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Abstract Bimetric gravity is an interesting alternative to
standard GR given its potential to provide a concrete the-
oretical framework for a ghost-free massive gravity theory.
Here we investigate a class of Bimetric gravity models for
their cosmological implications. We study the background
expansion as well as the growth of matter perturbations at lin-
ear and second order. We use low-redshift observations from
SnIa (Pantheon+ and SH0ES), Baryon Acoustic Oscillations
(BAO), the growth ( f σ8) measurements and the measure-
ment from Megamaser Cosmology Project to constrain the
Bimetric model. We find that the Bimetric models are con-
sistent with the present data alongside the �CDM model.
We reconstructed the “ effective dark energy equation of
state”(ωde) and “Skewness”(S3) parameters for the Bimet-
ric model from the observational constraints and show that
the current low-redshift data allow significant deviations in
ωde and S3 parameters with respect to the �CDM behaviour.
We also look at the ISW effect via galaxy-temperature cor-
relations and find that the best fit Bimetric model behaves
similarly to �CDM in this regard.

1 Introduction

Observed late time acceleration [1–3] of the average expan-
sion of the Universe has been one of the central challenges of
modern Cosmology for more than two decades. The two stan-
dard approaches to explain such late time acceleration have
been: (1) assuming the presence of a new unobserved compo-
nent, called dark energy in the energy budget of the universe
[4] (similar to dark matter that it does not emit any light but
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with negative pressure instead of zero pressure) (2) modi-
fying the standard theory of Gravitation (Einstein’s General
Relativity) at large cosmological scales [5,6]. The concor-
dance �CDM model [7] has been tremendously successful
in explaining observations across time scales of Universe’s
evolution [8,9] (e.g Big Bang Nucleosynthesis era, matter-
radiation decoupling era, structure formation era till the late
time accelerated expansion era) despite a number of theo-
retical problems to construct such model [10]. But recently
for the first time, �CDM model is facing some serious ques-
tions related to observational results. There is a discrepancy
in values of Hubble constant (H0) inferred from nearby cos-
mological observations [11], and those inferred from CMB
observations [8,9]. This tension, termed H0 tension, has now
reached at the level of 5σ and systematical errors as source
for this tensions may not be enough to explain this tension
[12,13].

This has been the main driving force in the renewed explo-
ration of the theoretical regime with dark energy models
beyond �CDM or modified theories of gravity. In relation
to modified theories of gravity, massive gravity models are
one of the most studied modified gravity models. In standard
theory of gravity, the gravity is described by massless spin-2
field called gravitons which are still not observed. Fierz and
Pauli [14] made the first attempt to make these spin-2 field
massive with a linear theory. But it was later shown by Boul-
ware and Deser [15] that the nonlinear extensions of such
theories contain a ghost (Boulware–Deser (BW) Ghost). A
ghost-free, nonlinear theory for massive spin-2 field in flat
space time was first proposed by de Rham, Gabadadze and
Trolley in 2011 [16], which is called the dRGT theory. Hassan
and Rosen [17] later extended the dRGT theory for Bimetric
gravity that describes a gravitating massive spin-2 field by
introducing the dynamics in the second metric. Cosmologi-
cal solutions in Bimetric gravity have been studied which can
result in the late time acceleration of the Universe without

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11707-4&domain=pdf
mailto:ajay@ctp-jamia.res.in
mailto:shazadil14@gmail.com
mailto:manvendra155@gmail.com
mailto:aasen@jmi.ac.in


525 Page 2 of 12 Eur. Phys. J. C (2023) 83 :525

any presence of explicit dark energy term. Different fami-
lies of Bimetric gravity models have been studied [18–23]
in light of CMB, BAO and Supernovae data. Gravitational
waves in these theories with some constraints on parame-
ter space are studied in [24,25]. Big Bang Nucleosynthesis
constraints were obtained in [26].

On the other hand, theories with phantom behaviour(i.e.
equation of state w crossing below −1) [27,28] have shown
promise in reducing/overcoming the cosmological tensions,
more specifically the Hubble tension although the theoreti-
cal underpinnings of phantom phenomenology are still under
investigations as many of such theories may suffer from insta-
bilities. The viable Bimetric gravity can also show phantom
behaviour in some of their parameter space [29,30]. Provid-
ing an effective �-like effect and the possibility of phantom
behaviour can make Bimetric gravity suitable for investiga-
tion as a possible solution for the Hubble tension.

