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Abstract Unification of gravity with other interactions,
achieving the ultimate framework of quantum gravity, and
fundamental problems in particle physics and cosmology
motivate to consider extra spatial dimensions. The impact
of these extra dimensions on the modified theories of grav-
ity has attracted a lot of attention. One way to examine
how extra dimensions affect the modified gravitational the-
ories is to analytically investigate astrophysical phenom-
ena, such as black hole shadows. In this study, we aim to
investigate the behavior of the shadow shapes of higher-
dimensional charged black hole solutions including asymp-
totically locally flat (ALF) and asymptotically locally AdS
(ALAdS) in Einstein—-Horndeski-Maxwell (EHM) gravita-
tional theory. We utilize the Hamilton—Jacobi method to find
photon orbits around these black holes as well as the Carter
approach to formulate the geodesic equations. We examine
how extra dimensions, negative cosmological constant, elec-
tric charge, and coupling constants of the EHM gravity affect
the shadow size of the black hole. Then, we constrain these
parameters by comparing the shadow radius of these black
holes with the shadow size of M87* supermassive black
hole captured by the Event Horizon Telescope (EHT) col-
laborations. We discover that generally the presence of extra
dimensions within the EHM gravity results in reducing the
shadow size of higher-dimensional ALF and ALAdS charged
black holes, whereas the impact of electric charge on the
shadow of these black holes is suppressible. Interestingly, we
observe that decreasing the negative cosmological constant,
i.e., increasing its absolute value, leads to increase the shadow
size of the ALAdS charged higher-dimensional black hole in
the EHM gravity. Surprisingly, based on the constraints from
EHT observations, we discover that only the shadow size of
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the four dimensional ALF charged black hole lies in the con-
fidence levels of EHT data, whereas owing to the presence
of the negative cosmological constant, the shadow radius of
the four, five, and seven dimensional AL AdS charged black
holes lie within the EHT data confidence levels.
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1 Introduction

The breakthrough successes in capturing the first images of
shadows of the supermassive black holes M87* [1-8] and
Sgr A* [9-14] by the Event Horizon Telescope (EHT) col-
laboration shed light on the physics of black holes and open
a wide gate to a deeper understanding of these mysterious
celestial objects. The event horizon of black holes, i.e., the
boundary of no return for any crossing matter or radiation,
is not directly observable, since it emits no light. Instead,
what we can observe is the black hole “shadow”, which is
the dark region on a light background that appears around the
event horizon due to the gravitational lensing phenomenon
[15-17]. Since releasing the shadow images of M87* and Sgr
A*, many efforts have been devoted to improving measure-
ments to reach higher-resolution images [18]. As a result,
theoretical efforts in investigating black hole physics, par-
ticularly shadow behavior in various gravitational theories,
become significant in producing the desired resolution. In this
regard, analytic and numerical studies and examinations of
the apparent geometrical shape of various black hole space-
times supply new theoretical shadow templates for future
observations [19-23]. The shape and size of the shadow is
determined by the black hole parameters, i.e., mass, electric
charge, and angular momentum [24] in addition to space-
time properties [25,26] and the position of the observer. For
non-rotating black holes, shape of the shadow is a perfect cir-
cle. The angular momentum parameter can, however, cause
rotating black holes to have non-trivial shadow shapes [27].

In 1914, Nordstrom first proposed the idea of extra
dimensions [28]. According to his idea, one can unify the
electromagnetic and gravitational fields by treating four-
dimensional spacetime as a surface in a five-dimensional
spacetime. Today, unifying gravitational and gauge interac-
tions of elementary particles, quantizing gravitational inter-
action, the Higgs mass hierarchy problem, and the cosmo-
logical constant problem are the main motivations for the
enormous quantity of studies on the extra dimensions. In this
regard, the Kaluza—Klein (KK) theory [29,30] utilizing Ein-
stein’s General Theory of Relativity (GR) introduces a com-
pact space constructed by compact extra dimensions with a
certain compactification scale to unify gravitational interac-
tion and electromagnetic or even non-Abelian gauge fields
characterizing weak and strong interactions. Furthermore,
the string theory (M-theory) as the well-known candidate
theory for quantum gravity possesses eleven compact extra
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spatial dimensions or more [31,32]. In addition to these com-
pact extra dimensions with the extension up to the order of the
Planck length, there are also ideas for large extra dimensions
to the order of millimeter. This new gate to the topic of extra
dimensions has opened by the Arkani-Hamed—Dimopoulos—
Dvali (ADD) braneworld model [33,34] to address the Higgs
mass hierarchy problem via employing large extra dimen-
sions. It is worth noting that the dramatic feature of these
large extra dimensions is that their impacts can be detectable
in future accelerator, astrophysical and tabletop experiments.
Surprisingly, the ADD model can be incorporated in string
theory [35]. Besides the compact and large extra dimensions,
Randall-Sundrum (RS) braneworld model [36,37] suggests
the warped extra dimensions to address the Higgs mass hier-
archy problem. In addition to these types of extra dimensions,
there are also theories with infinite volume extra dimen-
sions like Dvali—-Gabadadze—Porrati (DGP) braneworld sce-
nario [38] in which even in very low energies, the spacetime
is not four-dimensional and the extra dimensions are nei-
ther compact nor warped. Such theories are the candidates
for addressing the cosmological constant problem [39,40]
since in these theories, gravity is modified at large distances
thanks to presence of infinite volume extra dimensions. Some
detailed reviews on higher-dimensional models can be seen in
Refs. [41-44]. Within the framework of black hole physics,
different methods and approaches have been employed to
extend and investigate various black hole models in arbi-
trary dimensions [45,46], such as Tangherlini method [47]
for generalizing the Schwarzschild solution to #n dimensions.

Detecting extra dimensions is a priority for physicists in
high-energy or particle experiments. The Large Hadron Col-
lider (LHC) at CERN and future colliders become some
promising tools for exploring such extra dimensions and
effects of strong gravity regimes corresponding with higher-
dimensional black holes [48—54]. Moreover, the presence of
Hydrogen atom in higher dimensions [55-57], spectroscopy
experiments [58-60], and the ideas to address the proton
radius puzzle [61-63] support the existence of extra dimen-
sions. On the other hand, two recent achievements towards
discovering black hole strong field regimes are the detec-
tion of Gravitational Waves (GW) via the LIGO/Virgo col-
laborations [64], and the above-mentioned images captured
by the EHT collaborations. There are some traces of extra
dimensions in the detection of GW, possessing certain infor-
mation about the associate amplitude and the dynamics of
fluctuation modes. Hence, many works have been focused
on revealing such physics [65-69] and for a detailed review,
see Ref. [70]. Now EHT has provided new possibilities to
continue explorations for extra dimensions. Recently, in sem-
inal works [71-73], the authors found noteworthy constraints
from EHT observations on warped and compact extra dimen-
sions within the RS model and M-theory. Therefore, one can
utilize the EHT data to explore all types of extra dimen-
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sions, generally, and see whether they can be detected, as we
aim to do that in this study. In this regard, it seems that extra
dimensions affect the shadows of black holes by reducing the
shadow size in various black hole models and gravitational
theories [74-79]. However, the exact effect of extra dimen-
sions on black hole shadows is still an area of active research
and is not yet fully understood. Apparently, the impacts of
large and infinite volume extra dimensions have more chance
to be detected in the future.

