
Eur. Phys. J. C (2023) 83:631
https://doi.org/10.1140/epjc/s10052-023-11780-9

Special Article - Tools for Experiment and Theory

UFO 2.0: the ‘Universal Feynman Output’ format

Luc Darmé1, Céline Degrande2, Claude Duhr3 , Benjamin Fuks4,a , Mark Goodsell4 , Gudrun Heinrich5 ,
Valentin Hirschi6 , Stefan Höche7 , Marius Höfer5 , Joshua Isaacson7 , Olivier Mattelaer2, Thorsten Ohl8 ,
Davide Pagani9 , Jürgen Reuter10 , Peter Richardson11, Steffen Schumann12 , Hua-Sheng Shao4 ,
Frank Siegert13 , Marco Zaro14

1 Institut de Physique des 2 Infinis de Lyon (IP2I), UMR5822, CNRS/IN2P3, 69622 Villeurbanne Cedex, France
2 Université Catholique de Louvain, Center for Particle Physics and Phenomenology (CP3), Chemin du cyclotron, 2, 1348 Louvain-La-Neuve,

Belgium
3 Bethe Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany
4 Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589, Sorbonne Université et CNRS, 4 place Jussieu, 75252 Paris Cedex

05, France
5 Karlsruhe Institute of Technology, Institute for Theoretical Physics, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
6 Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
7 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
8 University of Würzburg, Institut für Theoretische Physik und Astrophysik, Emil-Hilb-Weg 22, 97074 Würzburg, Germany
9 INFN, Sezione di Bologna, Via Irnerio 46, 40126 Bologna, Italy

10 Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
11 Institute for Particle Physics Phenomenology, Durham University, Durham, UK
12 Institute for Theoretical Physics, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
13 Institut für Kern- und Teilchenphysik, TU Dresden, 01069 Dresden, Germany
14 Università degli Studi di Milano and INFN, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy

Received: 2 May 2023 / Accepted: 28 June 2023 / Published online: 17 July 2023
© The Author(s) 2023

Abstract We present an update of theUniversal FeynRules
Output model format, commonly known as the UFO format,
that is used by several automated matrix-element generators
and high-energy physics software. We detail different fea-
tures that have been proposed as extensions of the initial for-
mat during the last ten years, and collect them in the current
second version of the model format that we coin the Univer-
sal Feynman Output format. Following the initial philosophy
of the UFO, they consist of flexible and modular additions
to address particle decays, custom propagators, form factors,
the renormalisation group running of parameters and masses,
and higher-order quantum corrections.

1 Introduction

During the last 25–30 years, several high-energy physics
software packages have been developed to explore the elec-
troweak scale and get information on the possible physics
beyond the Standard Model (BSM). Typical examples of such
programs target the simulation of events at high-energy col-

a e-mail: fuks@lpthe.jussieu.fr (corresponding author)

lider, fixed-target or neutrino experiments, total and differen-
tial cross section calculations for many processes in the Stan-
dard Model (SM) and beyond it, as well as the computation
of dark matter observables. These software tools generally
require as input, in one form or another, the particle spec-
trum of the model, the list and the values of all parameters
that appear in its Lagrangian, as well as the list of all inter-
action vertices among the different particles. Historically,
each program followed its own format to input the model
information, with its own conventions and restrictions on the
supported structures in a Lagrangian. This severely limited
the portability of a model, and consequently multiplied the
workload for the implementation and validation into several
tools as advocated in [1].

The UFO format [2] was proposed as a solution to this
issue, by introducing a new way to pass model information to
high-energy physics software. Its goal is to provide a flexible
and fully generic format that goes beyond existing formats
in the sense that no assumption on the supported structures
appearing in the model is enforced. All the model informa-
tion is stored in an abstract form, i.e. independent of the soft-
ware. It is then up to the tool using the UFO model to enforce
their restrictions at run time. The UFO representation of the

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11780-9&domain=pdf
http://orcid.org/0000-0001-5820-3570
http://orcid.org/0000-0002-0041-0566
http://orcid.org/0000-0002-6000-9467
http://orcid.org/0000-0002-0834-3011
http://orcid.org/0000-0002-8908-6300
http://orcid.org/0000-0002-1370-6059
http://orcid.org/0000-0003-0009-9410
http://orcid.org/0000-0001-6164-1707
http://orcid.org/0000-0002-7526-2975
http://orcid.org/0000-0002-0553-1105
http://orcid.org/0000-0003-1866-0157
http://orcid.org/0000-0003-0330-3990
http://orcid.org/0000-0002-4158-0668
http://orcid.org/0000-0002-2893-6412
http://orcid.org/0000-0002-3279-7355
mailto:fuks@lpthe.jussieu.fr

631 Page 2 of 28 Eur. Phys. J. C (2023) 83 :631

particle physics model has been chosen to rely on Python
objects defined through a set of attributes that encode phys-
ical properties so that the model could be straightforwardly
accessed and parsed by any high-energy physics tool. One of
the advantages of the design choices made is that the UFO
is modular. Additionally the format is easily expandable to
include new pieces of information not originally considered.
These design choices allowed later developments that per-
mitted the inclusion of decay width information [3], modi-
fications of the propagators associated with any given field
[4], renormalisation group running effects impacting some of
the model’s parameters and masses [5], and ingredients rel-
evant to higher-order perturbative calculations in quantum
field theories [6].

With the present paper, we take the opportunity to col-
lect all these recent developments in a single document,
describe (for the first time) how to embed form factors in
UFO models, and how to include missing information rel-
evant to the automated calculations of electroweak correc-
tions in the Sudakov approximation for collider processes.
In Sect. 2, we begin with a general description of the UFO
format. We provide additional details on the philosophy of
the UFO format, describe the structure of how the model
information is organised in several Python files, and put a
particular emphasis on (optional) recommendations useful
for making UFO models traceable. Section 3 is dedicated to
the original UFO format, and we describe all mandatory files
that should be included in a UFO model. In Sect. 4, we detail
how optional components can be added to a UFO model,
and describe all existing options. Finally, Sect. 5 focuses on
higher-order computations and how ingredients relevant to
this context could be included in the UFO format, both in
general and for the specific case of electroweak corrections
in the Sudakov approximation. We summarise our work in
Sect. 6.

2 The UFO format

2.1 The evolution of the UFO format

The aim of this section is to provide a general overview of
the UFO 2.0 format for new physics models, that we propose
to call the Universal Feynman Output (UFO) format in order
to distinguish it from the initial version [2] released a decade
ago. In the following, we emphasise the philosophy behind
the UFO format, as well as its general structure. The con-
tent of the different files included in a UFO model and the
associated syntax are discussed in more detail in dedicated
subsequent sections.

A UFO model consists of a set of Python files that can be
used with a large class of publicly available computer pack-
ages relevant for high-energy physics calculations. The UFO

format has been built around the philosophy that a model
implementation should be independent of the software tool
that uses it. This makes it possible to have a single model
implementation working across different computer codes and
platforms, making it relevant for assessing the phenomenol-
ogy relevant for different classes of experiments (targeting,
for instance, dark matter, high-energy collider or neutrino
experiments). The UFO standard achieves this by represent-
ing the model information, namely the model’s particles,
parameters and vertices, in terms of Python objects whose
attributes collect their properties. It is then up to the com-
puter code that uses the model implementation to read in
these files, and to process their content correctly. In case the
code has restrictions on the type of models, an exception is
raised and informs the user that the implementation cannot
be reliably used.

The first version of the UFO format [2] was released a
decade ago. It has changed the way particle physics models in
general, and theories beyond the SM in particular, are imple-
mented in high-energy physics software. Whilst the UFO
format initially targeted specifically the implementation of
particle physics models in matrix element and event genera-
tors dedicated to studies at the leading-order (LO) accuracy
in perturbation theory, it is currently supported by a larger
list of high-energy physics software tools. This list includes
Achilles [7,8],Comix [9],Contur [10],GoSam [11,12],
Herwig 7 [13,14], MadAnalysis 5 [15,16], MadDM
[17–19], MadGraph5_aMC@NLO [20,21], Recola 2
[22], Sherpa [23,24] and Whizard [25–27].

Since its inception, the UFO format underwent several
extensions to accommodate the specification of additional
model information which is not part of its original docu-
mentation [2], such as those mentioned above. In particu-
lar, the documentation related to automated next-to-leading
order (NLO) computations has never been collected in a sin-
gle document, despite being at the heart of the frameworks
introduced in [6,20,21]. UFO models suitable for NLO cal-
culations have in addition become standard in high-energy
phenomenology during the last decade, a large variety of
NLO-compatible UFO models being now available (espe-
cially from the FeynRules model database1). Although all
extensions mentioned above are already being used by sev-
eral codes, there is no official documentation of the structure
of the UFO format beyond the original proposal. The main
purpose of this document is therefore to provide an update
of the UFO documentation, which contains all the features
relevant for computations beyond LO accuracy.

Before starting to discuss the general outline of a UFO
model implementation, let us first make a comment about
the name. Originally, the acronym UFO stood for ‘Universal
FeynRules Output’. The origin of this name can be traced

1 See the webpage http://feynrules.irmp.ucl.ac.be/wiki/NLOModels.

123

http://feynrules.irmp.ucl.ac.be/wiki/NLOModels

Eur. Phys. J. C (2023) 83 :631 Page 3 of 28 631

back to the fact that in its original conception UFO files
were produced by FeynRules[28] only. For a few years
now, UFO files can also be generated from a user-defined
Lagrangian by other computer codes such asLanHep[29,30]
and Sarah[31,32]. For this reason we deem it more appro-
priate to remove the explicit reference to FeynRules from
the name of the UFO format, and the acronym UFO hence-
forth now stands for ‘Universal Feynman Output’.

2.2 General file structure of the UFO

In the remainder of this paper we discuss in detail the struc-
ture of the files contained in a UFO model. All the files,
collected in a single directory, must be valid Python files,
therefore with a file extension .py. Whereas most files are
model-specific and contain the definition of the objects rel-
evant to each model (e.g. particles and parameters), some of
the files are model-independent and contain Python-code
objects defining, for instance, the Python classes used in a
UFO model.

The following model-specific files are mandatory in any
valid UFO model directory,

– particles.py
– parameters.py
– vertices.py
– lorentz.py
– couplings.py
– coupling_orders.py
– function_library.py

These files contain the basic definitions related to a model. If
a model is to be used for computations beyond LO accuracy,
three extra files are mandatory and must be included,

– CT_vertices.py
– CT_couplings.py
– CT_parameters.py

Moreover, in the specific case of electroweak corrections in
the high-energy (Sudakov) approximation, this list must be
complemented by an additional file that is described in this
document for the first time,

– CT_ewcasimirs.py

Finally, every UFO directory may contain certain optional
files, which specify additional model information,

– form_factors.py
– decays.py
– propagators.py
– running.py

The content of these files is described in detail in Sect. 4,
so that we limit ourselves here to highlighting some features
that are common to all of them.

Each file defines a list of objects. The classes that can
be used are predefined and included in the mandatory file
object_library.py (see below), and only standard
Python syntax is allowed. Several of the files define analytic
expressions for interaction vertices or coupling constants in
the theory. All standard arithmetic operations in Python can
be used to write such analytic expressions in the UFO for-
mat, augmented by some special symbols whose meaning is
described in subsequent sections together with the precise
syntax.

Besides these model-specific files which are at the heart of
every UFO implementation, there are a couple of mandatory
model-independent files that need to be included in every
valid UFO directory,

– object_library.py
– _ _init_ _.py

together with the optional file

– write_param_card.py

that has a specific practical use.
As already mentioned, the file object_library.py

contains the definition of all classes used in a UFO model.
It includes several lists providing easy access to the full
content of the model within the code. In other words, all
declared objects within a UFO must appear in these lists.
The list all_particles collects all particle declarations
(as instances of the Particle class; see Sect. 3.1), and the
list all_parameters gathers all parameter declarations
(as instances of the Parameter class; see Sect. 3.2). The
elements required for the description of the model interac-
tions (see Sect. 3.3) are spread over the list all_vertices
that collects all vertex declarations (as instances of the
Vertex class; see Sect. 3.3), the list all_couplings
that collects all coupling declarations (as instances of the
Coupling class), the list all_lorentz that includes all
Lorentz tensors appearing in the model vertices (declared as
instances of the Lorentz class), and finally the additional
list all_coupling_orders that contains a list of tags
allowing certain vertices of the model to be flagged (these
tags being declared as instances of the CouplingOrder
class). In addition, thePythonfileobject_library.py
also includes a list all_functions whose role is to
gather all Function objects instantiated in the model (see
Sect. 3.4).

The content of the files function_library.py and
write_param_card.py is detailed in Sects. 3 and 4. We
only focus here on the file _ _init_ _.py. This file identi-

123

631 Page 4 of 28 Eur. Phys. J. C (2023) 83 :631

fies the content of a UFO directory as a valid Pythonmodule
that can be loaded with the standard command import, and
it may contain any valid Python command that should be
evaluated when the model is loaded. In particular, the file
_ _init_ _.py imports all other Python files relevant
to the model, and it additionally allows users to add gen-
eral information about the model, as shown in the following
example:

_ _author_ _ = "H. Solo,
C. Bacca"

_ _date_ _ = "06.03.2023"
_ _model_version_ _ = "1.0"
_ _arxiv_ _ = "2304.NNNNN"
_ _UFO_version_ _ = "2.X"
_ _python_version_ _ = [2,3]

The first three variables (_ _author_ _, _ _date_ _
and _ _model_version_ _) provide information on the
implementation and its author(s), whereas the _ _arxiv_ _
variable enables the connection of a given UFO model to
a publication released on the arXiv. Setting the variable
_ _UFO_version_ _ to “2.X” indicates that the model
implementation includes features documented in the present
paper, and the _ _python_version_ _ variable refers to
the version of Python with which the UFO is compatible
(namely 2 and/or 3 at present time). While such an elec-
tronic signature of the model is not mandatory, we recom-
mend users to include it for traceability reasons. Depending
on the moment at which a UFO model has been generated
and that at which it is used within a code, incompatibili-
ties between Python versions may occur. While we sug-
gest to update existing UFO models so that they become
Python 3 compatible, it is up to the code using UFOs to
make sure that Python version compatibility is addressed
properly and internally. For instance, GoSam, Herwig 7
and MadGraph5_aMC@NLO convert UFO models com-
patible with Python 2 to their Python 3 equivalent in order
to use them.

Finally, users can include information on the gauges avail-
able for the model implementation. This is achieved through
the variable gauge that contains a list of integers, as for
instance in

gauge = [0,1]

The value 0 refers to the unitarity gauge, whereas the value
1 stands for the Feynman gauge. Other integer values are
allowed, provided that they are consistently defined in the
UFO model, in particular through appropriate definitions in
the files parameters.py (for gauge parameters like ξ in
the Rξ gauge) and propagators.py (for custom propa-
gator expressions).

3 Mandatory components

The dynamics of a particle physics model at tree-level
is encoded in the UFO format within a small set of
mandatory files. This contains the description of the par-
ticle spectrum (particles.py), the model parameters
(parameters.py) and the different interactions between
the model particles (whose implementation is spread over the
three files vertices.py, couplings.py and
lorentz.py). In addition, two extra files are necessary.
The first of them, coupling_orders.py, details tags
allowing certain vertices of the model to be flagged, whereas
the last one, functions_library.py, is dedicated to
the implementation of user-defined functions that can be used
anywhere in the UFO model. The content of all these files is
described in the following subsections.

3.1 Particles

All physical particles of a model are declared as instances
of the class Particle in the file particles.py. UFO
models are generally defined in terms of the physical, prop-
agating, mass eigenstates. Unphysical gauge eigenstates and
non-propagating auxiliary fields are thus ignored in most
implementations, with the exception of optional ghost and
Goldstone fields that may be needed depending on the gauge
chosen. However, it is always possible to include specific
auxiliary fields in an implementation if needed (see also
the end of this subsection). A Particle object is defined
through various attributes specifying the particle name and
properties, including its quantum numbers. As an illustration,
we consider a possible UFO implementation for a heavy top
quark t ′,

tp = Particle(
pdg_code = 8,
name = ’tp ’,
antiname = ’tp∼’,
spin = 2,
color = 3,
mass = Param.MTP ,
width = Param.WTP ,
texname = ’tp ’,
antitexname = ’tp∼’,
charge = 2/3,
LeptonNumber = 0

)

The particle is identified by its name (the name attribute
taken to be tp in the present example), its spin and colour
representations (given as the value of the spin and color
attributes), its mass and width (the value of the mass and
width attributes, given in GeV) and its electric charge (given
as the value of the charge attribute, in units of the proton’s

123

Eur. Phys. J. C (2023) 83 :631 Page 5 of 28 631

electric charge). The tp symbol that appears on the left-hand
side of the equality represents a uniquePython identifier that
is further used internally within the model to refer to that par-
ticle. It has thus to follow Python requirements for names of
variables. However, this identifier will not appear within any
of the lists introduced in the file object_library.py,
that include instead the objects themselves. All Particle
objects instantiated within a UFO model must therefore have
unique name attribute values, as this is how they should be
referred to within any code using UFOs, in addition to unique
Python identifiers. In addition, such a constraint holds for all
the other classes of objects introduced below: two instances
of a given class must have different name attributes2.

