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Abstract We propose a model describing spin-half quan-
tum particles in curved spacetime in the framework of quan-
tum field theory. Our model is based on embodying Einstein’s
equivalence principle and general covariance in the definition
of quantum-particle states. With this model at hand, we com-
pute several observables which characterise spin-half quan-
tum particles in a gravitational field. In particular, we find
that spin precesses in a normal Fermi frame, even in the
absence of torsion. The effect appears to be complemen-
tary to free-fall non-universality we have recently reported
about for spinless quantum particles. Furthermore, we find
that quantum-particle gravitational-potential energy is insen-
sitive to wave-packet spreading in the Earth’s gravitational
field, that is responsible for the non-universality of free fall
in quantum theory. This theoretical result provides another
channel for the experimental study of our quantum-particle
model by using gravitational spectrometers. Finally, we also
find that (elementary) fermions and antifermions are indis-
tinguishable in gravity.

1 Introduction

There are several research fields in modern theoretical
physics, focusing on various aspects of quantum field the-
ory. This primarily finds its application in elementary parti-
cle physics. In fact, quantum theory of fields was originally
developed to model electromagnetic interaction to naturally
require a unification of quantum mechanics and special rela-
tivity. Nowadays, the Standard Model of elementary particle
physics successfully involves the quantum-field-theory for-
malism for modelling high-energy scattering processes tak-
ing place in colliders.
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In the framework of general relativity, however, special
relativity is a special-case theory. It is in conflict with obser-
vations whenever gravity cannot be neglected with respect
to the rest three fundamental interactions. In particular, the
free-fall observation of neutrons [1–4] shows that the Stan-
dard Model has to be extended to comprise general relativity.
This circumstance leads to a problem of field quantisation in
curved spacetime.

This is problematic because it is not self-evident how to
properly generalise quantum field theory over Minkowski
spacetime to a non-Minkowski one. The basic reason of that
is the role which the Poincaré group plays in the definition of
quantum vacuum and, correspondingly, of Fock space in field
quantisation in Minkowski spacetime [5–9]. The basic idea,
which has been put forward in this regard, is to utilise isom-
etry group of a given non-Minkowski spacetime for that pur-
pose [10–12]. This particularly implies global field quantisa-
tion, because this approach demands the knowledge of metric
tensor at all space-time points. Apart from this is unfeasible in
practice, it is unknown if the observable Universe has to have
any particular exact isometry group. Thus, global field quan-
tisation assumes the usage of space-time geometries which
have a non-trivial isometry group. These geometries must
approximate some space-time regions of the observable Uni-
verse. In other words, their isometry groups can be thought
of as local non-exact symmetries of the Universe. The Ein-
stein equivalence principle states that the Poincaré group can
be considered as its local non-exact symmetry too [13]. The
question then arises as to whether global field quantisation
locally reduces to that used in particle physics.

The Standard Model of particle physics has been in fact
being tested in the presence of the Earth’s gravitational field.
It may be approximately described by Schwarzschild space-
time if the Earth’s rotation is neglected. The Schwarzschild
metric is invariant with respect to time translations and rota-
tions. Although these form a subgroup of the Poincaré group,
there is no guarantee that global field quantisation based
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on the isometry group of Schwarzschild spacetime locally
agrees with global field quantisation in Minkowski space-
time. This is because the Schwarzschild-time and -space
coordinates differ from local Minkowski-time and -space
ones. Indeed, general coordinates x and normal Riemann
coordinates y in the neighbourhood of X are related as fol-
lows [14]:

yc(x) ≈ Y c + (x − X)c + 1

2
�c

ab (x − X)a(x − X)b, (1)

where the Latin indices run over {0, 1, 2, 3}, �c
ab are Christof-

fel symbols computed at X and higher-order terms with
respect to metric derivatives have been neglected on the right-
hand side of (1). So, Schwarzschild spacetime is locally
spherical symmetric at any X , which is due to Einstein’s
equivalence principle, while globally spherical symmetric
with respect to a single point which is known as the cen-
tral singularity of the Schwarzschild geometry. Furthermore,
the Schwarzschild time does asymptotically match a local
Minkowski time at spatial infinity. However, this is non-
existent in practice. That is, the Schwarzschild-time transla-
tions do not correspond to local-Minkowski-time translations
if metric derivatives are non-zero.

The successful application of quantum field theory in ele-
mentary particle physics instructs us to consider plane-wave
modes (used to expand a quantum field [5–9]), i.e.

ψP (y) = exp
(−i Pa ya/h̄

)
, (2)

in the Riemann inertial frame, where P is the on-mass-shell
4-momentum: ηab Pa Pb = (Mc)2, where c is the speed of
light in vacuum in the absence of external fields [5–7]. We
then obtain from (1) for X being at the Earth’s surface that

ψP (y)
∣∣|P| � Mc ∝ exp

(−i Mc2(1 + g⊕z/c2)t/h̄
)
, (3)

where g⊕ ≈ 9.81 m/s2 is the free-fall acceleration, z ≡
(x−X)3 is the vertical height above the Earth’s surface and
t ≡ (x−X)0/c is the Schwarzschild time. The g⊕-dependent
term in (3) has been derived in [15] from the Schrödinger
equation with Newton’s gravitational potential. This term
gives rise to gravity-induced quantum interference which
has been observed in the Colella–Overhauser–Werner exper-
iment [16]. It is a non-inertial-frame effect, that also shows
up in an accelerated frame, as that has been confirmed by
the Bonse–Wroblewski experiment [17]. These experiments
demonstrate that quantum interference cannot be used to dis-
tinguish between uniform gravity and acceleration, in accord
with Einstein’s principle [18].

In the Schwarzschild frame, global field quantisation
instructs us to consider modes which are eigenfunctions of
the Killing vector generating the Schwarzschild-time trans-
lations [10–12]:

ψP (x)
∣∣|P| � Mc ∝ exp

(−i Mc2t/h̄
)
, (4)

where the coefficient of proportionality is independent of
the Schwarzschild-time coordinate for any value of |P|. The
mode phase differs from that of (3). So, the physical meaning
of Fock space based on these modes is obscure in light of the
experiments mentioned above.

From other side, the plane-wave modes (2) cannot be
exact solutions of a field equation in curved spacetime. Still,
these can be treated as approximate solutions in local inertial
frames. These frames can generically be introduced relative
to either a point or a trajectory. However, a quantum-field
operator, e.g. �̂(x), depends on a single point. In other words,
�̂(x) is a local operator, whereas the coordinate transforma-
tion x → y(x) means that y depends on a pair of points
– x and X . This might in turn mean that one has to con-
sider �̂(x) → �̂X (y) under the coordinate transformation
(1). Theoretical particle physics relies on the Minkowski-
spacetime approximation, where one deals with �̂(y) which
does not depend on X [5–9]. These all might mean that �̂(x)

itself should appear in observables in such a way that X does
not show up if the space-time curvature is neglected. It is in
fact required for Einstein’s equivalence principle to hold in
local quantum phenomena.

