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Abstract Supermassive black holes from the center of
galaxy may be immersed in a dark matter halo. This dark
matter halo may form a “cusp” structure around the black
hole and disappear at a certain distance from the black hole.
Based on this interesting physical background, we use the
continued fraction method to study gravitational ringring of
the Kerr-like black holes immersed in a dark matter halo, i.e.,
quasinormal modes (QNM) and quasibound states (QBS).
We consider these gravitational ringring of black holes both
in cold dark matter (CDM) model and scalar field dark mat-
ter (SFDM) model at the LSB galaxy, and compare them
with Kerr black hole. By testing the states of QNM/QBS fre-
quencies with different parameters l,m, a, we confirm the
existence of the superradiant instabilities when the black
holes both in CDM model and SFDM model. Besides, we
also study the impacts of dark matter parameters on the
QNM/QBS of black holes at the specific circumstances. In
the future, these results may be used for gravitational wave
detection of supermassive black holes, and may provide an
effective method for detecting the existence of dark matter.
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1 Introduction

Now, there is a large number of observational data indi-
cating the existence of dark matter (DM), such as the cos-
mic microwave background radiation (CMBR), the rotation
curves (RC) of the galaxies and the large-scale structure of
the universe. Based on these observational data, astronomers
have proposed lots of dark matter models. Among all these
dark matter models, cold dark matter (CDM) model [1,2] and
scalar field dark matter (SFDM) model have received much
attention. In these dark matter models, the most important
part is to obtain the spatial density distribution function of
dark matter. At present, the distribution of dark matter in
the large-scale structure of galaxies is clear [3]. However,
the distribution of dark matter around supermassive black
holes (BHs) is unclear [4]. Therefore, studying the distribu-
tion of dark matter around black holes is a very significant
project. The dark matter around the black hole is usually char-
acterized by its density parameter and characteristic radius.
It is generally believed that the distribution of dark matter
around black holes is a big “spike” [5–7]. Fortunately, with
our efforts, we have derived black hole (BH) spacetime met-
rics both in a dark matter halo [8] and a dark matter spike [9],
respectively, and generalized them to the case of rotation. In
addition, through the black hole photos released by the Event
Horizon Telescope (EHT) [10] and the observation of gravita-
tional waves by the Laser Interferometer Gravitational Wave
Observatory Scientific Collaboration and Virgo Collabora-
tion (LIGO Scientific/Virgo) [11–14], the existence of black
holes can be basically determined.
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On the other hand, the term “black hole” was originally
coined by Wheeler [15]. For a black hole, he proposed the
famous “No-hair theorem” [16]. The object described by
the No-hair theorem is a static isolated black hole. How-
ever, in our universe, it is hard to find an isolated black
hole, suggesting that there may be various complex mat-
ter fields around the black hole, causing the black hole to
be in a perturbed state. When a black hole is perturbed by
the matter field, its initial perturbation can be represented by
a complex frequency of excited oscillation mode, which is
so-called quasinormal modes (QNM) [17]. This perturbation
is usually divided into three stages, the second stage is the
QNM. Vishveshwara show that when a black hole is in a per-
turbed state, it can emit gravitational waves [18]. And this
kind of gravitational wave is just dominated by the QNM
with a complex frequency. The real part of this frequency
represents the oscillation frequency of the black hole when
perturbed, while the imaginary part represents the rate of
oscillation, also known as damping [19]. This QNM mode is
directly related to the oscillating properties of black holes, so
the study of QNM is helpful to understand the information
about black holes. Besides, this QNM is an important source
of gravitational waves from the supernova collapse. Kostas
D. Kokkotas et al. show that the gravitational collapse of mas-
sive rotating stars and the merger of the binary star system
can generate gravitational waves which are directly related to
the QNM [20]. Now, there are many methods to calculate the
QNM, such as WKB method [21,22], Pöschl–Teller poten-
tial approximation [23–25] and continued fraction method
[26,27]. The QNM is a characteristic “sound” of a black
hole which can provide us with a new method to verify a
black hole in our universe [19].

Besides, according to the fact that no matter can escape
from a black hole, the solution at the event horizon of the
black hole is a pure incoming wave. However, for the behav-
ior of the solution of the equation at infinity, it can be divided
into two types. One of types is QNM we introduced before
and another is the quasibound states (QBS). The solution of
QNM is a pure outgoing wave when it is far away from the
black hole, while QBS is only shown as an exponential decay
when it is far away from the black hole [27]. According to
the superradiant phenomenon, a rotating black hole produces
wave amplification, and when the perturbation field is large,
the superradiant phenomenon can cause instability [28]. This
superradiant instability is closely related to the existence of
QBS, which may have important astrophysical implications.
Besides, if a rotating black hole is trapped inside an perfectly
reflective cavity, it can cause a phenomenon called the “black
hole bomb” [29,30]. That’s because any initial perturbations
would be magnified near the black hole and reflected back
to the mirror, creating instability, which grows exponentially
with the time. Through this amplified scattered wave, we
can extract certain rotational energy from the ergosphere of

the black hole. However, it should be noted that the rota-
tion energy of a black hole is limited, and the process of
extracting energy should take into account the backreaction
effects. In fact, these studies show that Kerr black holes are
prone to instabilities under massive fields because the mass
term effectively suppresses the field [31–34]. Here, what we
are interested in is whether the massive field of the Kerr-like
black hole in the dark matter halo will also produce the insta-
bility similar to the black hole bomb. This is one of our study
points.

In recent years, the QBS of black holes [35–41] and the
QNM [42–53] have been extensively studied. Among the
recent researches connected to our work, we list the follow-
ing papers. In Ref. [27], they study the instabilities of rotat-
ing black holes in the massive scalar field. Richartz et al. use
the scalar field perturbation to study the eigenfrequencies of
the Kerr-like black holes [28]. Besides, with the release of
black hole photos, people are also increasingly concerned
about the interaction of other celestial bodies (or matter)
around the black hole [54,55]. Cardoso et al. introduce an
exact solution for a black hole immersed in a galactic-like
distribution of matter and use gravitational perturbations to
study the quasinormal modes of this black hole [56]. Based
on this, Konoplya studies the matter field perturbations, the
greybody factors and the Unruh temperature [57] of the exact
solution of this black hole. On the other hand, an interest-
ing and important question is how these parameters of dark
matter affect the QNM/QBS. These dark matter parameters
generally come from different galaxies, and they are usually
the results obtained through fitting processing on the basis
of observation data [58,59]. In recent years, the research on
black hole immersed in dark matter and Schwarzschild black
has received extensive attention [60–64]. Zhang et al. stud-
ied the QNM of a spherically symmetric black hole in a dark
matter halo using gravitational perturbation [65,66]. How-
ever, there are relatively few studies between black hole in
dark matter and Kerr black hole. Comparing the differences
between them is also a meaningful and important work. As
the QNM/QBS of the Kerr black hole have become more
familiar, these comparisons can help us understand black
holes in a dark matter halo to some extent. So, in this paper,
we will also try to study these questions. In the longer term,
with the rapid development of gravitational wave detectors
in the future, it is possible to detect signals from such black
holes immersed in dark matter, which also provides an effec-
tive method for testing dark matter models.

In this paper, we mainly use the scalar field perturbation
to study QNM/QBS of the Kerr-like black holes in a dark
matter halo, and use the continued fraction method to calcu-
late QNM/QBS frequencies. For the same time, these results
are compared with the Kerr black hole. We will also analyze
and verify the existence of the superradiant instabilities of
black holes. In addition, we will also study the impacts of
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dark matter parameters on the QNM/QBS of black holes at
the specific circumstances. This work is an in-depth study
based on our previous work [67–69]. Although these previ-
ous works are on spherically symmetric black holes, these
valuable experiences give us enough confidence to solve the
case of axisymmetric black holes.

This paper is organized as follows. In Sect. 2, we briefly
introduce the spacetime properties of Kerr-like black holes in
a dark matter halo, and the discussion of extremal black holes
of them. In particular, we unify the dark matter parameters
into the black hole units. In Sect. 3, we introduce scalar field
perturbation of this Kerr-like black holes, and show that how
to use ansatz to decompose the complex perturbation equa-
tions into radial and angular equations. In Sect. 4, we mainly
introduce the continued fraction method, which includes the
asymptotic solution of the Kerr-like black hole oscillation
behavior at the specific boundary conditions, the derivation of
the 3-term recurrence formula of the radial/angular equations
and the continued fraction equation. In Sect. 5, we mainly use
the continued fraction method to calculate the QNM/QBS
frequencies of the Kerr-like black holes both in CDM/SFDM
models, and compare their results with Kerr black hole. At
the same time, we will verify the existence of superradi-
ant instabilities and give the figures of the maximum insta-
bilities of the Kerr-like black holes in a dark matter halo.
In addition, we will also study the impacts of dark matter
parameters on the QNM/QBS of black holes at the specific
circumstances. Finally, Sect. 6 is our conclusions and discus-
sions. In this paper, we use mostly the black hole units that
G = c = MBH = rBH = 1 and the radius of black hole (BH)
is given by rBH = GMBH/c2.