Besides, the size and shape of black hole shadows (sim-
ilar to other astrophysical phenomena [80-84]) may differ
in extended theories of gravity through additional degrees
of freedom arose from these theories. Therefore, investigat-
ing the size and shape of the black hole shadows may aid
in evaluating parameters of black hole metrics and testing
alternative theories of gravity. Theoretical motivations [85]
or dark energy, dark matter, and cosmological modeling [86—
92] are only a few examples of the many hypotheses that
make up the enormous field of extended theories of grav-
ity beyond GR. Among them, some novel ghost-free spe-
cial classes of theories have developed, such as f(R) theo-
ries [93,94], Lovelock theories [95,96], and the scalar-tensor
theories initially formulated by Horndeski [97] (for detailed
reviews, see Refs. [98,99]). The Horndeski theory is the most
general scalar-tensor gravitational theory possessing second-
order derivatives in the equations of motion. There are a
lot of studies in the literature focused on the examining the
Einstein—Horndeski scalar-tensor modified theory of grav-
ity in various astrophysical issues and cosmological mod-
eling [100-109]. To obtain the stable black hole solutions
of Einstein—Horndeski gravity, it has received significant
attention to consider the action containing a non-minimal
kinetic coupling of one scalar field to the Einstein tensor field.
Spherically symmetric solutions with non-minimal deriva-
tive coupling without cosmological constant has been inves-
tigated in Ref. [110], and considering a negative cosmo-
logical constant studied in Ref. [111]. The asymptotically
locally flat and asymptotically locally anti de Sitter (AdS)
black hole solutions in Einstein—Horndeski gravity were also
first found in Ref. [112]. The asymptotically locally flat
and asymptotically locally AdS black hole solutions in the
Einstein—-Horndeski—-Maxwell (EHM) gravitational theory
with four and extra dimensions were obtained in Ref. [113].
The thermodynamics of the later solution is also studied in
Refs. [114,115].

A vast number of works have been focused on the issue of
black hole shadow to find what and how degrees of free-
dom, arose from extended theories of gravity other than
black holes parameters, affect the shadow behavior [116].
Some examples are as follows: the shadow behavior of the
Kerr—-Newman family of solutions of the Einstein—-Maxwell
equations is investigated in Refs. [117-119]; the shadow of
a black hole with NUT-charges [120,121]; the black hole

shadows in Einstein—-Maxwell-dilaton gravity [122,123], in
Chern—Simons modified gravity [124]; the apparent shape
of the Sen black hole [125-127]; shadows of colliding and
multi-black holes [128,129]; shadow behavior of rotating
black holes in f(R) gravity [130], conformal Weyl grav-
ity [131], and Einstein—dilaton-Gauss—Bonnet black holes
[132]; shadow behavior of the non-commutative geometry
inspired, quantum-corrected, and magnetically charged black
holes [133-136]; shadow behavior of Einstein—Born—Infeld
black holes [137]; shadow behavior of Ayon-Beato—Garcia
black hole and also, rotating Hayward and rotating Bardeen
regular black holes [138] and hairy black holes [139-141];
chaotic shadow of a non-Kerr rotating compact objects with
quadrupole mass moment and a magnetic dipole [142,143],
and black holes with exotic matter [144—-149]; and also,
shadow behavior of wormholes and naked singularities [150—
152].

In this study, we aim to investigate the shadow behav-
ior and deflection angle of the asymptotically locally flat
(ALF) and asymptotically locally AdS (ALAdS) charged
black hole solutions in EHM gravity with extra dimensions
and also, estimate the energy emission rate associated with
these black holes. We want to examine how extra dimen-
sions together with electric charge and negative cosmologi-
cal constant within the EHM gravity affect the shadow and
deflection angle of the black holes to gain a new template
of black hole shadow for future theoretical and observational
applications. Additionally, we want to constrain extra dimen-
sions, the electric charge, negative cosmological constant,
and the coupling constants of EHM gravity by comparing
the shadow size of the higher-dimensional ALF and ALAdS
charged black holes in EHM gravity with the shadow size of
MS87* supermassive black hole captured by EHT. This paper
is organized as follows. In Sect. 2 we first briefly introduce the
EHM gravitational theory with arbitrary dimensions and then
describe the line elements of the higher-dimensional ALF
and ALAdS charged black holes in the theory. In Sect. 3, we
provide the general formalism to study the shadow behav-
ior of the higher-dimensional black holes by utilizing the
Hamilton—Jacobi approach and Carter method to formulate
the null geodesic equations. We specify the shadow shape
of the black holes on the observer’s sky in celestial coor-
dinates, and estimate the energy emission rate and deflec-
tion angle formulas in higher dimensions. Also, we introduce
the black hole shadow observables. In Sect. 4, utilizing the
framework introduced in the previous section, we study the
shadow behavior, deflection angle, and energy emission rates
of the ALF and ALAJS charged black holes in EHM gravity
with extra dimensions. We analyze the significant impacts of
the electric charge, cosmological constant, extra dimensions,
and the coupling constants of EHM gravity on the shadow
and deflection angle of the black holes within the setup and
then, we constrain these parameters by EHT data. Finally,
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Sect.5 is devoted to discussing and concluding our main
results.

2 EHM gravity with arbitrary dimensions and its black
hole solutions

The action of the higher-dimensional Einstein—Horndeski
gravity, which is minimally coupled to a Maxwell field to
construct EHM gravity with arbitrary dimensions, has the
following form [113,114]

1

I=— | d'xy/-8L, €))]
16

in which n counts the number of spacetime dimensions, and

the Lagrangian is to the form of

1 1
L=R—20— FupF” 3 (ag”b _ yG“b) DX X

2
@

where « and y are the coupling constants, F,, = 9,Ap —
dp A, 1s the electromagnetic field strength with gauge poten-
tial A, and G, = Ryp — %R gab 1s the Einstein tensor in
which R, is the Ricci tensor, R is Ricci scalar, and g, is the
metric tensor with determinant g. The Lagrangian possesses
the derivatives of the axionic scalar field x. This makes the
Lagrangian invariant under the transformation y — x + C.
Here, this symmetry, however, does not utilize to yield the
non-minimally coupled Einstein-vector gravity [153]. The
strength of the non-minimal kinetic coupling to Einstein ten-
sor field is governed by y.

By varying the action (1) with respect to the metric tensor,
axionic scalar field, and the gauge potential, one can find the
corresponding equations of motion in the EHM gravity [113,
114]. In order to find the static charged black hole solutions
of the setup, one can take into account the following general
spherically symmetric ansatz with arbitrary dimensions as
the line element (metric tensor) of the background spacetime

dr?

2 2 2 162

ds® = —h(r)dt” + m +rod2,_,, 3)
where dQ? , = d6?+sin® 0,d05 +- - -—i—l—[?;f sin® 6; d6? ,
is the metric of the unit $”~2 hypersphere, which has the
volume

= ey @

where I is the gamma function. By this ansatz, one can solve
the equations of motion in EHM gravity to obtain two classes
of higher-dimensional black hole solutions, which are ALF
and ALAJS black holes as constructed and reviewed in Refs.
[113,114].

@ Springer

2.1 ALF black hole with extra dimensions in EHM gravity

Setting @ = A = 0 and also y < O (for a real scalar field
outside the event horizon), the equations of motion of the
EHM gravity result in the higher-dimensional ALF charged
black hole solution for which we have (for more details, see
Refs. [113,114])

16(n — 2)>(n — 3)*r*"

(r) = h(r). 5)
Y (g2 — 40— (-3
2
h(r)y=1 =3 + 200 —2)(n — 3)r2(n73)
q4

— , 6

48(n — 2)%(n — 3)2r4n=3) ©
where p and g are two non-trivial parameters, which param-
eterise the mass and the electric charge, respectively in such
a way that

1
M = E(n =2 wy—2,

1
Q= c-qwn2v2(n—2)(n—23). (N

8

It is worth noting that the parameter ¢ in the form as intro-
duced in [114] is not correct and we provided its correct form
in Eq. (7).

The higher-dimensional ALF charged black hole solution
possesses two curvature singularities at ¥ = 0 and r = ry,
respectively, so that r, can be obtained through the following
equation

4(n—2)(n =325 — 4> =o0. (8)

On the other hand, the event horizon of the higher-dimensional
ALF charged black hole is located at r = r,;, which is
the largest root of h(r) = 0. Furthermore, the higher-
dimensional ALF charged black hole satisfies the condition
Feh > Fx, Which implies [113,114]

4
£ . )
q 3J(n—=2)(n-3)
The Hawking temperature associated with the higher-dimen
sional ALF charged black hole can be found as follows [114]

4n—2)(n =320 — 42
167 (n — 2)r2 >

TarLr = (10)

This temperature is always positive, i.e., Torr > 0 due to
the above-mentioned condition based on which the curvature
singularity r, must be inside the event horizon r.;,. There-
fore, the Hawking temperature of the higher-dimensional
ALF charged black hole can approach zero, but can never
reach this vanishing value. This feature is more in agreement
with the behavior of physical systems respecting the third
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law of thermodynamics, and it cannot be seen in Reissner—
Nordstrom black hole.

