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Abstract We extend quantum field theory by including
purely virtual “cloud” sectors, to define physical off-shell
correlation functions of gauge invariant quark and gluon
fields, without affecting the S matrix amplitudes. The exten-
sion is made of certain cloud bosons, plus their anticommut-
ing partners. Both are quantized as purely virtual, to ensure
that they do not propagate ghosts. The extended theory is
renormalizable and unitary. In particular, the off-shell, dia-
grammatic version of the optical theorem holds. We calculate
the one-loop two-point functions of dressed quarks and glu-
ons, and show that their absorptive parts are gauge indepen-
dent, cloud independent and positive (while they are generi-
cally unphysical if the cloud sectors are not purely virtual). A
gauge/cloud duality simplifies the computations and shows
that the gauge choice is just a particular cloud. It is possible
to dress every field insertion with a different cloud. We com-
pare the purely virtual extension to previous approaches to
similar problems.

1 Introduction

The greatest success of perturbative quantum field theory
relies on the theory of scattering. However, quantum field
theory is not just scattering processes. It is also off-shell cor-
relation functions, including correlation functions of com-
posite fields. Gauge invariant composite fields can be divided
in two classes: those that are at least quadratic in the elemen-
tary fields, and those that contain linear terms. It is straight-
forward to build representatives of the first class, not equally
easy to build composite fields of the second class. The latter
are particularly important, because they provide a complete
basis of observables and can eventually be used to replace the
elementary fields altogether. In this paper we extend quan-
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tum field theory in a way that overcomes this difficulty and
preserves the fundamental physics.

Specifically, we add purely virtual “cloud” sectors to the
Yang–Mills action, built by means of certain cloud fields and
their anticommuting partners. The sectors are arranged so
as to satisfy certain “cloud symmetries”, which ensure that
the scattering amplitudes coincide with the usual ones, and
the correlation functions of the ordinary fields are also unaf-
fected. Each field insertion in a correlation function can be
rendered gauge invariant by “dressing” it with an indepen-
dent cloud. Each cloud is specified by a cloud function and
a cloud Feddeev–Popov determinant.

To ensure that the extended theory is unitary and prop-
agates no additional degrees of freedom, we quantize the
clouds as purely virtual [1]. This way, the correlation func-
tions of the dressed fields satisfy the off-shell, diagrammatic
version of the optical theorem. Moreover, we show that the
extended theory is renormalizable and polynomial in all the
fields except for the basic cloud fields (which are dimension-
less) and their anticommuting partners.

The extension is perturbative, and the expansion in powers
of the gauge coupling g coincides with the expansion in the
number of loops. Renormalizability is proved to all orders
by means of an extended Batalin–Vilkovisky formalism and
its Zinn–Justin master equations.

Note that the dressed fields we build are invariant under
infinitesimal gauge transformations, but are not required to be
invariant under global gauge transformations. This is indeed
the way out to have physical non singlet states without vio-
lating unitarity.

If we wish, we can use the formalism developed here to
downgrade the elementary fields (which are not gauge invari-
ant) to mere integration and diagrammatic tools, and use the
dressed fields (which are manifestly gauge invariant) every-
where. This way, we know from the start that everything we
compute is manifestly gauge independent.
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As said, the purely virtual nature of the clouds ensures that
no unwanted degrees of freedom are propagated. This opens
the way to extract physical information from the off-shell
correlation functions of the elementary fields in a systematic
way. We illustrate the basic properties of the formalism by
calculating the one-loop two-point functions of the dressed
quarks and gluons, and showing that their absorptive parts
are physical. When the clouds are not purely virtual (which
occurs, form example, if we quantize the cloud sectors by
means of the Feynman iε prescription), the absorptive parts
are generically unphysical.

A certain gauge/cloud duality, which is sometimes help-
ful to simplify the computations, shows that the usual gauge
choice is ultimately nothing but a particular cloud, as long
as the gauge trivial modes are rendered purely virtual. This
suggests to use a “purely virtual gauge” as a valid alternative
to the so-called physical gauges [2]. Among those, we men-
tion the Coulomb gauge, the temporal gauge, the light-cone
gauge and, more generally, the axial gauges. Normally, such
gauges lead to mathematical complications. What they miss
is the concept of pure virtuality, although in some cases (like
the Coulomb gauge), they incorporate it by accident, so to
speak. In our approach, we do not change the gauge fixing
to make it physical. Rather, we make a gauge-fixing physical
by changing the prescription we use to define it.

We compare our formalism with other approaches to simi-
lar issues available in the literature, putting particular empha-
sis on the “Coulomb” approaches, that is to say, the clouds
defined by Dirac in QED [3] and those studied by Lavelle
and McMullan in non-Abelian gauge theories [4–6]. Earlier
definitions of gauge invariant variables in Yang–Mills theory
are due to Chang [7,8]. Different lines of thinking exist as
well, such as the ’t Hooft approach, based on composite fields
and a symmetry breaking mechanism [9], and the approach
based on Wilson lines.

In a parallel paper [10], we explore similar issues in grav-
ity.

We point out some physical applications of our results.
The main one is the possibility of studying new types of
scattering processes. As said, the usual S matrix amplitudes
do not change, after the extension. Those amplitudes concern
asymptotic states, which become free in the infinite past and
in the infinite future. The correlation functions of dressed
fields overcome this restriction, and allow us to define “short-
distance scattering processes” among colored states of quarks
and gluons, which are the processes where the incoming and
outgoing states are not allowed (or not not have enough time)
to become free. In the same spirit, we can study transition
amplitudes in Yang–Mills theories on compact manifolds,
merging the formalism of this paper with the one of [11], for
situations where the experimental apparatus surrounding the
physical process actively influences the process itself. See
also [12] about this.

Experimental situations of this type are, among others, the
interactions inside a quark gluon plasma, or the interactions
between quarks and gluons at distances comparable to the
proton radius, where we cannot use the notion of asymptotic
state. The increasing precision of present colliders and the
colliders of new generations make us hope that in a non dis-
tant future we can be less dependent on the paradigms of
quantum field theory that have dominated the scene since its
birth. The formalism of this paper breaks the main technical
barriers for the undertaking of such studies, and is a first step
towards devising feasible experiments.

The processes we have just mentioned are not, or do
not need to be, on the mass shell. If treated with the usual
approaches, they are gauge dependent, and unphysical. Our
results imply that we can actually define them by means of
dressed fields, as long as the dressings are purely virtual. The
results we obtain are physical (i.e., gauge invariant and gauge
independent – in addition, they obey the optical theorem), but
depend on the dressing parameters, which we denote by λ̃.
These parameters do not belong to the fundamental theory,
but describe features of the experimental setup, such as exper-
imental resolutions, finite volume effects, finite temperature
effects, dependences on a background, or an external field,
etc.

The λ̃ dependence of the results is not unexpected. Think,
for example, of the correlation functions built by means of
Wilson lines: they depend on the Wilson lines themselves.
Another situation where the physical predictions depend on
the details of the instrumentation is when the amplitudes are
affected by infrared divergences, which are compensated by
soft and collinear photons, gluons, or gravitons [13–16]. In
those cases, the predictions depend on the energy resolution
and the angular resolution. Something similar occurs, to some
extent, when we observe unstable particles, like the muon
[17], which do not admit asymptotic states in a strict sense.

The λ̃ dependencies mean that it is impossible to eliminate
the influence of the observer on the observed phenomenon.
Yet, this does not prevent us from making testable predic-
tions. We can eliminate the λ̃ dependences by calibrating
the instrumentation, i.e., by sacrificing a few initial mea-
surements to determine the values of the parameters λ̃, after
which everything is predicted uniquely, and can be confirmed
or falsified experimentally.

It is also useful to point out the differences between the
goals of our approach and the goals of other approaches to
gauge theories that are available in the literature, such as
the compensator field approach [18] and the Stueckelberg
approach [19]. The first one is a rephrasing of the theory
and its gauge symmetries, but does not change the coho-
mology of physical observables. The second one is used to
describe massive vectors. Our purpose, instead, is to define
“gauge-invariant gauge fields”, so to speak, that is to say,
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colored physical states of quarks and gluons. This is possible
by means of dressed fields.

The first difference between our approach and the com-
pensator field approach is that, after introducing the extra
sectors, we still define the physical observables as being
gauge invariant: they are not required to be invariant under
the extra (cloud) transformations. The dressed fields, which
are indeed cloud dependent, are built on this premise. Once
we have done that, we can consider new correlation functions
(those that contain insertions of dressed fields) and study new
scattering processes (the short distance processes mentioned
above). These goals cannot be achieved in the compensator
field approach. The correlation functions of ordinary gauge
invariant composite fields (built without using the could sec-
tor), such as ψ̄ψ, FμvFμv, etc., and well as the S matrix
amplitudes, instead, do not change.

Since the dressed fields are just required to be gauge invari-
ant, but not cloud invariant, the extra fields become propa-
gating. Generically, this can be dangerous: if those fields are
not treated properly, they may affect the observable spectra
in undesirable ways. We show, by means of explicit calcula-
tions, that if they are quantized by means of the usual Feyn-
man prescription, they inject ghosts into the theory. Since our
definition of physical fields prevents us from getting rid of
them cohomologically, we must achieve the goal in a differ-
ent, non cohomological way: we make them purely virtual.

To make the whole construction work, we need to keep
the usual sector and the cloud sectors to some extent sepa-
rated. In particular, the functions that define the clouds should
be gauge invariant, while the usual gauge-fixing functions
should be cloud invariant. We show that these restrictions are
consistent, because they are preserved by renormalization.
Restrictions on the gauge-fixing choices are not unusual. A
familiar one is adopted in the context of the background field
method, where the gauge-fixing must be invariant under the
background transformations.

We recall that purely virtual particles, also called fake
particles, or “fakeons”, are defined by a new diagrammatics
[1], which takes advantage of the possibility of splitting the
usual optical theorem [20–25] into independent, algebraic
spectral optical identities. Each identity is associated with
a different (multi)threshold. By removing subsets of such
identities, and projecting the whole theory to the physical
subspace, certain degrees of freedom can be removed at all
energies, while preserving unitarity and the optical theorem
in a manifest way. The main application of this idea is the
formulation of a consistent theory of quantum gravity [26],
which is observationally testable due to its predictions in
inflationary cosmology [27]. At the phenomenological level,
fakeons evade common constraints that limit the employment
of normal particles [28,29].

Throughout the paper we work with the dimensional reg-
ularization [30–32], ε = 4 − D denoting the difference

between the physical dimension and the continued one.
The paper is organized as follows. In Sect. 2 we give the

basic definitions that are necessary to build the cloud sectors.
In Sect. 3 we recall the standard Batalin–Vilkovisky formal-
ism for gauge theories, and the Zinn–Justin master equation.
In Sect. 4 we extend the formalism and the master equa-
tion to define the cloud sector. In Sect. 5 we show that the
ordinary correlation functions of elementary and composite
fields are unaffected by the cloud sector. In Sect. 6 we prove
the same for the S matrix amplitudes. In Sect. 7 we build
the correlation functions of the dressed fields. In Sect. 8 we
prove that the cloud sector and the gauge-trivial sector are
related by a certain duality relation. In Sect. 9 we add several
copies of the could sector and show that each insertion in a
correlation function can be dressed with its own, indepen-
dent cloud. In Sect. 10 we define the absorptive parts and
study their properties. In Sect. 11 we compute the two-point
function of the dressed fermions at one loop with a covariant
cloud and show that its absorptive part is unphysical. In Sect.
12 we overcome this difficulty by introducing purely virtual
clouds. In Sect. 13 we repeat the analysis for the two-point
function of the dressed gauge fields, and show that the absorp-
tive part is physical, if purely virtual clouds are used. In Sect.
14 we prove that the extended theory is renormalizable, and
show how the renormalization works in detail. In Sect. 15
we compare our approach with other approaches available
in the literature. Section 16 contains the conclusions, while
Appendix A contains the notation and some useful formulas.
In Appendix B we prove that the dressed fields are unique.
In Appendix C we study how the cloud independence goes
through renormalization.

2 The cloud field, its anticommuting partner, and the
dressed fields

In this section we lay out the basic notions that are needed to
build the cloud sectors. For definiteness, we consider Yang–
Mills theory with gauge group G = SU (Nc) and quarks ψ

in the fundamental representation.
The dressings can be easily worked out, once the theory

contains a field Û (x), with values in G, that transforms as

δ�Û = −igÛ� (2.1)

under a gauge transformation. Here, �(x) = �a(x)T a are
the parameters of the transformation and T a are the Hermi-
tian matrices of the fundamental representation.

For example, if ψ is a fermion, the product Ûψ is obvi-
ously gauge invariant, because (2.1) and the ψ transformation
law δ�ψ = ig�ψ imply δ�(Ûψ) = 0. Nevertheless, it is
not convenient to use Û as an elementary field for the pertur-
bative expansion, since we also need the inverse matrix Û−1.
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It is better to write Û = e−igφ , and define φ = φaT a as the
fundamental “cloud field”.

The gauge transformation δ�φ of φ can be derived from
(2.1). A version of the Campbell–Baker–Hausdorff formula
reads

deX = eX
∞∑

n=0

(−adX )n

(n + 1)! dX = eX
1 − e−adX

adX
dX (2.2)

where adXY ≡ [X,Y ], X and Y being matrices or operators.
After rearranging the formula into the form

dX = adX

1 − e−adX
e−XdeX ,

we apply it with Û = e−igφ , X = −igφ, deX → δ�Û ,
dφ → δ�φ. This way, the desired φ gauge transformation is
easily found. It reads

δ�φ = igadφ

eigadφ − 1
� ≡ R(φ,�) ≡ T a Ra(φ,�)

= � − ig

2
[φ,�] − g2

12
[φ, [φ,�]] + O(g3). (2.3)

For the moment, we define the cloud field φ as a field
that transforms according to this law. In the next sections we
introduce it at the level of the action, derive its Feynman rules
and study its diagrammatic properties.