2 The spacetime of the Kerr-like BHs in a dark matter
halo

In this section, we will review the Kerr-like black hole metrics
we obtained in a dark matter halo [8]. Both of them have the
following form in four-dimensional coordinates,

ds2 = −
(

1 − r2 + 2Mr − r2 f (r)

�2

)
dt2

+ �2

�
dr2 + �2dθ2 + A sin2 θ

�2 dφ2

− 2(r2 + 2Mr − r2 f (r))a sin2 θ

�2 dφdt,

(2.1)

with

� = r2 f (r) − 2Mr + a2, �2 = r2 + a2 cos(θ)2,

A =
(
r2 + a2

)2 − a2� sin2 θ, (2.2)

where, M is the mass of a black hole and a is the rotation
parameter. f (r) represents the factor term for considering

dark matter. For cold dark matter (CDM) model, f (r) has
the form of the following,

fc(r) =
(

1 + r

Rc

)− 8πρcR3
c

r

, (2.3)

and for scalar field dark matter (SFDM) model, f (r) has the
form of the following,

fs(r) = exp

(
−8ρsR2

s

π

sin(πr/Rs)

πr/Rs

)
, (2.4)

here, the parameter ρ is the density of the universe when a
dark matter halo collapses, and R means its characteristic
radius in this halo.

The corresponding dark matter parameters from the dif-
ferent galaxies have been fitted by the Authors in these Refs.
[58,59], and we present some of the dark matter parame-
ters in Table 1. As can be seen from this table, these dark
matter parameters correspond to specific galaxies. They are
the result of a fit to the observed data. Here, we mainly take
the Low Surface Brightness (LSB) galaxy ESO1200211 as
our research object, and compare it with Kerr black hole.1

The mass of black hole at the center of the LSB galaxy
is approximately MBH = 5.62 × 106M⊙ [70]. For CDM
model in the galaxy ESO1200211, the density parameter
ρc = 2.45 × 10−3 M⊙/pc3 and the characteristic radius
Rc = 5.7 kpc. The values of Rc and ρc in black hole units
are Rc = 5.7kpc/(G × MBH/c2) ≈ 2.05 × 1010rBH =
2.05 × 1010 and ρc = 2.45 × 10−3M⊙/pc3/(MBH/(4/3 ×
π×(G×MBH/c2)3)) = 3.90×10−29ρBH = 3.90×10−29×

MBH
4/3×π×r3

BH
≈ 9.33 × 10−30. For SFDM model in the galaxy

ESO1200211, the density parameter ρs = 13.66 × 10−3

M⊙/pc3 and the characteristic radius Rs = 2.92 kpc.
The values of Rs and ρs in black hole units are Rs =
2.92kpc/(G × MBH/c2) ≈ 1.05 × 1010rBH = 1.05 × 1010

and ρs = 13.66 × 10−3M⊙/pc3/(MBH/(4/3 × π × (G ×
MBH/c2)3)) = 2.17 × 10−28ρBH = 2.17 × 10−28 ×

MBH
4/3×π×r3

BH
≈ 5.20 × 10−29. In this way, all the black hole

parameters in Eq. (2.1) are guaranteed to be in black hole
units. On the other hand, if the impacts of dark matter on
black holes is not considered, that is, ρ = 0, then the dark
matter term will become f (r) = 1. The Kerr-like black hole
metric in a dark matter halo will degenerate into the Kerr
metric.

Besides, in these two black holes, the location of the event
horizons can be obtained from Eq. (2.2),

� = r2 f (r) − 2Mr + a2 ≈ (r − r+)(r − r−), (2.5)

1 Unless otherwise specified, in the following discussion, the values we
used of the density parameter ρc/s and characteristic radius Rc/s both in
CDM/SFDM models are selected from the LSB galaxy ESO1200211.
The subscripts c and s represent the first letters of CDM model and
SFDM model, respectively.
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Table 1 The values of density parameters ρ and characteristic radius R from different galaxies in CDM model and SFDM model. These data are
excerpted in the galaxies from Refs. [58,59]

Galaxies ESO1200211 ESO1870510 ESO3020120 ESO3050090 ESO4880049

(×10−3M⊙/pc3; kpc) ρ R ρ R ρ R ρ R ρ R

The CDM model 2.45 5.7 0.761 31.82 2.65 19.72 0.0328 705.67 1.42 52.27

The SFDM model 13.66 2.92 32.55 2.93 22.74 8.86 21.50 4.81 54.29 5.36

Fig. 1 The functional image of � as a function of independent vari-
able r in CDM model (left panel), SFDM model and the Kerr space-
time (right panel), respectively. The function image of � for different
rotation parameters a are given in each panel. The main calculation

parameters are M = 1, ρc = 2.45 × 10−3 M⊙/pc3, Rc = 5.7 kpc,
ρs = 13.66×10−3 M⊙/pc3, Rs = 2.92 kpc. We have converted these
main calculation parameters to the black hole units before plotting

where, r+ and r− are the outer and inner horizon of this rotat-
ing black hole, respectively. Here, we also present pictures
of the root of the � function for these three types of event
horizon in Fig. 1. We find that with the rotation parameter a
increases, the roots of the � function gradually change from
two to one, and then to zero. This process indicates the transi-
tion from a rotation black hole to an extremal black hole. For
the case of extremal black hole, it appears as the coincidence
of the inner and outer horizons, and thermodynamically, it
appears as Hawking temperature equals to zero [71]. Next,
let’s calculate the extremal value of the rotation parameter a
of the extremal black hole. Using the following ansatz, a2 can
be rewritten as a function of r in black hole units (M = 1),

a2(r) = −r2 f (r) + 2r. (2.6)

According to the definition of Eq. (2.6), the coefficient of
the highest order term of the independent variable r is neg-
ative. Then, the functional image of Eq. (2.6) opens down-
wards and then this function has a maximum value. So, the
extremal value of the rotation parameter a can be transformed
into the maximal value of Eq. (2.6). At this time, we only need
to solve its first derivative, that is, da2(r)/dr = 0. Then, tak-
ing the maximum value r back into Eq. (2.6) to get the maxi-
mum value ofa2. Finally, after square root, the extremal value
of the rotation parameter a can be obtained. In black hole
units, for CDM and SFDM models, the rotation parameters
obtained by the numerical calculation are ac ≈ 1.00000021
and as ≈ 1.000000031 with the mass M = 1. The rotation
parameter of black hole in a dark matter halo are very close
to those of Kerr black hole (ak = 1), but they are larger than

that of Kerr black hole. Note that Eq. (2.5) approximates
the transcendental function with a quadratic function. As an
example, we will discuss and analyze the possibility of this
approximation mainly from f (r) and �(r) with the param-
eters ρc = 2.45 × 10−3 M⊙/pc3, Rc = 5.7 kpc in CDM
model and the parameters ρs = 13.66 × 10−3 M⊙/pc3,
Rs = 2.92 kpc in SFDM model. Firstly, for f (r), we plot
the functional image of f (r) in CDM and SFDM models in
Fig. 2, as a function of r . Our results show that f (r) is almost
f (r) = 1 over the whole space, but slightly less than 1. The
biggest difference δ f (r) between fc/s(r) and f (r) = 1 is
approximately 1 × 10−7. In other words, it is possible to
replace this transcendental function with a quadratic func-
tion. However, to ensure the rationality of the results, we set
the minimum number of digits of precision of the calculation
results to 20 in the following discussion. Secondly, we set the
variable δ�(r) = r2 f (r) − 2Mr + a2 − (r − r+)(r − r−).
Then, we take the numerical results of the inner and outer
horizons into δ�(r), and record the results in the following
Tables 2 and 3. Our results show that within the scope of
the inner and outer horizons, the maximum difference δ�(r)
between the transcendental function and the quadratic func-
tion is approximately δ�(r) = 3.73×10−13, or even smaller.
This difference δ�(r) relative to �(r) itself is so small that it
is negligible. Therefore, based on these two points, in the dis-
cussion of this work, there is some rationality when Eq. (2.5)
is established. 2

2 Similarly, using this method we introduced above can test the ratio-
nality of other dark matter parameters within the Eq. (2.5).
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Fig. 2 The functional image of f (r) and δ f (r) of the Kerr-like black hole in SFDM, CDM models. The main calculation parameters are M = 1,
a = 0.5, ρc = 2.45 × 10−3 M⊙/pc3, Rc = 5.7 kpc, ρs = 13.66 × 10−3 M⊙/pc3, Rs = 2.92 kpc

Table 2 The variable δ�(r) with different rotation parameter a in SFDM model. The main calculation parameters are M = 1, ρs = 13.66 × 10−3

M⊙/pc3, Rs = 2.92 kpc

a r− r+ | δ�r+ | | δ�r− |
0.1 0.005012562893195716 1.9949874663047338 4.44089 × 10−16 1.89058 × 10−18

0.2 0.020204102883687628 1.9797952631424170 4.44089 × 10−16 4.66207 × 10−18

0.3 0.046060798566820020 1.9539392306311094 4.44089 × 10−16 2.86229 × 10−17

0.4 0.083484860953322430 1.9165151682446070 0. 2.77556 × 10−17

0.5 0.133974596064272700 1.8660254331336568 4.44089 × 10−16 1.04083 × 10−17

0.6 0.199999996350258800 1.8000000295629035 4.44089 × 10−16 0.