In the literature, there are studies related to the effect
of Bimetric gravity on the large-scale structure formation
in the universe [31–33]. In particular, the effects of mod-
ification of gravity at cosmological scales in higher-order
clustering are still mostly unknown. One of the important
parameters related to higher order clustering is the “skew-
ness” parameter [34]. This is defined as the “normalized third
order moment in count-in-cells statistics” which can describe
the non-Gaussian feature in the probability distribution of
the perturbed matter field. In a purely matter-dominated
Einstein–de Sitter Universe, one gets S3 ≈ 34/7 ≈ 4.857.
Any observed deviation from this value can be a signature
for a modified gravity model [35].

Our aim in this work is to study the linear and second-order
perturbations for a specific class of Bimetric gravity models
and illustrate the effects of these modifications to gravity on
observables related to perturbed Universe such as f σ8, skew-
ness parameter S3 and Integrated Sachs-Wolfe(ISW) effect
and compare the results with concordance �CDM models.
This can be particularly interesting in the context of results
from future surveys like Euclid which can provide an accurate
measurement of the skewness parameter and can potentially
distinguish �CDM model from different modified gravity
models including the Bimetric gravity.

This paper is organized as follows: in Sect. 2, we briefly
describe the theory of Bimetric gravity; in Sect. 3, we
describe the perturbation theory formalism used for the
Bimetric gravity and the discuss the effects of these per-
turbations on observables in respective Sect. 3.2. Data con-
straints are obtained in Sect. 4. In Sect. 5, we study ISW effect
through galaxy-temperature cross-correlations. We conclude
with a discussion in the last section.

2 Bimetric gravity and cosmology

Bimetric gravity is the theory of two interacting spin-2 fields,
one massive and one massless. An interacting symmetric
spin-2 field fμν is introduced together with the physical met-
ric gμν , which is a linear combination of massless and mas-
sive graviton states. The standard matter particles and fields
are coupled to the physical metric gμν only. For ghost-free
Bimetric gravity, where both metrics are dynamical, action
can be written as [17,19]

S = −
∫

d4x
√−g

R

2m2
g

−
∫

d4x
√− f

R̃

2m2
f

+
∫

d4x
√−gm4V (gμν, fμν) +

∫
d4x

√−gLm, (1)

where R and R̃ are Ricci scalars for gμν and fμν . mg and m f

are the Planck’s mass for the metrics gμν and fμν respec-
tively.. V is the interaction term which has the parametric
form as

V =
4∑

n=0

βnen(χ). (2)

Here χ is a matrix defined in such way that χ2 = gμν f μν .
en(χ) is the elementary symmetry polynomials of eigenval-
ues of the matrix χ which can be written as follows

e0(χ) = 1, e1(χ) = [χ ], e2(χ) = 1

2

(
[χ ]2 − [χ2]

)

e0(χ) = 1

6

(
[χ ]3 − 3[χ ][χ2] + 2[χ3]

)
, e4(χ) = det(χ)

(3)

where, [χ ] is the trace of the matrix χ and det(χ) is the deter-
minant of χ . The Bimetric gravity is characterized by 5 con-

stants βi . Under the scaling transformation fμν → m2
g

m2
f
fμν

and βn →
(
m f
mg

)n
βn , we can make M2∗ = 1 where,

M∗ = m f /mg . Hence M∗ is not a free parameter. In what
follows, we consider M2∗ = 1 and mg = m f . With such
rescaling [36], it is common to work in terms of dimension-
less quantities which remain same under these scaling. Here
we use the definitions and parameterisation of Dhawan et al.
[19] to write the dimensionless parameters as
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Bi ≡ m2βi

H0
. (4)

There are various possible models depending on which Bs
are non-zero. For simplicity, here we consider models with
only B0 and B1 nonzero. Cosmological expansion for these
models is given by [37]

H2

H2
0

=�m(1+z)3

2
+ B0

6
+

√(
�m(1 + z)3

2
+ B0

6

)2

+ B2
1

3
,

(5)

where due to spatial flatness condition, the parameter B0 can
be written in terms of other two parameters �m and B1 as

B0 = 3

(
1 − �m − B2

1

3

)
, (6)

where �m is the present day matter density parameter. As one
can see in Eq. (5), the model naturally gives a cosmological
constant term B0