It is possible to check the closure of the transformation,
i.e.,

[δ�, δ	]φ = δ−ig[�,	]φ, (2.4)

where −ig[�,	] = gT a f abc�b	c.
The gauge-invariant dressed fields are

Aμd = Û AμÛ
−1 + i

g
Û (∂μÛ

−1)

= e−igadφ Aμ − 1 − e−igadφ

igadφ

(∂μφ),

ψd = e−igφψ, ψ̄d = ψ̄eigφ. (2.5)

The explicit expression of Aμd is obtained by means of (2.2)
and eXY e−X = eadX Y .

It is easy to prove that the fields (2.5) are indeed gauge
invariant: δ�Aμd = δ�ψd = δ�ψ̄d = 0. It is also possible
to prove (see appendix B) that they are unique, given the φ

transformation law.
It is also crucial to introduce an anticommuting partner

H = HaT a of φ, transforming as

δ�Ha = Hb δRa(φ,�)

δφb
. (2.6)

The consistency of this transformation law can be readily
proved from its closure:

[δ�, δ	]Ha = Hb δRc(φ,�)

δφb

δRa(φ,	)

δφc

+HbRc(φ,�)
δ2Ra(φ,	)

δφbδφc
− (� ↔ 	)

= Hb δ

δφb

(
Rc(φ,�)

δRa(φ,	)

δφc

−Rc(φ,	)
δRa(φ,�)

δφc

)

= Hb δRa(φ,−ig[�,	])
δφb

= δ−ig[�,	]Ha .

(2.7)

We have used (2.6) in the first two lines, (2.4) in the third and
fourth lines and (2.6) again in the last step.

We have achieved what we wanted, that is to say, define
gauge-invariant dressings for quarks and gluons. However,
we have done it at the cost of introducing new fields: the cloud
field φ and its anticommuting partner H . The next problem
is to include the extra fields into the action, and ensure that:

(a) the extension does not change the fundamental physics;
(b) in particular, no unphysical degrees of freedom propa-

gate.

The field H plays a crucial role to achieve objective (a).
Specifically, we use it to endow the cloud sector with a certain
symmetry, which ensures that the correlation functions of
the undressed fields are unmodified (despite the presence of
nontrivial interactions between them and the extra fields),
and so are the S matrix amplitudes. Moreover, we render the
extra fields purely virtual, to ensure that requirement (b) is
manifestly fulfilled as well.

We also want to preserve locality, renormalizability and
unitarity, and do everything without affecting the usual struc-
ture of the perturbative expansion. In particular, the expan-
sion in powers of the gauge coupling g should coincide with
the expansion in the number of loops.

3 Batalin–Vilkovisky formalism and Zinn–Justin
master equation

In this section we recall the standard formalism to treat gauge
theories. In the next sections we generalize it to build the
cloud sector.

We start from the classical action

Scl(A, ψ̄, ψ) = −1

4

∫
Fa

μνF
μνa +

∫
ψ̄(iγ μDμ − m)ψ

(3.1)

of a non-Abelian gauge theory with gauge group SU (Nc),
coupled to matter. For concreteness, we assume that the mat-
ter sector is made of fermions ψ in the fundamental rep-
resentation, Dμψ = ∂μψ − igAμψ being their covariant
derivative. The specific form of Scl is not important for the
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formalism we are going to develop. However, (3.1) will be
used in the explicit computations of this paper. We do not
write the measure dDx of the spacetime integrals explicitly,
when no confusion can arise.

We introduce the set of fields α = (Aμ,C, C̄, B, ψ, ψ̄),
where Aμ = T a Aa

μ are the gauge fields, C = CaT a are the
Faddeev–Popov ghosts [33], B = BaT a are the Nakanishi–
Lautrup Lagrange multipliers [34,35] and C̄ = C̄aT a are
the antighosts. The superscript α collects all the indices. To
have control on the Ward–Takahashi–Slavnov–Taylor iden-
tities [36–39] to all orders in a compact form, we use the
Batalin–Vilkovisky formalism [40,41].

We couple sources K α = (Kμ
A , KC , KC̄ , KB, Kψ, Kψ̄ )

to the field transformations by means of the functional

SK (, K ) = −
∫

(DμC)aKμa
A + g

2

∫
f abcCbCcKa

C

−i g
∫

ψ̄CKψ̄ − ig
∫

KψCψ

−
∫

BaKa
C̄
, (3.2)

where DμCa = ∂μCa + g f abc Ab
μC

c is the covariant deriva-
tive of Ca . Precisely, the infinitesimal field transformations
are

δ�α = θ(SK ,α) = −θ
δr SK
δK α

, (3.3)

where � = θC , θ is a constant anticommuting (Grassmann)
variable and

(X,Y ) =
∫ (

δr X

δα

δlY

δK α
− δr X

δK α

δlY

δα

)
(3.4)

are the Batalin–Vilkovisky antiparentheses [40,41], the sub-
scripts r and l denoting the right and left derivatives, respec-
tively.

The closure of the algebra of transformations is encoded
into the identities

(SK , SK ) = 0, (SK , (SK , X)) = 0 (3.5)

for every X . The Jacobi identity satisfied by the antiparen-
theses [40,41] implies that the two properties just stated are
equivalent. The second one is called nilpotence relation.

The gauge-fixed action reads

Sgf() = Scl(A, ψ̄, ψ) + (SK , �()), (3.6)

where �() is a certain functional that fixes the gauge, com-
monly known as “gauge fermion”. A typical form of �()

is

�() =
∫

C̄a
(
Ga(A) + λ

2
Ba

)
, (3.7)

where Ga(A) is the gauge-fixing function. For example, the
covariant gauge is the one with Ga(A) = ∂μAa

μ, which gives

(SK , �) =
∫

Ba
(

∂μAa
μ + λ

2
Ba

)
−

∫
C̄a∂μDμC

a →

− 1

2λ

∫ (
∂μAa

μ

)2 −
∫

C̄a∂μDμC
a, (3.8)

where the arrow denotes the integration over Ba . The gauge-
fixed action then reads

Sgf() = −1

4

∫
Fa

μνF
μνa +

∫
ψ̄(iγ μDμ − m)ψ

− 1

2λ

∫ (
∂μAa

μ

)2 −
∫

C̄a∂μDμC
a . (3.9)

Other gauge choices will be considered in the paper.
To have control on the renormalization of the gauge trans-

formations, it is useful to include them as composite fields.
This is achieved by adding SK to the gauge-fixed action and
working with the new action

S(, K ) = Sgf() + SK (, K ). (3.10)

The identities (3.5) imply that S(, K ) satisfies the Zinn–
Justin equation [42]

(S, S) = 0, (3.11)

also known as master equation. Formula (3.11) collects the
gauge invariance of the classical action, the triviality of the
gauge-fixing sector, and the closure of the gauge algebra. The
Jacobi identity implies the nilpotence relation (S, (S, X)) =
0 for every X .

4 Cloud sector

In this section we define the cloud sector. The idea is to add
the cloud field φ to the action, but trivialize its presence, in
some sense, by means of a new symmetry (which we call
cloud symmetry), built with the anticommuting partner H ,
so as to keep the correlation functions built without involving
the cloud sector and the S matrix elements unchanged.

The goal is achieved as follows. First, we introduce a new
set of fields ̃α = (φa, Ha, H̄a, Ea) and the sources K̃ α =
(K̃ a

φ, K̃ a
H , K̃ a

H̄
, K̃ a

E ) coupled to their transformations, where
H can be understood as “cloud Faddeev–Popov ghosts”, E
are new Lagrange multipliers and H̄ are the cloud antighosts.
Second, we extend the definition (3.4) of antiparentheses to
include the new sector:

(X, Y ) =
∫ (

δr X

δα

δlY

δK α
− δr X

δK α

δlY

δα
+ δr X

δ̃α

δlY

δ K̃ α
− δr X

δ K̃ α

δlY

δ̃α

)
.
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Third, we collect the transformations of the old and new fields
into the functionals

Sgauge
K = SK −

∫
Ra(φ,C)K̃ a

φ +
∫

Hb δRa(φ,C)

δφb
K̃ a

H ,

Scloud
K =

∫
Ha K̃ a

φ −
∫

Ea K̃ a
H̄

, Stot
K = Sgauge

K + S cloud
K ,

(4.1)

where Ra(φ,C), defined in (2.3), is just another way to write
δCφa . The first functional collects the gauge transformations
(2.3) and (2.6) of φ and H , while the second functional
encodes the cloud transformations, which are the most gen-
eral shifts of φ and H̄ . For example, the total transformation
of φ is

δ�,Hφa = θ
(
Stot
K , φa) = −θHa + Ra(φ,�) = −Ha + δ�φa,

where H = θH can be viewed as an arbitrary function that
translates the cloud field φ.

It is easy to check the identities

(Sgauge
K , Sgauge

K ) = (Scloud
K , Scloud

K ) = 0, (4.2)

which express the closures of the algebras of the gauge and
cloud transformations. The first identity follows from (3.5),
(2.4 ) and (2.7).

We can also check the closure of the combined transfor-
mations, i.e.,

(Stot
K , Stot

K ) = (Scloud
K , S gauge

K ) = 0. (4.3)

The proof follows from

(Scloud
K , Sgauge

K )

=
∫ (

δr Scloud
K

δHa

δl S
gauge
K

δ K̃ a
H

− δr Scloud
K

δ K̃ a
φ

δl S
gauge
K

δφa

)
= 0.

The following identities also hold:

Sgauge
K = SK −

(
Scloud
K ,

∫
Ra(φ,C)K̃ a

H

)
,

Scloud
K = −

(
S cloud
K ,

∫
φa K̃ a

φ +
∫

H̄a K̃ a
H̄

)
. (4.4)

They show that the two functionals Sgauge
K − SK and Scloud

K
are “cohomologically exact” under the cloud symmetry, i.e.,
they have the form

(
Scloud
K , local functional

)
.

4.1 The cloud and the total action

To specify the cloud we want to use, we add (Stot
K , �̃) to

the action, where �̃(, ̃) is the “cloud fermion”. A typical
form of it is

�̃(, ̃) =
∫

H̄a

(
V a(φ, A) + λ̃

2
Ea

)
, (4.5)

where V a(φ, A) denotes the “cloud-fixing function”, i.e., the
function that defines the cloud. We assume that V a is gauge
invariant,

(Sgauge
K , V a) = 0, (Sgauge

K , �̃) = 0. (4.6)

In practice, V a(φ, A) depends on φ and Aμ only through
the dressed gauge field Aμd. Sometimes, with an abuse of
notation, we just write V a(Aμd). More generally, V a may
depend on the other dressed fields as well.

The gauge fermion (3.7) was implicitly assumed to be
cloud invariant, because it was built before adding the extra
sectors. This is an assumption we have to maintain after the
extension, and will be crucial for the construction of the cor-
relation functions of the dressed fields. In the end, the cloud-
fermion must be gauge invariant and the gauge-fermion must
be cloud invariant.

We find

(Stot
K , �̃) = (Scloud

K , �̃) =
∫

Ea

(
V a(φ, A) + λ̃

2
Ea

)

+
∫

H̄a δV a(φ, A)

δφb
Hb. (4.7)

Note that the last term provides a sort of Faddeev-Popov
determinant for the cloud, which is crucial for the properties
that we want to prove.

The total action of the extended theory is then

Stot(, K , ̃, K̃ ) = Scl + (S tot
K , � + �̃) + Stot

K (4.8)

and satisfies its own master equation

(Stot, Stot) = 0. (4.9)

Note that Stot is separately gauge invariant and cloud invari-
ant, since Eqs. (4.2), (4.3) and (4.6) imply

(Sgauge
K , Stot) = (Scloud

K , Stot) = 0. (4.10)

Finally, using (4.4) we can write

Stot(, K , ̃, K̃ ) = S(, K ) + (Scloud
K ,�),

� = �̃ −
∫

Ra(φ,C)K̃ a
H −

∫
φa K̃ a

φ

−
∫

H̄a K̃ a
H̄

,

which shows that the difference between the total action and
the ordinary action S(, K ) of formula (3.10) is exact under
the cloud symmetry.

4.2 Covariant cloud and propagators

To make explicit calculations, we need to choose the could
function. There is a large arbitrariness in this choice. A con-
venient starting point is the covariant cloud

V a(φ, A) = ∂μAa
μd. (4.11)
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Other choices will be considered later on.
Formula (4.7) then gives

(Stot
K , �̃) = (Scloud

K , �̃) = − 1

2λ̃

∫ (
∂μAa

μd

)2

−
∫

(∂μ H̄b)
δAb

μd

δφa
Ha

d , (4.12)

after integrating E out. To the lowest order, (4.12) reads

(Scloud
K , �̃) = − 1

2λ̃

∫ (
∂μAa

μ − �φa)2

+
∫

(∂μ H̄a)(∂μH
a) + O(g). (4.13)

Together with (3.9), this expression allows us to derive the
propagators in the covariant framework. We find

〈Aa
μ(p)Ab

ν(−p)〉0 = − iδab

p2 + iε

(
ημν − (1 − λ)pμ pν

p2 + iε

)
,

〈ψ(p)ψ̄(−p)〉0 = i(γ μ pμ + m)

p2 − m2 + iε
,

〈Aa
μ(p)φb(−p)〉0 = − λδab pμ

(p2 + iε)2 ,

〈φa(p)φb(−p)〉0 = − i(λ + λ̃)δab

(p2 + iε)2 , (4.14)

plus the ghost propagators. With an abuse of notation, we use
the same symbols for the fields and their Fourier transforms,
since the meaning is clear from the context. For the moment,
we use the Feynman iε prescription for every pole. Later on
we switch to the purely virtual (fakeon) prescription for the
cloud poles.

The correlation functions of the dressed fields do not suf-
fer from infrared divergences (even without advocating the
properties of the dimensional regularization), although the
denominators of some propagators contain the square of p2.
A quick way to prove this statement is by noting that there
exists a gauge choice (λ = −λ̃) where such problems are
manifestly absent. Indeed, the concerning denominators are
only those originated by 〈φa(p)φb(−p)〉0, which vanishes
for λ = −λ̃. Since the dressed correlation functions are gauge
independent, they are also infrared finite. With more general
gauge choices (such as λ �= −λ̃), the infrared divergences
cancel out among different diagrams contributing to the same
order.