2.2 ALAJS black hole with extra dimensions in EHM
gravity

Assuming @ # 0 and A # 0 so that (¢ + y A) < 0 (to have
areal scalar field outside the event horizon), the EHM grav-
ity field equations result in the higher-dimensional ALAdS
charged black hole solution for which we have (for more
details, see Refs. [113,114])

(n=2)>4+By)* ((1—1)g*r>+n—3)*

£ = :
(1=2) (1= 1) (4+By) g2 +4(n=2) (n—3) =g?r2C~")

h(r),

an
12)

h(r) = h(r) + hy(r),

where

2q2

n—2)(n—-3)4+ ’3),),.2;176
_ 2By (n — 3)g?
g2(n — 1)2(n — 2)(4 + By)2r2n—4
28y (n — 3)%¢> .
+84(” + D —D3n—2)4+ ﬂy)2r2n—22 1
n+1 n+3 3—n
L, ; ;
|: 2 2 (n— 1)82r2:|

q4

— F
g2 (n—1)(n—2)2(Gn—T)(d+py) 2= >
3n—7 3n-5 3—n
x |1, ) ;

2 2 (n— 1)g2r?
where >F; is the hypergeometric function, which is well-
defined for n > 4. Furthermore, when the dimension number
n is even, the function 4 (r) is to the following form

w 8g%r2(2 + By) + 16

hg(r) =

13)

heven(r) = _rn73 (4+ ,3]/)2
B2y2g*r? l—n 3—n 3—n
+——F——2F | L, ; ; )
(4+By)? 2 2 " (n—1g*r?

(14)

The function Z,yer (r) is divergent for odd integers qf dimen-
sion number. When n is odd (n > 5), the function i (r) is as
follows

1 +8g2r2(2+ﬂy)+16
4+ By)?
(n — 1)B*y2gtrt
(n—3)@+ g2
" [1 n+l n+3 (n— 1)g2r2i|
2 27 3—n '

hoda(r) = —

yn—3

15)

a and y must possess the same sign to achieve the ALAdS
spacetime [113,114]. In Egs. (11)—(15) two parameters g and

B are substituted for o and the cosmological constant A so
that

1 2
o= E(n — D —2)g%y,

1
A=—30= D =22+ By). (16)

Again, 1 and g parameterise the mass and the electric charge
as follows

1

M = %(” —2)(4+ ByInwp—2,
1

0= 3 4 @n2vV 2(n =2)(n = 3).
T

The higher-dimensional ALAdS charged black hole solu-
tion has two curvature singularities at r = 0 and r = ry,
respectively. The curvature singularity r, is the roots of

(n—2)(n — D@4+ By)g*r?
+4(n —2)(n —3) —¢*r*C™ =0

17)

(18)

and located within the event horizon of the black hole 7.,
which is aroot of & (r) = 0. Moreover, the Hawking temper-
ature of the higher-dimensional ALAdS charged black hole
can be found as follows [114]

(n = Dg’ran 401 =2)(n =3y~ — ¢’
47 dm(n — 24+ By
(19)

TapLads =

3 General formalism for shadow and deflection angle of
higher-dimensional black holes and shadow
observables

When a black hole is in front of a light source, part of the
light is deflected by the gravitational field of black hole and
reaches the observer. However, some photons may fall into
the black hole, creating a dark zone known as the shadow,
and the apparent shape of the black hole is the boundary
of the shadow. In this section, we present the general for-
mulas required to obtain the shape of the shadow, energy
emission rate, and deflection angle for the general ansatz (3)
with higher dimensions, which necessitates the study of the
motion of a test particle in the spacetime.

3.1 Null geodesics

We start with the Lagrangian of the test particle, which is to
the form of

~ 1
L= =g, (20)

2

where an over dot shows the derivative with respect to the
affine parameter t. The components of canonically conjugate
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momentum corresponding with the general ansatz (3) can be
found as follows

P, = h(r)i = E, 1)
.
=" (22)
n—3i—1
=r Z sin’[6,16;, (23)
i=1 n=1
-3
Py, =r* [ sin*[6:16,2 = L. (24)
i=1

wherei = 1,2,...,n — 3 and also, E and L are the energy
and angular momentum of the test particle, respectively.

We utilize the Hamilton—Jacobi method to analyze pho-
ton orbits around the black hole, in addition to the Carter
approach to investigate the geodesic equations [154]. In this
regard, we generalize these methods to higher dimensions.
Consequently, in higher dimensions, the Hamilton—Jacobi
method reads

as 1 ,, 08 BS
or 2% oxvoxt
where S is the Jacobi action of the test particle. Inserting the

general ansatz (3) with arbitrary dimensions into Eq. (25),
one can yield

s 1 (3S 35,
% h(r)(az) ”()( )
n ] (%)

i=1 <V2 H; l1 sin 9) 9

1 380, ,\>
+ . (26)
<r2 1= sin? 6; ) 0n—2

Taking into account a separable solution for Jacobi action
allows one to express the action as

(25)

1 n—3
S=om’t —Et +LO2+S:() + ) _ S0, (27
2 i=1
where m is the rest mass of the test particle. Since in studying
shadow behavior of black holes, the test particle is photon,

we set m = 0. Therefore, applying the Jacobi action (27) on
Eq. (26) results in the following expression

E? S, 1

OZ{W‘W( )‘72
(= kT Peor
Moste o l

1 "i 1 (83@i>2
r? = 1.2 sin>6, \ 6;
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n—3
—K+ [ L?cot? 9,~> } , (28)

i=1

where KC is the Carter constant. After some manipulations,
one can obtain the following set of equations

4 02 a5, : 4 S () o
r f Oﬂ <7;f> =r —?7;E
n—3

-3 9S 2
Z 20 — - [1L%co?6i.  30)
1.2 sin?6, \ 36 Pl

i=l1

=2 (L2 +K) £,
(29)

Finally, employing Eqgs. (29) and (30) and the components
of the canonically conjugate momentum (21)—(24), the com-
plete equations of motion for photon, i.e., the null geodesics
within the higher-dimensional spacetime (3) can be read as
follows

E

=, 31)
f@r)
rii = £VR, (32)
n—=3i-1
P2y [ sin’16a16 = +£/6;, (33)
i=1n=1
. L
Opr = ———=——, (34)
r2 102 sin? 6,
where “+” and “—” signs denote the outgoing and ingoing

radial directions of the motion of photon, respectively. Fur-
thermore, we have

_ a4t o o
Ro=rty B = (L +IC)f(r),
n—-3
e, =K-— ]’[ L% cot? 6;. (35)

i=1

The motion of photon in the spacetime is governed by Eqs.
(31)—(34).

It is critical to discuss the effective potential for determin-
ing the boundary of the shadow of black holes. The effec-
tive potential can be calculated by rewriting the radial null
geodesic equation (32) as follows

A\ V=0 (36)
dt “f =%
in which the effective potential is to the following form
f (r) AL
Ve = (/c L ) ALY 23 37
off = + 0 (37

The unstable circular orbits of photons determine the
boundary of apparent shape of the black hole. They corre-
spond with the maximum value of the effective potential,
which occurs at a distance, known as photon sphere radius
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ro satisfying the following equations

dVery dR
Vesrlyy == =0 Rl =—=

1o ro

=0. (38)

Consequently, the photon sphere radius rp associated with
the maximum of the effective potential for black hole in the
spacetime (3) with arbitrary dimensions is the smallest value
of the roots of the following equation

roh’(ro) — 2h(ro) = 0, (39)

where a prime stands for radial derivative.