0.7 0.285857156310486860 1.7141428728874426 0. 1.38778 × 10−16

0.8 0.399999998053471400 1.6000000311444580 0. 1.11022 × 10−16

0.9 0.564110100316966000 1.4358899288809635 0. 5.55112 × 10−17

1.0 0.999879188422415000 1.0001208407755144 2.22045 × 10−16 0.

Next, to make our expression more compact, we continue
to use f (r) to represent the dark matter term. Then, we can
obtain a covariant metric tensor gμν from the Eq. (2.1),

gμν =

⎛
⎜⎜⎜⎜⎝

−(1 − r2+2Mr−r2 f (r)
�2 ) 0 0 − a sin2(θ)

(
r2+2Mr−r2 f (r)

)
�2

0 �2

�
0 0

0 0 �2 0

− a sin2(θ)
(
r2+2Mr−r2 f (r)

)
�2 0 0 A sin2(θ)

�2

⎞
⎟⎟⎟⎟⎠ . (2.7)

With the Eq. (2.7), we can calculate the determinant of
this metric,

g = det (gμν) = −�4 sin(θ)2. (2.8)

From Eqs. (2.7) and (2.8), we get the contravariant form
of the metric,

gμν =

⎛
⎜⎜⎜⎜⎝

− A
��2 0 0 ar(r f (r)−2M−r)

��2

0 �
�2 0 0

0 0 1
�2 0

ar(r f (r)−2M−r)
��2 0 0

(
r2 f (r)−2Mr−r2+�2)

��2 sin2(θ)

⎞
⎟⎟⎟⎟⎠ .

(2.9)

3 Scalar field perturbation of the Kerr-like BHs in a
dark matter halo

In this section, we will study the scalar field perturbation of
Kerr-like black hole and derive the radial and angular equa-
tions of scalar particles in a dark matter halo. In a curved
spacetime, the equation of the motion of scalar particles can
be described by the Klein-Gordon (K-G) equation,

1√−g
∂σ (

√−ggσν∂ν�) = μ2�, (3.1)

where μ is the mass of the scalar particle. With Eqs. (2.8)
and (2.9), we can get the following form,

123



565 Page 6 of 22 Eur. Phys. J. C (2023) 83 :565

Table 3 The variable δ�(r) with different rotation parameter a in CDM model. The main calculation parameters are M = 1, ρc = 2.45 × 10−3

M⊙/pc3, Rc = 5.7 kpc

a r− r+ | δ�r+ | | δ�r− |
0.1 0.0050125628921358140 1.9949876341954378 3.73923 × 10−13 4.48213 × 10−16

0.2 0.0202041028662000946 1.9797960942213726 1.99840 × 10−14 3.66699 × 10−15

0.3 0.0460607984734717900 1.9539393986141016 3.32179 × 10−13 7.67615 × 10−17

0.4 0.0834848606347179000 1.9165153364534340 1.06581 × 10−14 1.47920 × 10−14

0.5 0.1339745951943550600 1.8660256018932184 2.84217 × 10−14 2.51084 × 10−14

0.6 0.1999999975364056300 1.8000001995511679 4.84057 × 10−14 3.97529 × 10−14

0.7 0.2858571515078815500 1.7141430455796920 2.24709 × 10−13 4.17583 × 10−14

0.8 0.3999999868608307000 1.6000002102267428 3.55271 × 10−13 2.02061 × 10−14

0.9 0.5641100696751329000 1.4358901274124407 3.06422 × 10−13 2.34257 × 10−14

1.0 0.9996861816814463000 1.0003140154061272 1.02363 × 10−13 6.97220 × 10−14

− A

��2 ∂2
t � + ar(−2M − r + r f (r))

��2 ∂t∂φ�

+ 1

�2 sin(θ)
∂θ (sin(θ)∂θ )� + 1

�2 ∂r (�∂r )�

+ ar(−2M − r + r f (r))

��2 ∂φ∂t�

+ −2Mr − r2 + �2 + r2 f (r)

��2 sin(θ)2 ∂2
φ� = μ2�.

(3.2)

Equation (3.2) is a complex second-order partial differen-
tial equation, but it can be separated by using the following
ansatz,

�(t, r, θ, φ) = e−iωt eimφR(r)S(θ), (3.3)

where, m is the azimuthal quantum number and ω is the
frequency of this system. Therefore, we can get ordinary dif-
ferential equations about angular and radial parts. If we intro-
duce the variable x = cos θ , with x ∈ [−1, 1], the angular
part can be written as

(1 − x2)
d2S(x)

dx2 − 2x
dS(x)

dx

+
(

�lm + a2k2x2 − m2

1 − x2

)
S(x) = 0,

(3.4)

where, k2 = ω2 −μ2 and �lm is a separation constant. Equa-
tion (3.4) is also known as the spheroidal equation, and �lm

is the eigenvalue of this equation [72]. Normally, the eigen-
value �lm has no analytical expression in this case. A simple
method is to calculate its value by calling the Spheroidal
Eigenvalue command in Mathematica. However, in the case
of non-rotating limit, the spheroidal function can be reduced
to a spherical harmonic function, that is, Slm → Ylm , and
�lm = l(l + 1). The eigenvalue at this time can be uniquely
determined, and it is related to the angular quantum number
l.

Another is radial equation, and it can be written as

�2 d
2R(r)

dr2 + �
d�

dr

dR(r)

dr

+
(
K 2(r) − (λ + μ2

0r
2)�

)
R(r) = 0

(3.5)

where, � = (r − r+)(r − r−), K (r) = ω(r2 + a2) − am
and λ = �lm + a2ω2 − 2amω. There are two eigenvalues
�lm, ω in this equation. Among them, the eigenvalue ω is the
frequency of this system, which is a complex number. The
real part of the frequency represents the oscillation frequency
and its imaginary part represents the decay rate. Where, the
relationship between decay rate and time scale is τ−1 =
M × Im(ω), that is growth rate. To solve the radial equation,
we need to first determine the separation constant �lm in the
angular equation. In the following section, instead of using
the Mathematica function, we will demonstrate how to use
the numerical method to determine the eigenvalues both in
the angular and radial equations.

4 Continued fraction method

In this section, we will introduce the numerical method, that
is, the continued fraction method. The rotating black hole
is different from the general spherically symmetric black
hole because there are two eigenvalues �lm , ω unclear in
Eqs. (3.4) and (3.5). Up to now, the continued fraction method
is considered to be one of the most direct and effective meth-
ods to solve these eigenvalues. Among these two eigenval-
ues, ω is the specific frequency of the black hole in Physics,
and this frequency is related to the QNM/QBS [17,27]. So,
the continued fraction method also can be used to solve the
QNM/QBS of rotating black holes. This method was first
used by Leaver to study the QNM of the kerr black holes [26].
Next, we will strictly follow the continued fraction method
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used in these Refs. [26,27,36] and generalize it to apply to our
Kerr-like black holes. Firstly, from the angular equation (3.4),
we find that there are two regular singular points (x = −1
and x = 1) and one irregular singular point (x = ∞). There-
fore, their asymptotic behaviors at the location of the singular
points can be written as

lim
x→−1

S(x) ∼ (1 + x)
|m|
2 , lim

x→+1
S(x) ∼ (1 − x)

|m|
2 . (4.1)

Taking Eq. (4.1) into account, this eigenfunction S(x) to
Eq. (3.4) has the following series solution,

S(x) = exp(akx)(1 − x)
|m|
2 (1 + x)

|m|
2

∞∑
n=0

bn(1 + x)n (4.2)

Putting Eq. (4.2) into Eq. (3.4) for calculation, it can be
found that bn must satisfy the following 3-term recurrence
relation,{

α0b1 + β0b0 = 0,

αnbn+1 + βnbn + γnbn−1 = 0, n ≥ 1
(4.3)

where, b0 = 1 and the coefficients αn , βn , γn are as follows,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αn = −2(n + 1)(|m| + n + 1),

βn = −�lm + |m| (−2ak + 2n + 1)

−ak(ak + 2) + m2 + n2 − 4akn + n,

γn = 2ak(|m| + n).