In the UFO conventions, the spin representation has to be
provided in the 2s+1 form where s denotes the particle spin.
Whereas any s values are allowed at the UFO level, none of
the tools currently employing UFO models are compliant
with spins s > 2. Moreover, setting spin = -1 identi-
fies ghost fields. Similarly, whereas users are free to assign
any colour representation for a particle in a model, tools cur-
rently making use of UFO models support at most the trivial,
(anti)fundamental, (anti)sextet and adjoint representations.
These choices can be made by setting the color attribute
to 1, ±3, ±6 and 8.

Information on the particle mass and width are provided
by referring to the corresponding model parameters. In the
considered example, the mass and width attributes of the
tp particle are set to MTP and WTP, that are both declared in
the file parameters.py (see Sect. 3.2). Parameter decla-
rations must consequently be imported prior to the declara-
tion of any particle, i.e. by inserting at the beginning of the
file particles.py3

import parameters as Param

The UFO conventions allow users to associate a particle
with its corresponding antiparticle. This is achieved through
the antiname attribute of the Particle class, which
must be set to the name of theParticleobject representing
the antiparticle. The latter is itself declared either as above
(with some of the attribute values swapped or modified) or
through the more economical method anti(),

tp_ _tilde_ _ = tp.anti()

This method of the Particle class is defined in the
file object_library.py, and it automatically instan-
tiates an antiparticle from the corresponding particle object.

2 In the case where a given UFO model has to be used within a toolchain
involving a parton showering and hadronisation program, it is best to
also avoid using the names of standard mesons and hadrons, like eta
and sigma.
3 For models that arePython 3-compatible, this should read, according
to standard conventions:
from.: import parameters as Param.

The TEX version of the particle and antiparticle names are
respectively provided as the value of the texname and
antitexname attributes. In the case of a self-conjugate
particle, all antiparticle attributes must be set to the same
value as their particle counterparts.

Most high-energy physics programs dealing with parti-
cles often internally identify them through their Particle Data
Group (PDG) identifiers [33]. In the UFO format, such an
identifier is stored as the value of the pdg_code attribute of
the Particle class, that has been chosen to be 8 in the t ′
example considered. While users can technically assign any
code to any particle, many programs employing UFO models
have the standard identifiers provided in the PDG review [33]
hard-coded for common BSM particles. Inconsistent choices
may therefore lead to unexpected behaviours of these tools.
We recommend users to make use of existing identifiers for
particles already listed in the PDG review, and new non-used
identifiers otherwise.

While all the attributes described above are mandatory,
additional optional attributes (like the attribute Lepton
Number in the tp example considered) can be included.
The UFO format includes the five predefined attributes
line,goldstone,propagating,counterterm and
propagator. The first three attributes indicate how to
draw the particle propagator in a Feynman diagram (the pos-
sible self-explanatory values of the attribute line being
‘dashed’, ‘dotted’, ‘straight’, ‘wavy’, ‘curly’,
‘scurly’, ‘swavy’ and ‘double’), whether the particle
is a Goldstone boson (‘true’) or not (default, ‘false’),
and whether it consists of a physical field that propagates
(‘true’, default) or of a non-propagating auxiliary field
(‘false’). Information of the last two of these predefined
optional attributes, counterterm and propagator, is
provided in Sects. 5 and 4.3 respectively.

Finally, any extra attribute appearing in the instantia-
tion of a Particle object (like U (1) quantum numbers
such as LeptonNumber in the above example) represents
a model-dependent quantum number whose sign changes
under the action of the anti() method relevant for antipar-
ticle objects.

3.2 Parameters

Model parameters (masses, couplings, mixing matrix ele-
ments, etc.) are declared as instances of the Parameter
class in the file parameters.py. The UFO syntax dis-
tinguishes external and internal parameters. The former are
the free parameters for which numerical values have to be
provided by the user, while the latter are derived quanti-
ties related to other parameters (internal and/or external) via
algebraic relations. Accordingly, a numerical value has to be
provided for an external parameter whilst an analytical for-
mula has to be given for an internal parameter. The UFO for-

123

631 Page 6 of 28 Eur. Phys. J. C (2023) 83 :631

mat also includes a third class of parameters, called constant
parameters, that are similar to external parameters except
that their value cannot be changed by the user. Equivalently,
such constant parameters could also be declared as internal
parameters for which the analytical expression is equal to a
numerical value. Consequently, the only possibility to mod-
ify the value of a constant parameter is to edit directly the
file parameters.py.

A typical declaration of an external parameter would be

tb = Parameter(
name = ’tb’,
nature = ’external’,
type = ’real’,
value = 10.,
texname = ’\\text{tb}’,
lhablock = ’HMIX’,
lhacode = [2]

)

In this example, we considered the parameter tan β that is
defined as the ratio of the vacuum expectation values of the
neutral Higgs fields in two-Higgs-doublet models, and that
is often taken as one of the external parameters describing
the Higgs sector of the model.

The above expression declares an instance of the
Parameter class called tb (the value of thename attribute
being tb). The nature of this parameter is external, as indi-
cated by the value of the nature attribute (that has been set
to external). In contrast, this attribute has to be fixed to
internal or constant for internal and constant param-
eters respectively (see below for dedicated examples). In the
above instantiation, the tb parameter is imposed to be real,
since external parameters must all be real numbers. This is
achieved through the attribute type whose value is set to
real (the other possible option being complex). Conse-
quently, the value of the value attribute is a floating-point
number (10 in the above example). In addition, the TEX ver-
sion of the parameter name must be specified, as for particle
names (see Sect. 3.1), by setting accordingly the texname
attribute. In principle users can choose the name of the param-
eters of a model freely, some parameter names are reserved
as lying at the heart of higher-order calculations. We refer to
Sect. 5 for more information.

The last two attributes in the above declaration, namely
lhablock and lhacode, refer to the way in which exter-
nal parameters are organised, following conventions general-
ising the Supersymmetry Les Houches Accord (SLHA) for-
mat [34,35]. In this scheme, the numerical values of all the
model parameters are collected into specific blocks, and each
parameter is identified inside a block by one or more integer
numbers called counters. These counters consist of a single
integer for scalar parameters, and in a sequence of integers for
tensor parameters, the integers corresponding to the tensor

indices. Moreover, all the elements of a given tensor must
be part of the same Les Houches block. In the case of the
tan β declaration above, such a Les Houches structure would
correspond to

Block HMIX
2 1.000000e+01 # tb

In the UFO conventions, the name of the block (‘HMIX’)
is passed as the value of the lhablock attribute, while the
counter ([2]) is given as an array through the value of the
lhacode attribute. In the SLHA-based format, the numer-
ical value of the parameter (1.00e+01 here) is given after
the counter, followed by an optional comment (referring in
the above example to the parameter name).

Whereas the user can freely choose the names of the var-
ious Les Houches blocks and how the counters are organ-
ised, the SM parameters have to be correctly identified by
any tool using a UFO model. For instance, if the SM input
parameters include the inverse of the electromagnetic cou-
pling constant at the Z -pole α−1(mZ), the Fermi constant
GF and the strong coupling constant at the Z -pole αs(mZ),
then they have to be defined as the first three entries of the
SMINPUTS block, the electromagnetic and strong coupling
constants α, e and gs being in this case internal quantities.4 In
addition, masses and widths must be assigned to the blocks
MASS and DECAY, the counter being the PDG code of the
particle. We refer to the FeynRules manual [28] and the
description of the SLHA format [34,35] for more informa-
tion on these conventions. Finally, UFO models suitable for
higher-order calculations should include the blocks LOOP
and TECHNICAL, that contain specific parameters relevant
for programs handling calculations beyond LO. Their role is
detailed in Sect. 5.

This SLHA-like structure associated with the organisa-
tion of the external parameters is irrelevant for internal and
constant parameters, so that instantiation of the latter does
not require users to provide values for the lhablock and
lhacode attributes. Moreover, constant and internal param-
eters can be complex quantities, in contrast with external
parameters. This is indicated by setting the type attribute to
the value complex. In the case of internal parameters, the
attribute value is fixed to a valid algebraic Python expres-
sion represented by a string. This formula can depend on any
external, constant or internal parameter already declared in
the file parameters.py (i.e. on any parameter appearing
before in the file). For constant parameters, a numerical value
has to be provided instead.

4 There is no restriction on the adopted electroweak scheme. Any choice
has its conventions in terms of external and internal parameters, and on
the manner to encode them in a Les Houches structure. On the other
hand, if the model allows for the calculation of NLO electroweak cor-
rections, then the corresponding renormalisation conditions have to be
consistently implemented, as discussed in Sect. 5.

123

Eur. Phys. J. C (2023) 83 :631 Page 7 of 28 631

As an illustrative example, we show how to define the
cosine of the β angle. It can be derived from tan β (defined
as an external parameter earlier), and can be declared in a
UFO model as

cbeta = Parameter(
name = ’cbeta’,
nature = ’internal’,
type = ’real’,
value = ’math.cos(math.atan(tb))’,
texname = ’\\cos\\beta’

)

after having properly imported the math module.

3.3 Interactions

The cornerstone of the UFO format consists of the way in
which interactions are implemented, following their decom-
position in a colour ⊗ spin space. Any generic vertex V
involving the interaction of n external particles ϕ

�i ai
i (pi)

(i = 1, . . . , n) with spin indices �i (equivalently denot-
ing Dirac and Lorentz indices), colour indices ai and four-
momenta pi , could be decomposed as

Va1...an ,�1...�n (p1, . . . , pn)

=
∑

i, j

Ca1...an
i Gi j × L�1...�n

j (p1, . . . , pn). (1)

In this expression, the vertex V is decomposed into a set of
colour structures Ca1...an

i and spin structures L�1...�n
j (p1, . . . ,

pn), that are given as tensors in colour and spin space respec-
tively. After considering all the model interactions, the result-
ing ensemble of structures defines a colour and spin basis
allowing for the decomposition of any of the model vertices.
Equation (1) hence underlines an economical way to define
all the interactions of the model, since a given spin or colour
tensor could be used in several vertices. The set of coordinates
associated with a specific vertex in the colour ⊗ spin basis are
given by the coupling strengths Gi j . In version 2.0, the UFO
format only supports unbroken gauge groups that comprise a
single copy of SU (3) and any number of U (1) factors, such
as in the SM after electroweak symmetry breaking.

As an example, we consider the four-scalar interaction
between right-handed up squarks and antisquarks of the
Minimal Supersymmetric Standard Model, whose associated
Feynman rule is given by:

ũ
c1

R

ũ
c2

R

ũ
c4†
R

ũ
c3†
R

−4ie2

9c2
W

[
δc̄4

c1δ
c̄3
c2 +δc̄3

c1δ
c̄4
c2

]

− ig2
s

[
(T a)c̄3

c2(T
a)c̄4

c1

+ (T a)c̄3
c1(T

a)c̄4
c2

]
,

where c1 and c2 (c̄3 and c̄4) denote the fundamental (anti-
fundamental) colour indices of the two squarks (antisquarks),
a is a summed adjoint colour index, and cW is the cosine of

the electroweak mixing angle. Moreover, T a stands for the
SU (3) generators in the fundamental representation, and gs
and e are the strong and electromagnetic coupling constant
respectively. The UFO decomposition of this vertex can be
written as

(
δc̄4 c1δc̄3 c2 δc̄3 c1δc̄4 c2 (T a)c̄3 c2 (T a)c̄4 c1 (T a)c̄3 c1 (T a)c̄4 c2

)

×

⎛

⎜⎜⎜⎝

−(4ie2)/(9c2
W)

−(4ie2)/(9c2
W)

−ig2
s

−ig2
s

⎞

⎟⎟⎟⎠ ×
(

1
)

. (2)

The colour basis C =
(
Cc1c2 c̄3c̄4
i

)
contains four elements,

C =
(

δc̄4
c1δ

c̄3
c2 , δc̄3

c1δ
c̄4
c2 ,

(T a)c̄3
c2(T

a)c̄4
c1, (T a)c̄3

c1(T
a)c̄4

c2

)
, (3)

whereas the spin basis L contains a single element

L = (
1
)
. (4)

Here the coordinates G = (
Gi j

)
are given as a 4 × 1 matrix

of coupling strengths:

G =
(

− 4ie2

9c2
W

, −4ie2

9c2
W

, −ig2
s , −ig2

s

)t

. (5)

The UFO format mimics this structure with the declara-
tion of the model vertices as instances of theVertex class in
the file vertices.py. Each vertex is implemented follow-
ing its decomposition (1), that is passed through five manda-
tory attributes (name,particles,color,lorentz and
couplings). In the case of the four-squark vertex example
considered, a possible instantiation is:

V_1 = Vertex(
name = ’V_1’,
particles = [

P.suR, P.suR,
P.suR__tilde__, P.suR__tilde__

],
color = [

’Identity(3,1)*Identity(4,2)’,
’Identity(4,1)*Identity(3,2)’,
’T(-1,1,3)*T(-1,2,4)’,
’T(-1,1,4)*T(-1,2,3)’

],
lorentz = [L.SSSS1],
couplings = {

(0,0):C.GC_1, (1,0):C.GC_1,
(2,0):C.GC_2, (3,0):C.GC_2

}
)

123

631 Page 8 of 28 Eur. Phys. J. C (2023) 83 :631

The first attribute name defines the name given to the ver-
tex (V_1 in our example). The list of particles outgoing
from the vertex is provided as an array of Particle
objects through the particles attribute of the Vertex
class. All employed particles must have been declared in
the file particles.py, and then imported in the file
vertices.py prior to the declaration of any vertex as

import particles as P

The four-squark example considered involves two incom-
ing right-handed up squark (suR) and two incoming right-
handed up antisquarks (suR_ _tilde_ _), the Particle
objects suR and suR_ _tilde_ _ being declared in
particles.py (as detailed in Sect. 3.1). The vertex
decomposition (1) is finally provided through the color,
lorentz and couplings attributes of the Vertex class.

The color attribute refers to the array of elements
Ca1...an
i of the colour basis relevant to the vertex under con-

sideration. Each entry in this array is a polynomial com-
bination of the elementary colour tensors of Table 1, and
the arguments of each tensor are positive or negative inte-
ger numbers. Positive integers are used to associate a colour
index with one of the particles incoming to the vertex, the
exact value referring to the position of the particle in the list
provided through the attribute particles of the Vertex
class. Negative integers must appear exactly twice in a mono-
mial, and they correspond to contracted (i.e. summed over)
indices. In the UFO conventions, the position of the first par-
ticle in the list particles corresponds to 1, in contrast to
standard Python arrays. Moreover, it is up to users to ver-
ify the consistency between the colour structures appearing
in a vertex definition and the representations of the particles
entering this vertex, as programs processing UFO models
may reject models in which the colour structures in a vertex
do not match the colour representations of the particles.

Equation (2) shows that all the colour structures appearing
in the four-squark vertex can be implemented by the sole use
of Kronecker deltas (Identity) and fundamental repre-
sentation matrices of SU (3) (T). Consequently, the elements
of the basis of (3) are implemented as

δc̄4
c1δ

c̄3
c2 � ’Identity(4,1)*Identity(3,2)’

δc̄3
c1δ

c̄4
c2 � ’Identity(3,1)*Identity(4,2)’

(T a)c̄3
c2(T

a)c̄4
c1 � ’T(-1,2,3)*T(-1,1,4)’

(T a)c̄3
c1(T

a)c̄4
c2 � ’T(-1,1,3)*T(-1,2,4)’

as illustrated in the declaration of the vertex V_1 above.
Similarly, all spin structures L�1...�n

j (p1, . . . , pn) relevant
to a given vertex are collected into an array that is passed
through the lorentz attribute of the Vertex class. The
structures L�1...�n

j are provided as Lorentz objects, instead
of being directly implemented at the time of the vertex instan-
tiation. These Lorentz objects are then defined in the file

lorentz.py, and they must therefore be imported prior to
the declaration of any vertex in the file vertices.py file,

import lorentz as L

A Lorentz object is instantiated (in the file lorentz.py)
as in the following two examples (the first one being the
only one relevant for the considered four-squark interaction
vertex),

SSSS1 = Lorentz(
name = ’SSSS1’,
spins = [1, 1, 1, 1],
structure = ’1’

)

VVSS1 = Lorentz(
name = ’VVSS1’,
spins = [3, 3, 1, 1],
structure = ’Metric(1,2)’

)

All three attributes of each Lorentz object are mandatory.
The first of them (name) indicates the name of the object,
the second (spins) the spins (in the 2s + 1 notation) of the
particles entering the vertex and the last one (structure)
the structure itself, provided as a polynomial combination of
the elementary tensors of Table 2. As in the colour case, the
arguments of these tensors are positive and negative integers,
the positive ones being associated with the particles incoming
to the vertex (with the value referring to the position of the
particle in the list spins), and the negative ones appearing
twice and corresponding to contracted indices (that are there-
fore summed over). In this context, squared momenta like p2

1
can be written as P(-1,1)**2. This is interpreted exactly
as P(-1,1)*P(-1,1) and allows for concise expressions
of Lorentz structures in UFO. Obviously, the -1 index must
appear only once in this case.