3.2 Geometrical shapes of shadow

In this section we aim to find the shadow shape and size of
the black holes in the spacetime (3) with arbitrary dimen-
sions. To do this, we begin with the definition of two impact
parameters £ and 7. These impact parameters as functions
of the constants of motion E, L, and K can characterize the
properties of photons near black holes. They define as follows

(L K
e TTE

Therefore, one can rewrite the effective potential and also,
the function R in terms of these impact parameters as

_ 2 S0 2 S
Verr = E {r—z(ﬂ-F%)—m},

]S 2 2
R=E {rm—rf(r)<n+§)}. @1

(40)

Finally, by inserting Eq. (41) into Eq. (38) one can find the
following equation for two unknowns & and n

2
2 1o f(ro))
T = o) + o (o) { (h(ro)

(f’(ro)h(ro) - f(ro)h'(ro)>}
+ro .

h(ro) 2
Therefore, the photon sphere radius achieved from Eq. (39)
yields the quantity 1 + &2 using Eq. (42). One can see that rg
has the dimension of the length and the quantity 7 + £2 has
the dimension of the length square.

The celestial coordinates A and ¥ [155] are employed to
characterize the geometrical shape of the shadow as seen on
the observer’s frame. Figure 1 is a schematic of the celestial
coordinates used in this paper.

These coordinates can be read as follows

r2p(9nfz)
A= lim {2——,
Fo—>00 PO

_(r2p@
v=dm e ) “3)

y.A
A
“4y)
observer P \ w celestial plane

black hole

light
source
X

Fig. 1 The schematic of the celestial coordinates on the far observer’s
sky in which r, is the spatial separation between the far distant observer
and the black hole, and 6, is the angular coordinate of the far observer.
Therefore, the location of the far observer is characterized with (r,,, 5,,).
The coordinates (A, 1) are the apparent perpendicular distance of the
image as seen from the axis of symmetry, and from its projection on the
equatorial plane, respectively

where [P®, P2 p)] are its vi-tetrad momentum ele-
ments and r, is the distance between the observer and the
black hole. On the equatorial plane, one finds A = —& and
Y = +,/n. Therefore, we can gain the following outcome

RZ=n+&E =2 +y7, (44)

in which Ry is the shadow radius in celestial coordinates. For
non-rotating (static) black holes, the geometrical shape of the
shadow is circle with radius Rj.

3.3 Energy emission rate

Black holes can radiate through the phenomenon known as
Hawking radiation. At very high energy, the absorption cross-
section generally oscillates around a limiting constant oy;y,.
For a very far distant observer, however, the absorption cross-
section advances toward the black hole shadow [79,123].
One can prove that oy;,, is approximately equal to the photon
sphere area, which in arbitrary dimensions can be represented
as follows [123,156,157]

7
Olim = —___R'2, 45

N0 (45)
Thus, the complete form of the energy emission rate of
higher-dimensional black holes can be read as

d’E(w) _ 2m%0jim
dowdt

w1 (46)

B eT — 1
where o is the emission frequency and T is the Hawking
temperature of the black hole.
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3.4 Deflection angle

Here we aim to provide the framework for studying the
deflection angle of higher-dimensional black holes in the
spacetime (3). In this regard, we want to utilize the Gauss—
Bonnet theorem [158,159]. We first should find the optical
metric on the equatorial hyperplane 6; = 7 /2 in the space-
time (3). Then, on this hyperplane, we set d63_2 = d¢’ to
find

ds® = —h(r)dt* + ar + rlde¢?.
f)

Then, for the considered null geodesics for which ds? =0,
the optical metric reads as follows
d 2 2
2= g
h(r) f(r)  h(r)

For this optical metric, we can calculate the Gaussian optical

(47)

(48)

curvature K = % in which R is the Ricci scalar of the metric
(48) as follows

K — 2rh(r) f ()R () =2rf (R (r)2+h()R' () {rf (N +2£ (1)} =2/ (r)h(r)?

Finally, using the straight light ray approximation r(¢) =
&/ sin ¢, the Gauss—Bonnet theorem results in the following
expression to calculate the deflection angle (for more details,
see Refs. [158,159] and references therein)

T+0 T o0
@:n—/ d¢=—/ / KdS.
0 0o J£

sin ¢

(53)

3.5 Shadow observables

Black hole shadow observables can provide strong evidence
for the existence of black holes. These observables refer to
the features of the shadow casted by a black hole on its sur-
rounding bright accretion disk. They are obtained from the
images of the event horizon of a black hole, which can be cap-
tured currently utilizing EHT. Studying black hole shadow
observables can provide us with valuable information about
the properties of black holes [160-163]. The size and shape
of the shadow can give us insights into the black hole param-
eters, which are expected to be constrained from the EHT
data. Overall, studying black hole shadow observables is an

2rh(r)

(49)

In order to calculate the deflection angle, one should con-
sider a non-singular manifold D with a geometrical size R
to employ the Gauss—Bonnet theorem, so that [158,159]

KdS—i—% kdt + y =2n¢(D53),
[ [ s+ f, s S o

R i

(50)

where dS = /gdrd¢ and dt are the surface and line element
of the optical metric (48), respectively, g is the determinant
of the optical metric, k denotes the geodesic curvature of D,
and ¢; is the jump (exterior) angle at the i-th vertex, and also,
¢ (Dy) is the Euler characteristic number of D . One can set
¢ (Dy) = 1. Then, considering a smooth curve y, which has
the tangent vector y and acceleration vector y, the geodesic
curvature k of y can be defined as follows where the unit
speed condition g (y, y) = 1 is employed

k=2 (Vs5.5).
which is a measure of deviations of y from being a geodesic.

In the limit R — o0, two jump angles ¢, (of source) and g,
(of observer) will become /2, i.e, ¢ + ¢, — 7. Consider-
ing Cg := r(@), we have k(Cp) = |V¢ Cl 2% 1R
and therefore, we can find limgz_ dr = Iédqb. Hence,
k(Cz)dt = d¢. Consequently, the Gauss—Bonnet theorem
will reduce to the following form

7 T+6
f / KdS+ y{ kdr " == / / KdS+ f do=n.
DR CR oo 0

(52)

D
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important tool for understanding the mysterious and fasci-
nating phenomena of black holes. To introduce the shadow
observables, we propose that the observer is at the equatorial
plane, where the angular coordinate of the observer or the
inclination angle is 6, = /2.

Hioki and Maeda [164] suggested two characterized
observables, Iéx and & in order to investigate the size and
distortion of black hole shadows. Based on Hioki-Maeda
method, one can approximately describe the shadow of the
black hole by a reference circle with the radius Ry so that
85 is the deviation of the left edge of the real shape of the
shadow from the boundary of this reference circle [164].
In other words, 155 is the shadow size and §, indicates the
deformation of shadow shape from this circle of reference.
The shadow reference circle in the celestial coordinates at
the top, bottom, right, and left edges are located at (A;, ¥;),
(Aps VY1), (Ar, 0), and (1], 0). Moreover, the leftmost edge of
the shadow is located at (;, 0). We note that the indices ¢, b,
r, and / stand for the top, bottom, right, and left edge of the
shadow. Figure?2 is the schematic of the shadow reference
circle in the celestial coordinates. With these preliminaries,
one can define these observables as

5 A — A 2 2
i G a0+l 51
21 = |

and
_ A

;= (55)
Ry
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(A, ¥e)

(’/1,1' 0) (A1, 0) Ay, 02

A

A, Y1)

v

Fig. 2 Illustration of the shadow reference circle in the celestial coor-
dinates

Kumar and Ghosh [165] proposed that the shadow of some
irregular black holes cannot be correctly characterized by
R, and 8, due to certain symmetry requirements in shadow
shapes. Furthermore, due to noisy data, the shadow form may
not be perfectly circular. Therefore, they introduced two new
characterized observables, the shadow area Ay and oblate-
ness D; to describe haphazard shadows of any shape (not
just circular shape), which are defined as follows

B [ 2 (ro)
Ay =2 [ Y(ro)dr(ro) =2 [ | ¥(ro) o dro, (56)
o 0
and
Dy = M’ (57)
Vi — ¥

where rgE are retrograde and prograde orbits at the equatorial

plane, respectively.