One of these phenomena is scattering of particles. At tree
level of perturbation theory, the probability amplitude covari-
antly generalised to curved spacetime pictorially reads for a
pair of charged particles in the framework of quantum elec-
trodynamics as follows:

ψ1,i

ψ1,f

ψ2,i

ψ2,f

∝
∏

s ∈ {1,2}

∫
d4xs

√−g(xs) Jμ
1 (x1) G F

μν(x1, x2) J ν
2 (x2),

(5)

where G F
μν(x1, x2) is a Feynman propagator of the pho-

ton field in curved spacetime, naturally depending on the
geodesic distance between x1 and x2 and the space-time cur-
vature [11], and

Jμ
s (x) ≡ 〈ψs, f | Ĵμ

s (x)|ψs,i 〉 − 〈ψs, f |ψs,i 〉〈�| Ĵμ
s (x)|�〉,

(6)

where Ĵμ
s (x) is the current-density operator [6] and |�〉

stands for the quantum-vacuum state. This probability ampli-
tude is diffeomorphism invariant if and only if the particle
states |ψs,i 〉 and |ψs, f 〉 are independent of coordinate frames.
Besides, 〈ψs, f |ψs,i 〉 turns identically to zero if the initial
and final states of a particle are orthogonal to each other.
In practice, this might not be the case for free particles if
one deals with superpositions of plane waves in Minkowski
spacetime. Alternatively, one may replace Ĵμ

s (x) by : Ĵμ
s (x):

for which 〈�|: Ĵμ
s (x):|�〉 = 0 [5–9]. In any case, the current
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density Jμ
s (x) defined in (6) is localised in a spacetime region

in which the states |ψs,i 〉 and |ψs, f 〉 overlap. It means that
the probability amplitude (5) locally reduces to that com-
puted by using the Minkowski-spacetime approximation if
the in-coming particles are brought to a space-time region of
size being much smaller than a local curvature length in that
region. If otherwise, the probability amplitude tends to zero
by increasing the distance between the localisation regions of
Jμ

1 (x) and Jμ
2 (x), following from the cluster decomposition

principle (see Ch. 4 in [5] and [19] for concrete computa-
tions).

In theoretical particle physics, one commonly deals with
in-coming states depending solely on initial momenta. In
classical theory, it is additionally required to set their ini-
tial positions in order to ascertain particles’ trajectories. This
has to be the case in quantum theory as well. Clearly, this
does not contradict to Heisenberg’s uncertainty principle. It
means that we need to replace |ψi 〉 by |ψX,P 〉, where |ψX,P 〉
propagates over a trajectory passing through (X, P) in the
phase space. In Minkowski spacetime, this trajectory must
be x(τ ) = X + (P/M) τ , where M is particle’s mass and
τ denotes proper time. Therefore, in the coordinate repre-
sentation, |ψX,P 〉 turns into the wave function ψX,P (x) to
depend on x and X . Such wave functions enter the current
densities (6). This line of reasoning shows, thereby, that all
quantities entering the scattering amplitude depend not on
absolute positions, like quantum-field operators, �̂s(x), but
rather on relative positions.

To summarise, quantum-field operators are fundamental
objects in quantum field theory. Still, quantum phenomena
manifest themselves through the interaction of quantum par-
ticles. A quantum-particle model based on modes ψP (x) is
not complete, because initial position X has to be part of
the model, otherwise this is at odds with Bohr’s correspon-
dence principle. It means that the quantum-field expansion
over modes ψP (x) should play no underlying role for the
description of quantum particles (cf. [10–12]). Instead of that,
one should look for ψX,P (x) to provide the wave-function
description for quantum particles in the weak-gravity limit.
This naturally allows us to fulfil the condition that ψX,P (x)

reduces to a plane-wave superposition in a local Minkowski
frame for x being close to X [20–22], in accordance with the
application of quantum field theory in particle physics [5–
9]. For this condition to be fulfilled in any local Minkowski
frame, ψX,P (x) should, additionally, transform as a zero-
rank tensor under general coordinate transformations. This
explains how quantum field theory based on the Minkowski-
spacetime approximation and high-energy experiments done
in the Earth’s gravitational field can locally reconcile with
each other.

We intend here to study spin-half quantum particles in
curved spacetime in the framework of quantum field the-
ory. Our idea is here to build Einstein’s equivalence prin-

ciple and general covariance [23] into the model of quan-
tum particles in gravity, that we have lately put forward in
[20–22]. Accordingly, we will construct and study a quan-
tum spin-half state which is locally represented by a super-
position of positive-frequency plane waves, as in Minkowski
spacetime, and which is invariant under general coordinate
transformations. In an arbitrary curved space-time, it is hard
to construct such a state non-perturbatively in curvature. For
this reason, we will do this in perturbation theory by only tak-
ing the leading-order curvature contribution to the quantum
spin-half state into account. This approximation proves to be
sufficient to reach the main goal of the article, that is to com-
pare the kinematics of a quantum particle modelled by such
a state with that of a classical particle of same mass and spin.
This analysis allows us to determine possible experimental
setups which are suitable for testing our model.

Throughout, we use natural units c = G = h̄ = 1, unless
otherwise stated.

2 Covariant spin-half particle

2.1 Minkowski spacetime

Here we want to model a spin-half quantum particle in
Minkowski spacetime. We consider that the particle is ini-
tially placed at Y in position space and at P in momentum
space. So, it is modelled by the following state:

|ψY,P 〉 ≡ â†(ψY,P )|�〉, (7)

where |�〉 is the quantum vacuum and â†(ψY,P ) is an opera-
tor creating the spin-half quantum particle to be characterised
by the wave function ψY,P (y).

First, theoretical particle physics defines a unique quan-
tum vacuum which is known in the literature as the
Minkowski vacuum [5–9]. It is unique with respect to the
Poincaré isometry group of Minkowski spacetime. However,
the observable Universe may have no exact isometry group.
Yet, it does have approximate isometry groups emerging at
different length scales. One of the physically relevant exam-
ples is a local Poincaré group. This emerges in a vicinity
of any non-singular space-time point at length scales much
smaller than a local curvature length at that point. This state-
ment is a consequence of Einstein’s equivalence principle
which is so far in agreement with observations. At cosmolog-
ical length scales, the Universe looks as de-Sitter spacetime
[27]. There is no unique quantum vacuum in de-Sitter space-
time, which is invariant under the de-Sitter isometry group
[11]. In general, there is no preferred procedure to choose a
unique quantum vacuum in curved spacetime. In the absence
of any exact universe isometry group, |�〉 is, at least, sup-
posed to be unitarily equivalent to all local Minkowski vacua
which can be defined in local inertial frames. This is required
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for having a locally unique Fock space in the observable Uni-
verse. In other words, radio waves coming from Sagittarius
A	 must have the same nature like those produced here on
the Earth.

Second, the particle creation operator is defined as fol-
lows:

â†(ψY,P ) ≡
∫

d3y �̂†(y) ψY,P (y), (8)

where �̂(y) is a Dirac field satisfying Dirac’s equation with
the mass term M . It is common in theoretical particle physics
to consider a definite momentum wave function, namely
(
ψY,P (y)

)
non-normalisable = u(P) e−i P·(y−Y ), (9)

where u(P) is a 4-dimensional column vector (see Sec. 3.3
in [6]). Nevertheless, a single plane wave is not localised in
space. As a result, |ψY,P 〉 is non-normalisable, implying that
|ψY,P 〉 is physically obscure in this case. This problem can
be re-solved by treating their (normalisable) superposition
[7]:

(
ψY,P (y)

)
non-spinorial =

∫
d4 K

(2π)3 θ
(
K 0) δ

(
K 2 − M2)

×FP (K ) u(K ) e−i K ·(y−Y ), (10)

where FP (K ) has a narrow peak at K = P . Yet, unlike
the plane wave (9), this wave function does not properly
transform under the Lorentz transformations. In fact, it is not
a spinor. For this reason, we instead consider in what follows
that

ψY,P (y) ≡
∫

d4 K

(2π)3 θ
(
K 0) δ

(
K 2 − M2)

×FP(K )
γ ·K + M

2M
u(P) e−i K ·(y−Y ), (11)

where γ a are the four Dirac matrices in Weyl’s representation
[6]. This wave function can be shown to be a solution of the
Dirac equation and to transform as a spinor under the Lorentz
transformations, assuming FP (K ) is a Lorentz scalar (see
below).