In the case of the four-scalar vertex (2), the only pos-
sible spin combination is the trivial one. This requires us
to use the SSSS1 object for the instantiation of the ver-
tex V_1. In contrast, the object VVSS1 involves two vector
bosons and two scalar particles (cf. the attributespins of the
object VVSS1), and the structure of its interactions relates the
two bosons through the Minkowski metric (cf. the attribute
structure of the object VVSS1). The corresponding UFO
implementations for the structure of the Lorentz objects
SSSS1 and VVSS1 are then

1 � ’1’

ημ1μ2 � ’Metric(1,2)’

The last attribute of the Vertex class is related to the
coordinates Gi j of the vertex in the colour ⊗ spin basis. They
are provided in the form of a Python dictionary through

123

Eur. Phys. J. C (2023) 83 :631 Page 9 of 28 631

Table 1 Elementary colour
tensors that can be used to
construct the elements of the
colour basis relevant for a given
UFO vertex. Fundamental,
sextet, antifundamental and
antisextet colour indices are
denoted as i , α, ı̄ and ᾱ, whilst a
denotes an adjoint colour index

UFO colour tensor Description

1 Trivial tensor (for non-coloured particles)

Identity(2,1) Kronecker delta δ ı̄2 i1 , δa2a1 , or δᾱ2
α1

T(1,2,3) Fundamental representation matrix (T a1)ı̄3 i2

f(1,2,3) Antisymmetric structure constant f a1a2a3

d(1,2,3) Symmetric structure constant da1a2a3

Epsilon(1,2,3) Fundamental Levi–Civita tensor εi1i2i3

EpsilonBar(1,2,3) Antifundamental Levi–Civita tensor ε ı̄1 ı̄2 ı̄3

T6(1,2,3) Sextet representation matrix (T a1
6)ᾱ3

α2

K6(1,2,3) Sextet Clebsch-Gordan coefficient (K6)
ı̄2 ı̄3

α1

K6Bar(1,2,3) Antisextet Clebsch-Gordan coefficient (K 6)
ᾱ1 i2i3

Table 2 Elementary spin
tensors that can be used to
construct the elements of the
spin basis relevant to a given
UFO vertex. Spin and Lorentz
indices are respectively denoted
as s and μ

UFO spin tensor Description

Identity(1,2) (Spinorial) Kronecker delta δs1s2

IdentityL(1,2) (Lorentz) Kronecker delta δ
μ1
μ2

Gamma(1,2,3) Dirac matrix (γ μ1)s2s3

Gamma5(1,2) Fifth Dirac matrix (γ 5)s1s2

ProjM(1,2) Left chirality projector (
1−γ5

2)s1s2

ProjP(1,2) Right chirality projector (
1+γ5

2)s1s2

Sigma(1,2,3,4) Sigma matrix (σμ1μ2)s1s2

C(1,2) Charge conjugation matrix Cs1s2

Metric(1,2) Minkowski metric ημ1μ2

P(1,i) Incoming momentum of the i th particle pμ1
i

Epsilon(1,2,3,4) Levi–Civita tensor εμ1μ2μ3μ4 (with ε0123 = −ε0123 = 1)

the couplings attribute of the Vertex class. This dic-
tionary relates the coordinate (i, j), where i and j refer
to a specific colour and spin basis element respectively, to
the value of the corresponding coupling strength given as a
Coupling object. The list of all Coupling objects nec-
essary for the implementation of a given model is declared
in the file couplings.py, that must therefore be imported
prior to the declaration of any vertex,

import couplings as C

When a vertex is instantiated, only the non-vanishing coor-
dinates have to be included. In the four-squark vertex con-
sidered, this therefore gives

(0, 0) � C.GC_1 (1, 0) � C.GC_1

(2, 0) � C.GC_2 (3, 0) � C.GC_2

where the integer counters follow this time a standard
Python numbering for the elements of an array (the first ele-

ment being thus associated with the index 0). The example
above illustrates the fact that the four-squark vertex exem-
plified involves only two instances of the Coupling class
(GC_1 and GC_2), as also depicted in (2).

The declaration of a Coupling object in the file
couplings.py is very similar to that of an internal param-
eter declaration (see Sect. 3.2). For the two couplings GC_1
and GC_2 necessary for the four-squark vertex considered,
this gives

GC_1 = Coupling(
name = ’GC_1’,
value = ’-(4*ee**2*complex(0,1))/(9.*

cw**2)’,
order = {’QED’:2}

)

GC_2 = Coupling(
name = ’GC_2’,

123

631 Page 10 of 28 Eur. Phys. J. C (2023) 83 :631

value = ’-(complex(0,1)*G**2)’,
order = {’QCD’:2}

)

An instance of a Coupling object is declared with three
mandatory arguments, namely its name (name), the alge-
braic coupling definition that could depend on any of the
model parameters (value), and a so-called coupling order
provided in the form of a Python dictionary (order). In
the case of the four-squark example considered, the cou-
pling strengths appearing in (5) are directly provided as
valid Python algebraic expressions. The last attribute of
a Coupling object, order, is a Python dictionary that
allows users to tag certain couplings of the model with one
or more strings (i.e. tags) to which a positive integer num-
ber is associated. In the examples above, the tags QED and
QCD are associated with two physical quantities, the typical
strength of the electroweak and strong interactions. The cou-
plings GC_1 and GC_2 are hence flagged as couplings with
strengths proportional to two powers of the electromagnetic
and strong coupling, respectively, as the integer 2 is attached
with each of the two tags involved. It is not mandatory to use
tags that actually refer to a physical interaction. For instance,
in the vector-like quark UFO implementation of [36], a VLQ
coupling order is introduced in order to identify all vertices
suppressed by the mixing of a vector-like and a SM quark
(which is achieved by setting order = ’VLQ:1’ in the
relevant coupling declarations).

This coupling-order feature allows users to filter not only
vertices, but also the resulting Feynman diagrams. This is
generally achieved in practice through the introduction of
criteria depending on the type of interactions involved in a
vertex or a Feynman diagram. For instance, the QED and
QCD tags introduced in the definition of the GC_1 and GC_2
couplings could allow users to neglect (subdominant) elec-
troweak diagrams relative to (dominant) QCD diagrams (as
numerically α2

s ∼ α) when deriving the list of diagrams
relevant to a specific hadron-collider process. Moreover, in
the vector-like quark example briefly mentioned above, users
could enforce the list of relevant diagrams to include at most
one mixing suppression.

The tags that can be used for the instantiation of the
different Coupling objects have to be declared in the
file coupling_orders.py, each tag (or coupling order)
being implemented as an instance of the class
CouplingOrder. In our supersymmetric example (taken
from [37]), the model contains two independent classes of
interactions that are named QED (for interactions propor-
tional to the electromagnetic coupling e, and therefore the
weak coupling g = e/sW with sW being the sine of the
electroweak mixing angle, or any of the model’s Yukawa or
supersymmetry-breaking multiscalar interactions) and QCD
(for QCD interactions). These tags are declared as

QCD = CouplingOrder(
name = ’QCD’,
expansion_order = 99,
hierarchy = 1,
perturbative_expansion = 1

)

QED = CouplingOrder(
name = ’QED’,
expansion_order = 99,
hierarchy = 2

)

Whereas the examples above refer to coupling orders associ-
ated with physical interactions, they can easily be generalised
to any other class of tags.

In the above example, the two CouplingOrder objects
are instantiated by fixing three mandatory attributes (name,
expansion_order and hierarchy), together with one
optional attribute for the QCD coupling order (perturba
tive_expansion). The first of the mandatory arguments,
name, contains the name of the coupling order, that also
consists of the tag that can be used for instantiation of
Coupling objects. The second attribute,
expansion_order, refers to the maximum power of the
interaction that could appear in a single amplitude. This
is particularly relevant for effective field theories in which
amplitudes must be truncated to some power of the high
effective scale. In the above examples, this attribute is fixed
twice to 99, which effectively indicates that there is no limit.
The last mandatory attribute, hierarchy, allows users to
order the couplings according to their relative magnitude.
In the above example, we enforce such a hierarchy, and we
impose α2

s ∼ α. This is achieved by assigning to the cou-
pling orders QCD and QED the hierarchies 1 and 2 respec-
tively. Such a piece of information is relevant for the imple-
mentation of diagram filters for a given process,5 allowing
users to select given contributions to an amplitude according
to the type of contributing interactions. Setting the attribute
hierarchy to 0 indicates that the corresponding coupling
order plays only a role of a tag, and that there is no con-
nection to the relative magnitude of the associated coupling
orders. In the vector-like quark model introduced above, the
attribute hierarchy of the coupling order VLQ is set to 0.
This coupling order can hence be used to enforce the maxi-
mum number of suppression factors due to VLQ-SM mixing

5 In most public UFO models, the tag QED is traditionally associated
with both the usual QED interactions and all electroweak interactions.
Consequently, in the case of the top-quark Yukawa coupling (that is thus
a coupling of QED order), the QCD/QED hierarchy mentioned in the text
is not valid. The QED tag is however anyway very useful for diagram
filtering purpose.

123

Eur. Phys. J. C (2023) 83 :631 Page 11 of 28 631

that can appear in a diagram, regardless of the nature of the
fundamental (QED or QCD) interactions involved.

Finally, the perturbative_expansion attribute of
the QCD coupling order is set to 1 in the above example.
This implies that the UFO model contains all ingredients
necessary for NLO calculations in QCD (see Sect. 5). If the
attribute is unspecified, a default value of perturbative_
expansion = 0 is assumed, which implies that only LO
calculations in this coupling are supported.

3.4 The function library

The last mandatory component of a UFO model is the file
function_library.py. It includes user-defined func-
tions declared as instances of theFunction class. The UFO
format supports functions that can be defined within a sin-
gle line in Python, the so-called Python lambda functions.
Python lambda functions offer the advantage of being easily
translatable into other programming languages, and they are
consequently the only functions that can be declared within
the library defined in the file function_library.py.

A Function object is defined through three manda-
tory attributes and two optional attributes. The mandatory
attributes consist of the name of the function (name), its
arguments specified as a tuple of strings (arguments),
and the expression of the function itself given in terms of
its arguments. The latter must be provided as a string that
represents a valid Python expression, and it is given as
the value of the attribute expression. By default, all
the arguments of the functions are considered to be com-
plex numbers. This behaviour can however be superseded
by providing a tuple of strings through the optional attribute
argstype of the Function class, which allows users to
specify the type of the different arguments of the function.
The supported types are real numbers (real), complex num-
bers (complex), and arrays of real or complex numbers
(real[n] or complex[n] for an n-dimensional array,
respectively, where n is an integer). The two tuples provided
through the attributes arguments and argstype must
have the same size. Similarly, the type of the result of the
function is a complex number by default, but this behaviour
can be modified by specifying the type attribute of the
instantiated function, that can take the self-explanatory val-
ues real, complex, real[n] and complex[n] (with
n being an integer).

Several functions are shipped by default with any UFO
model. This includes in particular a series of mathemat-
ical functions for which the Python module cmath is
insufficient. First, the function_library.py file con-
tains a set of tools that facilitate the treatment of com-
plex quantities (the real part of a complex number re, its
imaginary part im, and the complex conjugation operation
complexconjugate). Second, several trigonometric and

cyclometric functions are implemented (the cotangent cot,
the secant sec and the cosecant csc functions, together with
their arcsecant asec and arccosecant acsc counterparts).

As an illustration, we provide below a function returning
the real part of a complex number, as well as a function
associated with the secant of a complex number. These could
implemented as

re = Function(
name = ’re’,
arguments = (’z’),
expression = ’z.real’

)

sec = Function(
name = ’sec’,
arguments = (’z’),
expression = ’1./cmath.cos(z.real)’

)

Furthermore, the file function_library.py of a
UFO model includes a generalised version of the Heaviside
step function theta_function. It allows users to make
use of a variety of piecewise functions involving a single con-
dition, and it is implemented as a Function object relying
on the one-line Python if/else statement,

theta_function = Function(
name = ’theta_function’,
arguments = (’x’,’y’,’z’),
expression = ’y if x else z’

)

With this generalised function, the familiar one-parameter
Heaviside function centred on x0 = 23,

Θ(x − 23) =
{

1 if x ≥ 23.

0 otherwise
, (6)

can be used through

theta_function(x>=23., 1., 0.)

The definition of Function objects also supports the use
of the model parameters instantiated fromparameters.py,
as well as that of other functions. This therefore allows for
more complex expressions to be defined in steps. As a com-
plete example, we consider an elastic atomic form factor
Gel(t) [38],

Gel(t) =
(

Znuc.

1 + t/dnuc.

a2
nuc.t

1 + a2
nuc.t

)2

, (7)

which depends on the three nuclear physics parameters Znuc.,
anuc. and dnuc.. Its implementation as a Function object
Gel reads

123

631 Page 12 of 28 Eur. Phys. J. C (2023) 83 :631

Gel = Function(
name = ’Gel’,
type = ’real’,
arguments = (’t’),
argstype = (’real’),
expression = ’(Z_nuc/(1+t/d_nuc)*

a_nuc**2*t/(1+a_nuc**2*t))**2’
)

where Z_nuc, a_nuc and d_nuc are parameters of the
model defined in the file parameters.py. In this func-
tion, we imposed the arguments to be real quantities (real),
instead of complex ones (complex, that is also the default)
or real and complex arrays (for example real[4] or
complex[4] for the four-dimensional case). Moreover, the
output of the function is defined to be a real number, instead
of a complex one, which is the default. We note that this
output is not allowed to be a list.

The complete form factor in our example should also
include an inelastic part G in(t) [38,39]. The latter can be
defined similarly as its elastic counterpart, namely as another
Function object Gin. The full implementation of both
contributions as a single Function object FF is thus

FF = Function(
name = ’FF’,
arguments = (’t’),
argstype = (’real’),
expression = ’math.sqrt(Gel(t) + Gin(t))’

)

in which we illustrate how a given Function object
could call other Function objects and standard Python
methods.

4 Optional components

In this section, we describe optional files that can be included
in a UFO model. These files allow users to provide additional
information about a model, and/or equip a UFO with non-
standard practical methods and functions. One of these files
(write_param_card.py) defines a writer of the exter-
nal model parameters in an SLHA-like text file. This file was
a mandatory component in the first version of the UFO for-
mat [2] for the sole reason that all files defining a model were
mandatory. As it is not strictly necessary from the point of
view of the information defining a model, we benefit from
the possibility of having optional files in version 2 of the
UFO to update its nature. The other optional files are new
and were introduced after the original release of the UFO
format. They are related to the addition of custom propa-
gators for specific particles of the model as introduced in
[4] (in the file propagators.py), detail how to provide
information about particle decay widths following [3] (in
the file decays.py) and about the renormalisation group

running of the model’s parameters as defined in [5] (in the
file running.py), and enable the usage of form factors in
a UFO model, which we document below for the first time.
Moreover, it is now also possible to directly add customFor-
tran and C++ functions in a UFO model. These functions
are defined in folders Fortran and Cpp respectively, and
they can be called in any algebraic expression introduced in
the other files of the model. This possibility is briefly dis-
cussed in Sects. 4.2 and 5.2.

4.1 Outputting the values of the model parameters

The file write_param_card.py includes routines that
write all external model parameters, together with their
numerical value, into a text file following an SLHA-like for-
mat [34,35]. In the output file, the parameters and their val-
ues are organised in Les Houches blocks and counters, as
specified by the user with the parameter declarations imple-
mented in the file parameters.py (cf. the lhablock
and lhacode attributes of the different parameters; see
Sect. 3.2).

The output file, named param_card.dat, is generated
by issuing in a shell the command

python write_param_card.py

In addition to the model external parameters and their value,
the output file includes QNUMBERS blocks [40] with infor-
mation on the quantum numbers of all the particles of the
model, as well as all particle masses and decay widths regard-
less of their external/internal nature. Examples of such a
write_param_card.py file can be obtained from the
model database of FeynRules.6

4.2 Form factors

The standard UFO decomposition of an interaction vertex in a
colour ⊗ spin space of (1) does not always suffice to properly
describe an interaction. In some models, it is indeed conve-
nient to have couplings that depend on phase space (therefore
including so-called form factors), as for instance in effective
theories or empirical descriptions of interactions (e.g. as for
atomic form factors at low energy or for neutrino-nucleus
interactions). The extension of the UFO format described in
this section adopts the decomposition (1) by adding extra
scalar functions F j (p1, . . . , pn) that depend on the four-

6 See the webpage https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabase
MainPage.

123

https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage
https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage

Eur. Phys. J. C (2023) 83 :631 Page 13 of 28 631

momenta of the particles incoming to the vertex,

Va1...an ,�1...�n =
∑

i, j

Ca1...an
i Gi j

× F j (p1, . . . , pn) L
�1...�n
j (p1, . . . , pn) .

