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Abstract In string theory, an important challenge is to show
if the singularity of black holes can be smoothed out by the
complete α′ corrections. The simplest case is to consider a
2D string black hole or 3D black string. This problem was
discussed in a gauged Wess–Zumino–Witten (WZW) model
and the results are supposed to be correct to all orders in α′
corrections. Based on the recent remarkable progress on clas-
sifying all the α′ corrections, in this work, we re-study this
problem with the low energy effective spacetime action, and
provide classes of exact non-perturbative and non-singular
solutions of the 2D black hole/3D black string via complete
α′ corrections.

How to resolve a singularity of a black hole is a long-standing
problem in general relativity. It is well-known that the black
hole possesses two kinds of infinities: one is the coordinate
singularity which can be removed by coordinates transfor-
mations; another is the curvature singularity which cannot be
smoothed out and is unavoidable in Einstein’s gravity [1,2].
The regular black hole solutions must satisfy two require-
ments: (I) The curvature invariants (such as Kretschmann
scalar) are regular everywhere; (II) The geodesics are com-
plete. However, there is yet no systematic methods to obtain
regular solutions from solving Einstein’s equation exactly
without any ad hoc settings. People therefore expect a the-
ory of quantum gravity will provide inspirations to solve this
problem completely. String theory as one candidate of quan-
tum gravitational theories should be able to answer this ques-
tion.

The simplest black hole solution in string theory, namely
1+1 dimensional string black hole, was obtained by solving
a 2D closed string’s low energy effective action [3,4]. This
solution is only valid when the string length scale

√
α′ is

small compared to the radius of spacetime curvature. One
may wonder how to obtain the exact string black hole solu-
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tions of the full action, and whether the spacetime singularity
disappears in these solutions. However, it looks impossible
since the low energy effective action with complete α′ correc-
tions is unknown. As an alternative, Witten obtained the exact
metric which described the region outside the event horizon
of 2D string black hole through the SL (2, R) /U (1) gauged
WZW model, this result is conformally invariant to all orders
in 1/k when k → ∞ (k ∼ 1/α′ is the Kac–Moody level)
[5]. This metric still possesses a curvature singularity in the
maximally extended spacetime. Then, in Ref. [6], Dijkgraaf,
Verlinde and Verlinde discovered the exact 2D string black
hole for general k, which was supposed to be correct to all
orders in α′. Based on this work, Perry and Teo [7], and Yi [8]
studied its maximally extended spacetime. The Weyl invari-
ance of this solution is then verified by Tseytlin up to 3-loops
(α′2) in the bosonic sigma model [10]. The supersymmetric
4-loops (α′3) was also checked in Ref. [11].

In recent works [12–14], Hohm and Zwiebach reconsid-
ered how to classify all orders α′ corrections of the low energy
effective action. This progress makes it possible to re-study
the exact 2D string black hole systematically. Hohm and
Zwiebach’s motivation was based on two reasons: (I) the
tree-level string effective action and its first order α′ correc-
tion can be put into an explicit O (d, d) covariant form by
suitable field redefinitions [15–19]; (II) Sen proved that for
configurations independent of m coordinates, all orders in α′
expansion possess the O (m,m) symmetry [17,18]. Hohm
and Zwiebach therefore assumed that the standard O (d, d)

matrix always keep its form unchanged to all orders in α′,
meanwhile the O (d, d)-breaking terms could be absorbed
into the standard matrix by the field redefinitions. With this
assumption, Hohm and Zwiebach showed that all orders in α′
are classified by even powers of Hubble parameter in FLRW
cosmological background. The dilaton appears trivially and
only first order time derivatives need to be included. Since
the equations of motion (EOM) only include first two deriva-
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tives of spacetime metric, the theory is ghost free and exactly
solvable. This significant progress makes it possible to study
non-perturbative stringy effects. Based on this work, we have
found that the big-bang singularity could be smoothed out
by the complete α′ corrections [20,21]. It is also proved that
the Hohm and Zwiebach’s derivation can also apply to the
domain wall background [22], so that the naked singularities
can be resolved [23]. Based on these attempts, it is reasonable
to believe that the α′ corrections will resolve the singularity
of black hole [9]. However, the process is tricky for the gen-
eral spherically symmetric black holes, because they break
the O (d, d) symmetry and Hohm-Zwiebach action cannot
be derived from this background. As an alternative, we con-
sider the 2D black hole/3D black string at first.