As mentioned above, one normally treats on-mass-shell
plane waves in theoretical particle physics, which are asso-
ciated with in- and out-going particles in a given scatter-
ing amplitude. This amplitude depends on initial and final
momenta of such particles, but not on their initial and final
positions. Such amplitude does not disappear if the parti-
cles are infinitely separated away from each other. This is
in contradiction to observations. In theory, this circumstance
is taken into account via the cluster decomposition princi-
ple (see Ch. 4 in [5]), basically stating that distant scattering
experiments yield uncorrelated results. For this principle to
hold, one needs localised-in-space quantum states which cor-
respond to wave packets.

Wave packets involve, at least, one additional parameter
to determine the shape of FP (K ). This parameter appears
in the Heisenberg uncertainty relation and is known in the
quantum-mechanics literature as momentum variance [24].
It ensures that

〈ψY,P |ψY,P 〉 =
∫

d3y (ψY,P (y))† ψY,P (y)

= 1

2

∫
d3K
(2π)3

|FP (K)|2√
K2 + M2

M2 + P·K
2M2 ≡ 1.

(12)

The right-hand side is Lorentz-invariant. It requires the
momentum integral be also invariant under the Lorentz trans-
formations. In other words, we must consider FP (K ) =
F(P·K ). We have dealt with Lorentz-invariant Gaussian
wave functions in [20–22], which have been earlier studied in
[25,26]. We wish here to treat a modified Lorentz-invariant
Gaussian wave packet:

FP (K ) ≡ 23/2π M

D

√
K1

(
M2

D2

)
exp

(
− P·K

2D2

)

√
M2 + P·K , (13)

where D is the momentum variance and Kν(z) stands for the
modified Bessel function of the second kind. The pre-factor
in (13) has been chosen for the normalisation condition (12)
to be fulfilled (cf. [20,21]).

2.2 Minkowski-spacetime approximation

We have considered so far a spin-half wave packet in
Minkowski spacetime. The Universe is a non-Minkowski
spacetime [27]. Yet, it follows from Einstein’s equivalence
principle that the observable Universe can be locally approx-
imated by Minkowski spacetime at any point Y for y satis-
fying

|y − Y | � lc(Y ), (14)

where lc(Y ) is a local curvature length at Y , estimated by
the inverse of the fourth root of the Kretschmann scalar at
that point. At the Earth’s surface, we obtain lc(r⊕) ∼ 1011 m,
meaning that the Earth’s curvature can be basically ignored in
collider physics. We want to go beyond this approximation. In
other words, (11) turns into a leading-order approximation of
the wave function which does not involve metric derivatives:

ψ
(0)
Y,P (y) =

∫
d4 K

(2π)3 θ
(
K 0) δ

(
K 2 − M2)

×FP (K ) ψ
(0)
Y,P|K (y), (15a)

where we have on the mass shell that

ψ
(0)
Y,P|K (y) = γ ·K + M

2M
u(P) e−i K ·(y−Y ). (15b)
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It should be pointed out that the momentum integral can be
exactly evaluated with the choice (13) for FP(K ), which is
given by a combination of elementary functions.

The wave function is given in terms of local Minkowski
(Riemann) coordinates y defined at Y . It can be re-written
in general coordinates x = x(y) with X = x(Y ). In
these coordinates, ψ

(0)
X,P (x) depends on x via σ(x, X),

P M (X) σM (x, X) and γ M (X) σM (x, X), where σ(x, X) is
a geodetic distance – Synge’s world function, – σM (x, X)

is its derivative with respect to X M , P M (X) ≡ eM
a (X) Pa

and γ M (X) ≡ eM
a (X) γ a , where eM

a (X) are vierbein fields
at X , namely gM N (X) eM

a (X) eN
b (X) = ηab. These all mean

that the wave packet transforms as a zero-rank tensor under
general coordinate transformations, as required.

2.3 Beyond Minkowski-spacetime approximation

We now wish to obtain the leading-order curvature correction
to ψ

(0)
X,P (x). The Dirac-field equation generically reads

(
iγ μ(x)Dμ − M

)
ψX,P (x) = 0, (16)

where Dμ is the spinorial covariant derivative. By setting
Y = 0 in what follows for the sake of simplicity, we obtain
in normal Riemann coordinates that
(
iγ a∂a − M

)
ψ

(0)
Y,P (y) = 0, (17a)

(
iγ a∂a − M

)
ψ

(2)
Y,P (y) = − i

6
Ra

cbd yc ydγ b∂aψ
(0)
Y,P (y)

− i

8
Rabcd γ cγ bγ a ydψ

(0)
Y,P (y).

(17b)

Note, ψ
(2)
Y,P (y) depends apparently on the curvature tensor

at Y , where the index “(2)” refers to the number of metric
derivatives involved, while ψ

(1)
Y,P (y) does not exist in normal

Riemann coordinates.
In vacuum, i.e. Rab = 0, the second term on the right-

hand side of (17b) is identically zero. In this case, we have

ψ
(2)
Y,P (y) =

∫
d4 K

(2π)3 θ
(
K 0) δ

(
K 2 − M2)

×FP(K ) ψ
(2)
Y,P|K (y), (18a)

where we find on the mass shell that

ψ
(2)
Y,P|K (y) = O(2)ψ

(0)
Y,P|K (y), (18b)

where by definition

O(2) ≡ i K ·y
6M2 Racbd K a K b yc yd + 1

12M
Racbd K a yc ydγ b

+ K ·y + i

12M3 Racbd K a K b ydγ c

−2i K ·y + 1

8M2 Racbd K a yc Sbd , (18c)

and

Sab ≡ i

4

[
γ a, γ b]. (18d)

This solution is non-unique, like in case of the scalar-field
model [21]. For instance, we obtain others by adding multi-
ples of Racbd K a yc(K b yd − Sbd) and Racbd K a(K b ydγ c −
iyc Sbd) to O(2). In this article, however, we shall focus our
study on O(2) as given in (18c).

Among of all terms enteringO(2), only the first term modi-
fies the wave-function phase in a gravitational field. This term
coincides with that we have found for spin-zero particles at
the leading order in space-time curvature [21]. For this rea-
son, spin should not influence quantum interference induced
by space-time curvature. In fact, the relative phase shift of
wave packets obtained via splitting an ultra-cold 87Rb atom
cloud [28] is oblivious to atoms’ spin degree of freedom.

3 Observables

3.1 Quantum particle

The quantum-particle state |ψY,P 〉 is defined in Minkowski
spacetime through the creation operator (8). We covariantly
generalise it to curved spacetime as follows:

|ψX,P 〉 ≡ â†(ψX,P )|�〉, (19)

where

â†(ψX,P ) ≡
∫

�

d�μ(x) �̂(x) γ μ(x) ψX,P (x), (20)

where � is a time-like Cauchy surface on which, however, the
integral does not depend. This is because both the Dirac field
and the wave packet are solutions of the Dirac-field equation
(16) and ψX,P (x) is localised in space. Next, making use
of the anti-commutation relation for �̂(x) and its canonical
conjugate �̂(x) and taking into account â(ψX,P )|�〉 = 0,
we obtain

〈ψX,P |ψX,P 〉 =
∫

�

d�μ(x) Jμ(x), (21)

where

Jμ(x) ≡ ψ X,P (x) γ μ(x) ψX,P (x) (22)

is covariantly conserved, namely ∇μ Jμ(x) = 0. It is worth
emphasising that Jμ(x) is a vector, because ψX,P (x) is a
scalar with respect to general coordinate transformations.
This covariant conservation law means that 〈ψX,P |ψX,P 〉 is
a constant which we set to unity:

〈ψX,P |ψX,P 〉 ≡ 1. (23)

This defines the normalisation condition for the wave func-
tion ψX,P (x) in curved spacetime. Note that both sides of
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(23) are diffeomorphism invariant. This physically leads to
the frame-independent existence of quantum particles mod-
elled by |ψX,P 〉, even in the presence of a non-stationary
gravitational field (see [20] for the de-Sitter-universe case).