(8)

This expression shows that in the UFO conventions, the form
factors F j impact the spin dependence of the interaction ver-
tices, while they leave the colour structure unaffected.

In practice, they are implemented as a modification of
the relevant spin structure of the vertices declared in the file
lorentz.py, following the replacement

L�1...�n
j (p1, . . . , pn)

→ F j (p1, . . . , pn) L
�1...�n
j (p1, . . . , pn). (9)

This amounts to allow the value of the structure attribute
of a Lorentz object to make use of functions defined
in the file function_library.py (see Sect. 3.4), and
of parameters defined in the file parameters.py (see
Sect. 3.2). This obviously requires to import the list of param-
eters and the set of relevant functions in the preamble of the
file lorentz.py.

As an example, we consider the case of a form factor
given by mW /E , where mW stands for the mass of the
W boson (represented below by the Parameter object
MW) and E is the energy scale relevant for the associated
process. Such a form factor could be defined in the file
function_library.py through a Function object
AAA,

AAA = Function(
name = ’AAA’,
type = ’float’,
arguments = (’E2’),
argstype = (’float’),
expression = ’MW/cmath.sqrt(E2)’

)

This form factor can then be used in the declaration of a spin
structure relevant, for instance, for a vertex involving two
vector bosons (of momenta p1 and p2 and associated Lorentz
indices μ1 and μ2), and one scalar state (of momentum p3),

F (p1, p2, p3) L
μ1μ2(p1, p2, p3) = mW ημ1μ2

√
(p1 + p2)2

. (10)

In this expression, the energy scale E appearing in the form
factor is identified by E2 ≡ (p1 + p2)

2. This could be imple-
mented as a Lorentz object VVS1 as

VVS1 = Lorentz(
name = ’VVS1’,

spins = [3, 3, 1],
structure = ’AAA((P(-1,1)+P(-1,2))**2)

* Metric(1,2)’
)

following the notation introduced in Table 2. In particular,
we recall that negative indices are summed over, and that
squares of four-vectors are allowed.

For more complicated form factor expressions, users
have the possibility to nest the definition of several func-
tions, as shown in the example given in Sect. 3.4 or
in [41,42]. For extreme cases, form factors can be pro-
vided externally, through Fortran or C++ functions as
in the tau-lepton decay module of [43]. Such a con-
struction should however be avoided as much as possi-
ble as it breaks the spirit of portability of UFO mod-
els. It may however be sometimes the only choice. In
this case, we encourage authors to provide both Fortran
and C++ routines for their form factors, and implement
them in the Fortran file Fortran/functions.f (or
Fortran/functions.f90) and C++ header and source
files Cpp/functions.h and Cpp/functions.cpp
respectively.

4.3 Particle propagators

In general, the propagator of a particle can be inferred from
its spin, and so it is usually redundant to define propagators
explicitly for each particle. There may be cases, however,
where it is useful to have the possibility to redefine the prop-
agator of a certain class of particles. This includes, for exam-
ple, theories with non-standard kinetic terms, implementa-
tions featuring non-propagating auxiliary particles (in which
case the propagator is simply a product of Kronecker delta
functions without any momentum dependence), and models
relevant for particles with a spin value s ≥ 3/2 for which the
conventions are not unique.

For a few years already, the UFO format has allowed
the user to define new propagators as instances of the class
Propagator, and in a given model implementation all
these custom propagator definitions must be collected in the
optional file propagators.py [4]. The instantiation of
a Propagator object follows similar conventions as for
any other UFO object, as exemplified below with the case
of a massless gauge boson propagator in the Feynman gauge
(instantiated as V0),

V0 = Propagator(
name = "V0",
numerator = "-1 * Metric(1, 2)",
denominator = "P(-1, id)**2"

)

123

631 Page 14 of 28 Eur. Phys. J. C (2023) 83 :631

Table 3 Lorentz objects that can be used for the definition of the numer-
ator and denominator of custom particle propagators

UFO expression Description

P(1,id) Momentum of the propagating particle in
a direction aligned with the incoming
momentum flow

P(2,id) Momentum of the propagating particle in
a direction aligned with the outgoing
momentum flow

Mass(id) Mass of the propagating particle

Width(id) Width of the propagating particle

OverMass2(id) 1/M2 for massive particle, and 0
otherwise

PSlash(1,2,id) /ps1s2
where p is the momentum

of the propagating particle

This declaration includes the two mandatory attributes of the
Propagator class (name and numerator), as well as
the only possible optional attribute (denominator). The
attribute name provides a way to identify a given propa-
gator object, whereas the attribute numerator includes
an analytical expression for the numerator of the propa-
gator, a global factor i excluded. The optional attribute
denominator then allows users to provide an analytical
expression of the denominator. If unspecified, the Feynman
propagator denominator (p2 −m2 + imΓ) is assumed for a
particle of mass m, width Γ and four-momentum pμ.

The analytical expressions to be provided for the prop-
agator numerators and denominators rely on the UFO con-
ventions detailed in Sect. 3.3 (and in Table 2 in particular),
as well as on several additional quantities that are intro-
duced in Table 3. For non-scalar propagators, the numerator
involves non-contracted (spin and/or Lorentz) indices that
are referred to as ‘1’ and ‘2’ in the implementation. These
respectively correspond to the incoming and outgoing direc-
tions. For non-fermionic propagators, these directions are
arbitrary, whereas for fermionic propagators they are crucial
and must be defined from the ‘fermion flow’ associated with
the corresponding diagrams [44]. In the case of a spin-2 par-
ticle, the ‘51’ and ‘52’ indices are additionally introduced for
the second pair of Lorentz indices attached to the propagating
state.

As shown in the example above and in Table 3, the flag id
is used as the unique identifier for the propagating particle.
For instance, the momentum of the propagating particle can
be represented by P(1,id) and P(2,id) in the incom-
ing and outgoing cases respectively, whereas for a fermionic

propagator (of momentum p), PSlash(1,2,id) would
refer to the quantity (/p)s1s2 in spin space. Moreover, the
mass and width of the propagating particle are identified
as Mass(id) and Width(id) respectively, and the addi-
tional quantity OverMass2(id) corresponds to 1/M2 for
a massive particle and 0 otherwise. Finally, we emphasise
that as for Lorentz structure definitions, repeated negative
indices are summed over.

In order to link custom propagators to particles, the
Particle class is equipped with an optional attribute
propagator. It allows users to refer to the specific prop-
agator to employ through its name as defined in the file
propagators.py. For example, a massless spin-1 par-
ticle with a custom propagator as given in the above example
could be defined by

photon = Particle(
pdg_code = 22,
name = ’photon’,
antiname = ’photon’,
spin = 3,
color = 0,
mass = Param.ZERO,
width = Param.ZERO,
propagator = propagators.V0
texname = ’\gamma’,
antitexname = ’\gamma’,
charge = 0

)

where the preamble of the file particles.py is assumed
to include the instruction

import propagators

In the case a Particle object is instantiated without any
value for the attribute propagator (as in most existing
UFO models), default propagators are assumed. As non triv-
ial and existing examples, we refer to [4] and [45]. They
respectively address models featuring particles with spin
s ≥ 3/2, and models in which running width effects are
incorporated in the particle propagators.

Finally, some models are such that it is impossible to
simultaneously diagonalise both the mass and width matri-
ces. In this case, ‘matrix’ propagators are in order [46]. We
mention as a side note that the UFO format is compliant
with such a structure through the implementation of a set of
two-point vertices that emulate each off-diagonal entry of the
propagator matrix.

4.4 Particle decays

Many applications of calculations involving massive unstable
particles require the evaluation of the total and partial decay

123

Eur. Phys. J. C (2023) 83 :631 Page 15 of 28 631

widths of all particles of the model, together with the esti-
mation of the decay channels that are kinematically allowed.
This task is highly dependent on the mass spectrum of the
model, and it requires a re-evaluation of the widths for each
choice of external parameters. In order to provide a simple
solution to this problem, the UFO format allows users to input
analytical formulas for LO two-body decay rates associated
with the particles of the model. These are all collected inside
the file decays.py [3]. As two-body decays might some-
times be insufficient (when for instance higher-multiplicity
decays are the dominant decay modes or when higher-order
corrections are important), it is up to the code using the UFO
model to decide how (and if) they should include such extra
contributions in their computations.

In the special case of a two-body decay of a particle of
mass M to two particles of massesm1 andm2, Lorentz invari-
ance implies that the matrix element relevant for the calcu-
lation of a partial width Γ can only depend on the masses of
the external particles, and we can write

Γ =
√

λ(M2,m2
1,m

2
2)

16 π S |M |3 |M|2, (11)

where S denotes the phase-space symmetry factor, the func-
tionλ(M2,m2

1,m
2
2) = (M2−m2

1−m2
2)

2−4m2
1m

2
2 is the usual

Källén function, and |M|2 stands for the average squared
matrix element associated with the decay mode considered.
The matrix element of this two-body decay only receives
contributions from a single three-point vertex V , so that it
can be written as

|M|2 = Va1a2a3
μ1μ2μ3

Pμ1μ
′
1

1 Pμ2μ
′
2

2 Pμ3μ
′
3

3 (V∗)a1a2a3
μ′

1μ
′
2μ

′
3
, (12)

where the colour and spin indices of the particle i are gener-

ically denoted by ai and μ
(′)
i respectively. In addition, we

have introduced the polarisation tensor of the particle i , Pi ,
that depends on its spin and its mass.

The content of the file decays.py contains declarations
of instances of the class Decay. Each instance of this class
can be thought of as a collection of LO analytic formulas of
two-body partial widths of a given state (obtained from (11)
and (12)). For example, the two-body partial widths of the
Higgs boson in the Standard Model could be represented as

Decay_H = Decay(
name = ’Decay_H ’,
particle = P.H,
partial_widths = {
(P.W__minus_\,_, P.W__plus_\,_): ’ΓWW ’,
(P.Z, P.Z): ’ΓZ Z ’,
(P.b, P.b__tilde__): ’Γbb̄’,

(P.ta__minus_\,_, P.ta__plus_\,_):’Γττ ’,
(P.t,P.t_\,_tilde_\,_): ’Γt t̄ ’

}
)

where ΓXY schematically represent the analytic formula of
the partial width of the Higgs boson associated with the decay
mode H → XY . The syntax to be used to write these ana-
lytic formulas is identical to that introduced in the previous
sections. In the above example we assume that the first two
generations of fermions are massless. All possible LO two-
body decays have been included, even if some of them are
kinematically forbidden. The analytic formula for the two-
body decays of a Higgs boson into a pair of top quarks or
weak bosons are hence also present (even if not kinematically
allowed for a light Higgs boson). It is then up to the high-
energy physics tool to filter out at run time the kinematically
allowed channels (that depend on the chosen set of external
parameters), and to combine them consistently into the total
width and branching ratios for a given particle. When imple-
menting the file decays.py, it is strongly recommended to
include all two-body decay channels for all the particles of
the model, kinematically allowed or not, in order to prevent
the code that relies on this option of the UFO format from
producing incorrect results for some benchmark scenarios
and correct ones for others.

The example of the Higgs boson is also a case where tree-
level two-body decays are not sufficient for an accurate cal-
culation of the total width of the particle. We should indeed
include important contributions arising both from loop-
induced Feynman diagrams and from three-body decays with
off-shell effects, and the explicit choice of the renormal-
isation scale is known to impact the results strongly. We
emphasise that it is not the role of the UFO model to check
whether the provided formulas are enough to compute reli-
ably the total width of a particle. The inclusion of the file
decays.py in a UFO model instead only provides some
analytical formula to facilitate the approximate evaluation of
the particle widths.

4.5 Renormalisation group running effects

In many practical applications in particle physics, the free
parameters of the Lagrangian are provided at a given input
scale that could be quite different from the natural scales
relevant to the physics process considered. One possibility
to increase the precision of the predictions can therefore
be to include renormalisation group (RG) running effects,
which amounts to re-evaluating couplings and/or masses of
the model at a specific scale. The UFO format has been
extended [5] so that information on RG running could be
provided within the optional file running.py. Following
the general UFO philosophy, the UFO format only contains
information on the running of the model’s parameters, and
it does not provide any method allowing to handle it numer-
ically. It is hence up to the high-energy physics software
employed to handle this, and/or to rely on any existing exter-
nal tools like those introduced in [31,32,47,48].

123

631 Page 16 of 28 Eur. Phys. J. C (2023) 83 :631

In full generality, the RG equations associated with the
model parameters {C} = {c1, c2, . . .} can be written as

dci (μ)

d log μ
= γ

(1)
i j c j (μ) + γ

(2)
i jk c j (μ)ck(μ) + . . . , (13)

where the anomalous dimension matrix γ has been decom-
posed into a part involving a single other parameter (γ (1)

i j),

a part involving two other parameters (γ (2)
i jk), and so on. The

file running.py contains the values of the (non-zero) ele-
ments of the various γ tensors appearing in the right-hand
side of (13). Several of these elements can be defined simul-
taneously, provided that they correspond to the same analyti-
cal expression, which allows for an economical implementa-
tion. Consequently, users have the possibility to declare one
Running object for each unique value of the elements of the
various γ tensors appearing in an RG equation given by (13),
instead of one Running object per summand appearing in
its right-hand side.

In practice, a Running object is defined as:

RGE_1 = Running(
name = ’RGE_1’,
value = ’2./(3.*cmath.pi)’,
run_objects = [

[P.c1, P.c2, P.gs],
[P.c3, P.gs]

]
)

This declaration relies on three mandatory attributes. The
first of them is the name of the object that is provided as a
string (name), while the second attribute (value) refers to
the analytical formula associated with the elements of the
γ tensors considered. This formula has to be provided as
a valid Python expression that follows the same technical
limitations as those inherent to the value attribute of the
classes Parameter and Coupling (see Sects. 3.2 and
3.3). Moreover, this expression should not depend on any
running parameter.

The value of the run_objects attribute contains a list
in which each element is a list of external parameters (that
must therefore be declared as instances of the Parameter
class), with the exceptions of the standard QCD and QED
couplings αs , α, gs and e that could be used despite their
external/internal nature. For each entry in the primary list, the
first parameter corresponds to the parameter appearing on the
left-hand side of (13), while all the other entries correspond
to the parameters appearing on the right-hand side of that
equation. In addition, a given parameter can be repeated as
many times as needed to obtain a dependency on a specific

power of it. The above example would correspond to

dc1(μ)

d log μ
= 2

3π
gsc2 + . . . ,

dc3(μ)

d log μ
= 2

3π
gs + . . . ,

(14)

where the dots refer to terms not captured by the declaration
of the RGE_1 object above.

5 Features pertaining to NLO

Up to this point, we have presented many aspects of the UFO
format that provide the necessary information to generate
tree-level matrix elements for arbitrary processes within a
model. In principle, this information is also sufficient to pro-
duce matrix elements that include corrections associated with
an arbitrary number of loops. In practice, however, a number
of additional ingredients are necessary, mainly in the form of
process-independent counterterms whose derivation is often
quite involved. They should therefore ideally be supplied
along with the rest of the tree-level information included
in a UFO model. In this section, we describe the standard
according to which this additional information is provided.
We stress that this extended UFO format is not bound to one-
loop corrections. However current applications only involve
one-loop automatic matrix element generation, and it is there-
fore the case that drove our choice of syntax.

The counterterms provided in a UFO model containing
the necessary information for performing computations at
NLO accuracy (afterwards referred to as an NLO UFO) come
in two distinct categories called R2 and UV. The R2 cate-
gory contains rational terms of the second kind. They orig-
inate from the need of recovering contributions from the d-
dimensional part of one-loop numerators that are typically
computed in four dimensions by most numerical approaches
[49–56]. The UV category implements the ultraviolet renor-
malisation of the model. This requires an analysis of the loop
corrections to the vertices and two-point functions of the
model, together with physically motivated choices made by
the model builder (e.g. renormalisation conditions). For this
reason, such counterterms are also best computed once and
for all and specified in the UFO model. As it is further dis-
cussed below, an NLO UFO model is therefore suitable for
one (or at most a few) particular renormalisation scheme(s).

We now present the standardised format in which these R2

and UV counterterms are provided in an NLO UFO model,
and that is already used by many one-loop providers (OLPs).
This is however only achieved after first briefly introducing
information relevant for one-loop matrix element computa-
tions in Sects. 5.1 (UV and R2 counterterms) and 5.2 (the
complex mass scheme). In Sect. 5.3, we focus on electroweak

123

Eur. Phys. J. C (2023) 83 :631 Page 17 of 28 631

corrections in the Sudakov approximation and detail why
additional pieces of information must be provided. As men-
tioned in Sect. 2.2, several additional files must be supplied
in an NLO UFO model. We provide details about those files
in Sect. 5.4. They consist of the file CT_vertices.py7

that allows for the instantiation of all CTVertex objects
included in the model, the file CT_couplings.py that
allows for the declaration of Coupling objects used in
the counterterms, and the file CT_parameters.py that
includes instantiation of all CTParameter objects needed
in the counterterm couplings.