In this paper, our aim is to find regular solutions which
exactly solve the EOM of completely α′ corrected closed
string theory. In the perturbative region α′ → 0, it reduces
to traditional 2D black hole/3D black string. At first, let us
start by the 2D low energy effective action of closed string:

S =
∫

d2x
√−ge−2φ

(
R + 4 (∇φ)2 + λ2

)
, (1)

where gμν is the string metric, φ is the physical dilaton,
λ2 = − 2(D−26)

3α′ and we set Kalb-Ramond field bμν = 0 for
simplicity. This two dimensional gravity has dynamics due
to a pre-factor e−2φ . The black hole solution of this action is
given by [3]:

ds2 = −
(

1 − M

r

)
dt2 +

(
1 − M

r

)−1 1

λ2r2 dr
2,

φ = −1

2
ln

(
2

M
r

)
. (2)

where we set an integral constant φ0 = 0 in φ for simplicity.
If we add a direction dϕ2 in this metric, it is called a black
string solution and firstly discovered by Horne and Horowitz
[24]. The difference between 2D and 3D theories is only λ

due to its definition. When we consider the extra dimension
ϕ, the 3D black string solution is a simple product of dϕ2

and the two dimensional metric, which does not affect the
action [24]. Therefore, although we only study the 2D black
hole in this paper, our result also applies to the 3D black
string. Back to the metric (2), the event horizon is located at
r = M and its curvature singularity is r = 0 due to a scalar
curvature R = λ2M

r . Keep in mind that there are two kinds
of coordinate transformations which cover different regions
of maximally extended spacetime. The first one is

r

M
= cosh2

(
λ

2
x

)
, (3)

where r ≥ M and x ≥ 0. Utilizing this coordinate transfor-
mation, the metric (2) becomes

ds2 = − tanh2
(

λ

2
x

)
dt2 + dx2,

� = − ln (sinh (λx)) , (4)

where O(d, d) invariant dilaton is defined by

� = 2φ − ln
√

det gi j . (5)

This metric is well-known as Witten’s 2D black hole solu-
tion, which was obtained by the SL (2, R) /U (1) gauged
WZW model [5]. This metric could be applied in Hohm-
Zwiebach action directly. However, it does not possess a
curvature singularity since it only describes the region out-
side the event horizon (x = 0), and the scalar curvature
R0 = λ2 cosh−2

(
λx
2

)
is regular in this region. To discover

the curvature singularity of the metric (2), we need to adopt
the second kind of coordinate transformations:

r

M
= cos2

(
λ

2
x

)
, (6)

where 0 ≤ r ≤ M and we only consider one period, namely
0 ≤ x ≤ π

λ
. Based on this transformation, the metric (2)

becomes

ds2 = −dx2 + tan2
(

λ

2
x

)
dt2,

� = − ln (sin (λx)) , (7)

which describes the inner metric of black hole, and x here
plays a role as the time-like direction.This metric (7) topo-
logically corresponds to an annulus. The event horizon is
located at x = 0 and the curvature singularity is the bound-
ary x = π

λ
due to the scalar curvature R0 = λ2 cos−2

(
λx
2

)
.

Our aim is to remove the curvature singularity of (7) by the
complete α′ corrections.

Based on (7), we first assume the ansatz,

ds2 = −dx2 + a (x)2 dt2. (8)

The closed string fields which depend on this metric pos-
sess O (1, 1) symmetry. It is worth noting that we can also use
the ansatz (2), which shares the same result with (7) by the
coordinate transformation (6). Based on this ansatz, Hohm
and Zwiebach showed that the following low energy effec-
tive action with complete α′ corrections could be rewritten
as

IH Z =
∫

d2x
√−ge−2φ

(
R + 4 (∂φ)2

+1

4
α′ (Rμνρσ Rμνρσ + . . .

) + α′2 (. . .) + . . .