5 Cloud independence of the ordinary correlation
functions

In this section and the next one we prove the cloud indepen-
dence of the non-cloud sector. We start by showing that the
ordinary correlation functions are unaffected by the clouds.

This also ensures that the renormalization of the fundamental
(i.e., non-cloud) sector of the theory is the same as usual.

The generating functional of the correlation functions is

Z tot(J, K , J̃ , K̃ )

=
∫

[dd̃]exp
(
i Stot(, K , ̃, K̃ )

+i
∫

α Jα + i
∫

̃α J̃α

)
(5.1)

and Wtot(J, K , J̃ , K̃ ) = −i ln Z tot(J, K , J̃ , K̃ ) is the gener-
ating functional of the connected ones. The functional deriva-
tives of Z tot or Wtot with respect to the sources Jα , calculated
at J̃ = K̃ = 0, are the ordinary correlation functions of the
elementary fields (and their transformations). They are col-
lected in

Z tot(J, K , 0, 0) =
∫

[dd̃]exp

(
i S(, K )

+i(Scloud
K , �̃) + i

∫
α Jα

)

=
∫

[d]exp

(
i S(, K )

+i
∫

α Jα

) ∫
[d̃]ei(Scloud

K ,�̃). (5.2)

We want to prove that this expression coincides with the
ordinary generating functional, thanks to the identity
∫

[d̃]ei(Scloud
K ,�̃) = 1. (5.3)

Using (4.7) and integrating over the cloud ghosts and
antighosts, the left-hand side of (5.3) becomes

∫
[dφdE]exp

(
i
∫

Ea

(
V a + λ̃

2
Ea

))
det

[
δV a

δφb

]
.

Inserting

1 =
∫

[dQ]exp

(
− i λ̃

2

∫
(Qa − Ea)2

)
,

it also becomes
∫

[dφdQdE]e− i λ̃
2

∫
(Qa )2

exp

(
i
∫

Ea(V a + λ̃Qa)

)
det

[
δV a

δφb

]
.

Integrating on the Lagrange multipliers E , we obtain a func-
tional δ function, and conclude
∫

[dQ]e− i λ̃
2

∫
(Qa)2

∫
[dφ]δ(V a + λ̃Qa) det

[
δV a

δφb

]

=
∫

[dQ]e− i λ̃
2

∫
(Qa)2 = 1,

as desired.
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Note that the cloud Faddeev–Popov determinant is crucial
to trivialize the φ integral. Without it, the cloud sector would
affect the non-cloud one and change the fundamental theory.

6 Cloud independence of the Smatrix amplitudes

Now we prove that the scattering amplitudes of the dressed
fields coincide with the usual scattering amplitudes (of
undressed fields). Specifically, the clouds have no effect on
shell, when the polarizations are attached to the amputated
external legs.

First, consider a generic theory of scalar fields ϕ, described
by some classical action S(ϕ). If O(ϕ) denotes a composite
field that is at least quadratic in ϕ, the connected two-point
function ofϕ′ ≡ ϕ+O(ϕ) can be decomposed, in momentum
space, as

〈ϕ′ |ϕ′〉 = 〈ϕ |ϕ〉 + ⟪O |ϕ ⟫ 〈ϕ |ϕ〉 + 〈ϕ |ϕ〉 ⟪ ϕ |O ⟫+ ⟪O |O ⟫
+ ⟪O |ϕ ⟫ 〈ϕ |ϕ〉 ⟪ ϕ |O ⟫

= [
1 + ⟪O |ϕ⟫]2 〈ϕ |ϕ〉 + ⟪O |O ⟫ . (6.1)

Here and below, a vertical bar is used to separate the (elemen-
tary or composite) field of momentum p (to the left) from the
one of momentum −p (to the right). The symbol ⟪ · · · ⟫ col-
lects the “nonamputable” diagrams, which are those that do
not contain propagators of momentum p. The first equality
of identity (6.1) can be easily proved diagrammatically.

Formula (6.1) shows that the location of the pole is the
same in 〈ϕ |ϕ〉 and 〈ϕ′ |ϕ′〉. We write it as p2 = m2

ph, where
mph denotes the physical mass (possibly equipped with an
imaginary part, if the particle is unstable). On the other hand,
the residue at the pole may change. Precisely, we have

〈ϕ |ϕ〉 
 i Z

p2 − m2
ph + iε

, 〈ϕ′ |ϕ′〉 
 i Z ′

p2 − m2
ph + iε

,

where Z is the usual normalization factor and

Z ′ = Z
[
1 + ⟪O |ϕ⟫]∣∣2

p2=m2
ph

is the new normalization factor.
Now, consider the correlation functions that contain more

than two ϕ′ insertions. Singling out one insertion at a time,
the diagrammatics easily gives

〈ϕ′ rest〉 = [
1 + ⟪O |ϕ⟫] 〈ϕ |ϕ〉 ⟪ ϕ rest ⟫+ ⟪O rest⟫,

where the nonamputation ⟪ · · · ⟫ only refers to the leg under
consideration. Thus, the identity
〈 j∏

a=1

p2
a − m2

ph√
Z ′ ϕ′(pa)

〉

on-shell

=
〈 j∏

a=1

p2
a − m2

ph√
Z

ϕ(pa)

〉

on-shell

(6.2)

holds, which proves that the S matrix amplitudes do not
change when we make a (perturbative) change of field vari-
ables from ϕ to ϕ′.

Applying this result to the cloud extension of Yang–Mills
theory, we obtain, in momentum space

〈 n∏

i=1

k2
i ε

μi
id (ki )Aμid(ki )

j∏

a=1

ūsad(pa)(�pa − m̃)ψd(pa)

j∏

b=1

ψ̄d(qb)(/qb − m̃)usbd(qb)

〉

on-shell

=
〈 n∏

i=1

k2
i ε

μi
i (ki )Aμi (ki )

j∏

a=1

ūsa (pa)(�pa − m̃)ψ(pa)

j∏

b=1

ψ̄(qb)(/qb − m̃)usb (qb)

〉

on-shell

, (6.3)

where �p = γ μ pμ and m̃ denotes the physical mass. The
polarizations εμ(k) and us(p) satisfy kμεμ(k) = 0 and
(�p − m̃)us(p) = 0 and include the normalization factors
1/

√
Z . The “dressed” polarizations ε

μ
d (k) and usd(p) are the

same, apart from having normalization factors 1/
√
Z ′. By the

theorem proved in the previous section, the right-hand side
of (6.3) is cloud independent and coincides with the usual S
matrix amplitude.

Two differences between (6.2) and (6.3) deserve to be
singled out. Formulas (2.5) show that the expansion of Aμd

contains a linear contribution −∂μφ, besides Aμ itself, plus
nonlinear terms. Thus, Aμd is not of the form ϕ′ = ϕ+O(ϕ).
Nevertheless, the linear term −∂μφ becomes ikμφ(k), after
the Fourier transform, and is killed by the polarization εμ(k).
This means that ε

μ
d (k)Aμd(k) is of the required form, apart

from an unimportant normalization factor.
Second, we are not comparing correlation functions of the

same theory, as in (6.2). We are jumping from one theory (the
extended one, to which the left-hand side of (6.3) refers) to
another theory (the non extended one, to which the right-hand
side of (6.3) refers). This is possible, thanks to the result of
the previous section.

In the end, the product k2ε
μ
d (k)Aμd (k) is gauge invariant

(and gauge independent, for the arguments we give below)
and its dressing is trivial:

lim
k2→0

k2ε
μ
d (k)〈Aμd(k) · · · 〉 = lim

k2→0
k2εμ(k)〈Aμ(k) · · · 〉.

The same result holds for the fermions and any other elemen-
tary fields, if present.

The identity (6.3) proves that the ordinary theory of scat-
tering can be rephrased as a theory of scattering of dressed
fields. We could even forget about the ordinary fields alto-
gether, and always work with dressed fields, which have the
advantage of being manifestly gauge invariant. In so doing,
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both gauge invariance and gauge independence become man-
ifest.

A straightforward consequence is that the usual S-matrix
amplitudes are gauge independent. With the usual methods,
the proof of this result is relatively simple in the Abelian case,
but more demanding in the non-Abelian one [43].

7 Dressed correlation functions

In this section we study the correlation functions of the
dressed fields. A way to deal with their insertions system-
atically is by coupling them to new sources and extending
the generating functionals again. We replace the action Stot

inside (5.1) by

Sext
tot = Stot +

∫ (
Jμ

d Aμd + J̄ψdψd + ψ̄d Jψd
)
, (7.1)

and denote the extended generating functionals by Z ext
tot (J, K ,

J̃ , K̃ , Jd) = exp(iW ext
tot (J, K , J̃ , K̃ , Jd)). Note that the

extended action is gauge invariant, since (4.10) implies

(Sgauge
K , Sext

tot ) = 0. (7.2)

The correlation functions of the dressed fields are the
functional derivatives with respect to the dressed sources
Jd = (Jμ

d , J̄ψd, Jψd).

7.1 Gauge independence

It is straightforward to prove that the dressed correla-
tion functions, collected in the functional Z ext

tot (Jd) =
exp(iW ext

tot (Jd)) ≡ Z ext
tot (0, 0, 0, 0, Jd), are gauge indepen-

dent.
Assume that the gauge fermion � depends on some gauge-

fixing parameter λ. A derivative with respect to λ amounts
to an insertion of an Sgauge

K -exact functional:

∂

∂λ
W ext

tot (Jd) = 〈(Sgauge
K , �λ)〉J=K= J̃=K̃=0, (7.3)

where �λ = ∂�/∂λ. We want to show that the right-hand
side of this identity vanishes.

Consider 〈�λ〉J=K= J̃=K̃=0 and perform a change of field
variables

δα = θ(Sgauge
K ,α), δ̃α = θ(Sgauge

K , ̃α),

in the functional integral that defines the numerator of
the average. Because of (7.2), which also implies (Sgauge

K ,

Sext
tot

∣∣
K=K̃=0) = 0, everything is invariant, but �λ. Thus,

0 = 〈δ�λ〉J=K= J̃=K̃=0 = θ〈(Sgauge
K , �λ)〉J=K= J̃=K̃=0,

(7.4)

as we wished to prove. Gauge independence will be verified
explicitly in the computations of the next sections. In Sect.
14 we prove that it survives the renormalization.

8 Gauge/cloud duality

In this section we prove a gauge/cloud duality, which relates
the gauge-trivial sector of the theory to the cloud sector.

We start by deriving the could transformation of the
dressed gauge field from (2.1) and (2.5). The result is

(Stot
K , Aμd) = (Scloud

K , Aμd) = Dμ(Ad)Hd, (8.1)

where Dμ(Ad) denotes the covariant derivative, evaluated on
the dressed field Ad. Instead,

Hd ≡ − i

g
(Scloud

K , Û )Û−1 = i

g
Û (Scloud

K , Û−1)

= e−igadφ − 1

−igadφ

H (8.2)

denotes the dressed cloud ghost H . In the last step of (8.2)
we have used (2.2) with X = igφ. It is easy to check that
Hd is indeed gauge invariant, (Sgauge

K , Hd) = 0. We see that
the could transformation of Aμd is analogous to the gauge
transformation of Aμ, provided the dressed fields replace the
undressed ones. By inverting (8.2), we obtain

H = R(−φ, Hd). (8.3)

Similarly, when we work out the cloud transformation of
Hd, we find that it mimics the gauge transformation of C :

(Scloud
K , Hd) = igHdHd. (8.4)

We can also introduce the dressed Faddeev-Popov ghosts

Cd ≡ R(φ,C) = − igadφ

1 − eigadφ
C = (Sgauge

K , φ), (8.5)

which are clearly gauge invariant. Their cloud transforma-
tions read

(Scloud
K ,Ca

d ) = (Sgauge
K , Ha) = (Sgauge

K , Ra(−φ, Hd))

= −Cb
d
δRa(φd, Hd)

δφb
d

, (8.6)

having defined φd = −φ and used (8.3).
Next, we consider the change of field variables

, ̃ → d, ̃d (8.7)

from undressed fields to dressed fields, by means of the def-
initions (2.5), (8.2), (8.5) and φd = −φ, leaving all the
other fields unchanged: C̄d = C̄ , Bd = B, H̄d = H̄ and
Ed = E . The transformations (8.7) are perturbatively local,
which means that when we use them as changes of field vari-
ables in the functional integral, the Jacobian determinant is
equal to one (using the dimensional regularization).
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To ensure that all the properties derived so far continue to
hold, we need to preserve the antiparentheses. We can achieve
this goal by embedding (8.7) into a canonical transformation

, ̃, K , K̃ → d, ̃d, Kd, K̃d, (8.8)

of the Batalin-Vilkovisky type. Its generating functional is

F(, ̃, Kd, K̃d) =
∫

d(, ̃)Kd +
∫

̃d(, ̃)K̃d.

At the practical level, the whole operation amounts to work
out the transformations of the dressed fields, which we have
already done, and couple them to the dressed sources. Using
(8.1), (8.4) and (8.6), we find

Sgauge
K =

∫
Ca

d K̃
a
φd −

∫
Ba

d K
a
C̄d

,

Scloud
K = −

∫
(Dμ(Ad)Hd)

aKμa
Ad + g

2

∫
f abcHb

d H
c
d K̃

a
Hd

−i g
∫

ψ̄dHdKψ̄d − ig
∫

KψdHdψd

−
∫

Ea
d K̃

a
H̄d

−
∫

Ra(φd, Hd)K̃
a
φd

+
∫

Cb
d
δRa(φd, Hd)

δφb
d

Ka
Cd.

We see that (8.8) switches the gauge transformations and the
cloud transformations.