(4.4)

If we define the convergence series Rn = bn/bn−1, the
recurrence relation can be rewritten as

Rn = −γn

βn + αn Rn+1
. (4.5)

With Eq. (4.3), we also have R1 = b1/b0 = −β0/α0.
So, we can get the main equation of the continued fraction
method,

0 = β0 − α0γ1

β1 − α1γ2

β2− α2γ3
β3−···

. (4.6)

Given a, k,m, these coefficients only depend on the eigen-
value �lm . So, the infinite continued fraction is an equation
for �lm , and �lm is a root of the continued fraction equation
or any of its inversions [26,72].

Similarly, a solution R(r) of the radial equation (3.5) can
also be found since it is a spherical wave equation with similar
boundary conditions as Eq. (3.4). Therefore, we can also use
the continued fraction method to solve the eigenfrequency
ω in Eq. (3.5) under the help of previous discussion. On the
other hand, for the perturbation theory of the black hole,
the essence of the radial equation can be simplified as a wave
equation. The solution to the wave equation is directly related
to the location of the boundary conditions of this system,
which at the event horizon and at infinity. For the behavior
away from the black hole, it can be divided into two types,

namely QNM and QBS. The solution of this equation is gen-
erally related to the oscillating mode of the matter field. QNM
and QBS are the modes with complex frequencies. Its real
part is the oscillation frequency of a black hole and the imag-
inary part is the decay rate of this oscillation. For the QNM,
its solution is usually represented by pure incoming waves at
outgoing waves at infinity. So, we require that

lim
r→r+

R(r) ∼ (r − r+)−iα, α = r2+ + a2

r+ − r−
(ω − m�),

lim
r→∞ R(r) ∼ exp(−k̄r)rβ−1, β = (r+ + r−)(μ2 − 2ω2)

2k̄
,

(4.7)

where, � = a/(r2+ + a2), k̄ = ±√
μ2 − ω2. For QNM, its

behavior is pure outgoing waves far away from the black hole
(Re(k̄) < 0) and for QBS, its behavior becomes exponen-
tially decay away from the black hole (Im(k̄) > 0) [27,28].

Now, back to Eq. (3.5), there are two regular singular
points (r = r+, r = r−) and one irregular singular point
(r = ∞) in this equation. Meanwhile, taking Eq. (4.7) into
account, the appropriate series solution has the following
form

R(r) = exp(−k̄r)(
r − r+
r − r−

)−iα(r − r−)β−1

∞∑
n=0

an(
r − r+
r − r−

)n,

(4.8)

Putting Eq. (4.8) into Eq. (3.5), it can be found that an
must satisfy the following 3-term recurrence relation,
{

α0a1 + β0a0 = 0,

αnan+1 + βnan + γnan−1 = 0, n ≥ 1
(4.9)

where, a0 = 1 and the coefficients αn , βn , γn are depend on
these two eigenvalues �lm and ω. Since these coefficients
are too complex, we do not show them here. The advantage
of Eq. (4.8) is that it changes the position of the singular
points in the complex plane so that, for the variable x̄ =
(r − r+)/(r − r−), the event horizon is at x̄ = 0, infinity is
at x̄ = 1, and the other singular points are outside the unit
circle. So, to find the eigenvalues �lm and ω, we have to
solve two continued fraction equations as before

β0 − α0γ1

β1−
α1γ2

β2−
α2γ3

β3− · ·· = 0, (4.10)

Finally, this infinite continued fraction equation Rn needs
to be truncated at some order n ∈ N to ensure the con-
vergence of this equation [35]. Regarding the equation of
convergence, Nollert had proposed some solutions to guar-
antee the convergence rate of this method [73,74]. From the
recurrence relation (4.9), it can be found that the conver-
gence series an+1/an satisfies the following relation at the
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order n−1,

an+1

an
= 1 −

√
−2k̄(r+ − r−)

n

−
[

3

4
+ (r+ + r−)k̄

2
− 2r+k̄ + ω2(r+ + r−)

2k̄

]
1

n
(4.11)

5 Numerical results

In this section, we will use the continued fraction method
introduced in the previous section to calculate the QNM/QBS
of the Kerr-like black holes immersed in a dark matter halo
under the scalar field, and compare them with Kerr black hole.
We will also analyze and confirm the existence of the super-
radiant instability of black hole, that is an unstable modes
(Im(ω) > 0). In addition, we will also study the impacts of
dark matter parameters on the QNM/QBS of black holes at
the specific circumstances. As previously analyzed, for the
angular equation, given a, k,m, the continued fraction equa-
tion only depend on the eigenvalue �lm . Similarly, for the
radial equation, given M, a, μ and m, the continued fraction
equation will depend on eigenfrequency ω. In other words,
the eigenvalues ω and �lm are the roots of these two contin-
ued fraction equations. Now, we successfully converted the
radial/angular equations into two infinitely continued frac-
tion equations. What needs to be done in the next step is
to make a truncation at the appropriate position and ensure
the convergence of the equation. So, we will truncate the
continued fraction equation at the term N and use a root
finding algorithm to solve the equation. Before it, one neces-
sary step still needs to do is that giving the initial guess value
of frequency ω. And the accuracy of this initial guess value
will directly determine whether the results of QNM/QBS are
reliable. It is seem to be a fact that we can usually equate cer-
tain physical behaviors of extremely slowly rotating black
holes to the that of Schwarzschild black holes in their limit
state. Witek et al. investigate this issue of the Schwarzschild
backgrounds and the slow-rotating limit in their work. Their
results are in agreement with the accurate values provided
by the slow-rotation [75]. Besides, in Refs. [28,53], the
authors use Schwarzschild fundamental mode as their initial
guess to analyze the QNM/QBS behaviors of the Kerr-like
black holes. But to the behaviors of QBS, Dolan et al. have
shown that, in the nonrelativistic limit, the frequency of a
Schwarzschild black hole of the massive scalar field bound
has the following form [27,76],

h̄ωn ≈
(

1 − M2μ2

2n̄2

)
μc2, (5.1)

where, n̄ = n + l + 1 and n̄ is the principal quantum num-
ber of this system. Therefore, in this paper, we choose the
Schwarzschild fundamental mode (n = 0) and the slowly
rotating parameter (a = 0.0001) as our initial guess and then
use a root-finding algorithm for these eigenvalues. Finally,
we set the truncated term to (N = 400) and the minimum
number of digits of precision of all the calculation results
to 20. Considering the actual need (distinguishing the dif-
ference) for precision in the following analysis, we keep 9
significant figures for QNM frequencies, and 20 significant
figures for QBS frequencies.

5.1 Quasinormal modes

First of all, to ensure the feasibility of our method, it is neces-
sary for us to calculate the frequencies of fundamental quasi-
normal modes (QNM) for Kerr black hole with our method,
and compare them with the data recorded in other published
articles. Without loss of generality, we calculate the QNM
frequencies of the Kerr black hole at the states of angular
quantum number l = 0 and l = 1 in the massless scalar
field. Note that when the angle quantum number l = 1, the
value of the azimuthal quantum number m should be in three
values m = −1, 0, 1. Finally, we implemented the contin-
ued fraction algorithm and our results about the massless
scalar field giving in Table 4 are in good agreement with the
data recorded in Refs. [26,27,36]. Among these references,
the authors all used the continued fraction method to cal-
culate the QNM frequencies of rotating black holes. These
evidences show that our method can provide an important
guarantee for the calculation of the QNM frequencies in a
dark matter halo.

Now, let’s return to the discussion of QNM frequencies
for the Kerr-like black holes in a dark matter halo. For a
black hole, its oscillatory behavior is always related to dissi-
pation, originating QNM. This oscillatory behavior usually
appears as a pure incoming wave at the horizon and a pure
outgoing wave at infinity. Therefore, the process of QNM
is a stable mode. Here, we first study the oscillatory behav-
ior of black holes in massless scalar field both in CDM and
SFDM models, and compare them with the Kerr black hole.
We use the continued fraction method to calculate these fre-
quencies at the states of the angular quantum l = 0, 1 and use
the Schwarzschild fundamental modes as our initial guess.
We divide these QNM frequencies into two parts, real and
imaginary parts. where the real part represents the oscilla-
tion frequency of this system, and the imaginary part rep-
resents the decay rate, as a function of rotating parameter
a. Then, we record the QNM frequencies of the black holes
about these two models at the states l = 0 and l = 1 in
Tables 5 and 6, respectively. The main calculation parame-
ters are M = 1, ρc = 2.45 × 10−3 M⊙/pc3, Rc = 5.7 kpc,
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Table 4 The fundamental quasinormal modes frequencies of the Kerr black hole for the states l = 0 and l = 1 in massless scalar field. The
corresponding calculation parameter is M = 1

l = 0,m = 0 l = 1,m = −1 l = 1,m = 0 l = 1,m = 1

a Re -Im Re -Im Re -Im Re -Im

0.00 0.110454939 0.104895717 0.292928418 0.0976600224 0.292936133 0.0976599888 0.292943849 0.0976599553

0.10 0.110533136 0.104801456 0.285570275 0.0976259573 0.293127002 0.0975792571 0.301044531 0.0975471619