)
,

=
∫

dxe−�

(
−�̇2 −

∞∑
k=1

(−α′)k−1 22k+1ck H
2k

)
,

(9)
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where ḟ (x) ≡ ∂x f (x), H (x) ≡ ȧ(x)
a(x) , c1 = − 1

8 , c2 = 1
64 ,

c3 = − 1
3.27 , c4 = 1

215 − 1
212 ζ (3) and ck>4’s are unknown

coefficients for a bosonic case [25]. In addition, the O(d, d)

symmetry of the action (9) is manifested by the following
transformations:

� → �, a → a−1, H → −H. (10)

To match the model (1), we need to add an O (d, d) invari-
ant constant into the action (9):

Im =
∫

d2xe−�λ2. (11)

which is also a scalar under the general coordinate transfor-
mations. The EOM then is

�̈ + 1

2
H f (H) = 0,

d

dx

(
e−� f (H)

) = 0,

�̇2 + g (H) + λ2 = 0, (12)

where

f (H) =
∞∑

k=1

(−α′)k−1 22(k+1)kck H
2k−1

= −2H − α′2H3 + · · · ,

g (H) =
∞∑

k=1

(−α′)k−1 22k+1 (2k − 1) ck H
2k

= −H2 − α′ 3

2
H4 + · · · , (13)

and there is an extra constraint ġ (H) = H ḟ (H). It is easy
to check that the solution (4) and (7) satisfy the EOM (12)
at zeroth order in α′. Furthermore, we wish to stress that α′
is any positive real number in the EOM (12) and the action
(9). Therefore, Eq. (13) are not the simple expansions in the
limit α′ → 0, but the non-perturbative series in general α′.

To remove the curvature singularity of (7) to obtain a non-
perturbative and non-singular solution of EOM (12) with
complete α′ corrections, there are two requirements:

• The solutions are assumed to be regular everywhere for
general α′.

• In the perturbative regime, namely, as α′ → 0, the solu-
tions must reduce to the perturbative solutions of EOM
(12). Although, we know that α′λ2 = − 2(D−26)

3 = 16
when D = 2 which satisfies the condition α′λ2 > 0, we
treat α′λ2 as a general value here as in [6].

In the body, we present one class of general non-perturbative
solution which covers all coefficients ck . In the Appendix
A, we will give other possible general solutions. Now, let us
start by calculating the perturbative solutions of EOM (12).

For convenience, we introduce a new variable  as

 ≡ e−�, (14)

where ̇ = −�̇ and ̈ = (−�̈ + �̇2
)
. And the EOM

(12) become

̈ −
(
h (H) − λ2

)
 = 0,

d

dt
( f (H)) = 0,

̇2 +
(
g (H) + λ2

)
2 = 0, (15)

where we define a new function

h (H) ≡ 1

2
H f (H) − g (H) = α′ 1

2
H4 + . . . , (16)

It is easy to see that h (H) = 0 at the zeroth order in α′.
Then, we assume the perturbative solutions of the EOM (15)
take the following forms when α′ → 0:

(x) = 0 (x) + α′1 (x) + α′22 (x) + . . . ,

H (x) = H0 (x) + α′H1 (x) + α′2H2 (x) + . . . , (17)

where we denote i and Hi as the i-th order of the pertur-
bative solutions. Therefore, the perturbative solution can be
calculated order by order

H (x) = λcsc (λx) − λ3

4

(cos (2λx) + 4)

sin3 (λx)
α′ + · · · ,

 (x) = sin (λx) + λ2

4

cos (2λx)

sin (λx)
α′ + · · · . (18)

Due to the Eq. (14), we also have

�(x) = − log (sin (λx)) −1

4
λ2

(
cot2 (λx) − 1

)
α′+ · · · .

(19)

Based on the perturbative solutions (18) and (19) up to any
higher order, we can figure out the general non-perturbative
and non-singular solution which exactly solves the EOM (12)
and covers all coefficients ck :

�(x) = 1

2
log

( ∑N
k=1

(
α′λ2

)k−1

∑N
k=1 σk (λx, ck)

(
α′λ2

)k−1

)
, (20)

where σk’s are functions of λx and ck . After obtained regular
�(x), the regularity of H (x), f (x) and g (x) is guaranteed
due to the EOM (12). Moreover, in the perturbative regime
α′ → 0, the general solution �(x) is expanded as,

�(x) = −1

2
log (σ1) + (σ1 − σ2)

2σ1
α′λ2

+
(
σ 2

1 − 2σ3σ1 + σ 2
2

)
4σ 2

1

(
α′λ2

)2 + · · · . (21)
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To analyze the general solution (20), we choose the special
case whose perturbative expansion only covers c1 = − 1