This circumstance is at odds with the idea that quan-
tum particles may be created in non-stationary spacetimes
[11,12]. This relies on a few assumptions. For the sake of con-
creteness, we focus on the flat de-Sitter spacetime, i.e. on that
patch of the de-Sitter hyperboloid, which can be parametrised
by Friedmann–Robertson–Walker coordinates with no spa-
tial curvature. In this example, one first expands �̂(x) over
modes which are eigenfunctions of Killing vectors gener-
ating translations in space. In the absence of cosmic-time-
translation symmetry, there is no unique choice of modes’
dependence on cosmic time. For this reason, one second
imposes a condition on how the modes have to depend on
time at past cosmic infinity, defining ψ−∞(x). One instead
chooses ψ+∞(x) for that condition to be fulfilled at future
cosmic infinity as well. Both ψ−∞(x) and ψ+∞(x) can be
utilised to define wave functions to satisfy the normalisa-
tion condition (23) with ψX,P (x) replaced by ψ−∞(x) and
ψ+∞(x), respectively. The cosmological particle creation is
owing to the replacement of ψ−∞(x) by ψ+∞(x) [29]. In
contrast, ψX,P (x) locally reduces to the plane-wave superpo-
sition in the vicinity of any X , which is required for quantum
particle theory to be consistent with Einstein’s equivalence
principle [20–22].

Another novel aspect is that |ψX,P 〉 is diffeomorphism
invariant. For example, a part of the flat de-Sitter spacetime
can be parametrised by static coordinates. In these coordi-
nates, there is a time-like Killing vector which generates
translations in time. This basically eliminates the ambigu-
ity in the mode choice by selecting those which are its
eigenfunctions. This property is correspondingly fulfilled for
any moment of static-time coordinate. In fact, such modes
define a quantum-particle state being unitarily equivalent
to |ψ−∞〉. At future cosmic infinity, |ψ+∞〉 is replaced by
|ψ−∞〉⊗ · · · ⊗|ψ−∞〉 under the coordinate transformation
from the flat to static patch of the de-Sitter hyperboloid. This
replacement is apparently in tension with the general princi-
ple of relativity.

In the absence of experimental data favouring the idea of
quantum particles being created in a non-stationary space-
time geometry, it is unclear whether this model accurately
describes particle physics in curved spacetime. From other
side, the Einstein equivalence principle is by now well tested
in various experiments [13], while general covariance is a
guiding principle for formulating physical laws. These laws
manifest themselves through interaction of (quantum) parti-
cles. Thus, general covariance makes physical sense if and
only if (quantum) particles are independent on coordinate
reference frames.

In interacting quantum field theories, |ψX,P 〉 should be
interpreted as an asymptotic state to model either an in-
or out-coming particle. In the former instance, |ψX,P 〉 does
change with time. It is because ψX,P (x) is a solution of the
linear Dirac-field equation, while �̂(x) satisfies a non-linear
Dirac-field equation. In fact, we obtain from (20) that

â†(ψX,P )
∣∣
out = â†(ψX,P )

∣∣
in − i

∫
d4x

√−g(x)

×(
i Dμ�̂(x)γ μ(x) + M�̂(x)

)
ψX,P (x),

(24)

where we have taken into account that ψX,P (x) obeys (16)
and turns to zero at spatial infinity, i.e.ψX,P (x) is localised
in space. This diffeomorphism-invariant integral vanishes if
and only if �̂(x) satisfies the linear Dirac-field equation.
The result (24) can be utilised to generalise the Lehmann–
Symanzik–Zimmermann reduction formula [9,30] to curved
spacetime. It is worth emphasising that this generalisation
logically follows from the general principle of relativity.
Hence, the quantum state |ψX,P 〉 may depend on time in a
gravitational field if we go beyond classical gravity, by work-
ing, for instance, in the framework of the effective quantum-
gravity theory [31].

Here we should digress to briefly discuss the quantum-
vacuum decay in a constant electric-field background to com-
pare it with the vacuum decay in a non-stationary grav-
itational field. The former is known in the literature as
Schwinger’s effect which was deduced in a manifestly gauge-
invariant way by employing the proper-time method [32].
This has no explicit reference to quantum particles. A (gauge-
dependent) derivation has been later proposed, making use of
the quantum-particle notion based on the Feynman prescrip-
tion distinguishing positive- and negative-frequency modes
as, respectively, particles and antiparticles [33,34], similar to
[29]. In the electric-field presence, �̂(x) cannot generically
satisfy the linear Dirac equation, meaning that the integral
in (24) is non-trivial, unless ψX,P (x) propagates away from
the electric field. Furthermore, to our knowledge, a gauge-
invariant wave-function solution to model a charged test par-
ticle placed in a constant electric field is not yet known in the
literature.

Working in normal Riemann coordinates, we have

〈ψY,P |ψY,P 〉 ≡ 〈ψY,P |ψY,P 〉(0) + 〈ψY,P |ψY,P 〉(2) + · · · ,

(25)

where the first term is generically independent on metric
derivatives, whereas the second one depends on the curva-
ture tensor at the point Y , i.e. on no more than two metric
derivatives. We find in case of (15b) and (18b) that

〈ψY,P |ψY,P 〉(0) = 1, (26a)

〈ψY,P |ψY,P 〉(2) = 0. (26b)
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These mean that the wave function ψX,P (x) ≈ ψ
(0)
X,P (x) +

ψ
(2)
X,P (x) is properly normalised up to the leading-order

approximation in the curvature tensor.

3.2 Quantum-particle propagation

We define particle’s position through the first moment of the
current density (22) [20,21]:

〈xμ(�)〉 ≡
∫

�

d�ν(x) xμ J ν(x), (27)

where � is a time-like Cauchy surface. Apparently, the posi-
tion expectation value depends on the choice of �. In quan-
tum mechanics, this choice determines the notion of time,
which is invariant under the Galilei transformations. In spe-
cial relativity, this choice is ambiguous, as the Lorentz trans-
formations mix temporal and spatial coordinates. This means
that we need here a physical hypothesis which specifies pre-
ferred Cauchy surfaces. We intend to presume in this regard
that quantum massive particles measure proper time which is
commonly denoted by τ . Despite of the fact that this assump-
tion logically follows from the geodesic equation, it can
also be justified by utilising experimental data. Specifically,
muons are unstable quantum particles whose mean lifetime
is about 2.19×10−6 s. It implies that a cosmic-ray muon can-
not reach the Earth’s surface if its mean lifetime is measured
by a clock to rest with respect to the Earth. Since this is at
odds with observations, the clock and muon time differ from
each other. This discrepancy comes from the time-dilation
effect [35]: The laboratory lifetime of a cosmic-ray muon is
by a Lorentz factor bigger than its proper lifetime.

Apart from (27) reduces in the quantum-mechanics regime
to the well-known definition of position expectation value,
we obtain from it in the particle’s rest frame χ = (τ,χ) that

〈χ̇a(τ )〉 =
∫

d3χ
√−g(τ,χ) J a(τ,χ). (28)

In Minkowski spacetime, 〈χ̇ i (τ )〉 identically vanishes. Under
the Lorentz transformation from the rest frame χ to y, we
then find

〈ẏa(τ )〉 = �a
b 〈χ̇a(τ )〉 = U a with U a ≡ Pa/M,

(29)

as in classical theory. Thus, our definition of quantum-
particle position makes sense, at least in the absence of grav-
ity (cf. equation (23) of Sec. III.B in [20]).