Similarly, it exchanges the roles of the gauge-fixing func-
tion Ga and the cloud function V a : Ga(A(φ, Ad)) ↔
V a(Ad). An important caveat of such an exchange is that
it understands that the prescription adopted for the gauge-
trivial sector is exchanged with the prescription adopted for
the cloud sector.

For example, choosing the covariant gauge in (3.7) and
the covariant cloud in (4.5), we have

� =
∫

C̄a
d

(
∂μ(ÛdAμdÛ

−1
d + i

g
Ûd(∂μÛ

−1
d ))a + λ

2
Ba

d

)
,

�̃ =
∫

H̄a
d

(
∂μAa

μd + λ̃

2
Ea

d

)
, (8.9)

where Ûd = exp(−igφd) = Û−1.
Collecting the various pieces together, the dual action

reads

Stot = −1

4

∫
Fa

μν(Ad)F
μνa(Ad)

+
∫

ψ̄d(iγ
μDμ(A d) − m)ψd

+(Stot
K , � + �̃) + S tot

K . (8.10)

Using the duality just proved, it is possible to simplify
the calculations of the correlation functions of the dressed
fields. Actually, if we choose a unique cloud for every inser-
tion (see next section for the generalization to multiclouds),

the correlation functions of the dressed fields coincide with
the correlation functions of the undressed fields in a specific
gauge.

This property can be proved by applying the canonical
transformation (8.8) to the dressed correlation functions. The
result is an identical correlation function where the dressed
fields are replaced by the undressed ones, the gauge-fixing is
replaced by the cloud and the cloud is replaced by the gauge-
fixing. For example, if we use the covariant gauge (3.9) and
the covariant cloud function (4.11), we obtain

〈
Aμ1d(x1) · · · Aμnd (xn)ψd(y1) · · ·ψd(y j )ψ̄d(z1) · · · ψ̄d(z j )

〉

=
〈
Aμ1(x1) · · · Aμn (xn)ψ(y1) · · · ψ(y j )ψ̄(z1) · · · ψ̄(z j )

〉

λ→λ̃

.

(8.11)

This property will be verified in the computations of the next
sections. It ensures that the left-hand side (which does not
depend on λ by gauge independence), can be worked out
by replacing λ with λ̃ in the undressed correlation function
appearing on the right-hand side (which does not depend on
λ̃ by cloud independence).

Typically, the left-hand side of (8.11) receives contribu-
tions from a huge number of diagrams. However, the identity
(8.11) implies that most contributions cancel out in the end.
For example, the two-point function of the dressed gauge
field amounts to just one diagram, if it is computed as the
right-hand side of (8.11), but tenths of diagrams if it is com-
puted as the left-hand side of (8.11).

9 Multiclouds

In this section we extend the formalism of the previous ones
by adding several copies of the could sector. This allows us
to dress each insertion, in a correlation function, with its own
cloud, independently of the clouds of the other insertions.

We introduce many cloud fields φi , where i labels the
copies, together with their anticommuting partners Hi (the
cloud ghosts), the antighosts H̄ i and the Lagrange multipliers
Ei , collected in the list ̃αi = (φi , Hi , H̄ i , Ei ). Then we
couple sources K̃ αi to their transformations, which include
the gauge transformations and the cloud transformations of
each copy. We collect them in the functionals

Sgauge
K = SK −

∑

i

∫
Ra(φi ,C)K̃ ai

φ

+
∑

i

∫
Hbi δR

a(φi ,C)

δφbi
K̃ ai

H ,

Scloud i
K =

∫
(Hai K̃ ai

φ − Eai K̃ ai
H̄

),
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Scloud
K =

∑

i

Scloud i
K ,

Stot
K = Sgauge

K + Scloud
K . (9.1)

Finally, we extend the definition (3.4) of antiparentheses to
include all the copies:

(X,Y ) =
∫ [

δr X

δα

δlY

δK α
− δr X

δK α

δlY

δα

+
∑

i

(
δr X

δ̃αi

δlY

δ K̃ αi
− δr X

δ K̃ αi

δlY

δ̃αi

)]
. (9.2)

It is easy to check that the identities (4.2) and (4.3) con-
tinue to hold. The total cloud fermion can be just the sum of
the cloud fermions of each copy. We take

�̃(, ̃) =
∑

i

�̃i , �̃i =
∫

H̄ai

(
V ai + λ̃i

2
Eai

)
,

(9.3)

where V i are the gauge invariant cloud functions: (Sgauge
K ,

V i ) = 0. For simplicity, we also assume that eachV i depends
on the i th cloud field φi only (besides Aμ), i.e., different
cloud sectors are not mixed by the cloud functions. It can
be proved that renormalization preserves the unmixing (see
Sect. 14).

The total action of the extended theory is still (4.8), and
satisfies (4.9) and (4.10). Moreover,

(Scloud i
K , Stot) = 0 (9.4)

for every i .
We can always build gauge invariant functions with two

cloud fields, since the product Û (φ j )Û−1(φk) ≡ Û jk is
gauge invariant for every j and k. We have no powerful con-
trol on how such functions propagate through the operations
we make, once they are turned on. The cloud unmixing just
mentioned is an important simplification, as long as we can
prove that it is not ruined by renormalization and our own
manipulations.

The correlation functions that do not contain insertions of
some cloud sector are independent of that sector. Indeed, the
proof of (5.3) can be repeated for every sector separately. The
multicloud propagators can be easily derived using this prop-
erty. Consider, for example, the case of two clouds. Denote
the cloud fields by φ1 and φ2 and choose the cloud fermions
(4.5) with parameters λ̃1, λ̃2, and the covariant cloud func-
tions (4.11 ). Finally, choose the covariant gauge (3.8). Then,
the propagators ( 4.14) hold in each sector. In addition, we
have

〈φ1 |φ2〉 = − 1

λ̃1 − λ̃2

(
λ̃2〈φ1 |φ1〉 − λ̃1〈φ2 |φ2〉

)

= − iλδab

(p2 + iε)2 . (9.5)

The identity (9.5) is easily proved from the sum

− 1

2λ̃1

∫ (
∂μAa1

dμ

)2 − 1

2λ̃2

∫ (
∂μAa2

dμ

)2
,

which shows that, at the quadratic level, the combination
φ1−φ2 decouples from Aμ and from the combination λ̃2φ

1+
λ̃1φ

2. This implies 〈φ1 − φ2 |λ̃2φ
1 + λ̃1φ

2〉0 = 0. Note that
(9.5) may suggest that the cloud sectors mix. Nevertheless,
renormalization does not mix them, as shown in section 14.

The correlation functions of dressed fields can be studied
by means of the extension

Sext
tot = Stot +

∑

i

∫ (
Jμi

d Ai
μd + J̄ iψdψ

i
d + ψ̄ i

d J
i
ψd

)
, (9.6)

where Ai
μd, ψ i

d and ψ̄ i
d denote the dressed fields of the i th

cloud sector.
The gauge/cloud duality is less powerful in the presence

of many clouds. It can be used to eliminate one cloud, or a
combination of clouds, but not all of them. For example, a
correlation function

〈A(1)
μ1d(x1) · · · A(n)

μnd(xn)ψ
(n+1)
d (y1) · · ·

ψ
(n+ j)
d (y j )ψ̄

(n+ j+1)
d (z1) · · · ψ̄(n+2 j)

d (z j )〉, (9.7)

with different clouds for every field, can be converted into

〈Aμ1(x1)A
(2) ′
μ2d(x1) · · · A(n) ′

μnd(xn)ψ
(n+1) ′
d (y1) · · ·

ψ
(n+ j) ′
d (y j )ψ̄

(n+ j+1) ′
d (z1) · · · ψ̄(n+2 j) ′

d (z j )〉, (9.8)

by means of a canonical transformation of the form (8.8),
which turns the first dressed field into its undressed version.
The clouds of the other insertions are redefined as a con-
sequence. We have emphasized this by means of primes in
(9.8).

These operations preserve the unmixing, after further
redefinitions of the cloud fields themselves. Indeed, the trans-
formation (8.8) leads to

A(i) ′
μid

= Ûi1A
(1)
μid

Û−1
i1 + i

g
Ûi1(∂μi Û

−1
i1 ), i > 1.

To restore the unmixing, after relabeling A(1)
μd as Aμ, it is

sufficient to define the new i th cloud field φ′
i (φi , φ1), i > 1,

so as to have Ûi1 = exp(−igφ′
i ).

The proof that the usual correlation functions are cloud
independent, given in Sect. 5, can be straightforwardly gen-
eralized to the multicloud case. Similarly, the proof of for-
mula (6.3), which states that the S matrix amplitudes coincide
with the usual ones, can be generalized to the case where each
insertion is dressed by means of its own, independent cloud.
Note that each insertion may require a different normaliza-
tion factor 1/

√
Z ′, depending on the cloud.
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10 Absorptive parts

In this section we define the absorptive parts of the off-shell
correlation functions that contain insertions of dressed fields,
and study their properties.

If S = 1 + iT denotes the S matrix, the (amputated, con-
nected) diagrams give iT and the amplitudes are T . If the
unitarity equation SS† = 1 holds, it implies −2Re[iT ] =
T T † � 0. A virtue of the identity −2Re[iT ] = T T †, known
as optical theorem, is that it holds diagram by diagram (which
means: if we replace iT by any diagram we want, and T T †

by a suitable sum of “cut diagrams”, built with “cut prop-
agators”, the usual vertices and their complex conjugates
[20–25]). It also holds without putting the external legs on
shell. Moreover, as shown in ref. [1], it splits into many inde-
pendent, purely algebraic spectral optical identities, because
different thresholds do not talk to one another.

It also holds with non amputated diagrams. To see this,
it is sufficient to attach fictitious vertices to the legs that we
do not want to amputate. At the practical level, this amounts
to multiplying each of them by a factor −i . The identity
−2Re[iT ] = T T † also holds with insertions of local com-
posite fields (which can be attached to other fictitious vertices
– for this reason, each of them brings a further factor −i).
Combining elementary and composite fields, the identity also
holds with insertions of dressed fields (each of which must
be multiplied by −i).

We define the absorptive part of an off-shell correlation
function, with or without insertions of dressed fields, as
minus twice the real part of its amputated version, multi-
plied by the polarizations and the normalization factors

√
Z

of the external states. It is expected to be nonnegative if the
unitarity equation SS† = 1 holds, by the arguments given
above. In our calculations, the factors

√
Z can be set to one,

since the absorptive parts we are going to compute vanish at
the tree level. Note that more polarizations may be allowed
off shell than on shell.

The extended action Sext
tot is local and Hermitian. How-

ever, formula (4.13) shows that the cloud fields φi (which
are dimensionless) do not have ordinary kinetic terms, but
higher-derivative ones. For this reason, unitarity and the dia-
grammatic optical theorem are guaranteed to hold only if we
use the fakeon prescription and projection for the cloud fields
(see below). If not, we expect to find unphysical absorptive
parts. The results of our computations confirm these claims.

11 Dressed fermion self-energy

In this section and the next two we illustrate the properties
proved so far in explicit calculations. We concentrate on the
two-point functions of the gauge fields and the fermions to
order g2, which means one loop. For simplicity, we use the

same cloud for all the insertions. We compare several types
of clouds, gauge-fixings and prescriptions.

The four-leg vertices, which are multiplied by g2, con-
tribute only to tadpoles, which vanish using the dimensional
regularization. Ignoring them, it is sufficient to expand the
dressed fields (2.5) and the cloud action to order g. We find

Aμd = Aμ − ∂μφ − ig

2
[φ, 2Aμ − ∂μφ]

+O(g2), ψd = ψ − igφψ + O(g2).

For the moment, we concentrate on the covariant clouds and
the covariant gauge-fixings, and use the Feynman iε pre-
scription everywhere. The cloud action (4.12) reads

(Scloud
K , �̃) = − 1

2λ̃

∫ (
∂μAa

μ − �φa)2

+ g

2λ̃
f abc

∫ (
∂μ∂ν Aa

μ − �∂νφa) ×

φb(2Ac
ν − ∂νφ

c) +
∫

(∂μ H̄a)(∂μH
a)

−g

2
f abc

∫ [
(�H̄a)φb − 2(∂μ H̄a)(Ab

μ

−∂μφb)
]
Hc + O(g2). (11.1)

The two-point function of the dressed gauge fields is cal-
culated in section 13. Here we concentrate on the two-point
function of the dressed fermion, which reads

〈ψd |ψ̄d〉 = 〈ψ |ψ̄〉 − ig〈φψ |ψ̄〉 + ig〈ψ |ψ̄φ〉
+g2〈φψ |ψ̄φ〉 − g2

2
〈φ2ψ |ψ̄〉

−g2

2
〈ψ |ψ̄φ2〉 + O(g3). (11.2)

The diagrams contributing to the right-hand side of (11.2)
are shown in Fig. 1.

We restrict to the massless limit, which makes the formulas
more explicit.

The last two diagrams of Fig. 1 are tadpoles, which vanish
using the dimensional regularization. We have included them
just to show that 〈ψd |ψ̄d〉 in not plagued by infrared prob-
lems, no matter what regularization we use. The reason is that
the denominators ∼ 1/(p2)2 (which give potential infrared
divergences with a generic regularization technique) cancel
out among the last three diagrams. Their cancellation can be
verified by taking the loop momentum to zero. In that limit,
a fermion propagator iγ μ pμ/(p2 + iε) factors out and all
the diagrams become identical tadpoles. Since last two are
multiplied by −g2/2, while the third to last one is multiplied
by g2, the total vanishes. We have not included other tadpole
diagrams, because they vanish identically (they factorize the
trace of T a or a contraction like f abb).
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Fig. 1 Two-point function of
the dressed fermion to order g2.
The dashed line denotes the
cloud field φ

The second diagram is the ordinary fermion self-energy.
Added to the tree propagator, it gives

〈ψ |ψ̄〉 = iγ μ pμ

p2 + iε

[
1 − g2λ

8π2ε

N 2
c − 1

2Nc
(−p2 − iε)−ε/2

]

+O(g4), (11.3)

where ε = 4 − D and D is the continued spacetime dimen-
sion. The remaining diagrams of Fig. 1 give

iγ μ pμ

p2 + iε

g2(λ − λ̃)

8π2ε

N 2
c − 1

2Nc
(−p2 − iε)−ε/2 + O(g4),

(11.4)

so in total we get

〈ψd |ψ̄d〉 = iγ μ pμ

p2 + iε

[
1 − g2λ̃

8π2ε

N 2
c − 1

2Nc
(−p2 − iε)−ε/2

]

+O(g4). (11.5)

The dependence on the gauge-fixing parameter λ has disap-
peared, as expected. Nevertheless, the result depends on the
choice of the cloud, through the parameter λ̃.