0.30 0.111157488 0.104008564 0.272634571 0.0972279292 0.294679905 0.0969029596 0.320126458 0.0966913169

0.50 0.112380936 0.102183171 0.261572212 0.0965054631 0.297930448 0.0953641953 0.344753181 0.0943945190

0.70 0.113979195 0.0986318974 0.251928312 0.0955465444 0.303188351 0.0924361444 0.379158531 0.0888481922

0.90 0.113847816 0.0915692550 0.243370881 0.0944221601 0.310761820 0.0866543540 0.437233808 0.0718481320

0.99 0.110440986 0.0894882986 0.239809603 0.0938822253 0.314579189 0.0822824858 0.493423284 0.0367119849

Table 5 The fundamental quasinormal modes frequencies of the Kerr-
like black hole for the states l = 0 and l = 1 in the massless scalar
field with the SFDM model. The corresponding calculation parame-

ter is M = 1, ρs = 13.66 × 10−3 M⊙/pc3 and Rs = 2.92 kpc. We
have converted these main calculation parameters to the black hole units
before calculating

l = 0,m = 0 l = 1,m = −1 l = 1,m = 0 l = 1,m = 1

a Re -Im Re -Im Re -Im Re -Im

0.00 0.110454913 0.104895733 0.292928414 0.0976600210 0.292936129 0.0976599874 0.292943845 0.0976599539

0.10 0.110533109 0.104801471 0.285570271 0.0976259558 0.293126998 0.0975792557 0.301044527 0.0975471605

0.30 0.111157450 0.104008560 0.272634567 0.0972279278 0.294679901 0.0969029582 0.320126453 0.0966913155

0.50 0.112380928 0.102183117 0.261572209 0.0965054617 0.297930444 0.0953641940 0.344753175 0.0943945177

0.70 0.113979264 0.0986319888 0.251928309 0.0955465431 0.303188347 0.0924361432 0.379158524 0.0888481913

0.90 0.113848733 0.0915695056 0.243370881 0.0944221623 0.310761816 0.0866543529 0.437233799 0.0718481324

0.99 0.110441725 0.0895496732 0.239804794 0.0938775422 0.314578594 0.0822830637 0.493423266 0.0367119888

Table 6 The fundamental quasinormal modes frequencies of the Kerr-
like black hole for the states l = 0 and l = 1 in the massless scalar
field with the CDM model. The corresponding calculation parameter is

M = 1, ρc = 2.45 × 10−3 M⊙/pc3 and Rc = 5.7 kpc. We have con-
verted these main calculation parameters to the black hole units before
calculating

l = 0,m = 0 l = 1,m = −1 l = 1,m = 0 l = 1,m = 1

a Re -Im Re -Im Re -Im Re -Im

0.00 0.110454909 0.104895726 0.292928389 0.0976600127 0.292936105 0.0976599792 0.292943820 0.0976599456

0.10 0.110533104 0.104801464 0.285570247 0.0976259476 0.293126973 0.0975792475 0.301044501 0.0975471523

0.30 0.111157444 0.104008557 0.272634546 0.0972279197 0.294679876 0.0969029502 0.320126423 0.0966913075

0.50 0.112380913 0.102183116 0.261572190 0.0965054539 0.297930419 0.0953641865 0.344753142 0.0943945105

0.70 0.113979259 0.0986319601 0.251928292 0.0955465356 0.303188322 0.0924361365 0.379158484 0.0888481858

0.90 0.113848624 0.0915693104 0.243370866 0.0944221542 0.310761791 0.0866543478 0.437233745 0.0718481341

0.99 0.110436980 0.0895433180 0.239804940 0.0938789531 0.314578766 0.0822830436 0.493423181 0.0367120381

ρs = 13.66 × 10−3 M⊙/pc3, Rs = 2.92 kpc. In Sect. 2,
we have converted these dark matter parameters into black
hole units, and then used them to participate in calculations.
Firstly, on the whole, from Tables 4, 5, and 6, we find that
the QNM frequencies of black holes in a dark matter halo
and kerr black holes at the same state are very close. In other
words, the difference between the QNM frequencies of dark
matter black holes and Kerr black holes is small. Taking the
state (l = m = 1, a = 0.99) as an example, both the real and
imaginary parts of the QNM frequency of a Kerr black hole

are greater than the SFDM model, and the SFDM model is
greater than the CDM model. The QNM difference between
the CDM model and Kerr spacetime is about 1×10−7 in real
part and 5 × 10−8 in imaginary part. The difference of that
between SFDM model and Kerr spacetime is about 2×10−8

in real part and 4 × 10−9 in imaginary part. In view of the
inefficient signal-to-noise ratio of the current gravitational
wave detectors [77], it may not be possible to accurately
detect the frequency of dark matter and the frequency of
kerr black holes. However, with the continuous update and
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Fig. 3 The fundamental quasinormal modes of the black holes in mass-
less scalar field for the state l = 1 (left to right panel are the state
(l = 1,m = 1), (l = 1,m = 0) and (l = 1,m = −1). These points
in each panel correspond to different rotation parameters a from left
to right, they are a = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99,

respectively (left and middle panels), and the right panel are a =
0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0. The main calculation
parameters are M = 1, ρc = 2.45 × 10−3 M⊙/pc3, Rc = 5.7 kpc,
ρs = 13.66×10−3 M⊙/pc3, Rs = 2.92 kpc. We have converted these
main calculation parameters to the black hole units before plotting

development of detectors, future gravitational wave detec-
tors such as LISA, Taiji [78], Tianqin [79] and DECIGO
[80] may detect this kind of QNM signal. This may pro-
vide an effective method for detecting dark matter around
black holes. Actually, from Table 5, we found that when the
mode is l = 1,m = −1, the real and imaginary parts of the
QNM frequencies in the SFDM model both decrease with the
increasing of the rotation parameter a. However, when the
modes are l = 0,m = 0, l = 1,m = 0 and l = 1,m = 1, the
real part of the QNM frequencies increase with the increasing
of the rotation parameter a, and its imaginary part decreases
with the increasing of the parameter a. This feature indicates
that the large rotation parameter of the rotating black hole has
a positive contribution to the QNM frequency. On the other
hand, we found that when l = 1, the real part of the QNM
frequency of a black hole in the SFDM model at the same
rotation parameter a increases with the increase of m, and
its imaginary part decreases with the increasing of m. Sim-
ilarly, when m = 0, the real part of the QNM frequency in
the SFDM model at the same rotation parameter a increases
with the increasing of l, and its imaginary part decreases
with the increasing of l. Analyzing Table 6 as we did with
Table 5, we find that this trend of the oscillating behavior of
black holes in the CDM model is much the same as that in
the SFDM model. Finally, according to Tables 4, 5 and 6,
at the same mode (when a, l,m are uniquely determined),
we find that the oscillation frequency and decay rate of Kerr
black hole are greater than that of the SFDM model, while
the SFDM model is greater than the CDM model. Besides,
we also graphically present these results in Fig. 3.

We give the comparison charts of the QNM frequency of
black holes in the Kerr spacetime, SFDM model and CDM
model. We find that the QNM frequencies of black holes are
very close to Kerr spacetime in dark matter models. To distin-
guish them, we show this difference in subfigures. The oscil-
lation behavior of the QNM frequencies in the three states are
consistent, that is, the QNM frequency of the Kerr black hole

is larger than that of the SFDM model, and the SFDM model
is larger than the CDM model. Finally, among the states we
study, we find that the state l = m = 1 is quite special.
The real and imaginary parts of the QNM frequencies vary
widely at the different rotation parameter a. In other words,
the real part of the QNM frequency increases rapidly with the
increasing of the rotation parameter a, while its imaginary
part decreases rapidly. But in other states, the change trend
of QNM frequency is slowly increasing or decreasing. Based
on this consideration, we analyze the QNM frequencies of
the black hole at the state l = m = 1 in SFDM/CDM mod-
els, and compare them with the Kerr black hole. We give the
results of our computations in Fig. 4. In order to find the dif-
ference between them, we combine black holes in SFDM
model, CDM model and the Kerr spacetime in pairs and
investigate the differences of QNM frequencies. The QNM
frequencies of black hole both in SFDM/CDM models are
lower than that of the Kerr black hole. In other words, when
the mode can be in the same state (the parameters a, l,m
are determined), both the real part and the imaginary part
of the QNM frequency in Kerr black hole are greater than
that of the SFDM model, and the SFDM model is greater
than that of the CDM model. Among them, the QNM fre-
quency has the largest difference between the CDM model
and the Kerr black hole, and the value of this difference at
the same state is about 3 × 10−7 in real part and 5 × 10−8

in imaginary part. This difference of that could be that the
impact of dark matter halo is too small. It is now generally
believed that the dark matter distribution near black holes
is a “spike” structure. This “spike” structure might amplify
this difference, boosting the QNM frequency by an order of
magnitude. When better-precision gravitational-wave detec-
tors arrive, they may be able to detect this difference.

