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Abstract The objective of this manuscript is to investi-
gate the traversable wormhole solutions in the background
of the f(R, ¢) theory of gravity, where R is the Ricci scalar
and ¢ is the scalar potential respectively. For this reason,
we use the Karmarkar criterion for traversable static worm-
hole geometry to create a wormhole shape function. The
suggested shape function creates wormhole geometry that
links two asymptotically flat spacetime regions and meets the
necessary requirements. The embedding diagram in three-
dimensional Euclidean space is also discussed in order to
demonstrate the wormhole configurations. For our current
analysis, we choose the suitable values of free parameters for
S (R, ¢) gravity models to discuss the wormhole geometry.
It can be observed that our proposed shape function provides
the wormbhole solutions with less amount of exotic matter. It
can be noticed that energy conditions especially null energy
conditions are violated for all considered models. The vio-
lation of energy conditions indicates the existence of exotic
matter and wormhole geometry. It is concluded that the shape
function acquired through the Karmarkar technique yields
validated wormhole configurations with even less exotic mat-
ter correlating to the chosen f (R, ¢) gravity models.
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1 Introduction

Exploring such types of astonishing objects as wormholes
have been a fascinating topic of discussion in cosmological
literature. A wormhole can be defined as a fictitious topo-
logical feature channel that connects two distinct spacetimes
in that manner; time travel will be reduced. A wormhole
must have exotic fluid under the application of the General
theory of relativity (GR), which tends to interrupt the null
energy condition. In 1935, the well-known physicist Einstein
along with Nathan Rosen suggested the concept of “bridges”
[1], which are known as the wormholes or Einstein—Rosen
bridges. The goal of these bridges is to help link two disparate
places in space-time, hence shortening the distance between
them. It is more important to note that a wormhole is the
solution of Einstein field equations in which gravity acts as
“tunnels”. Wormhole is made up of two parts: a “mouth” and
a “throat”. The mouth is the entrance of the wormhole and the
wormbhole throat that connects the mouth. While discussing
the mathematical answer for black holes, the first wormhole-
like solutions were discovered. These specific answers lead
to an expanded version, in which the geometric explanation is
loaned to two copies of the black hole geometry. These black
holes are linked by a “throat”: the Einstein—Rosen bridge
or wormhole, where the throat is described as a dynamical
entity dedicated to the two holes that pinch off extraordi-
narily and fast into a limited connection between them. A
wormhole may have connected to very enormous measure-
mentsi.e. billions of light-years or more, the smallest distance
being a handful of meters, connecting various places or uni-
verses in space. There are different types of wormholes men-
tioned over here: Schwarzschild and Kerr wormholes (Event
Horizons), Morris—Thorne wormholes (Horizon-free), and
Reissner—Nordstrom wormhole (Electrically charged). Mod-
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ified theories of gravities play a very important role in the
investigation of wormhole geometry. Mishra et al. [2] stud-
ied the traversable wormhole geometry in f(R) theory grav-
ity, and these wormhole solutions for some assumed f(R)
functions are presented. The assumption of f(R) is based on
the fact that its behavior changed with an assumed parameter
rather than the deceleration parameter. Sharif and Zahra [3]
explored the wormhole solutions for anisotropic and isotropic
fluids as well as the barotropic equation of state with radial
pressure. Benedictis and Horvat [4] investigated the presence
and features of wormhole throats while discussing the worm-
hole solutions in modified f(R) theory of gravity theory.
Samanta and Godani [5] calculated the range of the radius
of the throat of the wormhole, where the energy conditions
are satisfied. The dynamical wormhole solutions were inves-
tigated within the context of the f(7) theory of gravity with
anisotropic fluid, assuming a generic dynamical spherically
symmetric wormhole spacetime with a specified shape func-
tion and scale factor [6]. Jamil et al. [7] derived some new
exact solutions of static wormholes in f(7") gravity and dis-
cussed independent cases of the pressure components includ-
ing isotropic and anisotropic pressure. By giving an equa-
tion of state for the matter field and applying the flaring out
condition at the throat, Azizi [8] was able to get the form
function of the wormhole in the context of f(R, T') gravity.
Naz et al. [9] examined the geometry of static wormholes
with anisotropic matter distribution in the context of mod-
ified f(G) gravity and considered the well-known Noether
and conformal symmetries to investigate the geometry of the
wormhole. By studying three distinct types of fluids, Malik
and Nafees [10] explored the spherically symmetric space-
time to debate the presence of wormhole geometry for certain
actual places. Shamir and Zia [11] investigated some feasible
regions for the existence of traversable wormhole geome-
tries in the background of the f(R, G) theory of gravity.