We see that

〈ψd |ψ̄d〉 = 〈ψ |ψ̄〉λ→λ̃,

in agreement with (8.11).
The renormalization of 〈ψd |ψ̄d〉 requires the counterterm

g2λ̃

8π2ε

N 2
c − 1

2Nc

∫
J̄ψd

iγ μ∂μ

� − iε
Jψd. (11.6)

However, there is no need to insert it explicitly into the action
Sext

tot of (7.1). As the nonlocal nature of (11.6) suggests, (11.6)
is generated automatically by the Legendre transform that
relates the generating functional �ext

tot of the one-particle irre-
ducible diagrams to the generating functional W ext

tot of the
connected Green functions.

After renormalization, we take ε to zero and find

〈ψd |ψ̄d〉R
= iγ μ pμ

p2 + iε

[
1 + g2λ̃

(4π)2

N 2
c − 1

2Nc
ln(−p2 − iε)

]

+O(g4). (11.7)

Now we extract the absorptive part of this expression.
Since we have prescribed every field à la Feynman, the argu-
ments of the previous section alert us that the result might be
unphysical.

Recall that we are working in the massless limit. We study
the sign of the absorptive part by summing on the external
polarization states us . We use the identity

∑
s us ūs = γ μ pμ

without assuming p2 = 0, because we stay off shell. This
amounts to choosing the states us = √

p0(0, . . . 1, . . . , 0)t

(with 1 in position s and zeros elsewhere) and the basis γ μ =
((0, σμ), (σ̄ μ, 0))t , σμ = (1, σ ), σ̄ μ = (1,−σ ), where t

denotes the transpose, p0 > 0 and s = 1, 2, 3, 4. Then, the
absorptive part of 〈ψd |ψ̄d〉R is

Abso[〈ψd |ψ̄d〉R]
= −2Re

∑

s

ūs(−iγ μ pμ)〈ψd |ψ̄d〉R(−iγ ν pν)us

= g2λ̃

2π

N 2
c − 1

2Nc
p2θ(p2) + O(g4). (11.8)

A factor 4 comes from the spinor trace.
We see that the sign of (11.8) is positive or negative,

depending on the sign of the cloud parameter λ̃. As already
remarked, the could field φ has higher-derivative kinetic
terms. Thus, if we quantize it by means of the Feynman pre-
scription, as we have done so far, it can propagate ghosts and
violate the optical theorem.

We need to pay more attention to the clouds we choose,
otherwise they can inject unphysical degrees of freedom into
the theory and make the computations of the dressed corre-
lation functions uninteresting.

12 Purely virtual clouds

The clouds we have been using so far are physically unaccept-
able, because they add degrees of freedom that do not belong
to the fundamental theory. A way to preserve the content of
the fundamental theory is to switch to purely virtual clouds.
This way, we can use the correlation functions of the dressed
fields as tools to extract the physical content of the off-shell
correlation functions of the fundamental fields.

For a clearer understanding of what is going on, it may be
helpful to introduce the special gauge of Ref. [44], which is
defined by the gauge function Ga(A) = λ∂0A0a + ∇ ·Aa in
(3.7), where Aμa = (A0a,Aa). The gauge fermion reads

�() =
∫

C̄a
(

λ∂0A
0a + ∇ · Aa + λ

2
Ba

)
. (12.1)

For a more direct gauge/cloud duality and a convenient
switch back and forth between the gauge-trivial sector and
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the cloud sector, we mimic the special gauge into a “spe-
cial cloud”, by choosing the cloud function V a(A, φ) =
λ̃∂0A0a

d + ∇ · Aa
d, instead of (4.11). Then the cloud fermion

(4.5) reads

�̃(, ̃) =
∫

H̄a

(
λ̃∂0A

0a
d + ∇ · Aa

d + λ̃

2
Ea

)
. (12.2)

With these choices the propagators of the gauge fields
and the cloud field become, after integrating the Lagrange
multipliers B and E out,

〈Aia(p)A jb(−p)〉0 = iδab�i j

p2 + iε
+ iλδab pi p j

p2( p̂ · p) ,

〈A0a(p)A0b(−p)〉0 = − iδab

p̂ · p ,

〈Aμa(p)φb(−p)〉0 = − δab(λ̃E, λp)

( p̃ · p)( p̂ · p) ,

〈φa(p)φb(−p)〉0 = − iδab(λ + λ̃)

( p̃ · p)( p̂ · p) , (12.3)

together with 〈Aia(p)A0b(−p)〉0 = 0, where �i j = δi j −
(pi p j/p2), pμ = (p0, pi ) = (E,p), p̂μ = (λE,p) and
p̃μ = (λ̃E,p). The ghost propagators are

〈Ca(p)C̄b(−p)〉0 = iδab

p̂ · p , 〈Ha(p) H̄b(−p)〉0 = iδab

p̃ · p .

We have left the denominators 1/( p̂ · p) and 1/( p̃ · p)
unprescribed. The former belong to the gauge-trivial sector,
while the latter belong to the cloud sector. Obviously, the
poles 1/p2 belong to the physical sector. The virtue of the
special gauge, combined with the special cloud, is that it
keeps the three sectors distinct throughout the calculations
(at generic λ and λ̃). The distinction also holds through the
threshold decomposition of [1], which is crucial to define the
diagrammatics of purely virtual particles. Specifically, the
physical thresholds, which are those originated solely by the
physical poles 1/p2, are kept distinct from the unphysical
thresholds, which are those that receive any contributions
from the poles 1/( p̂ · p) and 1/( p̃ · p). Also note that at
generic λ and λ̃ there are no double poles (which is what
makes the special gauge “special” [44]).

Since the physical quantities are gauge independent, it
does not matter which prescription (e.g., Feynman iε, or
purely virtual) we use for the poles 1/( p̂ · p) of the gauge-
trivial sector, as long as they are all prescribed the same way.
The poles 1/( p̃ · p) belonging to the cloud sector, instead,
should be quantized as purely virtual, according to the rules
of [1].

Practically, this means that we start with the Feynman pre-
scription everywhere, as we would normally do, then make
the threshold decomposition of Ref. [1], and finally drop

every λ̃-dependent threshold. These operations render the
whole cloud sector purely virtual.

For a variety of applications (and to have a more direct
gauge/cloud match), it may be convenient to work with a
purely virtual gauge-trivial sector as well. To do so, it is
sufficient to adopt the fakeon prescription for the poles 1/( p̂ ·
p) as well. This option was introduced in [45] to provide a
more direct proof of unitarity in gauge theories.

At the end, we just drop all the λ, λ̃-dependent thresholds
that we find in the decomposition of Ref. [1], and keep only
the physical ones. What we obtain is a powerful physical
gauge.

12.1 Dressed fermion self-energy, again

We use the framework just defined to calculate the dressed
fermion self-energy anew. For simplicity, we calculate it at
rest, and assume λ > 0, λ̃ > 0. First, we use the Feynman
prescription for every pole. Then, we describe what changes
when we use purely virtual clouds.

The undressed two-point function turns out to be

〈ψ |ψ̄〉 = iγ μ pμ

p2 + iε

[
1 − g2(1 − √

λ + 2λ)

8π2ε(1 + √
λ)

×

N 2
c − 1

2Nc
(−p2 − iε)−ε/2

]
+ O(g4), (12.4)

instead of (11.3). The other diagrams of Fig. 1 give

− iγ μ pμ

p2 + iε

g2(
√

λ −
√

λ̃)(1 − √
λ −

√
λ̃ −

√
λλ̃)

4π2ε(1 + √
λ)(1 +

√
λ̃)

×

N 2
c − 1

2Nc
(−p2 − iε)−ε/2 + O(g4),

instead of (11.4). In total we get

〈ψd |ψ̄d〉 = iγ μ pμ

p2 + iε

[
1 − g2(1 −

√
λ̃ + 2λ̃)

8π2ε(1 +
√

λ̃)

N 2
c − 1

2Nc
×

(−p2 − iε)−ε/2

]
+ O(g4) = 〈ψ |ψ̄〉λ→λ̃,

in agreement with formula (8.11). Note that although formula
(8.11) was derived in the covariant gauge and with a covariant
cloud, it also applies to the present calculation, because the
exchange Ga(A) ↔ V a(φ, A) still amounts to λ ↔ λ̃, for
the choices of gauge-fixing and cloud that we have made.

Now we switch to purely virtual clouds, using the fakeon
prescription for the poles 1/( p̃ · p) of (12.3). The imaginary
part of 〈ψd |ψ̄ d〉 remains the same, so we can focus on the
absorptive part

Abso[〈ψd |ψ̄d〉R]
= −2Re

∑

s

ūs(−iγ μ pμ)〈ψd |ψ̄d〉R(−iγ ν pν)us
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= 2p2ReTr[γ μ pμ〈ψd |ψ̄d〉R], (12.5)

which is the one affected by the prescription. By definition,
all the contributions to (12.5) coming from the λ̃-dependent
thresholds drop out, due to the fakeon prescription for the
poles 1/( p̃ · p). The contributions of the λ-dependent thresh-
olds compensate one another, so we can use the prescription
we want for the poles 1/( p̂ · p). Choosing the fakeon pre-
scription for them as well, we see that the absorptive part
of 〈ψd |ψ̄d〉 comes from the sole second diagram of Fig. 1,
which is the usual self-energy diagram, provided we restrict
the gauge-field propagator (12.3 ) to its physical part

〈Aμa(p)Aνb(−p)〉0phys = i
δabδ

μ
i δν

j�
i j

p2 + iε
, (12.6)

which is the one obtained by dropping the poles 1/( p̂ · p)
and 1/( p̃ · p) in (12.3). Finally, the absorptive part does not
need renormalization. The final result is

Abso[〈ψd |ψ̄d〉R] = g2

2π
p2θ(p2). (12.7)

As desired, it is gauge independent, cloud independent
and positive. Ultimately, this is the physical content of the
fermion two-point function at one loop.

The calculation has been done for fermions at rest. The
general, off-shell result is not Lorentz invariant. The reason
is that, in order to compensate for the gauge dependence of
the undressed fermion ψ , the cloud must be built with the
longitudinal and temporal components of the gauge fields.
The very definition of such components requires to specify
a Lorentz frame. If we want, we can even choose different
Lorentz frames for each cloud and for the gauge-fixing.

The cloud Faddeev–Popov determinant did not contribute
so far. It contributes to 〈ψd |ψ̄d〉 starting from two loops. It
also contributes to the one-loop two-point function 〈Ad |Ad〉
of the dressed gauge fields (see below). Clearly, it is crucial
for the gauge/cloud duality.

Sometimes, it may be convenient to simplify the calcula-
tions by choosing λ = λ̃ = 1. In that case, the propagators
(12.3) become

〈Aia(p)A jb(−p)〉0 = iδab�i j

p2 + iε
+ iδab pi p j

p2 p2

∣∣∣∣
f
,

〈A0a(p)A0b(−p)〉0 = − iδab

p2

∣∣∣∣
f
,

〈Aμa(p)φb(−p)〉0 = − δab pμ

(p2)2

∣∣∣∣
f
,

〈φa(p)φb(−p)〉0 = − 2iδab

(p2)2

∣∣∣∣
f
, (12.8)

where the subscript “f” denotes the fakeon prescription. The
various types of thresholds (physical, gauge or cloud) are not

manifestly distinct at λ = λ̃ = 1, so we have to keep track
of their origins in different ways.

Note that (12.8) involves square denominators like 1/(p2)2.
Their fakeon prescription in a diagram G is defined as fol-
lows:

G

[
1

(p2)2

∣∣∣∣
f

]
→ − lim

μ2→0

d

dμ2 G

[
1

p2 − μ2

∣∣∣∣
f

]
.

Power counting is straightforward with both the covari-
ant and special gauge and clouds. It may not work equally
well with other choices of gauges and clouds. An example
is the Coulomb gauge, which can be obtained from the spe-
cial gauge by letting λ tend to zero. Similarly, the “Coulomb
cloud” can be obtained by letting λ̃ tend to zero in the special
cloud. In those limits, the integrals on the loop energies and
the integrals on the space components of the loop momenta
obey different power counting rules.

No particular prescription in needed to treat the Coulomb
poles 1/p2. They are purely virtual by accident, in some
sense. Furthermore, formula (8.11) shows that the correlation
functions of the dressed fields at λ̃ = 0 coincide with those
of the undressed fields in the Coulomb gauge. The absorptive
part at rest clearly coincides with (12.7), because it is cloud
independent.

13 Dressed gauge-field two-point function

In this section we study the dressed gauge-field two-point
function at one loop, sticking to pure Yang–Mills theory for
simplicity. As before, we start from the covariant gauge and
the covariant cloud, with the Feynman prescription every-
where. At a second stage we switch to purely virtual clouds.

First, we verify that the ordinary two-point function
〈Aa

μ |Ab
ν〉 is cloud independent, to check the results of Sect.

5. The diagrams contributing to 〈Aa
μ |Ab

ν〉 are too many to be
listed here and include loops of cloud ghosts H -H̄ . Collect-
ing everything together and subtracting the divergent part,
the result is the same as usual, i.e.,

〈Aμa |Aνb〉 one-loop

= ig2Nc(13 − 3λ)

6(4π)2(p2)2 δab(p2ημν − pμ pν) ln(−p2 − iε).

(13.1)

As expected, the dependence on the cloud parameter λ̃ dis-
appears and the gauge dependence remains.