3 in the Universe which can be positive or
negative depending on the values of �m and B1. This orig-
inates from the interacting potential itself. For early times
z → ∞,

H2

H2
0

≈ �m(1 + z)3 + B0

3
, (7)

which is �CDM model. For future infinity (z → −1),

H2

H2
0

≈ constant, (8)

and hence a de-Sitter or anti-de-Sitter model.
Writing H2/H2

0 = �m(1 + z)3 + (1 −�m) f (z), one can
compare with Eq. (5) to find the effective dark energy density
and subsequently can derive an expression for the effective
dark energy equation of state (wde). We plot wde(z) as a
function of redshift(z) in Fig. 1 and observe that the Bimetric
gravity can show phantom behavior. In the Fig. 2, where
we show the dependence of wde(z = 0) on B1 and �m0,
it is evident that Bimetric gravity shows phantom behavior
at present for a range of parameter values and can provide
a possible theoretical basis for parametric phantom models,
which people have recently considered [27,38] to alleviate
the cosmological tensions.

Fig. 1 Equation of state wde for different values of parameter B1. We
set �m = 0.3

Fig. 2 Present day w as a function of B1 and �m .

3 Growth of perturbations and large scale structure

Next we study the effects of Bimetric gravity on the growth
of matter perturbations. We study linear perturbations as well
as second-order perturbations. Second-order perturbations
affect the skewness (S3) of the matter density field. We study
the effects of modified theory parameters on skewness. We
use the formalism of Multamaki et al. [39] to study the growth
of matter perturbations but one can also use the formalism
for modified gravity models by Lue et al. [40] and both of
them give similar results.

Before describing the detail formalism and the results, we
should discuss the issue of instability in the linear pertur-
bations on the sub-horizon scales in the early time. It has
been shown that linear perturbations around a background
homogeneous and isotropic FLRW solutions are stable in the
late times. But in order to define the initial conditions, these
perturbations also need to be stable in the early time on sub
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horizon scales. However such perturbations are suffered from
gradient instability on sub horizon scales in the early time as
well as Higuchi Ghost as the Hubble scale exceeds that effec-
tive gradient mass mef f [32,33,41–44]. This is similar to the
situation in Fierz-Pauli theory and the instability is precisely
due to the fact that the massive spin-2 mass in linear the-
ory does not possess a well defined massless limit in curved
background. It was shown that the origin of these instabilities
can be associated with the Stuckelberg fields arising due to
the relation between the physical and fiducial sectors of the
Bigravity theory and nonlinear interactions in these Stuckel-
berg fields may play role for these instabilities [45]. Subse-
quently it was shown that the nonlinear effects in the scalar
graviton mass can solve this instability issue [45]. During the
early time in cosmological evolution when H � mef f , the
Stuckelberg fields are nonlinear and due to these nonlinear-
ity, the early growth of perturbations evolve as GR solutions,
and as the H mef f f , the bigravity modification to GR starts
dominating and for H 	 mef f , the linear perturbations are
stable on sub-horizon scales [45]. In this regard, we want to
stress that the transition from the GR to bigravity behaviour
is still an unsettles issue and needs further exploration. There
are also certain classes of bigravity models (related to certain
choices of the parameters βi ), for which it was shown that the
there is no gradient instability in the perturbed Universe in
early phases of evolution while treating perturbations at full
nonlinear level [46]. Moreover in numerical studies related
to inhomogeneous evolution of the Universe, no exponential
instabilities has been observed [47]. To settle the issue of
linear stability, we may need to adapt more general prescrip-
tion as described by Ijjas et al. [48]. Although this issue of
solving the instability in the linear growth of perturbation at
early stage using nonlinear effects, is still an open problem,
in this work we rely on the assumption that nonlinear effect
during the early phase when H � mef f can resolve this of
instability and carry forward our subsequent calculations for
linear perturbation in the matter sector.

3.1 Formalism and equations

We start with the formalism of Multamaki et al. [39], wherein
Raychaudhuri’s equation is used to derive a general equation
for the growth of perturbations at large scales. We should
point out that Bimetric gravity is a modified theory of gravity
containing only pressure-less matter in the energy budget of
the Universe at late times (one can ignore the contribution
from radiation at late times). The formalism developed by
Multamaki et al. [39] to study the matter density perturbations
for such modified theory of gravity is briefly discussed below.