Additional information not available in any other UFO
file is needed for making it possible to automatically cal-
culate electroweak Sudakov corrections. This consists of
the eigenvalues of various electroweak operators, and on
how the components of the physical fields in a theory
are gathered into SU (2)L multiplets. This is provided in
the file CT_ewcasimirs.py through the declaration of
EWOperator objects.

The objects specific to UFO NLO models can eas-
ily be accessed through generic lists included in the file
object_library.py. A first list all_CTvertices
collects all declared CTVertex objects, while a second list
all_CTparameters is dedicated to the CTParameter
objects declared by the user. On the other hand, all coun-
terterm couplings (declared as standard Coupling objects)
are available together with the other couplings of the
model, through the list all_couplings. Finally, the list
all_EWOperators collects additional objects relevant
for the calculation of electroweak Sudakov corrections.

5.1 Counterterms

This section includes brief definitions of both the R2 and
UV counterterms relevant for NLO UFO models, and we
additionally discuss aspects relevant to the automation of the
computation of loop amplitudes.

5.1.1 R2 counterterms

In d dimensions, one-loop amplitudes can be generically
written as

A (q) = 1

(2π)4

∫
ddq

N (q)

D0D1 . . . Dm−1
, (15)

where Di ≡ (q + pi)2 − m2
i are the propagator denomina-

tors with mi being the masses of the particles in the loop, q is

7 The letters ‘CT’ appearing at the beginning of the filename refer to the
word ‘counterterm’, although the information included in the UFO files
described in the present section does not only concern counterterms
stricto sensu.

the loop momentum and pi are linear combinations of exter-
nal momenta. The bar denotes all the quantities living in d
dimensions (x), which can thus be split in a four-dimensional
part (x) and a d − 4 dimensional part (x̃) in dimensional reg-
ularisation, x ≡ x + x̃ .

Rational terms are finite contributions generated by the
integration over d−4 pieces of the one-loop integrand. They
are organised into two sets of contributions called R1 and R2.
The rational terms R1 originate from the d − 4 component
of the integrand denominators, and they can be computed
similarly as the four-dimensional part of the integrand but
using a different basis of scalar integrals [57]. The R2 terms
are instead due to the d − 4 component of the numerator

R2 ≡ lim
ε→0

1

(2π)4

∫
ddq

Ñ (q̃, q, ε)

D0D1 . . . Dm−1
, (16)

where d ≡ 4 − 2ε and Ñ (q̃, q, ε) ≡ N̄ (q̄) − N (q). Vari-
ous schemes exist for the definition of the rational terms. For
example, in the ’t Hooft–Veltman scheme [58] all the quan-
tities involved in the loop, i.e. the loop momentum, the Dirac
matrices and the metric, are taken as living in d dimensions,
so that

ημνημν = d and γ μγ μ = d 1l, (17)

where 1l denotes the identity matrix in the Dirac space.
Instead, the external momenta and the polarisation vec-
tors live in four dimensions. Another scheme dependence
is related to the choice of properties of the matrix γ5 in d
dimensions.8 For example, the Dirac matrices in d dimen-
sions γμ can be chosen to anti-commute with γ5 [59–61].
In this case, the cyclic property of a Dirac trace has to be
dropped to avoid algebraic inconsistency.

An extra scheme has to be defined when computing R2

terms related to operators including more than two fermions
due to the presence of evanescent operators, namely oper-
ators which are only non-vanishing in d 	= 4 dimensions.
Any Lorentz invariant four-fermion operator can always be
decomposed in a basis of four-fermion operator,

f̄1Γa f2 f̄3Γ
′
a f4 =

∑

k

(bk + akε) f̄1Γ̃k f2 f̄3Γ̃
′
k f4, (18)

where fi are fermions, Γ ′
a and Γa are products of Dirac matri-

ces that appear in the operator considered, and Γ̃k and Γ̃ ′
k are

products of Dirac matrices that define a basis of four-fermion
operators in four dimensions. In the above expression, only
the bk coefficients are fixed by requiring that both sides are
equal in four dimensions. The determination of the coeffi-
cients ak in (18) requires extra conditions to be imposed, as

8 This scheme is only relevant when considering axial anomalies.

123

631 Page 18 of 28 Eur. Phys. J. C (2023) 83 :631

for instance by requiring the equality of the trace of the Dirac
structure [62]

Tr
(
Γ̃mΓaΓ̃

′
mΓ ′

a

)
=

∑

k

(bk + akε)Tr
(
Γ̃m Γ̃k Γ̃

′
m Γ̃ ′

k

)
. (19)

Once a scheme is fixed, the integral (16) can be evaluated
from a set of process-independent Feynman rules which can
be computed once and for all in a given model. The R2 terms
can typically not be captured by a direct four-dimensional
implementation of the numerator of all possible loop inte-
grands, and they must therefore be computed separately and
analytically.

Finally, we emphasise that the R2 and R1 terms are not
separately gauge-invariant, but only their sum is. This pro-
vides a means for a mutual check of the implementation of
the model and the package employed for NLO computations,
as R1 and R2 terms are computed independently. The former
is handled by the NLO tool whilst the latter is provided in
the NLO UFO model.

5.1.2 UV counterterms

In general, loop amplitudes in a quantum-field theory are not
finite. One type of related divergences originates from loop-
momenta with large Euclidean norm, and these divergences
are usually referred to asultraviolet divergences. They should
be removed by the well-known renormalisation procedure,
which reabsorbs them into a redefinition of the tadpoles, the
fields and the free parameters of the model provided that the
Lagrangian is renormalisable.9 This yields

tφ0 → tφ + δtφ,

φ0 → (1 + 1

2
δZφφ)φ +

∑

χ

1

2
δZφχχ,

x0 → x + δx,

(20)

where tφ is the tadpole for the field φ, i.e. the coefficient of the
term linear in φ in the Lagrangian, φ and χ are physical fields
with the same quantum numbers, and x is an external param-
eter (internal parameters being subsequently renormalised
through their dependence on the external parameters). An
additional zero subscript denotes the bare quantities com-
pared to the renormalised fields or parameters, and a δ pre-
cedes the renormalisation constants. In the above expres-
sion, the wave function renormalisation constants have been
expanded at one loop, and we consider that each fermion chi-
rality is renormalised independently, as in the general case
fermionic matter is chiral.

9 Renormalisable is understood here in a wide way, such that effective
field theories are considered renormalisable, but order by order in the
effective scale expansion.

The bare Lagrangian is then the sum of a renormalised
Lagrangian, depending only on renormalised quantities, and
a counterterm Lagrangian at least linear in the renormalisa-
tion constants,

L0 = L + δL. (21)

The UV counterterm vertices originate from the countert-
erm Lagrangian δL, and they must be provided in an
NLO UFO model. Their implementation is split within
the files CT_vertices.py, CT_couplings.py and
CT_parameters.py. As shown later, those vertices can
be efficiently expressed in term of the renormalisation con-
stants of the model thanks to the instantiation of the latter as
CTParameters objects.

While the ultraviolet poles of the renormalisation con-
stants are fixed by requiring the cancellation of the UV-
divergences appearing in the loop amplitudes, their finite part
can be chosen according to the renormalisation scheme con-
sidered. Some schemes are particularly suitable for numeri-
cal computations and make the evaluation of the loop ampli-
tudes faster. For instance, imposing on-shell and/or complex
renormalisation conditions for the derivation of the mass and
wave function counterterms can avoid the computation of
on-shell two-point loop Feynman diagrams on the external
legs. Similarly, tadpole renormalisation allows us to ignore
tadpole diagrams together with their renormalisation, as they
identically cancel each other.

The renormalisation scheme used for the external param-
eters of the model has to be chosen adequately as well.
Depending on the chosen scheme, the parameters may
acquire a dependency on the renormalisation scale driven by
related renormalisation group equations, and the associated
running has to be included in order to guarantee formal NLO
accuracy. The renormalisation of the strong coupling con-
stant is a bit peculiar for hadronic collisions in that it must
be set equal to what was used when determining the par-
ton density functions. The other model parameters, such as
for example the coefficients of higher-dimensional operators
appearing in an effective field theory, can also run and mix
through their renormalisation group equations, unless spe-
cific renormalisation conditions are chosen (see for example
[63] for a fixed scale renormalisation of the new physics cou-
plings without running).

Finally, we mention that special counterterms such as
those related to the restoration of supersymmetry that is
explicitly broken by dimensional regularisation can also be
included in NLO UFO models, in a similar way as what is
performed for the UV countertems of the model [37,64].

123

Eur. Phys. J. C (2023) 83 :631 Page 19 of 28 631

5.2 The complex mass scheme

In order to properly treat unstable particles that appear in
the S-matrix, a convenient scheme, the Complex Mass (CM)
scheme, has been proposed, and it relies on the introduction
of complex masses for all unstable particles [65,66]. The
generic support of the Complex Mass scheme in NLO cal-
culations requires a careful analytic continuation of all loop
integrals defining the renormalisation counterterms, a topic
about which an extensive discussion can be found in [21].

5.2.1 Complex-mass and on-shell renormalisations

Imposing a renormalisation scheme leads to mass (δM2) and
wave function (δZ) renormalisation constants from the self-
energy Feynman diagrams associated with the different par-
ticles. On-shell (OS) renormalisation conditions for a stable
particle of (renormalised) mass M yield

δM2
OS =
[Σ(p2 = M2)],

δZOS = −
[Σ ′(p2 = M2)], (22)

where the real part operator
 is only applied to the absorptive
part of the self-energy function Σ(p2). In the CM scheme
and for an unstable particle of (renormalised) mass M and
width Γ , the renormalisation conditions lead to

δM2
CM = Σ(p2 = M2 − iΓ M),

δZCM = − Σ ′(p2 = M2 − iΓ M).
(23)

The renormalised complex mass hence becomes

M2 − iΓ M = M2
0 − δM2

CM, (24)

where M0 is the bare mass.
One obvious distinction between the two schemes is

the application of the operator
 in the OS scheme, that
is absent in the CM scheme. This consideration suggests
that a single UFO model compatible with both renormal-
isation schemes can be achieved, provided we introduce
a new special function recms to be defined in the file
function_library.py. This function is defined by

recms = Function(
name = ’recms’,
arguments = (’cms_cond’,’z’),
argstype = (’bool’, ’complex’),
expression = ’(z if cms_cond else

z.real)’
)

In addition, a switch called CMSParam is instantiated in
the file parameters.py as a new internal Parameter

object. Its value should be changed according to whether the
complex-mass scheme is turned on or off, which is achieved
for CMSParam=0.0 and CMSParam=1.0 respectively.

5.2.2 Analytic continuation

A dynamic choice of an appropriate Riemann sheet is manda-
tory within complex renormalisation conditions for the par-
ticle masses and wave functions, which critically depends on
the mass spectrum and decay table in a model.

For example, the complex mass renormalisation constant
associated with an unstable particle of mass M and width Γ

is derived from its one-loop self-energy function Σ(p2 =
M2 − iΓ M), as shown in (23). Let us assume that there is
a contribution to this self-energy function originating from
a two-point scalar function B0 (depending on a single mass
M2 and width Γ2),

Σ(p2 = M2 − iΓ M)

⊃ B0(p
2; 0, M2

2 − iΓ2M2)|p2=M2−iΓ M .
(25)

The analytic expressions for the B0 integral in the first Rie-
mann sheet, i.e. when the imaginary part of the momentum
squared �(p2) ≥ 0, read [21]:

1

iπ2 B0(p
2; 0, 0) = 1

εUV
+ 2 − log

−p2 − i0

μ2 ,

1

iπ2 B0(p
2; 0,m2) = 1

εUV
+ 2 + log

μ2

m2

+ m2 − p2

p2 log
m2 − p2 − i0

m2 ,

1

iπ2 B0(p
2;m2

1,m
2
2) = 1

εUV
+ 2 − log

p2 − i0

μ2

+
∑

i=±

[
γi log

γi − 1

γi
− log (γi − 1)

]
.

(26)

In these expressions, we have explicitly indicated the UV
origin of the divergence (through 1/εUV), μ stands for the
regularisation scale, and we have introduced

γ± = 1

2

(
γ0 ±

√
γ 2

0 − 4γ1

)
,

γ0 = 1 + m2
1

p2 − m2
2

p2 , γ1 = m2
1 − i0

p2 .

(27)

In order to properly analytically continue the B0 function
appearing in (25), a second Riemann sheet should be selected
when the imaginary part of the momentum squared �(p2) <

0. This allows for a correct evaluation of the logarithm and

123

631 Page 20 of 28 Eur. Phys. J. C (2023) 83 :631

square root functions. In our specific example, this gives

1

iπ2 B0(M
2 − iΓ M; 0, M2

2 − iΓ2M2) = 1

εUV
+ 2

+ log
μ2

M2
2 −iΓ2M2

+ M2
2 −iΓ2M2−M2+iΓ M

M2 − iΓ M

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

log−1
M2

2 −iΓ2M2−M2+iΓ M

M2
2 −iΓ2M2

if M>M2 and Γ M2 > Γ2M,

log
M2

2 −iΓ2M2−M2+iΓ M

M2
2 −iΓ2M2

otherwise.

(28)

In the above expression, when M > M2 and Γ M2 > Γ2M
we need to evaluate the logarithm in the second negative
Riemann sheet,

log−1 z ≡ log z − 2π i,

log z ≡ log |z| + i arg z with −π < arg z ≤ π.
(29)

Moreover, we mention that the analytic continuation of the
general B0 function (i.e. B0(a; b, c) with a 	= 0, b 	= 0 and
c 	= 0) is more involved than that achieved in the example.

In order to render a UFO model compliant with the CM
scheme, we first define, for practical purpose, the finite
remainder B0 f of the function B0,

B0 f (a; b, c) ≡ 1

iπ2 B0(a; b, c) −
(

1

εUV
+2+log

μ2

c

)
,

(30)

that is independent of the regularisation scale μ. We then
include, in the file function_library.py, the instanti-
ation of a Function object B0F that can be used to calcu-
late B0 f (a; b, c) when a 	= 0 and c 	= 0.10 All other cases
are simpler and could be explicitly ignored in terms of a UFO
implementation, as the resulting expressions can be written
in terms of log and log(±) functions with

log(±) z ≡ log z ± 2π i θ
(−
(z)

)
θ
(∓ �(z)

)
. (31)

These logarithmic functions must however be included in
a UFO model, and they are thus all defined in the file
function_library.py asreglog (for log),reglogp
(for log(+)) and reglogm (for log(−)). For instance, the
declaration of the reglog function reads

reglog = Function(
name = ’reglog’,
arguments = (’z’),

10 We recall that B0 f (a; b, c) is symmetric in b and c, so that
B0 f (a; b, 0) = B0 f (a; 0, b).

argstype = (’complex’),
expression = ’(0.0 if z==0.0

else cmath.log(z))’
)

We emphasise that an alternative and more robust method
to evaluate all these two-point functions could rely on the
trajectory method proposed in [21]. They should then be
implemented as low-level functions, directly in the direc-
tories Fortran or Cpp of the UFO. An explicit example as
implemented in the MadGraph5_aMC@NLO framework
has been reported in [67], following the algorithm outlined
in [21].

5.3 Electroweak Sudakov corrections

In the present section, we briefly review the formalism rel-
evant for the evaluation of electroweak Sudakov corrections
in the leading and subleading logarithmic approximation, or
in other words, in the high-energy expansion of any given
observable in powers of log s

m2
W

where s is the partonic

centre-of-mass energy and mW is the mass of the W boson.
A one-loop-accurate algorithmic procedure for calculations
in this approximation has been available for a long time ago
[68], and it has been automated in recent years for SM pro-
cesses [69,70]. Such calculations can be achieved via a few
basic ingredients: the eigenvalues and eigenvectors of spe-
cific electroweak operators, and the finite but logarithmic-
enhanced contributions to the parameter and wave-function
renormalisation constants. Those quantities have been hard-
coded, for example in the MadGraph5_aMC@NLO code
[70], and their values had to be consistently matched to the
conventions of the Feynman rules used in the calculations
of the related amplitudes. This step can be avoided by pro-
viding the necessary additional information directly within
a UFO model, using the same conventions as those used for
the computation of amplitudes. Moreover, while so far the
calculation of electroweak corrections has been automated
for SM processes only, in the case of the Sudakov approx-
imation it would be in principle also achievable for many
BSM processes as soon as this additional information would
be provided within UFO models.