Next, we compute the two-point function 〈Aa
dμ |Ab

dν〉 of
the dressed gauge fields, still in the covariant gauge. The
number of diagrams is even larger, but the final result is
extremely simple and coincides with (13.1), apart from the
replacement λ → λ̃, in agreement with the general property
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(8.11):

〈Aμa
d |Aνb

d 〉one-loop

= ig2Nc(13 − 3λ̃)

6(4π)2(p2)2 δab(p2ημν − pμ pν) ln(−p2 − iε).

As in the case of the fermion self-energy, the absorptive part,

Abso
[
〈Aμa

d |Aνb
d 〉

]
= −2Re

[
(i p2)〈Aμa

d |Aνb
d 〉(i p2)

]

= g2Nc(13 − 3λ̃)

48π
δab(p2ημν

−pμ pν)θ(p2),

is not physical, because the cloud is not physical.
Switching to purely virtual clouds, the imaginary part does

not change. To work out the real part, we just need to compute
one diagram, i.e., the self-energy diagram where physical
gauge fields circulate with the propagator (12.6). Note that
we do not need to use the vertex AAφ, because it involves
at least one divergence ∂μAμ, by formula (11.1). We obtain,
for pμ = (p0, 0),

Abso[〈Aia
d (p)A jb

d (−p)〉] = g2Ncδ
abδi j

24π
p2θ(p2),

Abso[〈A0a
d (p)A0b

d (−p)〉] = Abso[〈A0a
d (p)Aib

d (−p)〉] = 0.

The results are again gauge independent, cloud independent
and nonnegative.

14 Renormalization

In this section we study the renormalization of the extended
theory. We show that everything goes through in the usual
way (by means of renormalization constants for the cou-
plings, the masses, the fields and the sources) apart from non-
polynomial, nonderivative redefinitions of the cloud fields
and their anticommuting partners into functions of them-
selves, with no mixings among different cloud sectors.

14.1 Master equations

First, the master equation (4.9) implies an analogous master
equation

(�tot, �tot) = 0 (14.1)

for the generating functional �tot = Wtot(J, J̃ , K , K̃ ) −∫
α Jα − ∑

i

∫
̃αi J̃ iα of the connected, one-particle irre-

ducible (1PI) Green functions, where α = δrWtot/δ Jα ,
̃αi = δrWtot/δ J̃αi . The proof follows from a change of
field variables

α → α + θ(Stot,
α), ̃αi → ̃αi + θ(Stot, ̃

αi ),

in the functional integral (5.1) that defines Z tot = exp(iWtot).
Only the source terms

∫
J + ∫

̃ J̃ contribute, giving
∫

〈(Stot,
α)〉Jα +

∑

i

∫
〈(Stot, ̃

αi )〉 J̃αi = 0,

which can easily be rewritten as (14.1). When (4.9) does not
hold, the same argument gives (�tot, � tot) = 〈(Stot, Stot)〉.

Second, the i th cloud invariance of the total action Stot,
i.e., the identity (Scloud i

K , Stot) = 0 of (9.4), implies the i th
cloud invariance

(Scloud i
K , �tot) = 0 (14.2)

of the � functional. The proof follows from the change of
field variables

α → α, ̃αi → ̃αi + θ(Scloud i
K , ̃αi ),

̃α j → ̃α j for i �= j , (14.3)

in Z tot. Both the source terms and the action Stot contribute
now, giving
〈∫

δr Scloud i
K

δ K̃ αi

δl Stot

δ̃αi

〉
=

∫
(Scloud

K , ̃αi ) J̃αi ,

which can be rewritten as (14.2), after using (Scloud i
K , Stot) =

0 in the left-hand side.

14.2 Renormalization algorithm

Proceeding inductively, we denote the order of the loop
expansion by the power of h̄ (although h̄ is set to one every-
where else in this paper). We assume that we have renormal-
ized the theory up to n loops. We denote the so-renormalized
action by Sn tot and the � functional associated with it by
�n tot. We also assume that Sn tot has the form Sn tot = Stot+
divergent counterterms (in some subtraction scheme) and sat-
isfies

(Sn tot, Sn tot) = O(h̄n+1), (Scloud i
K , Sn tot) = 0.

The inductive assumptions are clearly satisfied at order zero.
The locality of counterterms ensures, as usual, that the

order (n + 1) divergent part �
(n+1)
n tot div of �n tot is local.

By the argument above, the effective action �n tot satis-
fies (�n tot, �n tot) = 〈(Sn tot, Sn tot)〉 = (Sn tot, Sn tot) +
O(h̄n+2). The (n+1)-th order divergent part of this equation
gives

2(Stot, �
(n+1)
n tot div) = (Sn tot, Sn tot) + O(h̄n+2),

having noted that (Sn tot, Sn tot) is divergent. Defining

Sn+1 tot = Sn tot − �
(n+1)
n tot div

= Stot + divergent counterterms, (14.4)
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we have

(Sn+1 tot, Sn+1 tot) = (Sn tot, Sn tot) − 2(Sn tot, �
(n+1)
n tot div)

+O(h̄n+2) = O(h̄n+2).

Moreover, (Scloud i
K , Sn tot) = 0 implies (Scloud i

K , �n tot) = 0

and its (n+1)-th order divergent part gives (Scloud i
K , �

(n+1)
n tot div)

= 0, which in turn implies (Scloud i
K , Sn+1 tot) = 0. Finally, by

(14.4) �n+1 tot is convergent up to the order n + 1 included.
Thus, the inductive assumptions are fully replicated to that
order. This allows us to take the argument to n → ∞, where
we obtain the renormalized action SR tot ≡ S∞ tot, and con-
clude that it satisfies the renormalized master equations

(SR tot, SR tot) = 0, (Scloud i
K , SR tot) = 0. (14.5)

14.3 Renormalized action

Now we characterize SR tot more precisely. Besides the usual
ghost number, we introduce “cloud numbers” for each cloud.
The usual ghost number is equal to 1 for C , minus 1 for C̄ ,
KB , Kμ

A , Kψ , Kψ̄ , K̃ i
φ and K̃ i

H , minus 2 for KC , and 0 for
every other field and source. The i th cloud number is equal
to one for Hi , minus one for H̄ i , K̃ i

H and K̃ i
E , and zero in

all the other cases.
Every term of the action Stot is neutral with respect to the

ghost and cloud numbers just defined, with the exception of
the source terms

∫
Hi K̃ i

φ . Since, however, such terms cannot
be used in nontrivial 1PI diagrams, all the counterterms are
neutral. Thus, each cloud number is separately conserved by
the 1PI diagrams beyond the tree level.

By power counting, the counterterms can be at most linear
in the sources. Indeed, the dimensions of K̃ i

φ , K̃ i
H , K̃ i

H̄
, K̃ i

E

are 3, 2, 2 and 1, respectively, but K̃ i
E never appears, K̃ i

H̄
appears trivially and does not participate in the counterterms,
while a bilinear in K̃ i

H is prohibited by the conservation of
the i th cloud number.

We recall that the cloud symmetry generated by Scloud
K

collects the most general shifts of the cloud fields φi , com-
bined with analogous shifts of H̄ i and the sources K̃ i

H and
K̃ i

E . A general theorem (which is easily proved by switch-
ing to the language of differential forms – see, for example,
the appendix of [46]) ensures that a local functional X that
is closed with respect to a symmetry of this type (i.e., such
that (Scloud

K , X) = 0) is the sum of an exact local functional
(i.e., a functional of the form (Scloud

K ,Y ), for some other local
functional Y ) plus a local functional that is independent on
the shifted fields, as well as their shifts.

Since SR tot satisfies the second Eq. (14.5) for every i ,
hence (Scloud

K , SR tot) = 0, it can be written as the sum

SR tot = SR + (Scloud
K , ϒR) + Scloud

K (14.6)

of a local functional SR that does not depend on the cloud
fields and the cloud sources, plus a cloud exact functional,
where ϒR is local. We have separated Scloud

K from the rest,
because Scloud

K is nonrenormalized, due to its triviality.

14.4 Cloud independence through renormalization

Now we prove that the functional SR coincides with the usual
renormalized action. To achieve this goal, we need to show
that the cloud independence theorem of Sect. 5 safely goes
through the renormalization algorithm. The proof given in
Sect. 5, which relies on the specific forms of the action and
the cloud fermions used there, needs to be upgraded in a
nontrivial way.

Since every renormalized action Sn tot, as well as the func-
tionals�

(n+1)
n tot div, satisfy (S cloud

K , Sn tot) = (Scloud
K , �

(n+1)
n tot div) =

0, the argument used for (14.6) allows us to write them as

Sn tot = Sn + (Scloud
K , ϒn) + S cloud

K ,

�
(n+1)
n tot div = �

(n+1)
n div + (Scloud

K , R(n+1)
n div ), (14.7)

where Sn and �
(n+1)
n div are independent of the cloud fields ̃αi

and the cloud sources K̃ αi .
Assume, by induction, that Sn is cloud independent (that

is to say, independent of the cloud parameters λ̃). Let
Zn tot(J, K , J̃ , K̃ ) denote the generating functional associ-
ated with the action Sn tot. At J̃ = K̃ = 0 it reads

Zn tot(J, K , 0, 0)

=
∫

[dd̃]exp

(
i Sn(, K ) + i(Scloud

K , ϒ̄n) + i
∫

α Jα

)

=
∫

[d]exp

(
i Sn(, K ) + i

∫
α Jα

) ∫
[d̃]ei(Scloud

K ,ϒ̄n ),

(14.8)

where ϒ̄n denotes ϒn at K̃ = 0. The cloud sector does not
contribute, because
∫

[d̃]ei(Scloud
K ,ϒ̄n) = 1. (14.9)

This identity can be proved as follows. The left-hand side is
in principle a functional of the fields  and the sources K ,
since ϒ̄n may depend on them. To show that it is actually a
constant, we consider arbitrary infinitesimal variations of 

and K . If δϒ̄n denotes the variation of ϒ̄n due to them, the
variation of the integral is

δ

∫
[d̃]ei(Scloud

K ,ϒ̄n) = i
∫

[d̃](Scloud
K , δϒ̄n)e

i(Scloud
K ,ϒ̄n),

(14.10)

Performing the change of field variables ̃α → ̃α +
θ(Scloud

K , ̃α) in the integral
∫

[d̃]δϒ̄R ei(S
cloud
K ,ϒ̄n),
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we obtain
∫

[d̃]δϒ̄n ei(S
cloud
K ,ϒ̄n)

=
∫

[d̃]
[
δϒ̄n + θ(Scloud

K , δϒ̄n)
]

ei(S
cloud
K ,ϒ̄n). (14.11)

We have used the fact that (Scloud
K , ϒ̄n) is independent

of the sources K̃ , so (Scloud
K , ϒ̄n) → (Scloud

K , ϒ̄n) +
θ(Scloud

K , (Scloud
K , ϒ̄n)) = (Scloud

K , ϒ̄n). The equality (14.11)
shows that the right-hand side of (14.10) vanishes, as we
wished to prove.

Thus, all the connected correlation functions of the
undressed fields, which are collected in Wn tot(J, K , 0, 0),
coincide with the usual ones, even at the renormalized level.
Not only, we can also show that the 1PI correlation func-
tions of the undressed fields, collected in �n tot(, K , 0, 0),
coincide with the usual ones. Indeed, it is easy to see, using
the second equation of (14.7), that setting ̃i = 0 is equiv-
alent to setting J̃ i = 0 in all cases apart from J̃ iE . The
proof given above also works if we keep the sources J̃ iE arbi-
trary, since

∑
i

∫
Ei J̃ iE = (Scloud

K ,
∑

i

∫
H̄ i J̃ iE ): the deriva-

tion can be repeated with ϒ̄n → ϒ̄n + ∑
i

∫
H̄ i J̃ iE . Thus,

even Wn tot(J, K , 0̂, 0) coincides with the usual one, where 0̂
means that all the sources J̃ i are set to zero but J̃ iE . Actually,
Wn tot(J, K , 0̂, 0) does not even depend on J̃ iE . These facts
imply that �n tot(, K , 0, 0) coincides with the usual non-
cloud one, and so does �

(n+1)
n div . In particular, �

(n+1)
n div is cloud

independent. Then, (14.4) shows that Sn+1, inside Sn+1 tot,
is cloud independent. Finally, we can take n to infinity, and
infer that SR is cloud independent and coincides with the
usual renormalized action.

We have thus achieved a neat separation between the fun-
damental theory and the cloud sectors, and ensured that the
separation is compatible with renormalization. We recall that
SR is determined by gauge-independent renormalization con-
stants Zg and Zm for the coupling g and the fermion mass
m, respectively, plus a generically gauge-dependent canoni-
cal transformation that incorporates the wave-function renor-
malization constants of the fields  and the sources K .

The arguments of this subsection can be specialized to
every cloud, to prove that the i th cloud parameters λ̃i do not
propagate to the other cloud sectors.

14.5 Renormalized clouds

Now we analyze the functional ϒR . Separating the source-
independent part �̃R of ϒR from the source-dependent part,
we can write

(Scloud
K , ϒR) = (Scloud

K , �̃R) +
∑

i

∫
(CaSabi (φ)K̃ bi

φ

+CaHbi Sabci (φ)K̃ ci
H ), (14.12)

for some functions Sabi (φ) and Sabci (φ), which encode
the gauge transformations of the cloud fields and the cloud
ghosts. The structures of the last two terms are determined by
the conservations of the ghost and cloud numbers, as well as
power counting and cloud exactness. These same properties
exclude any other source-dependent terms.

The functions Sabi (φ) and Sabci (φ) are not independent,
since by cloud exactness it must be possible to collect the
last two terms of (14.12) into
(
Scloud
K ,

∑

i

∫
CaSabi (φ)K̃ bi

H

)
. (14.13)

Moreover, each function Sabi (φ) can depend only on the i th
cloud field φi , because otherwise (14.13) is not neutral with
respect to each cloud number separately. Thus, from now on
we write Sabi (φi ).