The Raychaudhuri’s equation for a shearless and irrota-
tional velocity field vμ is given by

	̇ + 	2

3
= Rμνv

μvν, (9)

where

	 = ∇μvμ, θ = ∇iv
i . (10)

As shown in [39], this can be related to average Hubble
expansion rate (H̄ ) and locally perturbed expansion rate H
as

θ̇

a
+ θ

a
H̄ + θ2

3a2 = 3(Ḣ + H2 − ˙̄H − H̄2). (11)

Combining the above equation with the continuity equation
for pressure-less matter

∂δ

∂t
+ (1 + δ)θ = 0, (12)

where δ is the matter overdensity. We get the evolution equa-
tion for δ [39] as

d2δ

dη2 +
(

2 +
˙̄H

H̄2

)
dδ

dη
− 4

3

1

1 + δ

(
dδ

dη

)2

= −3
1 + δ

H̄2

[(
Ḣ + H2

)
−

( ˙̄H + H̄2
)]

, (13)

where overdot represents derivative w.r.t. time and η ≡ ln(a).
Quantities with overbar represent background quantities.
Following [39], we can expand the r.h.s of Eq. (13) as

3
1 + δ

H̄2

[(
Ḣ + H2

)
−

( ˙̄H + H̄2
)]

= 3(1 + δ)
∑
n=1

cnδ
n .

(14)

We further expand δ as [39]

δ =
∞∑
i=1

Di (η)

i ! δi0, (15)

where δ0 is the small perturbation. We use Eq. (16) in (15)
while expanding δ upto first and second order. Moreover, for
background Hubble parameter, we put the expression given
in Eq. (6) (we write it in terms of background matter density
ρm) while for perturbed Hubble parameter, we use Eq. (6)
with ρm replaced by perturbed matter density ρm(1+δ) (For
detail prescription in this regard, please see [39]).
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With this we get the linear and second-order perturbation
equations as

D′′
1 +

(
2 +

˙̄H
H̄2

)
D′

1 + 3c1D1 = 0, (16)

and

D′′
2 +

(
2 +

˙̄H
H̄2

)
D′

2 − 8

3
D′

1
2 +3c1D2 +6(c1 +c2)D

2
1 = 0.

(17)

For Bimetric gravity, which we are considering here, we get

c1 =
−2�m
a3

(
�m
2a3 + B0

6

) ((
�m
2a3 + B0

6

)2 + B2
1

3

)
− 2�m

a3

((
�m
2a3 + B0

6

)2 + B2
1

3

)3/2

− �2
m B2

1
a6

8

(
�m
2a3 + B0

6 +
√(

�m
2a3 + B0

6

)2 + B2
1

3

) ((
�m
2a3 + B0

6

)2 + B2
1

3

)3/2
, (18)

and

c2 =
−8�2

m B2
1

a6

((
�m
2a3 + B0

6

)2 + B2
1

3

)
+ 9�3

m B2
1

a9

(
�m
2a3 + B0

6

)

96

(
�m
2a3 + B0

6 +
√(

�m
2a3 + B0

6

)2 + B2
1

3

)((
�m
2a3 + B0

6

)2 + B2
1

3

)5/2
,

(19)

We solve for linear and second-order perturbations for
values of B1 and �m . We set the initial conditions at redshift
z = 1000, assuming that model reproduces the Einstein–de
Sitter Universe at that epoch (specifically we assume D1 and
D2 and their first derivatives to be same as that for Einstein–
de Stitter Universe with �m = 1 at z = 1000) . Solving these
equations, the linear growth rate is shown in Fig. 3 while
the evolution of the second-order perturbations are shown in
Fig. 4. As shown in Fig. 3, for smaller values of B1, the linear
growth is similar to �CDM model. But for higher values,
in particular for values B1 ≥ 1.4, there is an increase in
growth around z ∼ 1. This can be possibly due to some extra
attractive gravitational pull provided by the Bimetric gravity
for such values of B1. The similar behaviour was also found
by [46] for a bigravity model with non zero B1 and B2.

For the second order perturbation as shown in Fig. 4, we
get the similar behaviour where the deviation from �CDM
increases for larger values of B1.