In the above we have analyzed the QNM frequencies from
specific galaxy in detail. Next, we will study the impacts
of dark matter parameters on the QNM frequencies both in
SFDM model and CDM model. For example, in LSB galax-

123



Eur. Phys. J. C (2023) 83 :565 Page 11 of 22 565

Fig. 4 The real part (left) and imaginary part (right) of the fun-
damental quasinormal modes of the black holes in massless scalar
field for the state l = 1,m = 1. These points in each panel corre-
spond to different rotation parameters a from left to right, they are
a = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, respectively. The

main calculation parameters are M = 1, ρc = 2.45 × 10−3 M⊙/pc3,
Rc = 5.7 kpc, ρs = 13.66 × 10−3 M⊙/pc3, Rs = 2.92 kpc. We have
converted these main calculation parameters to the black hole units
before plotting

ies, these parameters of dark matter are recorded in Table 1.
In fact, Zhang et al. have investigated the impacts of dark
matter parameters on the QNM frequencies in non-rotating
black hole geometries [65]. However, there is evidence that
the impacts of dark matter on the QNM may be enhanced in
rapidly rotating black holes [81]. Therefore, here, we mainly
study the QNM frequencies at the state l = 1, a = 0.99 in
a massless scalar field. Firstly, for the convenience of our
analysis, for the SFDM model, we fix the density param-
eter ρ = 1 × 104M⊙/pc3 and the characteristic radius
R = 5.7kpc respectively. For the CDM model, we also
fixed the density parameter ρ = 1 × 103M⊙/pc3 and the
characteristic radius R = 5.7kpc. In other words, when the
density parameter is a certain value, we calculate the QNM
frequencies of the black hole, as a function of the character-
istic radius R. And vice versa. Then, we calculate the QNM
frequencies of black holes in the massless scalar field at state
l = 1, a = 0.99. We record our results of SFDM model and
CDM model in Figs. 5 and 6, respectively.

In Fig. 5, we find that when the characteristic radius is
fixed, the real part of the QNM frequencies of the black holes
in SFDM model decreases with the increasing of the den-
sity parameter for the state l = 1,m = −1, 0, while their
imaginary parts increase with the increasing of the density
increases. At the state l = m = 1, the real and imaginary
parts of the QNM frequencies of the black hole both decrease
with the increasing of the density parameter. Similarly, when
the density parameter is fixed, we investigate the impacts
of the characteristic radius on the QNM frequencies of black
holes. In fact, the behaviors of QNM frequencies and charac-
teristic radius are consistent with the density parameter. This
feature indicates that the dark matter around the black hole
will reduce the real part of the QNM frequency of the black
hole and increase the imaginary part. But from the slope of
the image, the QNM frequencies seem to be more sensitive

to the characteristic radius. Figure 6 is the case of the CDM
model. The behavior of the CDM model is roughly the same
as that of the SFDM model. The difference is that in the
state l = m = 1, the imaginary part of QNM frequency first
increases and then decreases with the characteristic radius.
These results indicate that the QNM frequencies depend on
the choice of dark matter parameters in these galaxies.

5.2 Quasibound states and superradiant instabilities

In the previous subsection, we considered a massless scalar
field and calculated the QNM of the black holes both in CDM
and SFDM models. Next, we will continue to investigate the
oscillatory behavior of black holes in these two models by
considering a massive scalar field, and compare them with
the Kerr black hole. The oscillation behavior at this time is
called quasibound states (QBS). This state often corresponds
to an unusually long-lived mode [82–84]. Unlike QNM, QBS
behaves in a form of exponential decay as it is far away from
the black hole. In other words, QBS are localized inside the
potential well formed by the mass of the field. On the other
hand, this oscillation frequency of the QBS usually satisfies
the condition of superradiant, which has the following form

Re(ω) < μ ≤ m�. (5.2)

where, � is the angular velocity of rotation. Similar to QNM,
the imaginary part of QBS is less than zero Im(ω) < 0, which
corresponds to a stable mode. However, for an unstable mode,
it corresponds to Im(ω) > 0. In this case, if it satisfy the
condition of superradiance, it means superradiant instability
emerging. If Im(ω) = 0, it corresponds to the bound states
of the so-called scalar clouds [28,34].

Just like the previous calculation and analysis of QNM
frequencies, we firstly study the QNM frequencies in CDM
model, SFDM model and Kerr spacetime at the state l = 1
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Fig. 5 The fundamental quasinormal modes of the black holes in mass-
less scalar field (μ = 0) for the state l = 1, a = 0.99 in SFDM model,
as a function of ρ (top) and R (bottom). The top panels we fix the

R = 5.7kpc and the bottom panels we fix the ρ = 1 × 104 M⊙/pc3.
We have converted these main calculation parameters to the black hole
units before plotting

in the massive scalar field, and compare them with the mass-
less scalar field. Here, we also use the Schwarzschild funda-
mental modes as our initial guess. We present our results in
Fig. 7. Compared with the massless scalar field, the imaginary
part of QNM frequency at the same state decreases rapidly
with the increasing of mass μ in CDM model, SFDM model
and Kerr spacetime, while their real parts increase with the
increasing of mass μ. This seems to be predictable, as the
mass increases to a certain critical value, there will be super-
radiant instability, and the state l = m = 1 may be the fastest
and most important one. Actually, in Fig. 7, we find that these
QNM frequencies are still the stable modes at these states.

In order to further confirm whether these two dark mat-
ter models have superradiant instability, we use the bound
state spectrum of the Schwarzschild black hole as our initial
guess. At the same time, we rewrite the oscillation frequency
and decay rate as Re(ω)/μ and Im(ω)/μ, respectively, as a
function of the mass parameter Mμ. Then, we investigate
all the state for the angular quantum l = 1 in the case of
the nearly extremal parameter (a = 0.99) in CDM model,
SFDM model and Kerr spacetime. We show our calculation
results in Fig. 8.

From Fig. 8, we found that the imaginary part of the QBS
in these three panels are negative numbers at the range of large
mass, which indicates that QBS is a stable mode in the large
mass. However, at the range of the low mass, the value of the
decay rate lm(ω)/μ is very close to 0 (may be greater than 0
or less than 0), and the former case may lead to the occurrence
of superradiant instability. So, in the subfigures of each panel,
we zoomed in the QBS frequencies in the low mass range.
These subfigures all demonstrate superradiant instabilities.
Among the three state (l = 1,m = 1), (l = 1,m = 1)

and (l = 1,m = 1), the maximum instability of the black
hole appears at the state l = 1,m = 1. Up to here, our results
show that there are instabilities both in SFDM/CDM models.
This appears to be due to bound state spectra. This instability
seems to be sensitive to the initial guess value. Actually, this
bound state spectrum plays an important role in analyzing
QBS.

In the above, our results show the existence of superra-
diant instabilities both in the SFDM model and the CDM
model. Next, we will qualitatively analyze and demonstrate
in which state the maximum instability occurs. Firstly, based
on the instabilities at the state l = 1, what we need in the
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Fig. 6 The fundamental quasinormal modes of the black holes in mass-
less scalar field (μ = 0) for the state l = 1, a = 0.99 in CDM model,
as a function of ρ (top) and R (bottom). The top panels we fix the

R = 5.7kpc and the bottom panels we fix the ρ = 1 × 104 M⊙/pc3.
We have converted these main calculation parameters to the black hole
units before plotting

Fig. 7 The fundamental quasinormal modes of the black holes in
massive scalar field for the state l = 1,m = 1 (left panel is CDM
model, middle panel is SFDM model and right panel is Kerr space-
time). Three panels all reflect the stable modes. In these three pic-
tures, three colors of red, green and blue represent three modes respec-

tively. These points from left to right of each color are given by the
increasing value of the rotation parameter a, corresponding to the val-
ues a = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99. The main cal-
culation parameters are M = 1, ρc = 2.45×10−3 M⊙/pc3, Rc = 5.7
kpc, ρs = 13.66 × 10−3 M⊙/pc3, Rs = 2.92 kpc

following is that determining the rotation parameter a in the
maximum instabilities. By the fixed rotation parameter a, we
show the instabilities as the function of mass Mμ in Fig. 9.
The rotation parameter a is 0 ≤ a ≤ 0.9995(amax ≈ 1).
From these subfigures, for each rotation parameter a, there
is always a maximum value of the instability. For these sub-
figures in the top three panels, the maximum value of these
maximum instabilities increases with the increasing of the

rotation parameter a. But in three panels of the bottom,
the maximum value of instabilities first increases and then
decreases with the increasing of the rotation parameter a.
This turning point is rotation parameter a = 0.995. These
results indicate that there is a maximum value of instability
when the rotation parameter 0 ≤ a ≤ 0.9995(amax ≈ 1),
i.e., this turning point a = 0.995. Therefore, at the state
l = 1, the maximum instability occurs approximately for the
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Fig. 8 The quasibound states of the black holes in massive scalar field
for the state l = 1 (left panel is CDM model, middle panel is SFDM
model and the right panel is Kerr spacetime). Subfigures in three pan-
els all reflect the superradiant instabilities. The maximum instability

occurs for the state (l = 1,m = 1). The main calculation parameters
are a = 0.99, M = 1, ρc = 2.45 × 10−3 M⊙/pc3, Rc = 5.7 kpc,
ρs = 13.66×10−3 M⊙/pc3, Rs = 2.92 kpc. We have converted these
main calculation parameters to the black hole units before plotting

Fig. 9 The quasibound states of the black holes in massive scalar field
for the state l = 1,m = 1 (left panel is CDM model, middle panel is
SFDM model and the right panel is Kerr spacetime). Subfigures in three
panels all reflect the superradiant instabilities, and the maximum insta-

bilities all occur approximately for the state a = 0.995. The main cal-
culation parameters are M = 1, ρc = 2.45×10−3 M⊙/pc3, Rc = 5.7
kpc, ρs = 13.66 × 10−3 M⊙/pc3, Rs = 2.92 kpc. We have converted
these main calculation parameters to the black hole units before plotting

state l = 1,m = 1, a = 0.995. Secondly, we need to deter-
mine what the maximum instabilities occur in at the states
with different l.