Consider (Scloud
K , �̃R). The gauge and cloud conditions

we have used in this paper, which are (3.8), (4.11 ), (12.1)
and (12.2), ensure that the counterterms can depend on C̄ ,
H̄ i and Ei only through the derivatives ∂μC̄ , ∂μ H̄ i , ∂μEi .
Moreover, they cannot depend on B. We want to show that
the renormalized gauge fermion �̃R has the form

�̃R =
∑

i

∫
H̄ai

(
V ai
R (A, φi ) + λ̃i

2
Eai

)
(14.14)

for some local functions V ai
R that depend only on the i th

cloud fields φi . First, note that a term proportional to C̄ can-
not appear in �̃R , because its antiparenthesis with S cloud

K
would have dimension greater than four, or not be neutral
with respect to the ghost and cloud numbers.

Second, the coefficient of H̄ai in �̃R has dimension 2. It
cannot contain B, because B appears trivially in the action.
It cannot depend on C̄ and C either, because (S cloud

K , �̃R)

would contain a term ∼ EC̄C , which cannot be generated,
since E and C̄ can appear only through their derivatives.
For the same reason, the terms ∼ H̄ E of �̃R are nonrenor-
malized, because any corrections would bring counterterms
∼ E2 in (Scloud

K , �̃R).
Thus, �̃R can only contain the gauge fields and the cloud

fields in the way we have shown in (14.14). Moreover, the
functions V ai

R can only depend on the i th cloud field φi ,
otherwise (Scloud

K , �̃R) would violate the i th cloud number
conservation. This proves that there are no mixings among
different cloud sectors.

Finally, the renormalized action reads

SR tot = SR +
∑

i

(
Scloud i
K ,

∫
H̄ai

(
V ai
R (A, φi ) + λ̃i

2
Eai

)

+
∫

CaSabi (φi )K̃ bi
H

)
+ Scloud

K , (14.15)
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It may also be convenient to organize it as

SR tot = SR tot0 + Sgauge
K ,R + Scloud

K , (14.16)

where SR tot0 = SR tot|K=K̃=0. The renormalized gauge
transformations are encoded in Sgauge

K ,R . Separating the various
contributions according to their dependences on the sources
K and K̃ , the master equations (14.5) imply

(Sgauge
K ,R + Scloud

K , SR tot 0) = 0,

(Sgauge
K ,R + Scloud

K , Sgauge
K ,R + Scloud

K ) = 0,

(Scloud i
K , SR tot0) = (Scloud i

K , Sgauge
K ,R + Scloud

K ) = 0,

which immediately give

(Sgauge
K ,R , SR tot0) = (Scloud i

K , SR tot 0) = 0,

(Sgauge
K ,R , Sgauge

K ,R ) = (Scloud i
K , Sgauge

K ,R ) = 0. (14.17)

Combined, the two sets of equations imply (Sgauge
K ,R , SR tot) =

0, which was not obvious from (14.5 ). The left equations
ensure that SR tot0 is gauge and cloud invariant. In particu-
lar, all the functions V ai

R of (14.15) must be gauge invariant,
by the gauge invariance of the terms Eai V ai

R contained in
(Scloud

K , �̃R).
The functions Sabi (φi ) are further constrained by the clo-

sure of the renormalized gauge transformations. Apart from
that, they are arbitrary. Indeed, it is always possible to make
nontrivial redefinitions that send each φi into a function
of itself. Then, for consistency, each Hi must be sent into
Hi times a suitable function of φi . Since the fields φi are
dimensionless, renormalization can activate nonpolynomial,
nonderivative redefinitions of this type. By the second equa-
tion of (C.8), these redefinitions can depend on the gauge-
fixing parameters and the i th cloud parameters, but not on
the parameters of the other clouds.

14.6 Renormalized dressed fields

Using the renormalized gauge transformations, which are
encoded in the functional Sgauge

K ,R , we can build the renormal-

ized, gauge invariant dressed fields AμdR , ψdR and ψ̄dR . By
the result of appendix B, their expressions are unique up to
constant (matrix) factors. We want to prove that we can fix
those factors so that the correlation functions of AμdR , ψdR

and ψ̄dR are gauge independent.
Including appropriate sources, the extended renormalized

action is

Sext
R tot = SR tot +

∫ (
Jμ

dR AμdR + J̄ψdRψdR + ψ̄dR JψdR
)
.

Clearly, (Sgauge
K ,R , Sext

R tot 0) = 0, where Sext
R tot0 = Sext

R tot

∣∣
K=K̃=0.

The equations of gauge dependence (C.9), derived in
appendix C, evaluated at K = K̃ = 0, give

∂SR tot0

∂λ
= (SR tot0, �λR1) + (Sgauge

K ,R , �λR0),

∂Sgauge
K ,R

∂λ
= (S gauge

K ,R , �λR1),

(Scloud i
K , �λR0) = (Scloud i

K , �λR1) = 0, (14.18)

where �λR0 = �λR |K=K̃=0 and �λR1 = �λR − �λR0. In
particular, the first formula gives

∂SR tot0

∂λ
=

∫
δr SR tot0

δ̂α
�̂α + (S gauge

K ,R , �λR0),

�̂α = δl�λR1

δ K̂ α
,

where ̂α = (α, ̃α) and K̂ α = (K α, K̃ α). This result
tells us the the whole gauge dependence of SR tot0 is encoded
into a field redefinition, plus a gauge-exact term. The field
redefinition ̂α = ̂α(̂′, λ) is the solution of

∂̂α(̂′, λ)

∂λ
= −�̂α(̂(̂′, λ), λ),

with arbitrary initial conditions. It can be worked out pertur-
batively in g, starting from ̂α = ̂α ′.

It is convenient to switch to the new variables ̂α ′,
K̂ α ′ by means of the canonical transformation generated by
F(̂, K̂ ′) = ∫

̂′(̂, λ)K̂ ′. In so doing, we obtain

∂S′
R tot0

∂λ
= (Sgauge ′

K ,R , � ′
λR0)

′,
∂Sgauge ′

K ,R

∂λ
= 0, (14.19)

where the prime on the antiparentheses refers to the new
variables. The last equation follows from

∂ K̂ α(̂′, K̂ ′, λ)

∂λ
= δl�λR1

δ̂α
(̂(̂′), K̂ (̂′, K̂ ′)),

which is easy to prove from the transformation.
Now we consider the correlations functions that contain

insertions of AμdR , ψdR and ψ̄dR , and apply arguments
that are analogous to those of Sect. 7.1. First, we switch
to the variables with primes everywhere. We denote the
transformed action SR tot(̂(̂′), K̂ (̂′, K̂ ′)) by S′

R tot and
the transformed renormalized dressed fields AμdR(̂(̂′)),
ψdR(̂(̂′)) and ψ̄dR(̂(̂′)) by A′

μdR , ψ ′
dR and ψ̄ ′

dR . Gauge

invariance, which reads (Sgauge
K ,R , Sext

R tot 0) = 0, is obviously

preserved by the transformation: (Sgauge ′
K ,R , Sext ′

R tot0)
′ = 0. The

transformed fields A′
μdR , ψ ′

dR and ψ̄ ′
dR are Sgauge ′

K ,R -closed,

i.e., solutions X ′ of (Sgauge ′
K ,R , X ′)′ = 0, using variables with

primes.
This is where we fix the arbitrary constant factors in front

of such solutions: it is sufficient to require that A′
μdR , ψ ′

dR and

ψ̄ ′
dR be gauge independent. Such a requirement does make

sense, because the second formula of (14.19) ensures that the
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gauge transformations themselves are gauge independent in
the new variables. We just have to pay attention that the over-
all factors of the solutions do not introduce spurious gauge
dependencies. Once this is done, we are ready to repeat the
arguments of Sect. 7.1, with the replacements

Sext
tot → S′

R tot +
∫ (

Jμ
dR A

′
μdR + J̄ψdRψ ′

dR + ψ̄ ′
dR JψdR

)
,

�λ → � ′
λR0, Sgauge

K → Sgauge ′
K ,R ,

besides of course ̂, K̂ → ̂′, K̂ ′. The result is that the cor-
relation functions of the renormalized dressed fields AμdR ,
ψdR and ψ̄dR are gauge independent.

The renormalized sources Jμ
dR , JψdR and J̄ψdR are equal

to Jμ
d , Jψ d and J̄ψd times suitable renormalization constants.

Apart from that, the correlation functions of AμdR , ψdR and
ψ̄dR do not need further renormalization. Indeed, the sources
Jμ

dR , Jψd R and J̄ψdR have dimensions 3, 5/2 and 5/2, respec-
tively, so no local counterterms with two or more of them are
allowed.

Finally, the arguments that lead to the identity (6.3) con-
tinue to hold after renormalization. We obtain an identity
analogous to (6.3), where the dressed and undressed fields
are replaced by their renormalized versions. In particular, the
S-matrix amplitudes of the renormalized dressed fields are
cloud independent, and coincide with the usual amplitudes of
the renormalized undressed fields. Since the former are man-
ifestly gauge independent, the latter are gauge independent
as well.

14.7 Renormalization recap

Summarizing, the renormalized action has the structure of
the starting action, with standard multiplicative renormaliza-
tion constants for the coupling and the masses, combined
with a canonical transformation that encodes multiplicative
renormalizations of the sources and the fields, except for the
cloud fields φi and their anticommuting partners Hi , which
are renormalized in nonpolynomial, nonderivative ways. Dif-
ferent cloud sectors to not mix with one another.

From a specific gauge, every other gauge can be reached
by means of a canonical transformation. Thus, the renormal-
ization in every other gauge is the same as above, up to a
renormalized canonical transformation. Finally, every cloud
choices can be reached from specific cloud choices by means
of canonical transformations. Again, the renormalization is
the same as above up to renormalized canonical transforma-
tions.

Equipped with the renormalized action and the renormal-
ized gauge transformations, we can build dressed fields that
are gauge-invariant with respect to the latter. They are unique
up to constant factors, by the theorem proved in appendix B.

The constant factors can be fixed so that their correlation
functions are gauge independent.

The proof of the gauge/cloud duality can be repeated for
the renormalized theory.

15 Comparison with other approaches

In this section we compare the approach of this paper with
other approaches that are available in the literature.

In the Dirac approach [3] the gauge invariant dressings of
electrons in QED are defined by means of nonlocal operator
insertions, such as

exp

(
−ie

∇ · A
�

)
ψ, (15.1)

where � denotes the Laplacian. We may call the exponential
prefactor “Coulomb–Dirac cloud”. Photons do not need a
particular dressing, since we can work directly with the field
strength, which is linear in the gauge field.

The extension of the Dirac approach to quarks and non-
Abelian gauge fields has been done by Lavelle and McMullan
in refs. [4–6]. Static quarks are dressed similarly to (15.1),
while moving quarks are described by means of boosted
Coulomb–Dirac clouds. The renormalization is studied in
[47].

In the static case, the Lavelle–McMullan expressions of
the dressed gauge fields and fermions, and their correlation
functions, are related to the ones defined here as follows.
First, choose a cloud function V a(A, φ) of the Coulomb–
Dirac type and take λ̃ = 0:

�̃(, ̃) =
∫

H̄a(∇ · Aa
d),

(Scloud
K , �̃) =

∫
Ea(∇ · Aa

d) −
∫

H̄a∇ · ∂Aa
d(A, φ)

∂φb
Hb.

(15.2)

Then integrate Ea out. This gives the cloud condition

0 = ∇ · Aa
d(A, φ) = ∇ · Aa + �φa + O(g), (15.3)

which can be solved perturbatively for φ. The solution φ(A)

is nonlocal in space, but unambiguous (and does not need a
particular prescription, since it is of the Coulomb type). If we
insert it in the expressions (2.5) of Aμd and ψd, the Lavelle–
McMullan correlation functions are the correlation functions
of such dressed fields. Note that after these operations the
cloud sector of the action can be dropped, since it integrates
to one, as in (5.3).

The comparison in the nonstatic case is less straightfor-
ward. Without a general notion of pure virtuality, like the one
provided by the fakeon prescription, clouds of the Coulomb-
Dirac and Lavelle–McMullan types seem to be the meaning-
ful choices.
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Another approach to build gauge invariant correlation
functions is the one suggested by ’t Hooft in Ref. [9]. Con-
sider fermions ψ in the fundamental representation and intro-
duce scalar fields φ, also in the fundamental representation.
The bilinear φ†ψ is obviously a color singlet. If a sponta-
neous symmetry breaking mechanism gives φ an expecta-
tion value v, then the product φ†ψ can be expanded, and its
expansion begins linearly in the fields. Writing φ = v + η,
we have

〈φ†ψ |ψ̄φ〉 = 〈v†ψ |ψ̄v〉 + 〈η†ψ |ψ̄v〉
+〈v†ψ |ψ̄η〉 + 〈η†ψ |ψ̄η〉.

The last three terms show that one-loop diagrams contribute
to the lowest order. In other words, the expansion in powers of
the coupling does not match the loop expansion. It might be
interesting to study the ’t Hooft approach with purely virtual
scalar fields φ.

A well-known way to build manifestly gauge invariant
correlation functions of gauge fields and quarks is by means
of Wilson lines. We show that, in general, this method intro-
duces unwanted degrees of freedom, so it cannot be used
naively to define physical absorptive parts.

We define the Wilson line W (x, y) by the formula

W (x, y) = P exp

(
ig

∫ 1

0
dsA(x, y; s)

)
, (15.4)

where P denotes the path ordering and

A(x, y; s) ≡ (x − y)μAμ(y(1 − s) + xs).

We could consider arbitrary paths connecting x to y, but for
simplicity we restrict to the straight segment.

We concentrate on the fermion two-point function

Gψ(x, y) ≡ Tr〈W (y, x)ψ(x)ψ̄(y)〉,
which is clearly gauge invariant. At one loop, we can truncate
the expansion of the Wilson line to the order g2:

W (x, y) = 1 + ig
∫ 1

0
dsA(x, y; s)

−g2
∫ 1

0
dsA(x, y; s)

∫ s

0
dτA(x, y; τ) + O(g3).