Working in Riemann normal coordinates, we have

〈ya(τ )〉 ≡ 〈ya(τ )〉(0) + 〈ya(τ )〉(2) + · · · (30)

where we find

〈ya(τ )〉(0) = U aτ, (31a)

〈ya(τ )〉(2) = − 1

8M

(
1

4D2 f1

(
M2

D2

)
+ τ 2 f2

(
M2

D2

))

×Ra
bcd U b〈Scd〉, (31b)

where by definition

〈Sab〉 ≡ ū(U )Sabu(U ), (32)

where Sab has been defined in (18d), and

f1(z) ≡ 7 + 11

z
− 55

4z2 + O
( 1

z3

)
, (33a)

f2(z) ≡ 1 − 5

2z
+ 75

8z2 + O
( 1

z3

)
. (33b)

The result 〈ÿa(τ )〉 �= 0 implies that Dirac particles propagate
along non-geodesic trajectories, because, in classical theory,
geodesics passing through Y = 0 are given by straight world
lines in the Riemann frame [14]. Still, this effect comes from
the spin degree of freedom. Classical spinning particles are
known to be subject to Mathisson’s force, leading to their
non-geodesic motion in curved spacetime [36,37] (see [38]
for a short review). To study this effect further in the frame-
work of quantum field theory, we next intend to compute
4-momentum of spin-half quantum particles.

3.3 Quantum-particle 4-momentum

Making use of the anti-commutation relation for �̂(x) and
its canonical conjugate �̂(x), we obtain

〈pμ(�)〉 ≡
∫

�

d�ν(x)
(
〈ψX,P |T̂ μ

ν (x)|ψX,P 〉 − 〈�|T̂ μ
ν (x)|�〉

)

=
∫

�

d�ν(x)
i

2
ψ X,P (x)γ (μ(x)Dν)ψX,P (x) + c.c.,

(34)

where we have explicitly subtracted the stress-tensor vacuum
expectation value 〈�|T̂ μ

ν (x)|�〉 from 〈ψX,P |T̂ μ
ν (x)|ψX,P 〉,

because that does not depend on the wave packet ψX,P (x)

and, thus, cannot provide a physical contribution to the par-
ticle energy-momentum tensor. It should be, however, men-
tioned that 〈�|T̂ μ

ν (x)|�〉 is commonly supposed to have a
physical meaning [11]. Apparently, this vacuum expectation
value is ill-defined because of the mathematical nature of
quantum-field operators. A properly regularised and then
renormalised 〈�|T̂ μ

ν (x)|�〉 turns out to depend on the
spacetime-curvature length lc(x) [11], which is finite due to
the presence of (quantum) matter (unless one treats a purely
de-Sitter spacetime with lc(x) = const). If so, 〈�|T̂ μ

ν (x)|�〉
has to depend on wave packets of particles constituting (quan-
tum) matter. This appears to point a logical flaw in the state-
ment that the quantum vacuum |�〉 is a no-particle state and

123



632 Page 8 of 14 Eur. Phys. J. C (2023) 83 :632

〈�|T̂ μ
ν (x)|�〉 makes a non-zero contribution to the energy

budget of the observable Universe. For this reason, we sup-
pose that 〈ψX,P |T̂ μ

ν (x)|ψX,P 〉 − 〈�|T̂ μ
ν (x)|�〉 might enter

the semi-classical Einstein equation, while a curvature length
arising from that does not source a non-zero stress-tensor
vacuum expectation value for other quantum fields from the
Standard Model.

Working in normal Riemann coordinates, we have

〈pa(τ )〉 ≡ 〈pa(τ )〉(0) + 〈pa(τ )〉(2) + · · · , (35)

where we find1

〈pa(τ )〉(0) = f3

(
M2

D2

)
Pa, (36a)

〈pa(τ )〉(2) = −τ

4
Ra

bcd U b〈Scd〉, (36b)

where by definition (see also Sec. III.B.3 in [20])

f3(z) ≡ K2(z)/K1(z). (37)

As noted above, point-like spinning bodies are subject to
Mathisson’s spin-curvature force [36,37]. We find from the
first Mathisson–Papapetrou equation (see (18) in [38]) by
solving it in normal Riemann coordinates that

pa(τ ) ≈ MU a − τ

4
Ra

bcd U b〈Scd〉, (38)

where higher-order curvature terms have been omitted.
Hence, 〈pa(τ )〉 reduces to the classical result in the limit
D/M → 0. To our knowledge, this was first derived in
quantum theory in the framework of relativistic quantum
mechanics in [39,40]. Later, it was obtained by making use
of the WKB approximation in [41] (see also [42,43]). Recent
quantum-mechanics results for spin-half particles in curved
spacetime can be found in [44]. Recent results gained in the
framework of the effective quantum theory of gravity show
that the gravitational deflection depends on quantum-particle
spin [45–47].

In classical theory, 4-momentum is proportional to 4-
velocity for point-like particles. Still, in quantum theory over
curved spacetime, we have from (31) that

〈pa(τ )〉 ≈ Mi 〈ẏa(τ )〉 − τ D2

4M2 Ra
bcd U b〈Scd〉, (39)

where the inertial mass Mi has been defined through the
Lagrangian mass M as follows [22]:

Mi ≡ M f3

(
M2

D2

)
. (40)

1 It turns out that 〈pa(τ )〉(2) is independent on D/M . First, it follows
from direct computations by assuming D/M is small. We obtain no con-
tributions up to the sixth order in perturbation theory. Second, numer-
ical computations show that 〈pa(τ )〉(2) is insensitive to various values
of D/M ≥ 1.

We recover the classical result for point-like particles in the
limit D/M → 0, which means that the wave function has a
definite value of the momentum, but no definite position in
space. The latter can also be seen in (31b), which makes no
longer physical sense in the limit of vanishing momentum
variance.

To study this limit in more detail, we want to consider
(15b) and (18b) with K → P . This corresponds to set-
ting the momentum variance D to zero. In this instance, the
wave function is non-normalisable. It particularly means that
we must re-consider our method of computing observables.
We have learned above that J a(y) may be interpreted as
4-velocity density of the quantum particle. Therefore, we
assume for the moment that

va(y) ∝ ψY,P (y) γ a(y) ψY,P (y), (41)

where the normalisation factor needs to be determined. We
then find

va
(0)(y)

∣∣
y = Uτ

∝ U a u(P)u(P), (42a)

va
(2)(y)

∣
∣
y = Uτ

= 0. (42b)

Apparently, the last result cannot be consistent with ours for
〈ẏ(τ )〉(2). It was proposed in the references [41,51], however,
to define 4-velocity in the WKB approximation as follows:

va(y) ∝ 1

2Mi

(
Daψ(y)Y,P ψY,P (y)

−ψY,P (y) DaψY,P (y)
)
, (43)

giving

va
(0)(y)

∣∣
y = Uτ

∝ U a u(P)u(P), (44a)

va
(2)(y)

∣∣
y = Uτ

∝ −τ

2
M Ra

bcd U b〈Scd〉. (44b)

If the normalisation factor is 1/2M , then we obtain 〈ẏ(τ )〉(0)

and 〈ẏ(τ )〉(2) with D set to zero. According to Gordon’s
decomposition, (41) differs from (43) by a term which is
proportional to ∇b(ψ(y)Sab(y)ψ(y)). This contributes nei-
ther to 〈ẏ(τ )〉(0) nor to 〈ẏ(τ )〉(2) if D/M → 0, but is non-
vanishing if computed on y = Uτ . Furthermore, we find

(
vb(y)∇bv

a(y)
)
(0)

∣∣
y = Uτ

= 0, (45a)

(
vb(y)∇bv

a(y)
)
(2)