For non-rotating (spherically symmetric) black holes, as in
the present study, one can verify that the shadow distortion
can be eliminated so that §; = 0 and the shadow oblate-
ness equals unity, i.e., Dy = 1 [162,166]. This indicates
that for non-rotating black holes, the shadow shape is a per-
fect circle. Additionally, the retrograde and prograde orbits
are not accessible for non-rotating black holes [162,166]. In
the subsequent section, however, we compare the shadow
size of M87* supermassive black hole with the ALF and
ALAdS charged higher-dimensional black holes in EHM
gravity to constrain the electric charge and cosmological con-
stant together with coupling constants of the EHM theory by
following the procedure introduced by the EHT collabora-
tions in Ref. [167].

4 Shadow and deflection angle of the
higher-dimensional ALF and ALAJS black holes
in the EHM gravity

In this section, we aim to study the shadow and deflec-
tion angle of the higher-dimensional ALF and ALAdS black
holes in the EHM gravity utilizing the general framework
expressed in the previous section. To do this end, we apply
the line element of these black holes in EHM gravity on
the formulas deduced in the framework to investigate how
dimensionality, electric charge, and cosmological constant in
EHM gravity affect the shadow and deflection angle behav-
ior. In this regard, we will see whether the shadow behavior of
black holes are dependent to dimensionality, electric charge
and cosmological constant as the spacetime features in addi-
tion to the black hole parameters.

4.1 ALF charged black hole with extra dimensions

To study the shadow and deflection angle of the ALF black
hole in EHM gravity with extra dimensions, we arbitrarily
consider the electric charge values as Q = 0.1,0.5, 1, 1.5,
and 2. Also, we take into account that the extra dimensions
count n = 4,5,...,11 (note that n = 4 stands for one
temporal in addition to three spatial dimensions as usual).

4.1.1 Effective potential

First, we want to check the behavior of the effective potential
for the ALF black hole with extra dimensions in the EHM
gravity. Inserting Eqs. (5) and (6) into Eq. (37) results in the
effective potential for the higher-dimensional ALF charged
black hole as follows

16(n — 2)%(n — 3)*r#—2

Vorr =
S (qz,,e —4(n —2)(n — 3)r2,,)2
2
2 _ n q
x{ <]C+L ) <1 rn73+2(n — 2)(n—3)r2@=3
q4 2.2
4800 —272(n —3)2r4<n—s>) —ET } (58)

Figure 3 depicts the behavior of the effective potential
for the ALF charged black hole with extra dimensions as a
function of radial coordinate r for different values of n and
Q. In this figure, the effective potential peaks at the photon
sphere radius rq associated with each value of n and Q and
in the limit r — o0, the effective potential approaches a
constant value. From Fig. 3a, we see that for a fixed value
of Q, the effective potential for the higher-dimensional ALF
charged black hole increases by growing n. Also, we find
from Fig. 3b that increasing the value of Q for n = 4 leads
to amplification of the effective potential for the black hole.
However, form Fig. 3c we find that for n > 5, although this
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Fig. 3 The graph of the radial evolution of the effective potential for the ALF charged black hole with extra dimensions in EHM gravity for

different values of n and Q in which we set M = 1

amplifying of the effective potential continues but each curve
of the effective potential corresponding to different values of
Q finally coincide. This fact shows that the impact of higher
dimensions dominates the effect of the electric charge in the
ALF black hole with higher dimensions. Since the location
of the maximum of the effective potential for the black hole,
i.e., the photon sphere radius ry, characterizes the shadow
boundary of the black hole, Fig. 3 shows that how n and Q
affect the shadow boundary of the ALF black hole in the
EHM gravity with extra dimensions.

4.1.2 Geometrical shapes of shadow

Now we are going to illustrate the geometrical shape of
shadow of the ALF charged black hole with extra dimensions
on the observer’s sky in the celestial coordinates introduced in
previous section. In this regard, we first should collect some
numerical data for ry, rep, ro, and /1 + £2 associated with
the black hole. Inserting Eq. (6) into Eq. (39) yields the pho-
ton sphere radius for the higher-dimensional ALF black hole
in the EHM gravity. Moreover, applying Egs. (5) and (6) into
Eq. (42) and using Eq. (44) leads to find the radius of shadow

@ Springer

circles for the higher-dimensional ALF charged black hole
in celestial coordinates. In Table 1 we collect the numerical
data associated with ry, r.p, and ro forn = 4,5, ..., 11 and
some different values of Q.

Based on the data provided in Table 1, one can plot the
shadow circles of the ALF charged black hole with extra
dimensions for different values of Q and n. In Fig. 4, we can
see the geometrical shapes of shadow of the ALF charged
black hole with extra dimensions in the celestial coordinates
for different values of Q and n. Each plot in Fig. 4 is for a
fixed value of Q. From Fig. 4 we see that for a fixed value
of Q, the shadow shapes of the black hole decrease with
increasing dimension. Therefore, the extra dimensions affect
the shadow of the black hole significantly by reducing the size
of its geometrical shape.

Also, in Fig. 5, we see the shadow circles of the ALF
charged black hole with extra dimensions in the celestial
coordinates for different values of Q with n = 4 in Fig. 5a
and n = 5 in Fig. 5b. In Fig. 5a for n = 4 we see that
by increasing the electric charge value, the size of shadow
circles decrease. In Fig. Sb, however, for n = 5 the shadow
size of the ALF charged black hole with higher dimensions
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Table 1 Values of ry, rej, and r¢ of the higher-dimensional ALF charged black hole for different values of Q and n

n 0=0.1 0=05 0=1 0=15 0=2

Ty Yeh ro L% Yeh ro Fx Yeh ro Ty Yeh ro Vs Yeh ro
n=4 003 199 2.99 017 196 295 035 1.86 2.82 053 166 256 070 123 205
n=5 008 092 1302 019 0919 1301 027 091 129 033 090 128 038 089 127
n=6 014 0782 1061 024 0781 1.06 030 0779 1.059 034 0777 1057 038 0.774 1.054
n=7 019 0755 0993 029 0754 0992 034 0753 0992 038 0752 0991 041 0.751 0.9
n=8 024 0761 0978 033 076 0976 038 0759 0975 042 0758 0975 044 0.757 0975
n=9 029 0.78 0.98 038 0778 0979 043 0777 0979 046 0.777 0979 048 0.776 0.979
n=10 034 08011 0993 042 0801 0993 047 080 0992 050 080 0992 052 080  0.992
n=11 038 0828 10114 047 0827 10114 051 0826 10113 054 0826 10113 056 0826 1.0112

-4

-2 0 2

— N=4 s N=5 eae n=6 ... n=7

==sN=8 ~ = n=9 n=10 . = n=11

(a) for @ =0.1

-4

-2

0
A

— =4 n=5 e n=6 ... n=7
== N=8 « = n=9 n=10 . = n=11
(d) for @=1.5

Fig. 4 Geometrical shape of the shadow of the higher-dimensional ALF charged black hole in celestial plane with M = 1
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Fig. 5 Geometrical shape of
the shadow of ALF charged
black hole with higher
dimensions in celestial plane
with M =1

~ -
D

— Q=0.1 i Q=05 «.ee Q=1 — Q=0.1 i Q=0.5 «uue Q=1
cee Q=15 ==s Q=2 cee Q=15 ==. Q=2
(a) forn=4 (b) forn=25

for each value of electric charge approach each other while
they experience a reduction in their size in comparison with
corresponding ones for n = 4. One can see also the behavior
for n > 5. Therefore, Fig. 5 shows us that for n > 5, the
shadow circles associated with different values of Q coincide
on each other. Therefore, the impact of the electric charge on
the shadow of the black hole in EHM gravity is suppressible.

4.1.3 Energy emission rate

Now we apply the values of r.; from Table 1 into Eq. (10)
to gain the values of the Hawking temperature of the ALF
charged black hole with extra dimensions for different val-
ues of Q and n. Then, one can insert the values of /n + &2
into Eq. (45) to obtain the values of oy;;, for different val-
ues Q and n corresponding to the ALF charged black hole
with higher dimensions. Finally, one can apply the values of
the Hawking temperature and oy;,, on Eq. (46) to gather the
energy emission rate in terms of different values of Q and
n associated with the higher-dimensional ALF black hole in
EHM gravity.