8 and
c2 = 1

64 . It is not difficult to check that the general solution
(20) which covers the coefficients cN>2 does not affect our
following argument due to the Ref. [21]. Therefore, to match
the expansion (21) with the perturbative solution (19), we
can fix the functions σ1 = sin2 (λx), σ2 = 1

2 and N = 2
such that

�(x) = log

√
1 + α′λ2

sin2 (λx) + 1
2α′λ2

,

H (x) = −
√

2λ
((

α′λ2 + 1
)

cos (2λx) − 1
)

(
α′λ2 + 1

)1/2 (
α′λ2 + 1 − cos (2λx)

)3/2 ,

f (x) = −2
√

2λ

(
α′λ2 + 1

α′λ2 + 1 − cos (2λx)

)1/2

,

g (x) = λ2

(
α′λ2 + 1 − cos (2λx)

)2

(
−α′λ2

(
α′λ2 + 2

)

+2
(
α′λ2 + 1

)
cos (2λx) − 2

)
.

(22)

Based on the ansatz (8), Kretschmann scalar is given by

Rμνρσ Rμνρσ = 1
2 RμνRμν = R2 = 4

(
Ḣ + H2

)2
. There-

fore, the regular solution exists when α′λ2 > 0 in the region
0 ≤ x ≤ π

λ
. From the solution (22), we will get

a (x) = C exp
√

2

⎡
⎣

√
α′λ2 + 1

α′λ2 F

(
xλ

∣∣∣∣− 2

α′λ2

)

−
√

α′λ2

α′λ2 + 1
E

(
xλ

∣∣∣∣− 2

α′λ2

)

− sin (2λx)√(
α′λ2 + 1

) (
α′λ2 + 1 − cos (2λx)

)
⎤
⎦ , (23)

and physical dilaton,

φ (x) = 1

2
�(x) + 1

2
ln a (x) , (24)

where F (φ|m) and E (φ|m) are elliptic integrals of the first
and second kinds, and C is an integral constant. Now, we set
α′λ2 = 16, λ = 1, C = 1 and plot R (x), a (x) and φ (x) in
the region 0 ≤ x ≤ π

λ
as an example, see Fig. 1.

In Fig. 1, it is easy to see that R (x), a (x) and φ (x) are
regular in the region 0 ≤ x ≤ π

λ
. To see how α′ corrections

affects the property of the curvature singularity, we can see
the following figure.

In Fig. 2, it presents the behavior of Ricci scalar R (x)
of the solution (22). When α′ goes to zero, R (x) reduces to
R0 (x) = λ2 cos−2

(
λx
2

)
(Red solid line), which possesses

the curvature singularity at x = π
λ

. On the other hand, when

Fig. 1 The figure of R (x), a (x) and φ (x) at α′λ2 = 16

Fig. 2 The figure of R (x), where λ = 10, 0 ≤ α′ ≤ 1
1000 and 0 ≤

x ≤ π
λ

� 0.3. The curvature singularity locates at x = π
λ

� 0.3 when
α′ = 0

α′ grows up, the curvature singularity disappears and R (x)
becomes regular everywhere.

Finally, we need to stress the relations between the Dijk-
graaf et al.’s exact string black hole [6] and our result. As
expected, the perturbative solutions (18) and (19) of Hohm-
Zwiebach action matches with α′ expansion of Dijkgraaf et
al.’s solution up to two-orders. The verification requires to
know the higher-loopβ-function and Hohm-Zwiebach action
simultaneously, and it is not straightforward since there exits
a series of field redefinitions from the higher-loop β-function
to the EOM of Hohm-Zwiebach action. Each field redefini-
tion modifies the EOM and their corresponding perturbative
solutions. In Appendix B, we present the simple example of
field redefinitions up to the first-order α′ correction. Beyond
second-order α′ correction, the β-functions are unknown. It
is therefore impossible to verify the correctness of the Dijk-
graaf et al.’s solution to all orders in α′ through the Hohm-
Zwiebach action.