∣∣
y = Uτ

∝ −1

2
M Ra

bcd U b〈Scd〉, (45b)

which are consistent with 〈ÿ(τ )〉(0) and 〈ÿ(τ )〉(2), respec-
tively, if D/M → 0 is considered.
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3.4 Quantum-particle spin

We define the spin matrix as follows:

〈sμν(�)〉 ≡
∫

�

d�λ(x)
(
〈ψX,P |Ŝλμν(x)|ψX,P 〉 − 〈�|Ŝλμν(x)|�〉

)

=
∫

�

d�λ(x)
1

2
ψ X,P (x){γ λ(x), Sμν(x)}ψX,P (x),

(46)

where Ŝλμν(x) denotes the spin-matrix operator [7,8].
Working in normal Riemann coordinates, we have

〈sab(τ )〉 ≡ 〈sab(τ )〉(0) + 〈sab(τ )〉(2) + · · · , (47)

where we find

〈sab(τ )〉(0) = 1

2
f4

(
M2

D2

)
〈Sab〉, (48a)

〈sab(τ )〉(2) = 1

12

(
1

4D2 f5

(
M2

D2

)
+ τ 2 f6

(
M2

D2

))

×
(

R[a
ecd U b]U e − 1

2
Rab

cd

)
〈Scd〉, (48b)

where by definition

f4(z) ≡ 1 − 1

z
+ 9

4z2 + O
( 1

z3

)
, (49a)

f5(z) ≡ 1 − 14

z
+ 87

2z2 + O
( 1

z3

)
, (49b)

f6(z) ≡ 1 − 1

z
− 1

4z2 + O
( 1

z3

)
. (49c)

First, note that both 〈sab(τ )〉(0) and 〈sab(τ )〉(2) separately
satisfy the Pirani condition [48] in the following form:

Ub〈sab(τ )〉(0) = 0, (50a)

Ub〈sab(τ )〉(2) = 0. (50b)

Nevertheless, it seems that the condition might need to be
re-defined in quantum theory, such that it is formulated as a
single expectation value. This issue goes beyond our purpose
in this article and, therefore, we leave it aside.

Second, we have from (48) that

〈ṡab(τ )〉 ≈ τ

6

(
1 − D2

M2

)(
R[a

ecd U b]U e − 1

2
Rab

cd

)
〈Scd〉.

(51)

If we assume for the moment that there is no spin precession
in the sense of [49], namely in a local inertial frame with
the origin at the particle’s centre of mass, which falls with it
freely – a Fermi frame [50], – then we obtain from the second
Mathisson–Papapetrou equation (see (19) in [38]) by solving
it in normal Riemann coordinates that

ṡab(τ ) ≈ τ

6

(
R[a

ecd U b]U e − 1

2
Rab

cd

)
〈Scd〉. (52)

Note, the spin precession occurs in the Riemann frame, as
the right-hand side of this equation does not vanish. It is due
to the fact that the Riemann frame represents a local inertial
frame at the given initial point (τ = 0), while the Fermi
frame along the free-fall trajectory (τ ≥ 0). The comparison
of 〈ṡab(τ )〉 with ṡab(τ ) shows that spin precesses in quantum
theory in curved spacetime in the Fermi frame, even in the
absence of torsion [51], as the right-hand side of

d

dτ

(〈sab(τ )〉 − sab(τ )
)

≈ − τ D2

6M2

(
R[a

ecd U b]U e − 1

2
Rab

cd

)
〈Scd〉 (53)

cannot generically vanish, unless D/M → 0, as in classical
theory. This circumstance might be of use to determine the
ratio D/M for a given quantum spin-half particle in satellite-
borne experiments, if the quantum-particle model proposed
above adequately describes fermions in gravity.

4 Covariant spin-half antiparticle

4.1 Quantum antiparticle

Generalising the antiparticle creation operator (see Sec. 41
in [9]) to curved spacetime, we define

b̂†(ϕX,P ) ≡
∫

�

d�μ(x) ϕX,P (x) γ μ(x) �̂(x), (54)

where the antiparticle wave function reads

ϕX,P (x) ≡ Ĉ ψX,P (x) = −iγ 2(ψX,P (x)
)∗

, (55)

where Ĉ is the charge conjugation operator [6] and the star
means complex conjugation.

4.2 Particle–antiparticle symmetry in gravity

Our computations of the quantum-antiparticle observables
show that antiparticles cannot be distinguished from par-
ticles in a gravitational field. Specifically, we obtain the
same results for 〈ya(τ )〉, 〈pa(τ )〉 and 〈sab(τ )〉 with u(U )

replaced in (32) by v(U ) = Ĉu(U ). This means the particle–
antiparticle symmetry in gravity, because the charge conju-
gation operator preserves spin orientation.

5 Non-inertial-frame observables

5.1 Quantum corrections to free-fall trajectory

We have so far computed the quantum-particle trajectory in
normal Riemann coordinates. From an experimental view-
point, it is of interest to obtain its trajectory relative to a
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detector being at rest with respect to a given reference frame.
We assume that this frame is described by general coordi-
nates, x = (t, x). We then obtain from (1) (with higher-order
corrections in metric derivatives included [14]) and (27) that

〈xλ(τ )〉(0) = Xλ + Uλτ, (56a)

〈xλ(τ )〉(1) = −1

2
�λ

μν

(
UμU ντ 2 + 1

3
〈χ2(τ )〉(UμU ν − gμν

))
,

(56b)

〈xλ(τ )〉(2) = −1

6

(
�λ

μν,ρ − 2�λ
μσ �σ

νρ

)(
UμU νUρτ 3

+τ 〈χ2(τ )〉(UμU νUρ − U (μgνρ)
))

− 1

8M

(
1

4D2 f1

(
M2

D2

)
+ τ 2 f2

(
M2

D2

))

×Rλ
μνρ Uμ〈Sνρ〉, (56c)

where Uμ = eμ
a U a and 〈χ2(τ )〉 describes wave-packet

spreading [24], namely

1

3
〈χ2(τ )〉 ≡ 1

4D2 f7

(
M2

D2

)
+ f8

(
M2

D2

)
D2τ 2

M2 , (57)

where by definition

f7(z) ≡ 1 − 1

2z
+ 7

8z2 + O
( 1

z3

)
, (58a)

f8(z) ≡ 1 − 7

2z
+ 123

8z2 + O
( 1

z3

)
. (58b)

The free-fall trajectory is thus modified also due to the
wave-packet spreading [21,22]. It is a universal phenomenon
in quantum theory. The momentum variance D enters the
Heisenberg uncertainty relation, meaning that D > 0. As a
result, the universality of free fall or, in other words, the weak
equivalence principle is at odds with Heisenberg’s uncer-
tainty principle.

5.1.1 Earth’s gravitational field

The Earth’s gravitational field may be approximately mod-
elled by the line element

ds2⊕ ≈
(

1 − rS,⊕
|x|

)
dt2 − 4

J⊕×x
|x|3 ·dx dt

−
(

1 + rS,⊕
|x|

)
dx2, (59)

where rS,⊕ is the Schwarzschild radius of Earth and J⊕ is its
angular momentum. We obtain from (56a) and (56b) in the
non-relativistic limit at the Earth’s surface that

Mi 〈ẍ(τ )〉 ≈ −Mgg⊕n − 2Mg(ω⊕×V)

−3Mg
(
(n·ω⊕)n×V − ω⊕×V

)
, (60)

where the gravitational mass Mg has been defined through
the Lagrangian mass M as follows:

Mg ≡ Mi

(
1 + f8

(
M2

D2

)
D2

M2

)
. (61)

Furthermore, n stands for the three-dimensional unit vector
radially pointing outwards, and

ω⊕ ≡ 2J⊕
r3⊕

, (62)

where r⊕ is the Earth’s radius and

V i ≡ Pi/P0. (63)

It should be noted that the third term on the right-hand side of
(60) arises from the gradient of the Earth’s angular velocity
and vanishes if ω⊕ ∝ n.