The energy emission rate for the higher-dimensional
charged ALF black hole in EHM gravity is illustrated in Fig. 6
as a function of the emission frequency @ . From Fig. 6a, b,
we see that for a fixed value of Q, the energy emission rate of
the ALF charged black hole with extra dimensions extremely
increases by growing n. Therefore, we found out that extra
dimensions accelerate the evaporation of the ALF black hole
in EHM gravity with higher dimensions. Additionally, from
Fig. 6¢c for n = 4 one can see that increasing the electric
charge value results in reducing the energy emission rate,
especially for O = 2. From Fig. 6d, however, one can find
that for n = 5 the energy emission rates of the ALF charged
black hole with extra dimensions associated with each value
of the electric charge approach each other while they expe-

@ Springer

rience an amplification in their values in comparison with
corresponding ones for n = 4 in Fig. 6¢. One can also verify
such a behavior for n > 5. Therefore, Fig. 6¢, d show us that
for n > 5, the energy emission rates associated with differ-
ent values of Q coincide with each other. So, although the
impact of the electric charge is to amplify the energy emis-
sion rate of the black hole in EHM gravity, which causes
black hole evaporation to accelerate, its effect is dominated
by the impact of extra dimensions.

4.1.4 Deflection angle

Inserting Eqgs. (5) and (6) into Egs. (48) and (49), results
in the Gaussian optical curvature for the higher-dimensional
ALF black hole in EHM gravity, which up to the first order

in mass and second order in electric charge of the black hole
can be approximately found as follows

n—1
Im_4r[ }
2

§ { M 7" (n=2)(n—3)2r1 =" —2 Q27 3np4=207 [251]

(n—2)(n-3)
(59)

Furthermore, the surface element of the optical metric (48)
for the higher-dimensional ALF black hole in EHM gravity
corresponding to the metric coefficients (5) and (6) can be
approximately found as follows

dS =.\/gdrd¢ = dtdp ~ rdrd¢. (60)

-
h(r)«/ f (r)

Now, employing Eqgs. (59) and (60) in the deflection angle
formula (53) leads to the deflection angle of the higher-
dimensional ALF black hole in EHM gravity as follows
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Fig. 6 The energy emission rate as a function of & for the higher-dimensional charged ALF black hole in EHM gravity for different values of n

with Q
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The behavior of the deflection angle of the higher-
dimensional ALF charged black hole is illustrated in Fig. 7
for different values of n with respectto Q = 0.5inFig. 7aand
for different values of Q with respect to n = 4, 5 in Fig. 7b,
c, respectively. From Fig. 7a, we see that decreasing the value
of the impact parameter & results in extremely increasing the

deflection angle of the black hole. Also, Fig. 7a shows us
that for a fixed value of electric charge, the deflection angle
of the black hole reduces by growing the number of extra
dimensions. In Fig. 7b we see that for a fixed value of n, the
deflection angle of the black hole decreases by increasing
electric charge Q. However, as Fig. 7c shows, for n > 5 the
deflection angle curves of the black hole corresponding to
each value of Q coincide. This again shows that the effect
of the electric charge is dominated by the impact of extra
dimensions in the ALF charged black hole.

4.1.5 Constraints from EHT observations of M87*

Here we aim to compare the deduced shadow radius of the
higher-dimensional ALF charged black hole in EHM gravity
with the shadow size of supermassive black hole, M87%* cap-
tured by EHT. Within 1-0 (68%) confidence levels, one can
find that the shadow size of M87* supermassive black hole
captured by EHT lies within the interval [167]
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Fig. 7 The behavior of deflection angle of the higher-dimensional ALF charged black hole in EHM gravity in terms of & for different values of n

and Q

4.31 < R mg7+ < 6.08. (62)

Comparing this with the shadow size of the higher-dimensional
ALF charged black hole in EHM gravity enables us to con-
strain the electric charge values.

Figure 8 indicates the behavior of the shadow radius of the
higher-dimensional ALF charged black hole in EHM gravity
in comparison with the EHT’s shadow size of M87* within
1-o uncertainties given in Eq. (62) versus the electric charge.
In Fig. 8, the white (unshaded) region denotes the 1-o confi-
dence level while the brown (shaded) areas are the excluded
regions, which are incompatible with the EHT observations
associated with shadow radius of M87*. From Fig. 8§, we
see that the shadows of the higher-dimensional ALF charged
black hole in EHM gravity associated withn = 5,..., 11
are incompatible with the observations of EHT. However, the
shadow of the ALF charged black hole in EHM gravity with
n = 4 lies in the 1-0 confidence level, so that in the range
0 < QO < 1.8 the shadow radius of the four dimensional
black hole in EHM gravity has a good consistency with EHT
observations. Moreover, like Table 1 and Fig. 5a, we see
from Fig. 8 that decreasing the electric charge value leads
to reduce the shadow radius of the four dimensional ALF
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Fig. 8 The shadow radius of the higher-dimensional ALF charged
black hole in EHM gravity in comparison with the shadow size of M87*
captured via EHT within 1-o confidence level versus the electric charge.
The brown (shaded) area is the excluded region, which is inconsistent
with the observations of EHT, while the white (unshaded) region is the
1-0 confidence level of EHT data

charged black hole. The decreasing the electric charge, how-
ever, has no effect on the shadow of the higher-dimensional
ALF charged black hole in EHM gravity associated with
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n =35, ..., 11 since the impact of the electric charge in com-
parison with the extra dimension effect can be eliminated.

4.2 ALAAJS charged black hole with extra dimensions

Due to the complexity of the metric coefficients of the
ALAAdS charged black hole in EHM gravity with extra dimen-
sions, we consider n = 4 in addition to two odd dimen-
sions, n = 5 and n = 7. Moreover, based on the previ-
ously mentioned condition (@ + yA) < O for the ALAdS
case, we utilize two different sets (¢« = 0.01, y = 0.51)
and (¢ = 0.015, y = 0.81) by considering five differ-
ent values for the negative cosmological constant, A =
—0.02, —0.04, —0.06, —0.08, and —0.10. Moreover, we set
Q = 0.5 to study the impact of extra dimensions and the
negative cosmological constant.

4.2.1 Effective potential

As mentioned before, the effective potential plays a key role
in studying shadow. We can find the effective potential for
the ALAdS charged black hole with extra dimensions by
inserting Eqgs. (11)—(13) together with (14) for n = 4, and
(15) forn = 5 and n = 7 into Eq. (37), which for n = 4
yields

(K+L?
12r9(4 + By)?

4r* (4 + ,3)/)2 (3gzr2 + 1)2
Verr =

(68%r*(4+By) —q> + 8r2)2
2
X ( —V3r3cot™! [«/ggr] (3g2q2 — 2,8)/) g71
+q* (9877 = 1) + 48477 + 127 (4 + By)
x (r (=B + 2@+ By) +4)

—u4+ ﬂy))) - Ez} (63)

and for n = 5 and n = 7 results in

(11—2)2(4—{—;8)/)2 (gzrz(n— 1)+n—3)2
(£2r2 (=2 (n=1)(4+By) —g?rS~ ' +4(n=3)(n-2))’

(K+L?) w o 8g%r2(2 4+ By) + 16
N2\ T s 4 2
r r @+ By)

Verr =

+ 2°
(n—2)(n —3)(4+ By)r¥n=o
_ 2By (n — 3)g*
22— 12(n —2)(4 + By)2r2n—4
(n=3)@+ By’
«F| |:1’ n-l—l; n+3; (n— 1)g2r2:|
2 2 3—n

_|_

2By (n —3)*q*
+g4(n T D0 — D2 —2)(d+ By)irn—2?

[ n+1 n+3 3—n
xFy |1, ; ;
L 2 2 (n —1)g%r?
g*(n— (n —2)2(3n — T)(4 + By)?r2@n=3
[ 3n—7 3n—-5 3—n 2
xFyi |1, ; ; — E“;.
L 2 2 (n —1)g2r?