3.2 Observables

3.2.1 f σ8

Linear theory calculations can be used to predict the growth
and clustering of structures at appropriate length scales and
times. Redshift surveys provide an estimate of a combination
of linear growth δ, its derivative given by growth factor f and
its rms fluctuation at the length scale of 8h−1 Mpc given by
the parameter σ8. The combination f σ8 [49] is an important
observable for perturbed Universe at linear scale. Here the
growth factor f and the σ8 parameters are given as

f (a) = d(log(δ))

d(log(a))
, (20)

and

σ8(a) = σ8(a = 1)
δ(a)

δ(1)
. (21)

nt In Fig. 5, we show the f σ8 for Bimetric gravity for the
different values of the parameter B1 along with the �CDM
model. We observe that we always get larger f σ8 for larger
values of B1 compared to �CDM (B1 = 0). Moreover for
larger values of B1, the f σ8 behaviour for Bimetric gravity
models are not consistent in the redshift range z ∼ 0.25−0.5.
In this plot, we fix the value of σ8 at z = 0 by Planck-2018
observations [9] assuming a �CDM model. Hence for this

Fig. 3 Linear perturbations for different values of parameter B1. For
higher values of B1(> 1.4), there is a very distinct feature of a brief
epoch with growth faster than �CDM as well as Einstein–diSitter
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Fig. 4 Second order perturbations for different values of parameter B1

Fig. 5 Combination f σ8 as a function of redshift z for different theo-
ries. We also plot the data points from observations [50]

figure, one expects that for higher values of B1, a lower value
for σ8 may be necessary to make the f σ8 for Bimetric theory
more consistent with the observational data.

3.2.2 Skewness (S3)

Second-order perturbations provide further connection with
statistics of observed perturbations. Gaussian initial condi-
tions evolve into non-gaussian distribution with time and the
extent of non-gaussianity depends on dynamics of the indi-
vidual fluid components of the universe or the theory of grav-
ity which evolves the whole system. Mode coupling leads
to an imbalance in the distribution of voids and overdense
regions [51]. Second-order perturbations play a role in this
and can be related to the skewness of the density field as
[39,51]

Fig. 6 Skewness S3 as a function of scale factor for different values of
B1

Fig. 7 Deviation of S3 from �CDM model for different values of B1.
While the linear growth rate and second-order perturbations show huge
differences, the percentage difference in the combination probed by S3
is a few percent

S3 = 〈δ3〉
〈δ2〉2 , (22)

which can be written as

S3 = 3
D2

D2
1

. (23)

S3 can be sensitive to underlying dark energy characteristics
[35] or modification of GR. Here we show that the growth
of perturbations is sensitive to parameter B1 as we illustrate
in Figs. 3 and 4. In Fig. 6, we show the evolution of S3

for different values of B1. In Fig. 7 we show the present day
percentage difference of S3 from �CDM model as a function
of B1 and �m0. This can be used to distinguish the Bimetric
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Table 1 The range of the uniform priors for the parameters used for
the MCMC analysis.

Parameter Prior

�m [0.0, 0.9]
h [0.6, 0.8]
B1 [0, 5]
rd [130, 160]
σ8 [0.01, 0.9]
M [−19.40,−19.00]

models from the �CDM using the S3 measurements in near
future.

4 Observational constraints on bimetric model

Given the behaviour of Bimetric gravity in terms of different
observables, we now study the observational constraints on
Bimetric gravity using low redshift cosmological observa-
tions. In this regard, we do the Markov Chain Monte Carlo
(MCMC) analysis using different latest cosmological obser-
vational data to put constraints on the model parameters for
the Bimetric gravity. The analysis is performed using the
EMCEE hammer [52], a PYTHON implementation of the
MCMC sampler.

We use the following data:

• Pantheon+ and SH0ES data [53] ;
• The Gold-2017 set for the f σ8 data [50,54];
• The Baryon acoustic oscillations (BAO) measurements

by the completed Sloan Digital Sky Survey (SDSS) lin-
eage of experiments on large scales [55];

• The angular diameter distances measured using water
megamasers under the Megamaser Cosmology Project
[56].

