − 2z)log

(
z − 1

z

)]
. (4.16)

The graphs are identical as [23] for BTZ in the 2+1 case.
Now computation of f for m2 = 0 we have

f (C,U,K)

= (1 + C)
[K − K2l2 + (1 + C)(−1 + 2Kl2)U2 + 3(1 + C)2l2U4

]
16l2π2

(K + (1 + C)U2
)3 (−1 + l2(K + (1 + C)U2

)3 .

By fixing C = 1 the above expression reduces to

f (U,K) = K − K2 + (−1 + 2K)U 2 + 3U 4

16π2(−1 + K +U 2)3(K +U 2)3 .

By integrating the above equation, i.e.,∫ ∞

0
f (U,K)dU

= −
√

1 − K + 3K√
1 − K − 4K2

√
1 − K

128π(K(1 − K))3/2
< 0.

(4.17)

This shows the violation of ANEC. By plotting
∫ ∞

0 f (K,

U, C,�) for fixed value of C (e.g 0, 1) with respect to K one
can also verify the same (Fig. 3).
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Fig. 1 Some of the functions Left: K = 1, C = 0, for � = 3 (red), � = 5 (yellow), � = 7 (green). Right: K = 1, C = 0, for � = 3 (red), � = 5
(yellow), � = 7 (green)

Fig. 2 Some of the functions Left: K = 1.5, C = 0, for � = 3 (red), � = 5 (yellow), � = 7 (green). Right: K = 1.5, C = 0, for � = 3 (red),
� = 5 (yellow), � = 7 (green)

Fig. 3 Left:
∫ ∞

0 f (K,U, C,�) for � = 3 (red), � = 5 (yellow), � = 7 (green). Right:
∫ ∞

0 f (K,U, C,�) for � = 3 (red), � = 5 (yellow),
� = 7 (green)

5 Results and discussion

In this paper, we posed the issue of wormhole traversabil-
ity in a quotient of the space-time obtained from quotients
of AdS4 space with specific Z2 symmetry in the presence
of scalar fields. Back-reaction from quantum scalar fields in
Hartle–Hawking states is explored on simple explicit exam-
ples of Z2 wormholes asymptotic to AdS4. These examples
are often traversable when the scalar satisfies periodic bound-
ary condition (chosen from Eq. (2.7)) around the Z2 cycle.
In AdS4, we found the expression for the scalar fields’ two-

point function. We calculated the average null energy using
this and discovered that it becomes negative when the peri-
odic boundary conditions on the scalar fields are chosen. The
wormholes can then be traversable due to the back reaction on
the geometry. It’s also interesting extrapolating this to inves-
tigate wormhole traversability in the context of higher spin
fields. Recent research has revealed that Euclidean worm-
holes serve an important role in providing a new viewpoint
on the information loss paradox. It would be fascinating to
see if the problem of traversability in Lorentzian wormholes
like the ones investigated in this paper sheds any light on
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this topic. For static space-time, Hartle–Hawking Vacua has
been discussed in [35]. We’re using Hartle–Hawking vacua
to calculate expectation values, but their forms aren’t essen-
tial. It would be fascinating to learn the form of the Hartle–
Hawking state for non-static space times, particularly for the
above metric.
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Appendices

AppendixA:Co-ordinate choice and theirKruskal exten-
sion

The choice of co-ordinate is

T1 = r

r+
cosh (r+φ)

T2 = f (r) sinh (r+t)

X1 = r

r+
sinh (r+φ)

X2 = f (r) cosh (r+t) cos (r+θ)

X3 = f (r) cosh (r+t) sin (r+θ) . (A.1)

Again by using Eq. (3.1) one can find f (r) =
√

r2

r2+
− 1. For

the Kruskal extension, one can start with

ds2 = −
(
r2 − r2+

)
dt2 + dr2

r2 − r2+
=

(
r2 − r2+

) [
−dt2 + dr2∗

]
. (A.2)

One can find r∗ = 1
2r+ ln |r−r+|

r+r+ . Lets define the co-ordinate
u = t−r∗ and v = t+r∗ then the metric (A.2) can be written
as

ds2 =
(
r2 − r2+

)
[−dudv] . (A.3)

As we have t = u+v
2 and r∗ = v−u

2 then

r2 − r2+ = (r + r+)2 er+(v−u). (A.4)

Let’s define again U = −e−r+u and V = er+v , using this
t = − 1

2r+ ln
(−U

V

)
and r = r+ 1−UV

1+UV , and finally our co-
ordinate becomes

T1 = 1 −UV

1 +UV
cosh (r+φ)

T2 = V +U

1 +UV

X1 = 1 −UV

1 +UV
sinh (r+φ)

X2 = V −U

1 +UV
cos (r+θ)

X3 = V −U

1 +UV
sin (r+θ) . (A.5)

By using the formula

μ(U, V, φ, θ,U ′, V ′, φ′, θ ′) = T1T
′
1 + T2T

′
2 − X1X

′
1

−X2X
′
2 − X3X

′
3, (A.6)

one can get the form of geodesics distance same as (4.15).

Appendix B: Linearized equation

In this section, we derive the Linearized Einstein in both
cases e.g., AdS3 and AdS4 case.

B.1 AdS3 case

The Einstein equation in the AdS3 case can be written as

Rαβ − 1

2
gαβ

(
R + 2

l2

)
= 8πGNTαβ. (B.1)

With the small perturbation in the metric i.e., gαβ = gαβ +
δgαβ = gαβ + εhαβ + O(ε2). We are perturbing the metric
in Kruskal co-ordinate. By putting this in Einstein’s equation
and putting V = 0 as we are working on V = 0 horizon.
Only taking the terms independent of 1

U as we are interested
in U → ±∞

1

2l2

[
2hUU +U∂UhUU − 1

2r2+
∂2
Uhφφ

]
= 8πGNTUU

1

2l2

[
2hUU + ∂U (UhUU ) − hUU − 1

2r2+
∂2
Uhφφ

]

= 8πGNTUU

1

2l2

[
hUU + ∂U (UhUU ) − 1

2r2 ∂2
Uhφφ

]
= 8πGNTUU .

(B.2)

By integrating overall U and dropping the boundary terms
as the requirements of boundary stress tensor be unchanged
at this order. Finally, we have
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∫
dUhUU = 16πGNl

2
∫

dUTUU . (B.3)

B.2 AdS4 case

The Einstein equation in the AdS4

Rαβ − 1

2
gαβ

(
R + 6

l2

)
= 8πGNTαβ. (B.4)

Again perturbing the metric and taking the limits as above it
is easy to verify that we have

1

2l2

[
4hUU + 3

2
U∂UhUU − 1

2r2+
∂2
Uhφφ

]
= 8πGNTUU

1

2l2

[
4hUU + 3

2
{∂U (UhUU ) − hUU } − 1

2r2+
∂2
Uhφφ

]

= 8πGNTUU

1

2l2

[
5

2
hUU + 3

2
∂U (UhUU ) − 1

2r2 ∂2
Uhφφ

]

= 8πGNTUU . (B.5)

By integrating overall U and dropping the boundary terms
as the requirements of boundary stress tensor be unchanged
at this order. Finally, we have
∫

dUhUU = 32πGNl2

5

∫
dUTUU (B.6)

This is the same as Eq. (3.9).
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