(64)

Figure 9 is the illustration of the effective potential versus
r for the ALAdS charged black hole with higher dimensions
for different values of n and A for which we utilized the set
(¢ = 0.01, y = 0.51). We see from Fig. 9a that for the
fixed value of the cosmological constant A = —0.02, the
effective potential for the higher-dimensional ALAdS black
hole (like ALF one) in EHM gravity increases by grow-
ing n. Furthermore, Fig. 9b—d show that for a fixed value
of n, increasing the value of A (i.e., decreasing its abso-
lute value) leads to amplify the effective potential for the
higher-dimensional ALAdS charged black hole. This ampli-
fication becomes more remarkable by increasing the number
of dimensions n since in Fig. 9d for n = 7, the curve of
effective potential related to A = —0.02 has much larger val-
ues than the corresponding ones in Fig. 9b, c. Consequently,
form Fig. 9, we find that the number of extra dimensions
together with the cosmological constant have simultaneously
an amplifying impact on the effective potential for the higher-
dimensional ALAdS charged black hole in EHM gravity.

4.2.2 Geometrical shapes of shadow

One can characterize the geometrical shape of the shadow of
the ALAdS charged black hole in EHM gravity with extra
dimensions on the observer’s frame utilizing the celestial
coordinates. Applying Eqgs. (12) and (13) together with (14)
forn = 4, and (15) forn = 5 and n = 7 onto Eq. (39) results
in the radius of the photon sphere of the black hole. Also,
one can gather the radius of shadow circles of the ALAdS
black hole in EHM gravity with higher dimensions through
inserting Eqs. (11)—(13) together with (14) for n = 4, and
(15) forn = 5 and n = 7 into Eq. (42) and making use of
Eq. (44). The numerical data associated with ry, rej, and rg
for different values of A and n utilizing the considered set
(¢ =0.01, y = 0.51) are provided in Table 2.

Using the data collected in Table 2, we illustrate of
the shadow shapes in celestial coordinates of the higher-
dimensional ALLAdS black hole in EHM gravity in Fig. 10.
Each plotin Fig. 10is illustrated for a fixed value of A. We see
from Fig. 10 that when the cosmological constant A is fixed,
the radius of shadow circles of the ALAdS charged black
hole (like ALF one) decreases with increasing the number of
dimensions.
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Fig. 9 The graph of radial evolution of the effective potential for the higher-dimensional ALAdS charged black hole in EHM gravity for different
values of n and A in which we set Q = 0.5 and M = 1 using the set (o« = 0.01, y = 0.51)

Table 2 Numerical values of r, r.j,, and ry of the higher-dimensional ALAdS charged black hole in EHM gravity for different values of A and n

considering the set (¢ = 0.01, y = 0.51)

n A =-0.02 A =-0.04 A =—0.06 A =—-0.08 A =—-0.10

I Teh ro I Teh ro I Teh ro I Teh ro I Yeh ro
n= 0.1767 1.94 298 0.17669 4.66 943 0.17666 7.27 0.17664  8.79 0.17661 9.74
n= 0.19367 0.92 1.307 0.19366 1.13  1.61 0.19365 1.301 1.86 0.19365 145 2.08 0.19364 1.58 2.28
n=7 0290929 0.76 0.1 0.290926 0.84 1.1 0.290923 0.9 1.19 0.29092 095 1.25 0.290917 0.99 1.31

Now by fixing the number of dimensions n, we plot the
shadow circles of the ALAdS charged black hole with extra
dimensions in EHM gravity in Fig. 11 for different values of
A. From Fig. 11, we can obviously find that decreasing the
value of the negative cosmological constant (i.e., increas-
ing its absolute value) results in remarkably growing the
radius of the shadow circles of the ALAdS charged black
hole. This means that turning off the cosmological constant
yields smaller shadow sizes. Consequently, for the higher-
dimensional charged ALAdS black hole in EHM gravity,
from Figs. 10 and 11, we can see that the impact of the extra
dimensions (cosmological constant) on the shadow of the
black hole is to reduce (amplify) its size.

@ Springer

4.2.3 Energy emission rate

One can insert r,;, values from Table 2 into Eq. (19) to find
numerical values of the Hawking temperature of the ALAdS
extra dimensional black hole in EHM gravity. Then, the
numerical values of oyi;, in Eq. (45) for different A and n
from the values of the shadow radius /1 + £2 of the black
hole should be found. Consequently, one can find the expres-
sions of the energy emission rate in terms of different values
of A and n associated with the higher-dimensional ALAdS
black hole in EHM gravity by inserting the Hawking temper-
ature and o7;,, values into Eq. (46).

Figure 12 is the illustration of the energy emission rate for
the charged ALAAS higher-dimensional black hole in EHM
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Fig. 12 The energy emission rate as a function of @ for the higher-dimensional ALAdS charged black hole in EHM gravity for different values

of n and A

gravity in terms of the emission frequency @ . In Fig. 12a the
behavior of the energy emission rate is shown for the fixed
value of the cosmological constant A = —0.02 associated
with n = 4,5, and 7. Additionally, Fig. 12b, c are related to
n = Sandn = 7, respectively. From Fig. 12a we see that for a
fixed value of A, growing n results in significantly increasing
the energy emission rate of the ALAdS charged black hole
with extra dimensions. Thus, like ALF charged black hole,
we found out that extra dimensions accelerate the evaporation
of the ALAdS charged black hole with higher dimensions.
Moreover, From Fig. 12b, ¢ we see that for a fixed value of
number of dimensions n, decreasing A (i.e., increasing its
absolute value) results in reducing the energy emission rate
of the ALAdS charged black hole with extra dimensions.
This means that turning off the cosmological constant leads
to amplify the energy emission rate. Also, the curves of the
energy emission of the black hole in Fig. 12c associated with
n = 7 have larger values than the corresponding ones in
Fig. 12b for n = 5. Consequently, the impact of the cos-

@ Springer

mological constant is to reduce the energy emission rate of
the charged ALAdS higher-dimensional black hole, which
results in decelerate its evaporation while the effect of extra
dimensions is to accelerate it.

4.2.4 Deflection angle

We apply Egs. (11)—(13) and (15) for odd n’s for simplicity
on Egs. (48) and (49) to gain the Gaussian optical curvature
for the higher-dimensional ALAdS charged black hole. The
Gaussian optical curvature of the black hole up to the first
order in source mass and cosmological constant and second
order in electric charge and again second order in coupling
constants y and «, can be found as follows

- —8(n — 3)w!r2n
T Y2 =3 (-2 — H(n+ 1)

x {azM(n —3)n—2)%n* - D(n —4)
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Furthermore, the surface element of the optical metric (48)
for the higher-dimensional ALAdS charged black hole in
EHM gravity corresponding with the metric coefficients
(11)—(13) and (15) for odd n’s can be found approximately
as the same as Eq. (60). Now, by inserting Eqs. (60) and
(65) into the deflection angle expression (53), one can get
approximately the deflection angle of the higher-dimensional
ALAAS black hole in EHM gravity as follows

i [e¢]
(—):—/ / KdS
0 £

sing

m o0
= —/ / Krdrd¢
0o J-E
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g4—4n

~

T =32 -2

5602M(n — 5)(n — 3)(n — 2)z ‘7" £330 [258]
- 20— 7)
3J/maA(n —2)T [#52]
y(n — 1)3T[2n — 4]
T7—2n

s40m 5 Q222 (1 [22]) T [ 252 ]
(n + DI'[n]

+ (66)

Figure 13 is the illustration of the deflection angle of the
higher-dimensional ALAdS black hole in EHM gravity ver-
sus the impact parameter & with respect to A = —0.02 and
n = 5 for simplicity. From Fig. 13, we see that reducing the
impact parameter £ again results in increasing the deflection
angle of the black hole.

2.x107%}%
1.5x107¢
1.x107¢

5.x1077

6 8 10 12
3

Fig. 13 The behavior of deflection angle of the higher-dimensional
ALAGJS black hole in EHM gravity in terms of & forn = 5 and A =
—0.02

4.2.5 Constraints from EHT observations of M87*

Now we want to compare the shadow radius of the higher-
dimensional ALAdS charged black hole in EHM gravity with
the shadow size of M87* supermassive black hole captured
by EHT in Eq. (62) to constrain the cosmological constant
values and coupling constants of the EHM theory.