We have

Gψ(x, y) ≡ Tr〈ψ(x)ψ̄(y)〉 + ig
∫ 1

0
dsTr〈A(y, x; s)ψ(x)ψ̄(y)〉

−g2
∫ 1

0
ds

∫ s

0
dτTr〈A(y, x; s)A(y, x; τ)ψ(x)ψ̄(y)〉

+O(g3).

Working in momentum space, the first contribution can be
read from (11.3). The second contribution is

iγ μ pμ

p2 + iε

g2λ

8π2ε
(N 2

2 − 1)(−p2 − iε)−ε/2,

while the third contribution reads

iγ μ pμ

p2 + iε

g2(3 − λ)

16π2ε
(N 2

2 − 1)(−p2 − iε)−ε/2

In total, we find

Gψ(p) = Nc
iγ μ pμ

p2 + iε

[
1 + 3g2

8π2ε

N 2
c − 1

2Nc
(−p2 − iε)−ε/2

]

+O(g4),

the factor Nc being due to the trace. The λ-dependence dis-
appears, as expected, but the absorptive part is negative,

Abso[Gψ(p)] = −3g2

2π

N 2
c − 1

2
p2θ(p2) + O(g4). (15.5)

therefore, unphysical.

16 Conclusions

We have extended quantum field theory to include purely vir-
tual “cloud” sectors, which allow us to define gauge invariant
dressed fields and study their correlation functions. The cloud
diagrammatics and its Feynman rules are derived from a local
action, built by means of cloud fields φi and their anticom-
muting partners Hi . It includes the cloud functions, the cloud
Faddeev-Popov determinants and the cloud symmetries. The
usual gauge-fixing must be cloud invariant, while the cloud-
fixings must be gauge invariant. The dressed fields are gauge
invariant, but not necessarily cloud invariant.

The extended theory is unitary, renormalizable and poly-
nomial in all the fields except forφi , which are dimensionless.
No extra degrees of freedom are propagated. The extension
is perturbative and the expansion in powers of the gauge cou-
pling g coincides with the expansion in the number of loops.
Each insertion in a correlation function can be equipped with
its own, independent cloud. The correlation functions of the
undressed fields are unaffected by the extra sectors. The S
matrix amplitudes of the dressed fields coincide with the
usual scattering amplitudes. This ensures, among the other
things, that the latter are gauge independent.

The results allow us to define short-distance scattering
processes, where the products do not have enough time to
become noninteracting, asymptotic states. Then the predic-
tions depend on the clouds, because the observer necessarily
disturbs the observed phenomenon. A few initial measure-
ments must be sacrificed to calibrate the instrumentation.
After that, everything else is testable, and possibly falsifi-
able.

The dressed fields are invariant under infinitesimal gauge
transformations, but not necessarily under global gauge
transformations. This is what allows us to build physical non
singlet states without violating unitarity. The dressed fields
can also be used to replace the elementary fields everywhere,
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reducing the latter to mere integration and diagrammatic
tools. This way, all the calculations are manifestly gauge
independent.

An extended Batalin–Vilkovisky formalism and its Zinn–
Justin master equations allow us to prove that the symme-
tries are preserved by renormalization to all orders. Renor-
malizability by power counting is manifest with a variety of
gauge and cloud choices. With more general choices it can
be proved by means of canonical transformations.

The extra sectors propagate ghosts, and give unphysical
results, if the extra fields are quantized by means of the usual
Feynman iε prescription. To avoid this, those sectors are
rendered purely virtual, which means that the extra fields
are quantized as fake fields. The purely virtual nature of the
cloud sectors ensures that, in the end, no unwanted degrees
of freedom propagate. This allows us to extract the physical
absorptive parts of ordinary correlation functions from the
correlation functions of the dressed fields. More generally, it
opens the way to extract physical information from off-shell
correlation functions in a systematic way.

A certain gauge/cloud duality can be used to simplify the
computations. At the conceptual level, it shows that a gauge
choice is ultimately nothing but a particular cloud, provided
the gauge trivial modes are rendered purely virtual.

We have illustrated the basic properties of the formal-
ism by calculating the one-loop two-point functions of the
dressed quarks and gluons. Their absorptive parts are gauge
independent, cloud independent and positive. Instead, they
are unphysical if the clouds are not purely virtual (such as
those defined by the Feynman prescription). They are also
unphysical, generically speaking, if Wilson lines are used.

Among the other things, the purely virtual cloud formal-
ism can be used as an alternative to the popular physical
gauges. Here, instead of changing the gauge fixing to make
it physical, we make a gauge-fixing physical by changing the
prescription we use for it.

The cloud fields and their partners are massless. Mass-
less purely virtual particles can in principle violate causality
(not just microcausality) [48,49]. This aspect deserves fur-
ther study. Here we just note that the absorptive parts we have
calculated are not concerned by this fact, because they are
cloud independent, so they are properties of the fundamental
theory.
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Appendices

Appendix A: Notation

In this appendix we collect the notation and some useful
formulas, starting from

Aμ = Aa
μT

a, [T a, T b] = i f abcT c,

Tr
[
T aT b

]
= 1

2
δab, Dμψ = ∂μψ − igAμψ,

Fμν = ∂μAν − ∂ν Aμ − ig[Aμ, Aν] = Fa
μνT

a,

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + g f abc Ab

μA
c
ν,

where Aa
μ are the gauge fields, Fa

μν is the field strength, T a

are the generators of the Lie group (Hermitian matrices of the
fundamental representation), f abc are the structure constants
of the Lie algebra, Dμ is the covariant derivative and ψ is
a field that belongs to the fundamental representation. The
gauge transformations read

AU
μ = U AμU

−1 + i

g
U∂μU

−1, FU
μν = UFμνU

−1,

ψU = Uψ,

DU
μ = UDμU

−1, WU (x, y) = U (x)W (x, y)U−1(y),

(A.1)

whereU (x) = exp (igαa(x)T a) is a point-dependent matrix
of SU (Nc), αa(x) are arbitrary functions, and W (x, y) is the
Wilson line defined in formula (15.4).

Appendix B: Uniqueness of the dressed fields

We prove that for every transformation law δCφa =
Eab(φ)Cb of the cloud field φa , the dressed gauge fields
are unique, up to linear combinations. Let us write

Aa
μd = Fab(φ)Ab

μ − Gab(φ)∂μφb. (B.1)
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If we require (SK , Aa
μd) = 0, we obtain three equations,

from the vanishing of the terms proportional to Ac
μ, ∂μCc

and Cc∂μφd , which are

Fab − GacEcb = 0, Fab,cEcd + gFac f cbd = 0,

Gab,cEcd + GacEcd,b = 0, (B.2)

where the comma denotes the derivative with respect to φ.
We expand in powers of g, writing Fab = δab +∑∞
n=1 g

nFab
n , Gab = δab + ∑∞

n=1 g
nGab

n and Eab =
δab + ∑∞

n=1 g
nEab

n . The expansions of (B.2) to order gn

give equations of the form

Fab
n − Gab

n = Xab
n , Fab,c

n = Yabc
n , Gab,c

n = Zabc
n ,

where Xab
n , Yabc

n and Zabc
n are known from the previous

orders. The ambiguity of the solution is �Fab
n = �Gab

n =
constant, which can be absorbed into a redefinition Aa

μd →
(δab + gn�Fab

n )Ab
μd. Thus, the most general solution Aa

μd is

a linear combination Mab Âb
μd of a particular solution Âb

μd,

where Mab is a constant matrix. If Eab(φ) is an expansion is
powers of gφ, a unique solution has the same property, since
Mab = δab in that case.

Similarly, the dressed fermions are unique, up to constant
factors.

Appendix C: Cloud and gauge dependence through
renormalization

In this appendix, we prove further results about the depen-
dence of the renormalized action on the cloud parameters,
and derive some already proved results in a more general
way. See [50] for details and examples of derivations like the
ones that follow.

We add the inductive assumption that the renormalized
action Sn tot to order n satisfies the equation

∂Sn tot

∂λ̃
= (S cloud

K , ϒn,λ̃), (C.1)

where ϒn,λ̃ = ∂ϒn/∂λ̃. Referring to formulas (14.7), this

means that Sn does not depend on the cloud parameters λ̃

introduced through the cloud fermions (a result proved in
a different way in subsection 14.4). We also assume that
〈ϒn,λ̃〉 is convergent to the order h̄n included. Here and below
averages such as 〈ϒn,λ̃〉 are regarded as functionals of , K ,

̃ and K̃ .
Equation (C.1) implies

∂�n tot

∂λ̃
= ∂Wn tot

∂λ̃
=

〈
∂Sn tot

∂λ̃

〉
= 〈(Scloud

K , ϒn,λ̃)〉
= (S cloud

K , 〈ϒn,λ̃〉). (C.2)

The first equality follows from the definition of �n tot as
the Legendre transform of Wn tot. The fourth equality can
be proved as follows (see also [50]). Consider an arbitrary
action S′

tot that does not satisfy (Scloud
K , S′

tot) = 0. Repeat the
argument that leads to the proof of (14.2) with the change of
field variables

α → α, ̃αi → ̃αi + θ(Scloud
K , ̃αi ),

in the generating functional Z ′
tot associated with S′

tot. The
result is

(Scloud
K , �′

tot) = 〈(S cloud
K , S′

tot)〉′, (C.3)

instead of (14.2). The average with prime is calculated with
the action S′

tot. Applying formula (C.3) to S′
tot = Sn tot +

θϒn,λ̃, where θ is a constant anticommuting parameter, and
noting that �′

tot = �n tot+θ〈ϒn,λ̃〉 (which easily follows from
the definition of the � functional as a Legendre transform),
we immediately get the fourth equality of (C.2). We need to
use the identities (Scloud

K , Sn tot) = (S cloud
K , �n tot) = 0 for

this. They also ensure that the average on the right-hand side
can be calculated with the unperturbed action Sn tot.

Now, taking the (n + 1)-th order divergent part of (C.2),
we obtain

∂�
(n+1)
n tot div

∂λ̃
= (Scloud

K , ϒ
(n+1)

n,λ̃div
), (C.4)

where ϒ
(n+1)

n,λ̃div
is the (n+1)-th order divergent part of 〈ϒn,λ̃〉.

It is local, since 〈ϒn,λ̃〉 is convergent to order n by assump-
tion. Integrating (C.4), we find

�
(n+1)
n tot div = �

(n+1)
n tot div(λ̃0) +

(
Scloud
K ,

∫ λ̃

λ̃0

ϒ
(n+1)

n,λ̃div
(λ̃′)dλ̃′

)
,

where the λ̃-dependence has been emphasized in parentheses.
The second equation of (14.7) then implies

�
(n+1)
n tot div = �

(n+1)
n div + (Scloud

K , R(n+1)
n div0)

+
(
S cloud
K ,

∫ λ̃

λ̃0

ϒ
(n+1)

n,λ̃div
(λ̃′)dλ̃′

)
,

where �
(n+1)
n div and R(n+1)

n div 0 are λ̃ independent. In particular,

the λ̃ -independence of �
(n+1)
n div can be immediately proved

by taking ̃αi = K̃ αi = 0. Finally, (14.4) gives

Sn+1 tot = Sn tot − �
(n+1)
n tot div

= Sn+1 + (Scloud
K , ϒn+1) + Scloud

K ,

Sn+1 = Sn − �
(n+1)
n div ,

ϒn+1 = ϒn − R(n+1)
n div 0 −

∫ λ̃

λ̃0

ϒ
(n+1)

n,λ̃div
(λ̃′)dλ̃′.

We have

∂Sn+1 tot

∂λ̃
= (S cloud

K , ϒn+1,λ̃), ϒn+1,λ̃ = ϒn,λ̃ − ϒ
(n+1)

n,λ̃div
.
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Clearly, 〈ϒn+1,λ̃〉 is convergent to the order h̄n+1 included,
so the inductive assumptions are replicated to order n + 1.
Taking n to infinity, we obtain ϒR = ϒ∞ and

∂SR tot

∂λ̃
= (Scloud

K , ϒR,λ̃). (C.5)

Using (14.6) at ̃αi = K̃ αi = 0, we see that SR is cloud
independent.

The arguments can be specialized to every cloud sepa-
rately. This allows us to prove the further identities

∂SR tot

∂λ̃i
= (Scloud i

K , ϒR,λ̃i
), (C.6)

which ensure that the i th cloud parameters λ̃i do not propa-
gate to the other cloud sectors. Moreover, formula (9.3) tells
us that ϒ0,λ̃i

= �̃i,λ̃i
≡ ∂�̃i/∂λ̃i . The derivation just given

ensures that ϒR,λ̃i
is the renormalized version of the func-

tional ϒ0,λ̃i
= �̃i,λ̃i

, which we denote by �̃i,λ̃i R
.

Finally, if X is a functional such that (Scloud i
K , X) = 0, the

same derivation shows that the renormalized functional XR

satisfies (Scloud i
K , XR) = 0. In particular, (Scloud j

K , ϒR,λ̃i
) =

0 for every j �= i .
Similar procedures (see [50]) allow us to prove

∂SR tot

∂λ̃i
= (SR tot, �̃i,λ̃i R

),

∂SR tot

∂λ
= (SR tot, �λR), (Scloud i

K , �λR) = 0, (C.7)

where �λR is the renormalized version of the functional
�λ = ∂�/∂λ.

Summarizing the cloud dependence is encoded in the
equations

∂SR tot

∂λ̃i
= (SR tot, �̃i,λ̃i R

),
∂SR tot

∂λ̃i
= (Scloud i

K , �̃i,λ̃i R
),

(Scloud j
K , �̃i,λ̃i R

) = 0 for j �= i, (C.8)

while the gauge dependence is encoded in

∂SR tot

∂λ
= (SR tot, �λR), (Scloud i

K , �λR) = 0. (C.9)

Integrating the first equations of (C.8) and (C.9) as shown
in [50], it is straightforward to prove that the dependence on
the cloud parameters is a canonical transformation and the
dependence on the gauge fixing parameters is also a canonical
transformation.
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