In Fig. 10, we show the instabilities at the states l = m =
1, 2, 3. The maximum instability decreases both with the
increasing of l,m. So, the maximum instability occur for
the state l = m = 1. Finally, based on the above discussions,
we prove that in CDM model, SFDM model and Kerr space-
time, the maximum instability occurs approximately for the
state l = 1,m = 1, a = 0.995. This result was as previously
expected. In order to further study and analyze the difference
in the maximum instability between dark matter black holes
and Kerr black holes, in Fig. 11, we show the instabilities at
the state l = 1,m = 1, a = 0.995 in the CDM model, the
SFDM model and the Kerr spacetime. The maximum insta-
bilities of the Kerr black hole is larger than that of the SFDM
model, and the SFDM model is larger than the CDM model.

After comparing Kerr black holes both with the SFDM model
and CDM model, the difference of the maximum instability
between the black hole in CDM model and the Kerr black
hole is approximately 1.4 × 10−10 with Mμ = 0.5. The
difference of the maximum instability between Kerr black
hole and black hole in the SFDM model is approximately
2.0 × 10−11 with Mμ = 0.5. These differences increase
with the increasing of mass. This result directly reflects the
impacts of the mass on the superradiant mechanism. With
the increasing of the mass, that is, when the mass satisfies
Re(ω) < μ, this mass can work as a mirror [32,84,85]. This
causes the wave to bounce back and forth between the black
hole and the mirror, and it can amplify itself each time. This
is the so-called the black hole bomb.

According to the above analysis, we have proved that the
maximum instability of QBS occurs approximately for the
state l = 1,m = 1, a = 0.995 in the SFDM model, CDM
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Fig. 10 The quasibound states of the black holes in massive scalar
field at the state l = m = 1, 2, 3, a = 0.995 (left panel is CDM model,
middle panel is SFDM model and the right panel is Kerr spacetime).
Three panels all reflect the superradiant instabilities, and the maximum

instabilities all occur for the state l = m = 1. The main calculation
parameters are M = 1, ρc = 2.45 × 10−3 M⊙/pc3, Rc = 5.7 kpc,
ρs = 13.66×10−3 M⊙/pc3, Rs = 2.92 kpc. We have converted these
main calculation parameters to the black hole units before plotting

Fig. 11 The superradiant instabilities of the black holes in massive
scalar field at the state (l = 1,m = 1, a = 0.995) in CDM model,
SFDM model and Kerr spacetime. The instability of the Kerr black
hole is larger than that of the SFDM model, and the SFDM model is
larger than the CDM model (left panel). After comparing Kerr black

holes both with the SFDM model and CDM model, the real part of
the comparing results are shown in the middle panel and the imaginary
part are shown in the right panel. The main calculation parameters are
M = 1, ρc = 2.45×10−3 M⊙/pc3, Rc = 5.7 kpc, ρs = 13.66×10−3

M⊙/pc3, Rs = 2.92 kpc

model and Kerr spacetime. Next, we will quantitatively ana-
lyze the maximum instability at the state l = 1,m = 1, a =
0.995. Here, we show that how to find these maximum insta-
bilities of the state l = 1,m = 1, a = 0.995 in the CDM
model, SFDM model and Kerr spacetime. First of all, through
the results in Fig. 9, we can roughly determine a range of
mass corresponding to the maximum instability, and form
an array of the mass Mμ and decay rate Im(ω). Secondly,
we reduce the mass stepwise and use the continued fraction
method to determine the frequency of each step. where the
initial guess of frequency is the frequency obtained in the
previous step. Finally, we stop iterating as soon as a local
maximum occurs among a series of frequencies. Following
this procedure strictly, we obtain the maximum instability of
black holes for the state l = 1,m = 1, a = 0.995 in the
CDM model, SFDM model and Kerr spacetime. We show
these results in Fig. 12.

From these figures, the maximum instabilities increase
with the increasing of the rotation parameter a in the three
panels of the top. But in three panels of the bottom, the max-
imum instabilities first increase and then decrease with the
increasing of the rotation parameter a. This turning point is
a = 0.995. Finally, by the rotation parameter a at this state,
we quickly obtain the value of mass μ. Since these results

for black holes in CDM/SFDM models are very close to Kerr
black hole, we give their numerical results of the maximum
instabilities growth rate (τ−1 = MIm(ω)) in Tables 7, 8 and
9.

We list the maximum instability growth rate of CDM
model, SFDM model and Kerr spacetime with different rota-
tion parameters a at the state l = 1,m = 1 in Tables 7, 8
and 9, respectively. Besides, in Table 7, we also give the rela-
tive error between the maximum instability and the test value
from Ref. [27] in the last row. These results demonstrate that
our approach is reliable. From the data from Tables 7, 8 and 9,
both in CDM and SFDM models, the maximum instability
increases with the increasing of the rotation parameter a.
For CDM model, the maximum instability occurs approxi-
mately for Mμ ≈ 0.440 and the maximum instability growth
rate is approximately τ−1 = MIm(ω) ≈ 1.69918377 ×
10−7(GM/c3)−1. For SFDM model, the maximum instabil-
ity occurs approximately for Mμ ≈ 0.440 and the maximum
instability growth rate is approximately τ−1 = MIm(ω) ≈
1.69918500 × 10−7(GM/c3)−1. The difference between
them is approximately 1.2 × 10−13(GM/c3)−1. Compared
the maximum instabilities of black holes in CDM/SFDM
models with Kerr black hole, the values of the maximum
instability of Kerr-like black holes in a dark matter halo are
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Fig. 12 The superradiant instabilities of the black holes for different
rotation parameter a in massive scalar field at the state (l = 1,m = 1)
in CDM model (left panel), SFDM model and Kerr spacetime (right
panel). In the three panels of the top, the maximum instabilities all
increase with the increasing of the rotation parameter a. But in three

panels of the bottom, the maximum instabilities first increase and then
decrease with the increasing of the rotation parameter a. This turn-
ing point is a = 0.995. The main calculation parameters are M = 1,
ρc = 2.45 × 10−3 M⊙/pc3, Rc = 5.7 kpc, ρs = 13.66 × 10−3

M⊙/pc3, Rs = 2.92 kpc

Table 7 The maximum instability growth rate with different rotation parameter a at the state l = m = 1 in Kerr black hole. And the maximum
instability growth rate (τ−1 = MIm(ω)) and the corresponding mass μ are given. The � is the relative error relative to the Table III in Ref. [27]

a 0.70 0.80 0.90 0.95 0.99 0.995

μ 0.185 0.230 0.0.295 0.345 0.420 0.440

τ−1 3.31676821 × 10−10 2.16321174 × 10−9 1.54706240 × 10−8 4.85965449 × 10−8 1.50601550 × 10−7 1.69918521 × 10−7

� 0.3974% 0.1487% 0.1895% 0.4169% 0.4010% /

Table 8 The maximum instability growth rate with different rotation
parameter a at the state l = m = 1 in SFDM model. The maximum
instability growth rate (τ−1 = MIm(ω)) and the mass μ are given. The

main calculation parameters are M = 1, ρs = 13.66 × 10−3 M⊙/pc3,
Rs = 2.92 kpc

a 0.70 0.80 0.90 0.95 0.99 0.995

μ 0.185 0.230 0.295 0.345 0.420 0.440

τ−1 3.31676758 × 10−10 2.16321137 × 10−9 1.54706203 × 10−8 4.85965313 × 10−8 1.50601515 × 10−7 1.69918500 × 10−7