Figure 14 shows the behavior of the shadow radius of
the higher-dimensional ALAdS charged black hole in EHM
gravity in comparison with the shadow radius of M87* given
by EHT within 1-o uncertainties as seen in Eq. (62). In
Fig. 14, the white (unshaded) region indicates the 1-o confi-
dence level while the brown (shaded) areas are the excluded
regions, which are inconsistent with the observations of EHT
related to the shadow radii of M87*. In Fig. 14a, b utilizing
the sets (¢ = 0.01, y = 0.51) and (« = 0.015, y = 0.81),
respectively, the comparison between the shadow radius
of the higher-dimensional ALAdS charged black hole and
MS87* is shown versus the cosmological constant. From
Fig. 14a we see that for n = 4, the shadow radius of the
black hole is in consistence with M87* shadow for 0 < A <
—0.025 while forn = 5 and n = 7 such a consistency can be
seen in —0.05 < A < —0.07 and —0.09 < A, respectively.
Comparing Fig. 14a and Fig. 14b shows that these ranges
shift a bit towards larger values of A while the values of the
shadow radius of the black hole experiences a tiny amplifi-
cation by increasing « and y in Fig. 14b. It should be noted
that Fig. 14a, b show that omitting the cosmological constant
leads to reduction of the shadow radius of the black hole.
Moreover, Fig. 14c is for comparison between the shadow
radii of the higher-dimensional ALAdS charged black hole
and M87%* versus the coupling constant y with respect to the
set (@ = 0.015, A = —0.10). From Fig. 14c, we see that for
n = 4, the shadow radius of the black hole is compatible with
MS87* shadow in the range 0.12 < y < 0.17 while forn = 5
and n = 7 such a compatibility appears in 0.26 < y < 0.36
and 0.46 < y, respectively. Also, Fig. 14c indicates that
increasing the coupling constant y leads to amplification of
the shadow radius of the black hole. Additionally, Fig. 14d is
for comparing the shadow radius of the higher-dimensional
ALAAdS charged black hole and M87%* versus coupling con-
stant o using the set (y = 0.51, A = —0.10). InFig. 14d, we
see that for n = 4, the shadow radius of the black hole is com-
patible with M87% shadow in the interval 0.03 < o < 0.044
while for n = 5 and n = 7 such a compatibility appears
in 0.016 < o < 0.02 and @ < 0.012, respectively. We see
from Fig. 14d that increasing the coupling constant « results
in reducing the shadow size of the black hole. The key point
here is that from Fig. 14 one can expect that the extra dimen-
sions, especially n = 5 can be apparently observed from
the shadow of black holes captured by EHT thanks to the
presence of the cosmological constant in the EHM theory.
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Fig. 14 The shadow radius of the higher-dimensional ALAdS charged
black hole in EHM gravity in comparison with the shadow size of M87*
captured via EHT within 1-0 confidence level. The brown (shaded)

5 Summary and conclusions

In this study, according to string theory, braneworld mod-
els, and AdS/CFT correspondence, we motivated to take into
account the higher-dimensional ALF and ALAdS charged
black hole solutions of the EHM theory to investigate
the behaviors of the corresponding shadow and deflection
angle. Our main goal was to discover how extra dimen-
sions and the other parameters of the theory affect the
shadow of the black holes. To do this, we first provided the
required general formalism to study the shadow behavior of
these higher-dimensional black holes utilizing the Hamilton—
Jacobi approach and Carter method to formulate the null
geodesics around them and derive the corresponding effec-
tive potentials. Next, we introduced the celestial coordinates
to specify the shadow shape of the higher-dimensional black
holes on the observer’s sky. We also estimated the energy
emission rate and deflection angle formulas in the higher-
dimensional scenario. Additionally, we introduced the black
hole shadow observables including shadow size and dis-
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level of EHT data

tortion, as well as shadow area and oblateness proposed
by Hioki-Maeda and Kumar-Ghosh proposals, respectively.
Then, employing the constructed framework, we studied
the shadow behavior, deflection angle, and energy emission
rate of the ALF and ALAdS charged black holes in EHM
gravity with extra dimensions. We computed and analyzed
the significant impacts of the electric charge, cosmological
constant, and extra dimensions on the shadow, deflection
angle, and energy emission rate of the black holes within the
setup. Moreover, we constrain these parameters by compar-
ing the shadow size of M87* from EHT observations with the
shadow radius of the higher-dimensional ALF and ALAdS
charged black holes.

For the higher-dimensional charged ALF case, we discov-
ered that for a fixed value of the electric charge Q, the shadow
size of the black hole decreases with increasing the number
of extra dimensions n. Also, when the electric charge value
increases with a fixed n, the shadow size of the black hole
again decreases, whereas the effect of the electric charge in
comparison with extra dimensions on the shadow of charged
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higher-dimensional ALF black hole is suppressible. Also, we
saw that for a fixed value of Q, the energy emission rate of
the ALF charged black hole with extra dimensions extremely
increases by growing n. Also, growing the electric charge
increases the energy emission rate, but its effect can be elim-
inated. Therefore, we found that extra dimensions accelerate
the evaporation of the ALF black hole in EHM gravity with
higher dimensions. Then, using the Gauss—Bonnet theorem,
we have calculated the leading terms of the deflection angle in
the weak-limit approximation. We have discussed the impact
of charge and the extra dimensions on this optical quantity.
It was obvious that for a fixed value of the electric charge,
the deflection angle of the ALF black hole in EHM grav-
ity with extra dimensions reduces by growing the number of
dimensions. Also, for a fixed value of n, the deflection angle
of the black hole decreases by increasing the electric charge
Q. However, the effect of the electric charge is dominated
by the impact of extra dimensions on the deflection angle
of the black hole. Furthermore, by comparing the shadow
radius of the black hole with M87* shadow released by EHT,
we observed that only the shadow of four dimensional ALF
charged black hole with 0 < O < 1.8 lies in the 1-0 uncer-
tainties of EHT data.

On the other hand, for the higher-dimensional ALAdS
charged black hole in the EHM gravity we observed that
when the negative cosmological constant A is fixed, the radii
of shadow circles of the higher-dimensional ALAdS charged
black hole decrease by increasing the number of extra dimen-
sions n. However, for a fixed n, the shadow radius of the
higher-dimensional AL AdS charged black hole increases by
decreasing the negative cosmological constant (i.e., increas-
ing its absolute value). Also, we found that for a fixed value
of A, the energy emission rate of the ALAdS charged black
hole with extra dimensions extremely increases by grow-
ing n, whereas for a fixed n, the energy emission rate of
the black hole decreases by decreasing the negative cosmo-
logical constant (i.e., increasing its absolute value). Hence,
we found that extra dimensions and negative cosmological
constant accelerate the evaporation of the ALAdS charged
black hole with higher dimensions. Moreover, we observed
that increasing the coupling constant y of the EHM gravity
leads to amplify the shadow radius of the black hole whereas
increasing the coupling constant « of the theory results in
reducing the shadow size of the black hole. Surprisingly, by
comparing the shadow of M87* captured by EHT with the
shadow of the black hole, we proved that the four, five, and
seven dimensional ALAdS charged black hole are compat-
ible with EHT data thanks to the presence of the negative
cosmological constant.

In summary, we can came to conclusion that the shadows
of higher-dimensional ALF and ALAdS charged black holes
in EHM theory are characterized by the extra dimensions in
addition to their parameters. In this regard, the extra dimen-

sions within EHM theory affect the shadows of the black
holes by reducing their size, significantly. On the other hand,
owing to the existence of the negative cosmological constant
within EHM theory, we concluded that it seems possible to
detect the effects of the extra dimensions via EHT. The key
point here is that from Fig. 14, one can expect that the extra
dimensions, especially n = 5 can be apparently observed
from the shadow of black holes captured by EHT thanks
to the presence of the cosmological constant in the EHM
theory. These outcomes may lead to the possibility of testing
the higher-dimensional charged black hole solutions of EHM
gravity by employing astrophysical observations.
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