In short, we used the complete α′ corrections of closed
string theory to remove the singularity of 2D black hole or
3D black string. We looked for the regular black hole solu-
tion (22) which exactly solves the EOM of Hohm-Zwiebach
action. In the perturbative limit α′ → 0, Witten’s 2D black
hole solution is recovered. The T-dual solutions can be

123
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achieved by simply replacing a → a−1 in Eq. (23). More-
over, it is worthwhile to study how to obtain other exact solu-
tion (which possesses two spacetime sigularities) of coset
model [26] from the Hohm-Zwiebach action.
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Appendix A

Supposing the coefficients ck≤n are known, to figure out the
non-perturbative solutions, we can choose a different kind
of ansatz. Here, we present two simple examples. The first
possible ansatz is

�(x) = −1

2
log

[
N∑

k=1

ρk (λx, ck)

1 + (
α′λ2

)k
]

, (A1)

where ρk’s are functions of λx and coefficients ck . Singular-
ities appear if and only if

N∑
k=1

ρk (λx, ck)

1 + (
α′λ2

)k = 0. (A2)

If we wish to cover the first two terms of the perturbative
solution, we set N = 2. In the perturbative regime α′ → 0,
the ansatz �(x) in (A1) is expanded as

�(x) = −1

2
log (ρ1 + ρ2) + ρ1

2 (ρ1 + ρ2)
α′λ2

−
(
ρ2

1 − 2ρ2
2

)
4 (ρ1 + ρ2) 2

(
α′λ2

)2 + O
(
α′3) . (A3)

To match the perturbative solution, ρk’s can be fixed as

ρ1 = −1

2
cos (2λx) csc (λx) ,

ρ2 = 1

2
csc (λx) ,

· · · (A4)

The second ansatz is given by

�(x) = −1

2
log

[
N∑

k=1

(
α′λ2

)k−1
ωk (λx, ck)

]
, (A5)

where ωk’s are functions of λx and coefficients ck . Singular-
ities appear if and only if

N∑
k=1

(
α′λ2

)k−1
ωk (λx, ck) = 0. (A6)

In the perturbative regime α′ → 0, the ansatz �(x) in
(A5) is expanded as

�(x) = −1

2
log (ω1) − ω2

2ω1
α′λ2

−
(
2ω1ω3 − ω2

2

)
4ω2

1

(
α′λ2

)2 + O
(
α′3) . (A7)

To match the perturbative solution, ωk’s can be fixed as

ω1 = sin2 (λx) , ω2 = 1

2
cos (2λx) , · · · . (A8)

Appendix B

Considering the FLRW ansatz

ds2 = −n (x)2 dx2 + a (x)2 dt2, (B1)

the ordinary low energy effective action with the first-order
α′ correction becomes

Io =
∫

d2x
√−ge−2φ

×
(
R + 4 (∂φ)2 + λ2 + 1

4
α′Rμνρσ Rμνρσ

)

=
∫

dxe−�

[
1

n

(
−�̇2 + H2

)
+ nλ2

+α′ 1

n5

(
Hṅ − n

(
Ḣ + H2

))2
]

. (B2)

The corresponding perturbative solution is

�0 = − log (sin (λx)) ,

H0 = λcsc (λx) ,

H1 = −2λ3 sin4
(

λx

2

)
csc3 (λx) , (B3)

which is consistent with Dijkgraaf et al.’s result inside the
event horizon up to the first-order α′ correction. Using the
field redefinitions,

n = n + α′δn,
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H = H + α′δH,

� = � + α′δ�, (B4)

where

δn = 1

32
λ2csc4 (λx) (−64 cos (λx) + 16 cos (2λx)

+36 sin (λx) − 3 sin (3λx) + 5 sin (5λx)) ,

δH = −1

4
λ3 (4 cos (λx) + 1) csc3 (λx) ,

δ� = −1

4
λ2

(
cot2 (λx) − 1

)
, (B5)

the action becomes Hohm-Zwiebach action with the first-
order α′ correction after setting n = 1,

IH Z =
∫

dxe−�

(
−�̇2 + H2 + 1

2
α′H4 + λ2

)
. (B6)

And the corresponding perturbative solution:

�0 = − log (sin (λx)) ,

H0 = λcsc (λx) ,

�1 = −1

4
λ2

(
cot2 (λx) − 1

)
,

H1 = −λ3

4

(cos (2λx) + 4)

sin3 (λx)
, (B7)

which is consistent with (18) and (19).
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