Table 9 The maximum instability growth rate with different rotation
parameter a at the state l = m = 1 in CDM model. The maximum insta-
bility growth rate (τ−1 = MIm(ω)) and the corresponding mass μ are

given. The main calculation parameters are M = 1, ρc = 2.45 × 10−3

M⊙/pc3, Rc = 5.7 kpc

a 0.70 0.80 0.90 0.95 0.99 0.995

μ 0.185 0.230 0.295 0.345 0.420 0.440

τ−1 3.31676487 × 10−10 2.16320929 × 10−9 1.54705991 × 10−8 4.85964529 × 10−8 1.50601311 × 10−7 1.69918377 × 10−7
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Fig. 13 The quasibound states of the black holes in massive scalar field
(μ = 0.440) at the state l = 1,m = 1, a = 0.995 in SFDM model,
as a function of ρ (top) and R (bottom). The top panels we fix the

R = 5.7kpc and the bottom panels we fix the ρ = 1 × 103 M⊙/pc3.
The right panels reveal the instabilities. We have converted these main
calculation parameters to the black hole units before plotting

all smaller than that of Kerr black hole. The value of the
maximum instability of the Kerr black hole is larger than
that of the SFDM model, and the SFDM model is larger
than that of the CDM model. The maximum instability dif-
ference of black hole between CDM model and Kerr black
hole is approximately 1.4 × 10−13. For SFDM model, the
difference is approximately 2.0×10−14. These values are an
upper bound on the growth rate of instabilities of black holes
in massive scalar field in Tables 7, 8 and 9. These results
show that, in the three cases considered, the growth rate of
the Kerr black hole instability is larger than that of the SFDM
model, which is larger than that of the CDM model.

Finally, we also study the impacts of dark matter parame-
ters on the QBS frequencies, just like the previous analysis of
how the dark matter parameters affect the QNM frequency.
Here, we mainly consider to test the QBS frequencies at the
state l = m = 1, a = 0.995 in a massive field (μ 
= 0).
Similarly, we need a set of fixed dark matter parameters for
analysis. For the SFDM model, we fix the density parameter
ρ = 104M⊙/pc3 and the characteristic radius R = 5.7kpc
respectively. For the CDM model, we also fixed the density
parameter ρ = 103M⊙/pc3 and the characteristic radius
R = 5.7kpc. Then, we calculate the QBS frequencies of
black holes in the massive scalar field (μ = 0.440) at state
l = m = 1, a = 0.995. We record our results of SFDM
model and CDM model in Figs. 13 and 14, respectively. In

Fig. 13, we find that when the characteristic radius is fixed,
the real and imaginary parts of the QBS frequencies of the
black hole both decrease with the increasing of the density
parameter. Similarly, when the density parameter is fixed,
we investigate the impacts of the characteristic radius on the
QBS frequencies of black holes. Actually, the behaviors of
QBS frequencies and characteristic radius are consistent with
the density parameter. These features indicates that the dark
matter around the black hole will reduce the real and imag-
inary parts of the QBS frequencies. Figure 14 is the case of
the CDM model. The behavior of the CDM model is roughly
the same as that of the SFDM model.

In addition, we have also calculated the superradiant insta-
bilities of the black holes in the massive scalar field at the
state l = m = 1, a = 0.995 in the galaxies numbered ESO
from the Table 1. We show the results in Fig. 15. We find
that the real part of the QBS frequencies of these galaxies
increases with the increasing of mass, while the imaginary
part increases first and then decreases.

Our results show that these dark matter parameter configu-
rations can all lead to superradiant instabilities both in SFDM
and CDM models. Among them, the maximum instabilities
both in SFDM model and CDM model are lower than that of
Kerr black holes. In other words, for nearly extremal black
holes, the distribution of dark matter reduces the imaginary
part of the QBS frequency compared to Kerr black holes.
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Fig. 14 The quasibound states of the black holes in massive scalar
field (μ = 0.440) at the state l = 1,m = 1, a = 0.995 in CDM model,
as a function of ρ (top) and R (bottom). The top panels we fix the

R = 5.7kpc and the bottom panels we fix the ρ = 1 × 103 M⊙/pc3.
The right panels reveal the instabilities. We have converted these main
calculation parameters to the black hole units before plotting

Fig. 15 The quasibound states of the black holes from different galax-
ies in massive scalar field at the state (l = 1,m = 1, a = 0.995)
in the CDM model (left panel) and SFDM model (right panel). These
two panels show superradiant instabilities. The maximum instability of

Kerr black holes is larger than that of other galaxies. The points in each
panel correspond to different mass, from left to right are the μ = 0.2
to μ = 0.55, with a step-size of 0.01. The main dark matter parameters
are from the data in Table 1

6 Conclusions and discussions

In this paper, we mainly use the scalar field perturbation to
study QNM/QBS of the Kerr-like black holes in a dark mat-
ter halo, and compare these results with Kerr black hole. The
method we used for calculating the frequencies of QNM/QBS
is the continued fraction method. In addition, we also study
the impacts of dark matter parameters on the QNM/QBS of
black holes at the specific circumstances. Our main conclu-
sions are as follows:

(1) In the massless scalar field, the real and imaginary parts
of QNM frequencies of the black hole at the state l = 1 both
increase with the increasing of m in CDM model, SFDM
model and Kerr spacetime. For the same state, QNM fre-
quency of kerr black hole is greater than that of SFDM model,
and SFDM model is greater than that of CDM model. For the
state l = m = 1, a = 0.99, the QNM difference between the
CDM model and Kerr spacetime is approximately 1 × 10−7

in real part and 5 × 10−8 in imaginary part. The QNM dif-
ference of that between SFDM model and Kerr spacetime is
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approximately 2×10−8 in real part and 4×10−9 in imaginary
part.

(2) In the massive scalar field, by testing the states of QBS
frequencies with different l,m, a, we confirm the existence
of the superradiant instabilities when the black holes both in
CDM and SFDM models. Besides, we prove that the maxi-
mum instabilities of black hole in CDM model and SFDM
model occur approximately for the state l = 1,m = 1, a =
0.995.

(3) In black hole units, for CDM model in ESO1200211,
the superradiant instability of black hole occurs approx-
imately for the mass parameter Mμ � 0.55. Its max-
imum instability occurs approximately for Mμ ≈ 0.44
and the maximum instability growth rate is approximately
τ−1 ≈ 1.69918377 × 10−7(GM/c3)−1. For SFDM model
in ESO1200211, the superradiant instability of black hole
occurs approximately for mass parameter Mμ � 0.55. Its
maximum instability occurs approximately for Mμ ≈ 0.44
and the maximum instability growth rate is approximately
τ−1 ≈ 1.69918500 × 10−7(GM/c3)−1. These values are
the upper bounds on the instability growth rate of black holes
in the massive scalar field. The growth rate of the maximum
instability of black hole in SFDM model is greater than that of
CDM model. The difference between them is approximately
1.2 × 10−13(GM/c3)−1.

(4) Compared the maximum instabilities of black holes
in CDM/SFDM models with Kerr black hole, the values of
the maximum instability of Kerr-like black holes in a dark
matter halo are all smaller than that of Kerr black hole. The
maximum instability difference of black hole between CDM
model and Kerr black hole is approximately 1.4 × 10−13.
For SFDM model, the difference of that is approximately
2.0 × 10−14. In the future, these differences may be detected
by the gravitational wave detection, which may provide an
effective method for detecting the existence of dark matter.

(5) The impacts of dark matter parameters on the QNM/
QBS of black holes at the specific circumstances are studied.
The dark matter parameters affecting QNM/QBS are den-
sity parameter ρ and characteristic radius R. The method of
the research is the control variable method. For QNM fre-
quencies both in SFDM model and CDM model, at the state
l = 1,m = −1, 0, the real part of QNM frequencies decrease
with the increasing of dark matter parameter, and their imagi-
nary parts increase with the increasing of dark matter param-
eter. At the state l = m = 1, the real and imaginary parts of
the QNM frequencies decrease with the increasing of the dark
matter parameter. For QBS frequencies both in SFDM model
and CDM model, at the state l = 1,m = 1, a = 0.995, the
real and imaginary parts of the QBS frequencies decrease
with the increasing of the dark matter parameter.

At last, it is also worth mentioning that we are very inter-
ested in the exploration of the relevant physical processes of
black holes around the dark matter. Based on this premise,

we choose to study the QNM/QBS of a rotating black hole
in a dark matter halo. In fact, the distribution of dark matter
around a black hole is a “spike” structure, and this structure
is closer to the real situation. The QNM/QBS of a special
black hole are the characteristic “sound” which can provide
us with a new method to identify black holes in the universe.
On the other hand, in some recent studies, we found some
discussion about echoes [86–91]. These studies show that the
echoes appear after the quasinormal mode. Echoes are one
of the important means currently used to test gravitational
waves. Taking the above two points into consideration, our
next plans are to study the physics of rotating black holes
associated with echoes. About the study of echoes, we have
already made some preliminary attempts [92–94]. To sum
up, we also hope that our work can form a complete research
system in the direction of interaction between dark matter
and black holes. In the future, these studies may be used for
gravitational wave detection of supermassive black holes, and
may provide an effective method for detecting the existence
of dark matter.
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