It is important to bear in mind that for the calculation
of electroweak corrections in the Sudakov approximation,
the UFO model does not need to contain all the informa-
tion necessary for the exact evaluation of NLO electroweak
corrections. Within their approximate version, electroweak
corrections can be extracted from the knowledge of two
kinds of ingredients, namely the finite but logarithmically-
enhanced contributions to the parameter and wave-function
renormalisation constants, and the eigenvalues and eigen-
vectors of relevant electroweak operators. The latter can be
derived from the content of the model in terms of gauge eigen-

123

Eur. Phys. J. C (2023) 83 :631 Page 21 of 28 631

states and their associated representation. However, they are
rarely available for an NLO UFO model expressed in terms
of mass eigenstates. Consequently, this requires some addi-
tion to the NLO UFO format, that are to be implemented in
the file CT_ewcasimirs.py. On the contrary, the finite
but logarithmic-enhanced contributions to the parameter and
wave-function renormalisation constants can be either com-
puted once and for all from the knowledge of the bare
Lagrangian and stored in the file CT_parameters.py,
already described above, or they can be identified within the
complete expressions of UV counterterms usually available
in an NLO UFO model allowing for exact NLO EW cor-
rections. In this second case, it is only necessary to provide
additional information allowing for the selection of the finite
but logarithmic-enhanced component of the correction.11

In the following we briefly describe the analytical structure
of the Denner-Pozzorini (DP) algorithm [68], following as
much as possible the notation introduced in [70]. Practical
details are provided at the end of Sect. 5.4.

We consider a process involving n external particles that
we identify through the indices i1, . . ., in and momenta p1,
. . ., pn . The associated tree-level amplitude is denoted by
Mi1...in

0 , and the one-loop electroweak Sudakov corrections
δMi1...in can be written as

δMi1...in = δEW
i ′1i1...i ′nin

Mi ′1...i ′n
0 . (32)

In this expression, the matrix elements Mi ′1...i ′n
0 are tree-level

amplitudes associated with processes with n external parti-
cles that include up to two particles different from these of
the original process. In addition, δEW

i ′1i1...i ′nin
collects contribu-

tions involving logarithms or double logarithms of kinematic
invariants of the process, and of the squared mass of the W
boson (m2

W) and Z boson (m2
Z).

The contributions to δEW can be classified as

δEW = δLSC + δSSC + δC + δPR. (33)

In this expression, we have organised the corrections in their
leading (δLSC) and subleading (δSSC) soft-collinear loga-
rithmic contributions, the purely collinear logarithmic terms
(δC), and the logarithms originating from parameter renor-
malisation (δPR).

11 In [69,70], vertex counterterms have not been used to evaluate elec-
troweak corrections in the Sudakov approximation originating from
parameter renormalisation. Alternative numerical methods, involving
e.g. the derivative of the relevant amplitudes, have been employed
instead. These methods were employed in the first place because of
missing information about vertex counterterms, which can now be suit-
ably implemented in the file CT_vertices.py.

The leading soft-collinear terms can be expressed as a sum
over all external legs,

δLSCMi1...in =
n∑

k=1

δLSC
i ′k ik

(k)Mi1...i ′k ...in , (34)

where the correction factors δLSC
i ′k ik

depend on the properties

of all possible pairs of states ik and i ′k that can couple via
SU (2)L ×U (1)Y interactions. These read [71,72]

δLSC
i ′k ik

= − α

8π

[
δi ′k ik Q

2
k L

EM + CEW
i ′k ik

log2 s

m2
W

−2
(
I Zi ′k ik

)2 log
m2

Z

m2
W

log
s

m2
W

]
, (35)

where LEM collects all logarithms of purely electromagnetic
origin below themW scale, and Qk is the electric charge of the
state ik . The δLSC factor can thus be automatically derived, for
any given process in any given model, once the eigenvalues
of the effective Casimir operator matrixCEW and these of the
I Z operator matrix are known, together with information on
how the different states couple via electroweak interactions.

The subleading soft-collinear contributions are given as a
double sum over the pairs of external states that can couple
via electroweak interactions, each term in the sum featuring
the exchange of a specific neutral or charged electroweak
vector boson V = A, Z ,W±. They read

δSSCMi1...in =
n∑

k=1

∑

�<k

∑

V

δ
V,SSC
i ′k ik i ′�i�

Mi1...i ′k ...i ′�...in , (36)

where the individual photon, Z and W boson corrections are
respectively given by [70]

δ
A,SSC
i ′k ik i ′�i�

= α

2π
log

s

Q2

(
log

|rk�|
s

− iπΘ(rk�)

)
I Ai ′k ik

I Ai ′�i�
,

δ
Z ,SSC
i ′k ik i ′�i�

= α

2π
log

s

m2
W

(
log

|rk�|
s

− iπΘ(rk�)

)
I Zi ′k ik

I Zi ′�i�
,

δ
W±,SSC
i ′k ik i ′�i�

= α

2π
log

s

m2
W

(
log

|rk�|
s

− iπΘ(rk�)

)
I±
i ′k ik

I∓
i ′�i�

.

(37)

Here, we have neglected the terms denoted as Δs→rk� in [70],
since they are not relevant for the present discussion. More-
over, the scale Q is the regularisation scale related to photon
infrared divergences (we assume Q2 ∼ s), rkl = (pk + p�)

2

and Θ denotes the usual Heaviside step function. As for the
leading logarithms, the correction factors are hence gener-
ically known for any process in any model as soon as the
eigenvalues of the I A, I Z and I± operator matrices are pro-
vided.

123

631 Page 22 of 28 Eur. Phys. J. C (2023) 83 :631

We now turn to the single logarithmic contributions arising
from the soft or collinear regime. These are written as a single
sum over the external legs of the process,

δCMi1...in =
n∑

k=1

[
δcoll
i ′k ik

+ 1

2
δZi ′k ik

]
Mi1...i ′k ...in . (38)

Such corrections are derived from the wave-function renor-
malisation constants relevant to all external legs in the pro-
cess (possibly involving mixing with fields sharing the same
quantum numbers), as well as from the mass-singular loop
diagram contributions that respectively read, for bosons and
fermions [73],

δ
B,coll
i ′k ik

= α

4π
CEW
i ′k ik

log
Q2

m2
W

,

δ
F,coll
i ′k ik

= α

2π

[
CEW
i ′k ik

log
Q2

m2
W

+ Q2
k log

m2
W

m2
k

]
.

(39)

In these equations, mk and Qk are respectively the mass and
the electric charge of the (fermionic) state k, while Q stands
for the regularisation scale. The δC corrections can hence
be evaluated generically for any process in any model once
the eigenvalues and eigenvectors of the electroweak effec-
tive Casimir operator CEW and the finite but logarithmic-
enhanced component of the wave-functions renormalisation
constants δZi ′k ik are known.

The last contributions in (33) arise from the renormalisa-
tion of the input parameters of the model, like α (or GF),
mW , mZ and the masses of the Higgs boson and of the top
quark. These logarithmic corrections are analogous to those
associated with the wave-function renormalisation constants
in (38), and include the finite but logarithmically-enhanced
component of the parameter renormalisation constants. In
both cases these have to be calculated externally, and they
must be then provided as instances of the CTParameter
and CTVertex classes.

5.4 Counterterm implementation

We reviewed in Sect. 5.1 the origin of the UV and R2 coun-
terterms that are relevant for numerical NLO calculations,
and how they should be defined in order to obtain correct
results from an NLO UFO model. In this section, we dis-
cuss the details of the format in which such counterterms
are explicitly specified. One particular difficulty that an OLP
faces when making use of UFO counterterms is to ensure that
their selection is consistent with the loop diagrams contribut-
ing to the loop amplitude considered. This task can indeed
be complicated by the fact that OLP users are often given the
freedom to filter out any gauge-invariant selection of loop
diagrams. It is therefore desirable that the OLP is able to

enforce a strict correspondence between the loop diagrams
generated and the associated counterterm.

For this reason, an NLO UFO model offers the possibility
to group counterterms originating from a given subset of loop
diagrams. A specific counterterm is then identified by a few
properties that include the list of particles attached to the
loop, the non-repeating set of particles running in the loop(s)
‘corresponding’ to this counterterm, the cumulative coupling
orders (see Sect. 3.3) appearing in the loop vertices, and a
keyword identifying the nature of the counterterm as well as
how it is intended to be matched to the contributing loops.

We start our discussion of these properties with the exam-
ple of the QCD R2 counterterm for the triple-gluon vertex,
encoded in the class CTVertex, that therefore features a
few new attributes relative to the class Vertex previously
introduced:

V_R23G = CTVertex(
name = ’V_R23G’,
particles = [P.G, P.G, P.G],
color = [’f(1,2,3)’],
lorentz = [L.VVV1],
loop_particles = [

[[P.u],[P.d],[P.c],[P.s],[P.b],
[P.t]],

[[P.G]]
],
couplings = {

(0,0,0):C.R2_3Gq,
(0,0,1):C.R2_3Gg

},
type = ’R2’

)

The triple nested structure of the loop_particles
attribute allows users to group together similar contribu-
tions, while retaining the correct counterterm multiplicity
in the case where only a subset of particles is selected at the
level of the OLP. In this example, the R2 counterterms stem-
ming from each fermion species are all equal to the coupling
R2_3Gq labelled by the key (0,0,0) in the couplings
attribute. Here, the third index refers to the position in the
loop_particles list while the first two indices refer to
the particular colour and Lorentz structure considered (as for
standard vertices in a UFO model; see Sect. 3.3).

The type of the counterterm encodes not only its nature
but also how the OLP should match it to the loop diagrams
present in the computation. R2 counterterms are specified by
setting the attribute type to the value R2. By construction
and for a given set of external particles, one such counterterm
must be included for each possible loop in the model, i.e. for
each loop with the specific external particles considered that
has given particles running in it, and with given cumulative
coupling orders. Counterterms with the attribute type set

123

Eur. Phys. J. C (2023) 83 :631 Page 23 of 28 631

to the value UVmass take their name from the mass renor-
malisation constants, and they feature a similar one-to-one
correspondence to the (two-point) loop diagrams generated
by the OLP. Their matching is therefore performed exactly
like for counterterms of type R2, the type keyword serving
to encode this time the UV nature of the counterterm. On the
other hand, counterterms for which type attribute is fixed
to the value UVloop (or UV) should not be considered by
the matching procedure. The loop_particles attribute
is in this case only used to discard the counterterm if any
of its specified loop particles appears as having been glob-
ally excluded from the process definition by the user. Finally,
counterterms for which the attribute type is set to UVtree
do not have a direct correlation to any particular loop dia-
gram, and as such they should be constructed independently.
Their contribution must be built exactly like that of tree-level
diagrams, while however enforcing the presence of exactly
one such counterterm vertex per diagram. This type of coun-
terterm is for example well suited to implement countert-
erms restoring supersymmetry when it is explicitly broken
by dimensional regularisation.

The need for a distinction between the types UVmass and
UVloop may seem unnecessary at first, so we illustrate its
use-case with the UV QCD counterterm Zgdd̄ of the vertex

gdd̄. Such a counterterm is defined by

Zgdd̄ ≡ Z
1
2
αs Z

1
2
g Z

1
2
d Z

1
2

d̄
, (40)

which depends on the wave function renormalisation con-
stants associated with the particles incoming to the vertex and
with that of the relevant coupling. This highlights the fact that
the loop particles associated with the counterterm Zgdd̄ are
not directly related to the corresponding loop diagrams, but
rather to the loop particles originating from the explicit calcu-
lation of the involved renormalisation constants. This leads
to a lack of direct correspondence between a vertex coun-
terterm and its corresponding loop corrections. The listed
loop_particles cannot thus be matched directly to the
particle content of the contributing diagrams, and they only
represent an overall list of allowed particles in the process.
According to the UFO standard, this counterterm is defined
with type UV ≡ UVloop,

V_UVGDD = CTVertex(
name = ’V_UVGDD’,
particles = [P.d__tilde__,P.d,P

.G],
color = [’T(3,2,1)’],
lorentz = [L.FFV1],
loop_particles = [

[[P.u],[P.d],[P.s]],
[[P.c]],
[[P.b]],

[[P.t]],
[[P.G]]

],
couplings = {

(0,0,0):C.UV_GQQq,(0,0,1):C.UV_
GQQc,

(0,0,2):C.UV_GQQb,(0,0,3):C.UV_
GQQt,

(0,0,4):C.UV_GQQg
},
type = ’UV’

)

A more detailed and technical description of the vertex renor-
malisation and loop particle matching procedure can be found
in eqs. (2.80)–(2.87) in [20].

We now discuss the implementation of the couplings
assigned to CTVertex instances. The main difference with
respect to tree-level couplings already used in LO-only UFO
is the necessity of supplying them in the form of terms of a
Laurent series in the dimensional regulator ε. This is achieved
by allowing for the specification of an expansion dictionary
as the value of the coupling,12

A

ε2 + B

ε
+ C � {−2 : A,−1 : B,0 : C} (41)

Given the omnipresence of wave function renormalisation
constants in all vertex counterterms (see (40)), it is desirable
to be able to define counterterm-relatedparameterswhich are
themselves expansions in ε. This is allowed in the NLO UFO
format, and taken advantage of, for example when writing
the coupling UV_GQQt appearing in the definition of the
CTVertex UV_GQQt,
UV_GQQt = Coupling(

name = ’UV_GQQt’,
value = ’complex(0,1)*G_UVt*G’,
order = {’QCD’:3}

)

G_UVt = CTParameter(
name = ’G_UVt’,
type = ’real’,
value = {

-1 : ’((G**2)/(96.0*cmath.pi**2))*4.
0*TF’,
0 : ’cond(MT, 0.0,

-((G**2)/(96.0*cmath.pi**2))
*4.0*TF*reglog(MT**2/MU_R
**2))’

},
texname = ’\delta Gt’

)

12 All entries not specified in the dictionary representation of the Lau-
rent series are to be understood as being zero. Moreover, there is no
restriction on the range of ε orders spanned by the Laurent series.

123

631 Page 24 of 28 Eur. Phys. J. C (2023) 83 :631

where the new cond function, implemented in the file
function_library.py, is a shortcut function designed
to support the cases of both zero and finite top mass. When
the first argument of the cond function is equal to 0, then
the second argument of thecond function is returned. Other-
wise, the third argument is returned. Moreover, the coupling
order in this example is QCD=3, which corresponds to the
cumulative coupling orders of the loop corrections to that
vertex. It is important that this coupling order is correctly
set, as it may be used in the OLP matching procedure when
building the counterterm contributions.

The introduction of the CTParameter object named
G_UVt is convenient (though not necessary), as it will appear
in the counterterms associated with many QCD vertices.
In order to facilitate the usage and import of the model,
there are a few limitations to writing counterterm couplings.
First, the value attribute of a counterterm coupling can be
either a string or an expansion dictionary. When the latter
is used, the string expression of its values can only involve
instances of Parameter, but not of CTParameter. Sec-
ond, when writing the coupling value as a string, it must
correspond to a term whose summands each contain at
most k occurrences of CTparameter objects for a UFO
model suitable for NkLO computations. At NLO, the expres-
sion ‘2*ParamA*CTParamB + 4*CTParamE’ would
be acceptable (one CTParameter instance in each of
the two summands), but ‘2*CTParamA*CTParamB +
4*CTParamE’ would not (two CTParameter instances
in the first term).

Additionally, the UFO 2.0 format does not explicitly dif-
ferentiate the UV and infrared quantities εUV and εIR in the
expansion dictionaries. The distinction between them can
however be retained at NLO by using reserved parameters
named epsUV and epsIR as multiplicative factors, that
are defined as external parameters in a Les Houches block
TECHNICAL.13 In addition, NLO UFO models include a
LOOP block that is reserved for the renormalisation scale
parameter MU_R that appear in loop integrals.

Before closing this section, we now discuss how to imple-
ment in an NLO UFO model the information necessary for the
calculation of electroweak Sudakov corrections to any matrix
element in the leading and subleading logarithmic approx-
imation. As detailed in Sect. 5.3, these corrections can be
generically derived for any process from the knowledge of
the eigenvalues of the electroweak effective Casimir operator
matrix CEW, that of the photon, Z -boson and W -boson oper-
ator I A, I Z and I±, and from information on which pairs
of states interact through electroweak interactions (and of
course how). Additional quantities such as the coefficients
of the related beta function or Dynkin operators may also be

13 The UV-finite part of the wave function counterterm of massless
fermions typically includes poles in the IR regulator εIR.

useful in this context, and can be further added to this list
(see [68]).