We use the uniform priors given in Table 1 for the model
parameters for the Bimetric gravity. The posterior probabil-
ity distributions and their corresponding confidence contours
for different parameters are shown in Fig. 8. As one can
see from this figure, a substantial deviation from �CDM
model in terms of the parameter B1 is allowed by the data
although the �CDM behaviour (B1 = 0) is still allowed. The
reconstructed effective dark energy equation of state and the
reconstructed S3 parameters as a function of redshifts are
shown in Figs. 9 and 10. The constrained Bimetric model
gives a phantom-like effective dark energy equation of state.
The data also allows substantial deviation in the parame-
ter S3 from �CDM model behaviour although the �CDM
behaviours for S3 is also allowed in the constrained behaviour
of S3.

5 Integrated Sachs Wolfe (ISW) effect

Given the observational constraints on the Bimetric gravity
considered in this analysis, we study how far the ISW signal
in this model deviates from the �CDM model within that
constraints. CMB photons traveling through evolving space-
time, traverse potentials created by matter inhomogeneity
and undergo changes in their wavelengths. This contributes
to anisotropies of CMB spectrum and is dubbed ISW effect
[57,58]. The effect can be detected by cross-correlation of
Large Scale Structure (LSS) tracers with CMB anisotropies
[40,58–60] which can be used as a probe for theories giving
dark energy effects. Here we follow the formalism of Lue
et al. [40] who gave a general prescription for studying the
ISW effect in modified gravity theories. One of the criteria for
applying this prescription for modified gravity models is the
existence of static spacetime outside a spherically symmet-
ric mass distribution. The important criteria for Birkhoff’s
theorem is that the outside of a spherically symmetric mass
distribution should be an empty space given by Rμν = 0
which can be extended to spacetime with constant curvature.
In bimetric theory, this criteria does not hold true except the
special choice of parameters for which the spacetime reduces
to Schwarzschild A(dS). The question is whether one can get
a static spacetime outside a spherically symmetric mass dis-
tribution for the choice of parameters used in this work. Kocic
et al. [61] have obtained a non static spherically symmetric
solution in Bimetric theory for a certain choice of the param-
eters βi which apparently violates the Birkhoff’s theorem.
Our specific choice, where only β0 and β1 are non zero and
rest of the βi are zero, is different from the constraints on
βi for which Kocic et al. [61] have obtained the non static
solution. With our choice of parameters, we have not found
any non static spherically symmetric solution vacuum solu-
tion in Bimetric gravity theory in the literature (In [46], it
was argued, although without details, that the Birkhoff’s the-
orem does not hold in bigravity theory for any combinations
of βi parameters). On the other hand, Volkov has obtained
a whole class of Black Hole solutions in Bimetric gravity
which are static spacetimes outside a spherically symmetric
mass distribution and they can be both asymptotically flat
[62] or asymptotically non flat [63]. Just recently Rahman
et al. [64] found a new static wormhole solution outside a
spherically symmetric mass distribution in bimetric gravity
with same choice of parameters used in this work. Keeping
all these in mind, we assume a static spherically symmetric
metric outside a spherical overdensity in order to apply the
prescription given by Lue et al. [40].

We calculate the evolution of time derivatives of potentials
for our Bimetric model and compare it with the standard
�CDM model.

Following the prescription by Lue et al. [40], we charac-
terize background expansion in Bimetric gravity theory by a
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Fig. 8 Marginalized posterior distribution of the set of parameters �m , h, B1, rd , σ8 and M and their corresponding 2D confidence contours (68%
and 95%), obtained from the MCMC analysis for the Bimetric gravity utilizing all the data sets mentioned in Sect. 4

function g(x) as

g(x) =
(

H

H0

)2

, (24)

with x defined as

x ≡ 8πGρm

3H2
0

. (25)

For example, in �CDM , the function takes the form

g(x) = x + ��. (26)

For the Bimetric gravity, g(x) is given by

g(x) = 1

2
x + B0

6
+

√(
1

2
x + B0

6

)2

+ B2
1

3
. (27)

We start with the following convention for the perturbed
metric [40]

ds2 = −(1 + 2�)dt2 + a2(1 + 2�)(dr2 + r2d�2). (28)

The ISW effect is proportional to a combination of tem-
poral derivatives of potentials as

A(�̇ − �̇)
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Fig. 9 Reconstructed equation of state ωde as a function of redshift z.
Black line is the best fit value with shaded regions as 1σ and 2σ for the
inner and the outer shaded region respectively

Fig. 10 Reconstructed skewness S3 as a function of redshift z. Black
line is the best fit value with shaded regions as 1σ , 2σ and 3σ for the
innermost to the outermost shaded region. Blue line is for the �CDM
model

=
[
(1 − f MG)(g′ + (3/2)g′′x)+3

2
(5xg′′ + 3x2g′′′)

]
D+,

(29)

wherein D+ is linear first order perturbation and f is growth
rate defined as d(lnD+)

d(lna)
. In Fig. 11, we compare this term for

our constrained Bimetric gravity (for best fitted parameter
values) with �CDM model as constrained by Planck-2018 .
We see that the observationally constrained Bimetric model
does not differ much from the �CDM model.