5.1.2 Uniformly accelerated and rotating frame

The result (60) should next be compared with the Dirac-
particle trajectory in a uniformly accelerated and rotating
frame:

ds2 = (
(1 + a·x)2 − (ω×x)2)dt2

−2(ω×x)·dx dt − dx2, (64)

where a and ω are, respectively, constant acceleration and
angular velocity. We find from (56) in the non-relativistic
limit that

Mi 〈ẍ(τ )〉 ≈ −Mia − 2Mg(ω×V), (65)

where we have only taken into account terms linearly depend-
ing on the acceleration and the angular velocity.

If we treat the acceleration-dependent part of the results
(60) and (65), then the difference between these is owing to
gravitational-length contraction which is, apparently, non-
existent in the uniformly accelerated frame. In other words,
Mg �= Mi cannot be gained by considering the gravitational
time dilation only. The latter might be interpreted as causing
free fall in its standard form [52].

If we take into account the angular velocity, then we find
that the Coriolis force enters the equation of motion with the
gravitational mass Mg instead of the inertial mass Mi . This
also holds in a uniformly accelerated and rotating frame. This
may be of use to determine the ratio Mg/Mi for a quantum
particle in such a frame.

Note, in general, the difference between Mg and Mi disap-
pears in the quantum-mechanics limit, c → ∞, as this results
in D/Mc → 0. The free-fall non-universality in quantum
theory is in this sense a relativistic effect, which is in agree-
ment with [53].
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5.2 Quantum corrections to gravitational-potential energy

We compute next the quantum-particle energy in the general
coordinate frame x = (t, x). Its energy is given by 〈pt (τ )〉
which, in general, may depend on the proper time. In partic-
ular, assuming that ∂t is a Killing vector, we have from (1)
(with higher-order corrections in metric derivatives included
[14]) and (34) that

〈pt (τ )〉(0) = ea
t 〈pa(τ )〉(0), (66a)

〈pt (τ )〉(1) = 1

2
gt[ν,μ] eμ

a eν
b〈lab(τ )〉(0), (66b)

〈pt (τ )〉(2) = 0, (66c)

where 〈lab(τ )〉 is the angular-momentum matrix [7,8],
defined as the skew-symmetric part of the first moment of
the energy-momentum tensor. We find

〈lab(τ )〉(0) = 1

2
〈Sab〉, (67)

which should be compared with the result for 〈sab(τ )〉(0)

derived above. It immediately shows that Mg cannot enter the
quantum-particle energy in the leading order of the approxi-
mation. The physical consequence of this result will be dis-
cussed shortly.

It should be emphasised that the curvature tensor does
not contribute to the gravitational-potential energy (at the
leading order of perturbation theory). This is a consequence
of a non-trivial cancellation of 〈pa(τ )〉(2) in (36b) by a term
arising from the coordinate transformation x = x(y) at the
corresponding order of perturbation theory. This cancellation
is in agreement with the observation we have made in the end
of Sect. 2.3 that spin does not affect phase shift induced by
the curvature tensor.

5.2.1 Earth’s gravitational field

We find in the Earth’s gravitational field at the Earth’s surface
that

〈pt (τ )〉(0) ≈ γ Mi
(
1 − g⊕r⊕

) − γω⊕·L, (68a)

〈pt (τ )〉(1) ≈ −ω⊕·S + S·(g⊕n×V)

−3

2

(
(n·ω⊕)n·S − ω⊕·S)

, (68b)

where we have taken into account terms depending linearly
on g and ω only, which explains the approximation sign used
in both equations, and, by definition, γ is the Lorentz factor
and

Li ≡ εi jk X j (Mi V k), (69a)

Si ≡ 1

4
εi jk〈S jk〉. (69b)

Let us now suppose that a quantum neutron is initially
placed at the altitude Z . We then obtain from (68) in the

non-relativistic limit that

〈E〉 ≈ 1

2
MiV2 + Mi g⊕Z . (70)

If we now assume that this quantum particle is observed at a
later moment of time (τ > 0) at

〈z〉 ≈ Z + VZ τ − 1

2

Mg

Mi
g⊕τ 2, (71)

according to (60), then its energy after the measurement must
be bigger than its initial value. It is owing to Mg/Mi > 1,
namely the total-energy gain equals (Mg −Mi )g⊕Z . We then
obtain for neutrons from [1,2] and (60) that

D2

(Mc)2

∣∣
∣∣
neutron

� 10−3. (72)

Therefore, a gravitational-spectrometer resolution must be
better than 10−10 eV to probe the universality of free fall at
quantum level with a better accuracy than in [1,2], if the free-
fall altitude, Z , is about 1 m. A gravitational spectrometer of
the type treated in [54] might thus be of use to provide an
independent experimental result testing the quantum-particle
model proposed here.

5.2.2 Uniformly accelerated and rotating frame

We find in the uniformly accelerated and rotating frame that

〈pt (τ )〉(0) ≈ γ Mi
(
1 + a·X) − γω·L, (73a)

〈pt (τ )〉(1) ≈ −ω·S + S·(a×V). (73b)

This result is to compare with that obtained in [55], wherein
the Hamilton operator has been derived in the uniformly
accelerated and rotating frame in the non-relativistic limit,
|V| � 1. The spin-rotation effect, which is owing to −ω·S,
has been first proposed in [56] for a neutron interferometer.
We also have the so-called inertial spin-orbit coupling, i.e.
S·(a×V), which is seemingly by a factor of 2 bigger than
that found in [55]. This can be readily accounted for the
Foldy–Wouthuysen transformation used in [55] to derive a
non-relativistic approximation for the Hamilton operator in
the framework of relativistic quantum mechanics. In quan-
tum field theory, we obtain the expectation values (73) in a
single-particle state, which are independent on any unitary
transformation.

6 Concluding discussion

The Standard Model of elementary particle physics employs
quantum field theory in order to describe high-energy
scattering processes generically involving a non-conserved
number of particle species [5–9]. The primary object in
quantum field theory is a quantum field. This is a local

123



632 Page 12 of 14 Eur. Phys. J. C (2023) 83 :632

distribution-valued operator defined over a certain space-
time. The Poincaré isometry of Minkowski spacetime plays
a key role in relating quantum fields to elementary and com-
posite particles to acquire physical meaning well before
and after scattering processes. Specifically, the Lehmann–
Symanzik–Zimmermann reduction formula links free parti-
cles with asymptotic quantum states defining S-matrix ele-
ments [9,30].

Gravity is still treated as physics beyond the Standard
Model of elementary particles, even though the gravitational
interaction is known by now for several centuries. Indeed,
there are no data which would necessitate quantum grav-
ity for their explanation – gravitation is far too weak with
respect to the rest fundamental interactions to be noticeable
in colliders. Classical gravitational phenomena are, however,
successfully described by general relativity, providing a geo-
metrical description for the gravitational interaction, based
on a number of ideas among of which local Poincaré invari-
ance of the laws of nature and general covariance. Matter
curves spacetime in general relativity, meaning theoretical
particle physics relies on the Minkowski-spacetime approx-
imation.

Direct observations of free fall of neutrons at the Earth’s
surface [1,2] show these particles fall down over classical
geodesics, or, at least, these experiments were not sensitive
enough to notice any deviation from those. From a funda-
mental point of view, these experiments require that quan-
tum field theory in Minkowski spacetime be replaced by that
in curved spacetime. A serious obstacle arises here from the
circumstance that it is unclear how to model elementary and
composite particles in the absence of the global Poincaré
symmetry.