In the following, we first consider as an example the matrix
associated with the electroweak Casimir operator when it acts
on neutral weak bosons, [68]

CEW
AZ = 2

s2
w

⎛

⎜⎝
s2
w −swcw

−swcw c2
w

⎞

⎟⎠ . (42)

In this expression, sw and cw stand for the sine and cosine of
the electroweak mixing angle. The corresponding implemen-
tation in a UFO model is achieved through the declaration of
an EWOperator object,

CEW_AZ = EWOperator(
name = ’CEW_AZ’,
type = ’casimir’,
particles = [[P.A, P.Z]],
elements = {

(0,0): P.EW_AA, (0,1): P.EW_AZ,
(1,0): P.EW_ZA, (1,1): P.EW_ZZ

}
)

In this example, the EWOperator object considered is
defined through four mandatory attributes. The first of them
consists of its name (name), and the second of them, type,
can either take the value ‘casimir’ (for the eigenvalues of
the effective electroweak Casimir operator, like in the above
example) or refer to one of the electroweak bosons of the
theory (for the various I V operators, as illustrated in the next
example below). The value of the attribute particles is
a list that provides information on the states relevant for the
operator considered. This primary list includes a single list
for the electroweak Casimir operator CEW and the ‘neutral’
operators I A and I Z , and two lists for the ‘charged’ oper-
ators I± that connect different elements of the weak mul-
tiplets of the model. The (non-zero) matrix elements of the
operator are finally provided through the value of the attribute
elements, that contains a dictionary mapping any non-zero
element of the matrix to a Parameter object (declared as
detailed in Sect. 3.2).

As another example, we provide a possible implemen-
tation of the I+ operator, for the case in which it acts on
left-handed quarks,14

Ip = EWOperator(
name = ’Ip’,
type = P.W__plus__,

14 In [68], the CKM matrix is approximated to a unit matrix, so that
only the diagonal elements of the quark I± matrices are non-zero. In
our example, we consider the general case.

123

Eur. Phys. J. C (2023) 83 :631 Page 25 of 28 631

particles = [
[P.u, P.c, P.t], [P.d, P.s, P.b]

],
chirality = ’left’,
elements = {

(0,0):C.EW_ud,(0,1):C.EW_us,(0,2):
C.EW_ub,

(1,0):C.EW_cd,(1,1):C.EW_cs,(1,2):
C.EW_cb,

(2,0):C.EW_td,(2,1):C.EW_ts,(2,2):
C.EW_tb

}
)

This time the attribute particles contains two lists
of particles, as the I+ operator relates up-type fermions
(the first list, [P.u, P.c, P.t]) and down-type ones
(the second list, [P.d, P.s, P.b]). Moreover, an
optional attribute (chirality), relevant when fermions are
involved, has been included in the declaration. Its value indi-
cates that only the left-handed components of the fermions
involved is concerned.

In addition to the information provided above, the deriva-
tion of all logarithmic corrections to any given matrix ele-
ment shown in (33) requires to include those stemming from
parameter and wave-function renormalisation. This can be
achieved automatically once the renormalisation constants
are computed or, in the case of a model that allows for elec-
troweak corrections in the Sudakov approximation but not for
exact NLO electroweak corrections, they have to be calcu-
lated for this purpose. In both cases, it is necessary to access
directly the finite but logarithmically-enhanced component
of the parameter counterterms and possibly their impact in
vertex counterterms. The analytical results should therefore
be provided, through declarations of CTParameter and
possibly CTVertex objects relevant to the implementation
of counterterms (see above).

6 Conclusion

In this paper, we have presented the current 2.0 update of
the UFO format for (B)SM models, that we have coined
the ‘Universal Feynman Output’ format. This new name has
been adopted to distinguish the current format from its ini-
tial version, as the UFO has evolved significantly during the
last decade. Moreover, the UFO is not solely connected with
FeynRules anymore, but it lies at the heart of many high-
energy physics software tools.

The UFO 2.0 format includes several new features that
were not part of the initial proposal, thanks to the flexible
and modular structure that drove the design of the UFO ten
years ago, and that allows it to be easily expandable and

encompass features relevant for the interest of high-energy
physics software at a given time. Initially, the UFO format
has been designed to include information on a model’s par-
ticles, the list and values of the parameters appearing in the
model’s Lagrangian and the associated interaction vertices.
In addition to such information, UFO 2.0 models can option-
ally include information on the particle’s decay widths, on
the renormalisation group running of the model’s parameters
and masses, and on ingredients relevant for automatic higher-
order perturbative calculations. Moreover, users can include
form factors and enforce the usage of custom propagators in
their implementation. Whereas some of these features were
already described in earlier publications, others have never
been documented officially in any scientific article.

It was the aim of the present paper to release the most
up-to-date documentation of the UFO format, collecting in a
single document information about all features that could be
present in a UFO model, from the initial mandatory ones to
those subsequently developed during the last decade.

Acknowledgements This work has been partly supported by grants
from the French ANR (grants ANR-21-CE31-0013 ‘DMwithLL-
PatLHC’ and ANR-20-CE31-0015 ‘PrecisOnium’), the Deutsche
Forschungsgemeinschaft (grant 499573813 ‘EFTTools’, grant
396021762–TRR 257 and Germany’s Excellence Strategy-EXC 2121
‘Quantum Universe’ – 3908333), the German Federal Ministry for
Education and Research (BMBF contract 05H21WWCAA), the ERC
(grant 101041109 ‘BOSON’), the CNRS IEA (grant 205210 ‘Glue-
Graph’), the European Union’s Horizon 2020 research and innovation
program (grant 824093 STRONG-2020, EU Virtual Access ‘NLOAc-
cess’), the F.N.R.S (MAXLHC IISN convention 4.4503.16), and the
Fermi National Accelerator Laboratory (Fermilab), a U.S. Department
of Energy, Office of Science, HEP User Facility managed by Fermi
Research Alliance, LLC (FRA), and acting under Contracts No. DE–
AC02–07CH11259.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: There is no data
associated with this work.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

631 Page 26 of 28 Eur. Phys. J. C (2023) 83 :631

References

1. N.D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks,
M. Herquet et al., A Comprehensive approach to new physics sim-
ulations. Eur. Phys. J. C 71, 1541 (2011). https://doi.org/10.1140/
epjc/s10052-011-1541-5. arxiv:0906.2474

2. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T.
Reiter, UFO - The Universal FeynRules Output. Comput. Phys.
Commun. 183, 1201–1214 (2012). https://doi.org/10.1016/j.cpc.
2012.01.022. arxiv:1108.2040

3. J. Alwall, C. Duhr, B. Fuks, O. Mattelaer, D.G. Öztürk, C.-H.
Shen, Computing decay rates for new physics theories with Feyn-
Rules and MadGraph 5_aMC@NLO. Comput. Phys. Commun.
197, 312–323 (2015). https://doi.org/10.1016/j.cpc.2015.08.031.
arxiv:1402.1178

4. N.D. Christensen, P. de Aquino, N. Deutschmann, C. Duhr, B.
Fuks, C. Garcia-Cely et al., Simulating spin- 3

2 particles at collid-
ers. Eur. Phys. J. C 73, 2580 (2013). https://doi.org/10.1140/epjc/
s10052-013-2580-x. arxiv:1308.1668

5. R. Aoude, F. Maltoni, O. Mattelaer, C. Severi, E. Vryonidou,Renor-
malisation group effects on SMEFT interpretations of LHC data.
arxiv:2212.05067

6. C. Degrande, Automatic evaluation of UV and R2 terms for beyond
the Standard Model Lagrangians: a proof-of-principle. Comput.
Phys. Commun. 197, 239–262 (2015). https://doi.org/10.1016/j.
cpc.2015.08.015. arxiv:1406.3030

7. J. Isaacson, S. Höche, D. Lopez Gutierrez, N. Rocco, Novel event
generator for the automated simulation of neutrino scattering. Phys.
Rev. D 105, 096006 (2022). https://doi.org/10.1103/PhysRevD.
105.096006. arxiv:2110.15319

8. J. Isaacson, W.I. Jay, A. Lovato, P.A.N. Machado, N. Rocco, Intro-
ducing a novel event generator for electron-nucleus and neutrino-
nucleus scattering. Phys. Rev. D 107, 033007 (2023). https://doi.
org/10.1103/PhysRevD.107.033007. arxiv:2205.06378

9. T. Gleisberg, S. Hoeche, Comix, a new matrix element generator.
JHEP 12, 039 (2008). https://doi.org/10.1088/1126-6708/2008/
12/039. arxiv:2205.06378

10. J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin, D.
Yallup, Constraining new physics with collider measurements of
Standard Model signatures. JHEP 03, 078 (2017). https://doi.org/
10.1007/JHEP03(2017)078. arxiv:2205.06378

11. GoSam collaboration, G. Cullen, N. Greiner, G. Heinrich, G.
Luisoni, P. Mastrolia, G. Ossola, et al., Automated one-loop calcu-
lations with GoSam. Eur. Phys. J. C 72, 1889 (2012). https://doi.
org/10.1140/epjc/s10052-012-1889-1. arxiv:1111.2034

12. G. Cullen et al., GOSAM-2.0: a tool for automated one-
loop calculations within the Standard Model and beyond.
Eur. Phys. J. C 74, 3001 (2014). https://doi.org/10.1140/epjc/
s10052-014-3001-5. arxiv:1404.7096

13. M. Bahr et al., Herwig++ Physics and Manual. Eur. Phys.
J. C 58, 639–707 (2008). https://doi.org/10.1140/epjc/
s10052-008-0798-9. arxiv:0803.0883

14. J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note.
Eur. Phys. J. C 76, 196 (2016). https://doi.org/10.1140/epjc/
s10052-016-4018-8. arxiv:1512.01178

15. E. Conte, B. Fuks, G. Serret, MadAnalysis 5, A User-Friendly
Framework for Collider Phenomenology. Comput. Phys. Commun.
184, 222–256 (2013). https://doi.org/10.1016/j.cpc.2012.09.009.
arxiv:1206.1599

16. E. Conte, B. Fuks, Confronting new physics theories to LHC data
with MADANALYSIS 5. Int. J. Mod. Phys. A 33, 1830027 (2018).
https://doi.org/10.1142/S0217751X18300272. arxiv:1808.00480

17. F. Ambrogi, C. Arina, M. Backovic, J. Heisig, F. Maltoni, L. Man-
tani et al., MadDM v.3.0: a Comprehensive Tool for Dark Matter

Studies. Phys. Dark Univ. 24, 100249 (2019). https://doi.org/10.
1016/j.dark.2018.11.009. arxiv:1804.00044

18. C. Arina, J. Heisig, F. Maltoni, L. Mantani, D. Massaro, O. Mat-
telaer et al., Studying dark matter with MadDM 31 a short user
guide. PoS TOOLS2020, 009 (2021). https://doi.org/10.22323/1.
392.0009. arxiv:2012.09016

19. C. Arina, J. Heisig, F. Maltoni, D. Massaro, O. Mattelaer, Indi-
rect dark-matter detection with MadDM v3.2: Lines and Loops.
arxiv:2107.04598

20. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mat-
telaer et al., The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to
parton shower simulations. JHEP 07, 079 (2014). https://doi.org/
10.1007/JHEP07(2014)079. arxiv:1405.0301

21. R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.S. Shao, M. Zaro,
The automation of next-to-leading order electroweak calculations.
JHEP 07, 185 (2018). https://doi.org/10.1007/JHEP07(2018)185.
arxiv:1804.10017

22. A. Denner, J.-N. Lang, S. Uccirati, Recola2: a one-loop matrix-
element generator for BSM theories and SM effective field theory.
PoS RADCOR2017, 019 (2017). https://doi.org/10.22323/1.290.
0019. arxiv:1712.04754

23. S. Höche, S. Kuttimalai, S. Schumann, F. Siegert, Beyond
Standard Model calculations with Sherpa. Eur. Phys. J. C
75, 135 (2015). https://doi.org/10.1140/epjc/s10052-015-3338-4.
arxiv:1412.6478

24. Sherpa collaboration, E. Bothmann et al., Event Generation with
Sherpa 2.2. SciPost Phys. 7, 034 (2019). https://doi.org/10.21468/
SciPostPhys.7.3.034. arxiv:1905.09127

25. M. Moretti, T. Ohl, J. Reuter, O’Mega: An Optimizing matrix ele-
ment generator. arxiv:hep-ph/0102195

26. W. Kilian, T. Ohl, J. Reuter, WHIZARD: Simulating Multi-Particle
Processes at LHC and ILC. Eur. Phys. J. C 71, 1742 (2011). https://
doi.org/10.1140/epjc/s10052-011-1742-y. arxiv:0708.4233

27. N.D. Christensen, C. Duhr, B. Fuks, J. Reuter, C. Speckner,
Introducing an interface between WHIZARD and FeynRules.
Eur. Phys. J. C 72, 1990 (2012). https://doi.org/10.1140/epjc/
s10052-012-1990-5. arxiv:1010.3251

28. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, Feyn-
Rules 2.0 - A complete toolbox for tree-level phenomenology.
Comput. Phys. Commun. 185, 2250–2300 (2014). https://doi.org/
10.1016/j.cpc.2014.04.012. arxiv:1310.1921

29. A. Semenov, LanHEP: A Package for the automatic generation of
Feynman rules in field theory. Version 3.0. Comput. Phys. Com-
mun. 180, 431–454 (2009). https://doi.org/10.1016/j.cpc.2008.10.
012. arxiv:0805.0555

30. A. Semenov, LanHEP – A package for automatic generation
of Feynman rules from the Lagrangian. Version 3.2. Comput.
Phys. Commun. 201, 167–170 (2016). https://doi.org/10.1016/j.
cpc.2016.01.003. arxiv:1412.5016

31. F. Staub, SARAH 4: A tool for (not only SUSY) model builders.
Comput. Phys. Commun. 185, 1773–1790 (2014). https://doi.org/
10.1016/j.cpc.2014.02.018. arxiv:1309.7223

32. M.D. Goodsell, S. Liebler, F. Staub, Generic calculation of two-
body partial decay widths at the full one-loop level. Eur. Phys. J. C
77, 758 (2017). https://doi.org/10.1140/epjc/s10052-017-5259-x.
arxiv:1703.09237

33. Particle Data Group collaboration, R. L. Workman et al., Review
of particle physics. PTEP 2022, 083C01 (2022). https://doi.org/10.
1093/ptep/ptac097

34. P.Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY
spectrum calculators, decay packages, and event generators. JHEP
07, 036 (2004). https://doi.org/10.1088/1126-6708/2004/07/036.
arxiv:hep-ph/0311123

123

https://doi.org/10.1140/epjc/s10052-011-1541-5
https://doi.org/10.1140/epjc/s10052-011-1541-5
http://arxiv.org/abs/0906.2474
https://doi.org/10.1016/j.cpc.2012.01.022
https://doi.org/10.1016/j.cpc.2012.01.022
http://arxiv.org/abs/1108.2040
https://doi.org/10.1016/j.cpc.2015.08.031
http://arxiv.org/abs/1402.1178
https://doi.org/10.1140/epjc/s10052-013-2580-x
https://doi.org/10.1140/epjc/s10052-013-2580-x
http://arxiv.org/abs/1308.1668
http://arxiv.org/abs/2212.05067
https://doi.org/10.1016/j.cpc.2015.08.015
https://doi.org/10.1016/j.cpc.2015.08.015
http://arxiv.org/abs/1406.3030
https://doi.org/10.1103/PhysRevD.105.096006
https://doi.org/10.1103/PhysRevD.105.096006
http://arxiv.org/abs/2110.15319
https://doi.org/10.1103/PhysRevD.107.033007
https://doi.org/10.1103/PhysRevD.107.033007
http://arxiv.org/abs/2205.06378
https://doi.org/10.1088/1126-6708/2008/12/039
https://doi.org/10.1088/1126-6708/2008/12/039
http://arxiv.org/abs/2205.06378
https://doi.org/10.1007/JHEP03(2017)078
https://doi.org/10.1007/JHEP03(2017)078
http://arxiv.org/abs/2205.06378
https://doi.org/10.1140/epjc/s10052-012-1889-1
https://doi.org/10.1140/epjc/s10052-012-1889-1
http://arxiv.org/abs/1111.2034
https://doi.org/10.1140/epjc/s10052-014-3001-5
https://doi.org/10.1140/epjc/s10052-014-3001-5
http://arxiv.org/abs/1404.7096
https://doi.org/10.1140/epjc/s10052-008-0798-9
https://doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/0803.0883
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://doi.org/10.1140/epjc/s10052-016-4018-8
http://arxiv.org/abs/1512.01178
https://doi.org/10.1016/j.cpc.2012.09.009
http://arxiv.org/abs/1206.1599
https://doi.org/10.1142/S0217751X18300272
http://arxiv.org/abs/1808.00480
https://doi.org/10.1016/j.dark.2018.11.009
https://doi.org/10.1016/j.dark.2018.11.009
http://arxiv.org/abs/1804.00044
https://doi.org/10.22323/1.392.0009
https://doi.org/10.22323/1.392.0009
http://arxiv.org/abs/2012.09016
http://arxiv.org/abs/2107.04598
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
https://doi.org/10.1007/JHEP07(2018)185
http://arxiv.org/abs/1804.10017
https://doi.org/10.22323/1.290.0019
https://doi.org/10.22323/1.290.0019
http://arxiv.org/abs/1712.04754
https://doi.org/10.1140/epjc/s10052-015-3338-4
http://arxiv.org/abs/1412.6478
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.21468/SciPostPhys.7.3.034
http://arxiv.org/abs/1905.09127
http://arxiv.org/abs/hep-ph/0102195
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1140/epjc/s10052-011-1742-y
http://arxiv.org/abs/0708.4233
https://doi.org/10.1140/epjc/s10052-012-1990-5
https://doi.org/10.1140/epjc/s10052-012-1990-5
http://arxiv.org/abs/1010.3251
https://doi.org/10.1016/j.cpc.2014.04.012
https://doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1310.1921
https://doi.org/10.1016/j.cpc.2008.10.012
https://doi.org/10.1016/j.cpc.2008.10.012
http://arxiv.org/abs/0805.0555
https://doi.org/10.1016/j.cpc.2016.01.003
https://doi.org/10.1016/j.cpc.2016.01.003
http://arxiv.org/abs/1412.5016
https://doi.org/10.1016/j.cpc.2014.02.018
https://doi.org/10.1016/j.cpc.2014.02.018
http://arxiv.org/abs/1309.7223
https://doi.org/10.1140/epjc/s10052-017-5259-x
http://arxiv.org/abs/1703.09237
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1088/1126-6708/2004/07/036
http://arxiv.org/abs/hep-ph/0311123