Finally, the cross-correlated ISW signal (wgT ) between
LSS and CMB can be calculated as

wgT = 3T0�m0b(2π)2 H0

c3

∫
dz

√
(g)D2+

×
[
(1 − f )(g′ + (3/2)g′′x) + 3

2
(5xg′′ + 3x2g′′′)

]

Fig. 11 Comparison of the evolution of temporal derivatives of the
potentials. Differences in linear growth rate are translated here as well

Fig. 12 Galaxy temperature correlation for the best fit Bimetric model
along with �CDM . The two are very similar

×wg(z)
∫

dk

k
P(k)J0(kθχ). (30)

Here T0 is the present CMB temperature, b is the bias
factor (assumed constant here), P(k) is present-day mat-
ter power spectrum, χ is comoving distance as a function
of z, J0 is zeroth Bessel function and wg(z) is the survey-
dependent galaxy selection function. For T0, we take the
value 2.725μK , b is taken from Lue et al. [40] that is 5.47.
We use the wg(z) of Takada and Jain [65] with mean redshift
of 0.49.

This correlation function for best fitted Bimetric gravity
as well as for �CDM model are plotted in Fig. 12 and it
is evident that the cross-correlated ISW signal in Bimetric
gravity is similar to �CDM model.
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6 Conclusions

We study the cosmological evolution in a subclass of Bimet-
ric gravity model, where only the parameters B0 and B1 are
nonzero. We show that the effective dark energy behaviour in
such a modified gravity theory can be phantom-like for a large
range of parameter values. Moreover the model admits a cos-
mological constant that can be positive or negative depending
on the values of the parameter B1 and �m . This can nat-
urally mimic a cosmological evolution where the Universe
contains a phantom like dark energy plus a negative Cosmo-
logical Constant apart from the standard matter. As shown
recently such set up can be useful to solve the Hubble Tension
[27,28,38].

We also study the linear and second order growth of
matter fluctuations in the Bimetric gravity. We find that
the growth of both linear and second order perturbations
are strongly dependent on the values of parameter B1 that
signifies the deviation from the corresponding �CDM
limit. This results in significant deviations of observables
like“ f σ8”and“Skewness” parameter S3 from the �CDM
behaviour for higher values of the parameter B1.

With these observations, we subsequently constrain the
Bimetric model with low-redshift observational data from
SnIa Observation (Pantheon+ and SH0ES), BAO observa-
tions as well as Growth measurements. It shows that the data
allow significant deviation from �CDM behavior although
�CDM limit of Bimetric theory (B1 = 0) is also consistent
with the data.

Finally we calculate the ISW signal by cross-correlating
the CMB and LSS signals for our best fit Bimetric gravity
model and show that it is mostly similar to the �CDM model
as constrained by Planck-2018.

We want to stress that the issue of solving the instabil-
ity in the linear perturbations on the sub-horizon scales in
the early Universe with nonlinear effects is still an unre-
solved issue. Hence one should keep that in mind when
considering observables in bimetric gravity that are related
to the linear perturbations. This is also true for the validity
of Birkhoff’s theorem in bimetric gravity which is still not
properly resolved at present although there are hints that the
Birkhoff’s theorem does not hold in bimetric gravity for any
choice of parameters βi . We need to keep in mind all these
issues while studying perturbed Universe in bimetric gravity
under the assumptions that the instability issue can be taken
care of using nonlinear or other effects as well as assump-
tion of validity of Birkhoff’s theorem, as done in the present
work. Concrete validation of breaking down of any one of
these assumptions in future, will need new approach for the
present study.

To conclude, we show that the low-redshift observations
allow Bimetric gravity that behaves differently than �CDM.
This motivates us to study the behaviour of CMB fluctuations

in such models and see whether they are consistent with the
Planck-2018 measurements. We plan to study this in the near
future.
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