Algebra of quantum fields, rather than their particular real-
isation in terms of creation and annihilation operators, should
be of underlying relevance [57]. We have proposed in [20–
22] to pick up operators from the quantum-field algebra over
curved spacetime, which locally reduce to those which cre-
ate free particles in Minkowski spacetime. These operators
are employed in quantum field theory in Minkowski space
by deducing the Lehmann–Symanzik–Zimmermann reduc-
tion formula [9,30]. The selection is achieved by means of
a bi-scalar that, at least in the weak-field limit, provides a
wave-function description for quantum particles. Mathemat-
ically, this is accomplished by constructing a wave packet
depending on the space-time point x via the geodetic dis-
tance σ(x, X) – Synge’s world function [58], – and their
covariant derivatives at X , which are contracted with cur-
vature tensors at that point. This naturally allows to get a
wave function which is locally given by a superposition of
positive-frequency plane waves as in Minkowski spacetime,
and which is a zero-rank tensor with respect to general coor-
dinate transformations. This basic idea has been applied so
far to model spin-zero quantum particles in gravity [20–22].

We have proposed herein a model to describe spin-half
quantum particles in curved space-time in the framework of
quantum field theory. Its novelty consists again in assuming
that the Einstein equivalence principle and general covari-
ance hold for spin-half quantum particles. It is not a self-
evident assumption, because the mainstream approach in
quantum field theory in curved spacetime is based instead
on exploiting global isometry group of a given spacetime
for expressing quantum-field operators through creation and
annihilation operators [10–12]. Since local Poincaré group
and global isometry group are, generically, not isomorphic
to each other, it is unclear if global isometry group should
be favoured with respect to local Poincaré group, taking into
account that it is the latter which plays a fundamental role
in high-energy particle physics [5–9]. Furthermore, general
covariance is abandoned in this approach. It follows from
favouring different mode functions for the definition of cre-
ation and annihilation operators in different patches of same
spacetime. From an experimental standpoint, this is in tension
with the Bonse–Wroblewski experiment [17]. Indeed, the
observed interference pattern is induced there by acceleration
which, in the leading-order of approximation, enters wave-
packet phase in the form −i Ma·xR tR , where xR = (tR, xR)

are Rindler coordinates. Wave functions being eigenfunc-
tions of the Killing vector ∂tR of Minkowski spacetime can-
not have this acceleration-dependent correction to−i Mc2 tR ,
which are, however, normally used to do quantum particle
physics in Rindler spacetime [11]. In accord with general
covariance, plane waves re-written in Rindler coordinates do
have that observed correction [21].

The first ever experiment that has shown that quantum
physics is affected by gravity is the Collela–Overhauser–
Werner experiment [16]. The observed interference pattern
produced via overlapping two beams of thermal neutrons,
propagating at different altitudes with respect to the Earth’s
surface, is due to the free-fall acceleration. It was shown in
the Bonse–Wroblewski experiment, mentioned above, that
an analogous effect takes place in an accelerated reference
frame. So, uniform gravity and acceleration cannot be dis-
tinguished in quantum-interference experiments [18]. The
quantum-particle model proposed here is consistent with this
empirical result. It is also consistent with the observed phase
shift due to space-time curvature [28], see [21], as well as with
the gravitational Aharonov–Bohm effect recently experimen-
tally probed in [59]. This suggests that our model deserves
further scrutiny.

Quantum optical communication makes use of photons
as elementary information carriers [60]. It is required here to
take into account gravitational-field background to keep track
of its systematic influence on the information distortion by
long-distance quantum communication. Due to rapid devel-
opments of satellite-based quantum communication [61–63],
it is necessary to acquire a comprehensive insight into how
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photons are affected by the gravitational field of Earth. A
model describing massless quantum particles needs to be
established, going beyond the semi-classical approximation
by relying on such ideas as Born’s statistical interpreta-
tion of quantum measurements, general covariance and local
Poincaré invariance.

The Earth’s gravitational field is weak – the local curvature
length at the Earth’s surface is of the order of the astronomi-
cal unit. It implies that the Minkowski-spacetime approxima-
tion used in elementary particle physics is adequate for the
description of microscopic processes, whereas gravity must
be taken into account over macroscopic time intervals. Still,
it has been argued in [64,65] that black holes of a micro-
scopic size might have been created in the high-density state
of the early Universe. The local curvature length nearby such
black holes can be much smaller than the hydrogen-atom
size. Thus, the question arises as to whether the wave-packet
description of elementary and composite particles is adequate
once their quantum size is comparable to a local curvature
length. If affirmative, it must be clarified what the physical
impacts of a strong gravitational field on quantum matter are.

We have partially studied these questions in de-Sitter
spacetime [20]: A coordinate-frame-independent non-
perturbative (in curvature) wave-packet solution deduced
there reveals that the kinematic properties of this wave
solution noticeably differ from geodesic motion, unless the
inverse Hubble constant (curvature length) is much bigger
than the wave-function extent (position variance) which in
turn must be much bigger than the Compton or de-Broglie
wave-length of spin-zero quantum particles. Preliminary
computations show that there might exist a non-perturbative
wave-packet solution in Einstein static universes. Notably,
the space-time geometry inside an extremely slowly collaps-
ing dust star [66] can be approximated by a closed Einstein
universe. The difficulty consists in the circumstance that the
wave function depends, generically, on four scalars there,
while, in de-Sitter spacetime, on two scalars [20].

The Newton equivalence principle states that gravita-
tional and inertial mass of a body are equal in the non-
relativistic and weak-gravity limit [67]. This principle is
a result of numerous empirical tests and appears to be
entirely accidental from a theoretical standpoint. Still, any
experiment has a limited degree of accuracy. Furthermore,
quantum field theory and general relativity are the most
fundamental theories utilised nowadays for the description
of matter and gravitation. Quantum theory of both matter
and gravity should be capable of addressing the question
how underlying the Newtonian principle actually is. Even
though we have found Mg �= Mi , the definition of Mg

does not follow from the computation of Newton’s gravi-
tation potential sourced by the quantum particle. This com-
putation requires to go beyond the test-particle approxima-
tion. In this sense, our model is incomplete, because the

quantum-particle state |ψX,P 〉 is oblivious to gravity-field
operators, e.g. 〈ψX,P |ĥμν(x)|ψX,P 〉 = 0, where ĥμν(x) is
the graviton-field operator defined in the framework of the
effective field theory of quantum gravity [31]. Appropriately
dressing â†(ψX,P ) by an operator depending on ĥμν(x) in
the sense of [68] should give a way to determine active grav-
itational mass of a quantum particle. There is a priori no
guarantee that it matches passive gravitational mass, Mg .

A closely related issue is the (main) cosmological con-
stant problem [69–71] following from the assumption that the
quantum vacuum |�〉 gravitates. Indeed, the semi-classical
Einstein field equation in vacuum reads

Rμν(x) − 1

2
R(x) gμν(x) = 8πG

c4 〈�|T̂μν(x)|�〉, (74)

where, strictly speaking, 〈�|T̂μν(x)|�〉 is divergent [70,71],
giving thus rise to a non-physical space-time geometry. How-
ever, this problem is a result of the semi-classical approxima-
tion in the sense that the metric tensor gμν(x) is obtained by
solving (74), rather than by computing 〈�|ĝμν(x)|�〉. For
the semi-classical Einstein field equation (74) to hold, the
quantum vacuum |�〉 must, at least, depend on ĝμν(x) and
T̂μν(x). This can be achieved by dressing the vacuum state
by an operator depending on both ĝμν(x) and T̂μν(x). At
the moment, it is unclear if this is logically and physically
admissible.
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