Eur. Phys. J. C (2023) 83 :631 Page 27 of 28 631

35. B.C. Allanach et al., SUSY Les Houches Accord 2. Comput. Phys.
Commun. 180, 8–25 (2009). https://doi.org/10.1016/j.cpc.2008.
08.004. arxiv:0801.0045

36. B. Fuks, H.-S. Shao, QCD next-to-leading-order predictions
matched to parton showers for vector-like quark models.
Eur. Phys. J. C 77, 135 (2017). https://doi.org/10.1140/epjc/
s10052-017-4686-z. arxiv:1610.04622

37. S. Frixione, B. Fuks, V. Hirschi, K. Mawatari, H.-S. Shao, P.A.
Sunder et al., Automated simulations beyond the Standard Model:
supersymmetry. JHEP 12, 008 (2019). https://doi.org/10.1007/
JHEP12(2019)008. arxiv:1907.04898

38. J.D. Bjorken, R. Essig, P. Schuster, N. Toro, New Fixed-Target
Experiments to Search for Dark Gauge Forces. Phys. Rev. D
80, 075018 (2009). https://doi.org/10.1103/PhysRevD.80.075018.
arxiv:0906.0580

39. K. Jodłowski, F. Kling, L. Roszkowski, S. Trojanowski, Extend-
ing the reach of FASER, MATHUSLA, and SHiP towards
smaller lifetimes using secondary particle production. Phys. Rev.
D 101, 095020 (2020). https://doi.org/10.1103/PhysRevD.101.
095020. arxiv:1911.11346

40. J. Alwall, E. Boos, L. Dudko, M. Gigg, M. Herquet,
A. Pukhov et al., A Les Houches Interface for BSM Generators.
arxiv:0712.3311

41. R. Bonciani, V. Del Duca, H. Frellesvig, M. Hidding, V. Hirschi,
F. Moriello et al.,Next-to-leading-orderQCDCorrections toHiggs
Production in association with a Jet. arxiv:2206.10490

42. M. Becchetti, R. Bonciani, V. Del Duca, V. Hirschi, F. Moriello,
A. Schweitzer, Next-to-leading order corrections to light-quark
mixed QCD-EW contributions to Higgs boson production. Phys.
Rev. D 103, 054037 (2021). https://doi.org/10.1103/PhysRevD.
103.054037. arxiv:2010.09451

43. K. Hagiwara, T. Li, K. Mawatari, J. Nakamura, TauDecay: a
library to simulate polarized tau decays via FeynRules and Mad-
Graph5. Eur. Phys. J. C 73, 2489 (2013). https://doi.org/10.1140/
epjc/s10052-013-2489-4. arxiv:1212.6247

44. A. Denner, H. Eck, O. Hahn, J. Kublbeck, Compact Feynman rules
for Majorana fermions. Phys. Lett. B 291, 278–280 (1992). https://
doi.org/10.1016/0370-2693(92)91045-B

45. A. Deandrea, T. Flacke, B. Fuks, L. Panizzi, H.-S. Shao, Single
production of vector-like quarks: the effects of large width, inter-
ference and NLO corrections. JHEP 08, 107 (2021). https://doi.
org/10.1007/JHEP08(2021)107. arxiv:2105.08745

46. G. Cacciapaglia, A. Deandrea, S. De Curtis, Nearby reso-
nances beyond the Breit-Wigner approximation. Phys. Lett. B
682, 43–49 (2009). https://doi.org/10.1016/j.physletb.2009.10.
090. arxiv:0906.3417

47. L. Sartore, I. Schienbein, PyR@TE 3. Comput. Phys. Commun.
261, 107819 (2021). https://doi.org/10.1016/j.cpc.2020.107819.
arxiv:2007.12700

48. S. Di Noi, L. Silvestrini, RGESolver : a C++ library to perform
Renormalization Group evolution in the Standard Model Effective
Theory. arxiv:2210.06838

49. P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos, R. Pittau, Feyn-
man Rules for the Rational Part of the QCD 1-loop amplitudes.
JHEP 04, 072 (2009). https://doi.org/10.1088/1126-6708/2009/
04/072. arxiv:0903.0356

50. M.V. Garzelli, I. Malamos, R. Pittau, Feynman rules for the rational
part of the Electroweak 1-loop amplitudes. JHEP 01, 040 (2010).
https://doi.org/10.1007/JHEP10(2010)097. arxiv:0910.3130

51. M.V. Garzelli, I. Malamos, R. Pittau, Feynman rules for the rational
part of the Electroweak 1-loop amplitudes in the Rξ gauge and in
the Unitary gauge. JHEP 01, 029 (2011). https://doi.org/10.1007/
JHEP01(2011)029. arxiv:1009.4302

52. H.-S. Shao, Y.-J. Zhang, K.-T. Chao, Feynman Rules for the Ratio-
nal Part of the Standard Model One-loop Amplitudes in the ’t Hooft-

Veltman γ5 Scheme. JHEP 09, 048 (2011). https://doi.org/10.1007/
JHEP09(2011)048. arxiv:1106.5030

53. R. Pittau, Primary Feynman rules to calculate the epsilon-
dimensional integrand of any 1-loop amplitude. JHEP
02, 029 (2012). https://doi.org/10.1007/JHEP02(2012)029.
arxiv:1111.4965

54. H.-S. Shao, Y.-J. Zhang, Feynman Rules for the Rational Part of
One-loop QCD Corrections in the MSSM. JHEP 06, 112 (2012).
https://doi.org/10.1007/s13130-012-4240-2. arxiv:1205.1273

55. B. Page, R. Pittau, R2 vertices for the effective ggH theory.
JHEP 09, 078 (2013). https://doi.org/10.1007/JHEP09(2013)078.
arxiv:1307.6142

56. L.-B. Chen, H.T. Li, H.-S. Shao, J. Wang, The gluon-fusion pro-
duction of Higgs boson pair: N3LO QCD corrections and top-
quark mass effects. JHEP 03, 072 (2020). https://doi.org/10.1007/
JHEP03(2020)072. arxiv:1912.13001

57. G. Ossola, C.G. Papadopoulos, R. Pittau, On the Rational Terms
of the one-loop amplitudes. JHEP 05, 004 (2008). https://doi.org/
10.1088/1126-6708/2008/05/004. arxiv:0802.1876

58. G. ’t Hooft, M. J. G. Veltman, Regularization and renormalization
of gauge fields. Nucl. Phys. B 44, 189–213 (1972). https://doi.org/
10.1016/0550-3213(72)90279-9

59. D. Kreimer, The Role of gamma(5) in dimensional regularization.
arxiv:hep-ph/9401354

60. J.G. Korner, D. Kreimer, K. Schilcher, A Practicable gamma(5)
scheme in dimensional regularization. Z. Phys. C 54, 503–512
(1992). https://doi.org/10.1007/BF01559471

61. D. Kreimer, The γ (5) Problem and Anomalies: A Clifford Alge-
bra Approach. Phys. Lett. B 237, 59–62 (1990). https://doi.org/10.
1016/0370-2693(90)90461-E

62. A.J. Buras, P.H. Weisz, QCD Nonleading Corrections to Weak
Decays in Dimensional Regularization and ’t Hooft-Veltman
Schemes. Nucl. Phys. B 333, 66–99 (1990). https://doi.org/10.
1016/0550-3213(90)90223-Z

63. G. Das, C. Degrande, V. Hirschi, F. Maltoni, H.-S. Shao, NLO pre-
dictions for the production of a spin-two particle at the LHC. Phys.
Lett. B 770, 507–513 (2017). https://doi.org/10.1016/j.physletb.
2017.05.007. arxiv:1605.09359

64. C. Degrande, B. Fuks, V. Hirschi, J. Proudom, H.-S. Shao, Match-
ing next-to-leading order predictions to parton showers in super-
symmetric QCD. Phys. Lett. B 755, 82–87 (2016). https://doi.org/
10.1016/j.physletb.2016.01.067. arxiv:1510.00391

65. A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Predictions
for all processes e+e− → 4 fermions +γ . Nucl. Phys. B 560,
33–65 (1999). https://doi.org/10.1016/S0550-3213(99)00437-X.
arxiv:hep-ph/9904472

66. A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Electroweak
corrections to charged-current e+e− → 4 fermion pro-
cesses: Technical details and further results. Nucl. Phys. B
724, 247–294 (2005). https://doi.org/10.1016/j.nuclphysb.2005.
06.033. arxiv:hep-ph/0505042

67. D. Pagani, H.-S. Shao, M. Zaro, RIP Hbb: how other Higgs
production modes conspire to kill a rare signal at the LHC.
JHEP 11, 036 (2020). https://doi.org/10.1007/JHEP11(2020)036.
arxiv:2005.10277

68. A. Denner, S. Pozzorini, One loop leading logarithms in
electroweak radiative corrections. 1. Results. Eur. Phys. J.
C 18, 461–480 (2001). https://doi.org/10.1007/s100520100551.
arxiv:hep-ph/0010201

69. E. Bothmann, D. Napoletano, Automated evaluation of elec-
troweak Sudakov logarithms in Sherpa. Eur. Phys. J. C 80,
1024 (2020). https://doi.org/10.1140/epjc/s10052-020-08596-2.
arxiv:2006.14635

70. D. Pagani, M. Zaro, One-loop electroweak Sudakov logarithms: a
revisitation and automation. JHEP 02, 161 (2022). https://doi.org/
10.1007/JHEP02(2022)161. arxiv:2110.03714

123

https://doi.org/10.1016/j.cpc.2008.08.004
https://doi.org/10.1016/j.cpc.2008.08.004
http://arxiv.org/abs/0801.0045
https://doi.org/10.1140/epjc/s10052-017-4686-z
https://doi.org/10.1140/epjc/s10052-017-4686-z
http://arxiv.org/abs/1610.04622
https://doi.org/10.1007/JHEP12(2019)008
https://doi.org/10.1007/JHEP12(2019)008
http://arxiv.org/abs/1907.04898
https://doi.org/10.1103/PhysRevD.80.075018
http://arxiv.org/abs/0906.0580
https://doi.org/10.1103/PhysRevD.101.095020
https://doi.org/10.1103/PhysRevD.101.095020
http://arxiv.org/abs/1911.11346
http://arxiv.org/abs/0712.3311
http://arxiv.org/abs/2206.10490
https://doi.org/10.1103/PhysRevD.103.054037
https://doi.org/10.1103/PhysRevD.103.054037
http://arxiv.org/abs/2010.09451
https://doi.org/10.1140/epjc/s10052-013-2489-4
https://doi.org/10.1140/epjc/s10052-013-2489-4
http://arxiv.org/abs/1212.6247
https://doi.org/10.1016/0370-2693(92)91045-B
https://doi.org/10.1016/0370-2693(92)91045-B
https://doi.org/10.1007/JHEP08(2021)107
https://doi.org/10.1007/JHEP08(2021)107
http://arxiv.org/abs/2105.08745
https://doi.org/10.1016/j.physletb.2009.10.090
https://doi.org/10.1016/j.physletb.2009.10.090
http://arxiv.org/abs/0906.3417
https://doi.org/10.1016/j.cpc.2020.107819
http://arxiv.org/abs/2007.12700
http://arxiv.org/abs/2210.06838
https://doi.org/10.1088/1126-6708/2009/04/072
https://doi.org/10.1088/1126-6708/2009/04/072
http://arxiv.org/abs/0903.0356
https://doi.org/10.1007/JHEP10(2010)097
http://arxiv.org/abs/0910.3130
https://doi.org/10.1007/JHEP01(2011)029
https://doi.org/10.1007/JHEP01(2011)029
http://arxiv.org/abs/1009.4302
https://doi.org/10.1007/JHEP09(2011)048
https://doi.org/10.1007/JHEP09(2011)048
http://arxiv.org/abs/1106.5030
https://doi.org/10.1007/JHEP02(2012)029
http://arxiv.org/abs/1111.4965
https://doi.org/10.1007/s13130-012-4240-2
http://arxiv.org/abs/1205.1273
https://doi.org/10.1007/JHEP09(2013)078
http://arxiv.org/abs/1307.6142
https://doi.org/10.1007/JHEP03(2020)072
https://doi.org/10.1007/JHEP03(2020)072
http://arxiv.org/abs/1912.13001
https://doi.org/10.1088/1126-6708/2008/05/004
https://doi.org/10.1088/1126-6708/2008/05/004
http://arxiv.org/abs/0802.1876
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
http://arxiv.org/abs/hep-ph/9401354
https://doi.org/10.1007/BF01559471
https://doi.org/10.1016/0370-2693(90)90461-E
https://doi.org/10.1016/0370-2693(90)90461-E
https://doi.org/10.1016/0550-3213(90)90223-Z
https://doi.org/10.1016/0550-3213(90)90223-Z
https://doi.org/10.1016/j.physletb.2017.05.007
https://doi.org/10.1016/j.physletb.2017.05.007
http://arxiv.org/abs/1605.09359
https://doi.org/10.1016/j.physletb.2016.01.067
https://doi.org/10.1016/j.physletb.2016.01.067
http://arxiv.org/abs/1510.00391
https://doi.org/10.1016/S0550-3213(99)00437-X
http://arxiv.org/abs/hep-ph/9904472
https://doi.org/10.1016/j.nuclphysb.2005.06.033
https://doi.org/10.1016/j.nuclphysb.2005.06.033
http://arxiv.org/abs/hep-ph/0505042
https://doi.org/10.1007/JHEP11(2020)036
http://arxiv.org/abs/2005.10277
https://doi.org/10.1007/s100520100551
http://arxiv.org/abs/hep-ph/0010201
https://doi.org/10.1140/epjc/s10052-020-08596-2
http://arxiv.org/abs/2006.14635
https://doi.org/10.1007/JHEP02(2022)161
https://doi.org/10.1007/JHEP02(2022)161
http://arxiv.org/abs/2110.03714

631 Page 28 of 28 Eur. Phys. J. C (2023) 83 :631

71. J. H. Kuhn, A. A. Penin, Sudakov logarithms in electroweak pro-
cesses. arxiv:hep-ph/9906545

72. V.S. Fadin, L.N. Lipatov, A.D. Martin, M. Melles, Resummation
of double logarithms in electroweak high-energy processes. Phys.
Rev. D 61, 094002 (2000). https://doi.org/10.1103/PhysRevD.61.
094002. arxiv:hep-ph/9910338

73. A. Denner, S. Pozzorini, One loop leading logarithms in elec-
troweak radiative corrections. 2. Factorization of collinear singu-
larities. Eur. Phys. J. C 21, 63–79 (2001). https://doi.org/10.1007/
s100520100721. arxiv:hep-ph/0104127

123

http://arxiv.org/abs/hep-ph/9906545
https://doi.org/10.1103/PhysRevD.61.094002
https://doi.org/10.1103/PhysRevD.61.094002
http://arxiv.org/abs/hep-ph/9910338
https://doi.org/10.1007/s100520100721
https://doi.org/10.1007/s100520100721
http://arxiv.org/abs/hep-ph/0104127

	UFO 2.0: the `Universal Feynman Output' format
	Abstract
	1 Introduction
	2 The UFO format
	2.1 The evolution of the UFO format
	2.2 General file structure of the UFO

	3 Mandatory components
	3.1 Particles
	3.2 Parameters
	3.3 Interactions
	3.4 The function library

	4 Optional components
	4.1 Outputting the values of the model parameters
	4.2 Form factors
	4.3 Particle propagators
	4.4 Particle decays
	4.5 Renormalisation group running effects

	5 Features pertaining to NLO
	5.1 Counterterms
	5.1.1 R2 counterterms
	5.1.2 UV counterterms

	5.2 The complex mass scheme
	5.2.1 Complex-mass and on-shell renormalisations
	5.2.2 Analytic continuation

	5.3 Electroweak Sudakov corrections
	5.4 Counterterm implementation

	6 Conclusion
	Acknowledgements
	References