Samanta et al. [12] have investigated a capacitative analysis
of wormholes by discussing the energy conditions, equation-
of-state, and anisotropy parameter are analyzed in f (R) grav-
ity, f(R, T) gravity and general relativity. Sharma et al. [13]
investigated the solutions of traversable wormholes with nor-
mal matter in the throat within the framework of symmetric
teleparallel gravity f(Q), where Q is the non-metricity scalar
that defines the gravitational interaction. Sharif and Ikram
[14] formulated the explicit expressions for matter variables
and evaluate wormbhole solutions either specifying (G, T)
model to construct the shape function or taking a specific
form of the shape function to determine f (G, T) model and
found that null energy condition for the effective energy-
momentum tensor is violated throughout the evolution in
both cases while physically acceptable wormhole solutions
exist only for a considered f (G, T') model.

Discussion of wormhole geometry utilizing the Kar-
markar condition is a very fascinating topic of interest among
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researchers. Karmarkar [15] was the first who illustrated
the compulsory condition for a static spherically symmet-
ric spacetime to be of embedding 1. That condition is known
as the Karmarkar condition which is very helpful to find the
exact solutions of field equations. Fayyaz and Shamir [16]
constructed a wormhole shape function by using the Kar-
markar condition and observed that the proposed shape func-
tion connects two asymptotically flat regions. Samanta and
Godani [17] investigated the traversable wormhole solutions
within the background of the f(R) theory of gravity with
a particular viable case and discussed the energy conditions
using the shape function. The same authors [18] analyzed
the traversable wormhole geometry and energy conditions
with two different shape functions in f(R) theory of gravity.
Golchin and Mehdizadeh [19] verified the standard energy
conditions for the asymptotically spherical, flat, and hyper-
bolic wormhole solutions in the context of f(R) modified
gravity. Harko et al. [20] presented the most general condi-
tions in the context of modified gravity, in which the matter
threading the wormhole throat satisfies all of the energy con-
ditions, and it is the higher order curvature terms, which may
be interpreted as a gravitational fluid, that support these non-
standard wormhole geometries. Kuhfittig [21] generalized a
previous result based on the well-established embedding the-
orems that connect the classical theory of relativity to space-
times of higher dimensions. The same author [22] discussed
the idea of embedding class one, which is applied to two
diverse models, a complete solution for a charged wormhole
admitting a one-parameter group of conformal motions and a
new model to explain the flat rotation curves in spiral galax-
ies without the need for dark matter. Malik along with his
collaborators [23] examined the traversable wormhole mod-
elsinthe f(R) theories of gravity by applying the Karmarkar
condition and spherically symmetric space-time. Tello-Ortiz
and Contreras [24] employed the class I approach to obtain
wormbhole solutions in the framework of general relativity in
two different ways and proposed a suitable red-shift function
to find its associated shape function. Gul and Sharif [25] used
the Noether symmetry approach to examine the viable and
stable traversable wormhole solutions in the framework of
the f (R, T?) theory by considering a specific model of this
modified theory to obtain the exact solutions of the Noether
equations. Rahaman et al. [26] investigated a new worm-
hole solution inspired by noncommutative geometry with the
additional condition of allowing conformal Killing vectors.
Modified theories of gravities may give a better expla-
nation of the accelerating expansion of the universe. One
of these modified gravities is the f (R, ¢) theory of gravity,
which is the mixture of the Ricci scalar R and scalar poten-
tial ¢ [27]. Malik along with his collaborators [28] discussed
some dark energy cosmological modelsinthe f (R, ¢) theory
of gravity, which gives a better explanation for expanding the
universe. Shamir and Malik [29] considered the Friedmann—
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Robertson—Walker spacetime for finding some exact solu-
tions by using different values of the equation of state param-
eters for discussion of nature of universe. Malik et al. [30]
formulated the inequalities in energy constraints and use the
Hubble, deceleration, jerk, and snap parameters to evaluate
the feasibility of the models in the f (R, ¢) theory of grav-
ity. Malik and Shamir [31] investigated the modified field
equations by using anisotropic and perfect fluid distributions
for the Godel-type universe in the f (R, ¢) theory of gravity.
Malik et al. [32] studied three different Bianchi type lines
elements, like Bianchi type-I, Bianchi type-III, and Kan-
towski Sachs space-time in the framework of f (R, ¢) theory
of gravity and found the exact solution of vacuum field equa-
tions by taking the valuable assumption that the expansion
scalar is proportional to the shear scalar. Malik [33] discussed
the cylindrical symmetric solutions, especially levia-civita
solutions in the background of f (R, ¢) theory of gravity and
examined the energy conditions in all cases. Myrzakulov et
al. [34] studied a class of models that can support early-time
acceleration with the emerging of an effective cosmological
constant at high curvature in the f(R, ¢) theory of grav-
ity. Stabile and Capozziello [35] investigated the possibility
of explaining theoretically the galaxy rotation curves by a
gravitational potential in the total absence of dark matter.
Nozari and Pourghasemi [36] studied the possible crossing
of the phantom divide the line in a Dvali-Gabadadze—Porrati-
inspired f (R, ¢) braneworld scenario and showed that there
are appropriate regions of the parameter space which account
for late-time acceleration and admit crossing of the phantom
divide line. Panda et al. [37] studied a constant-roll infla-
tionary model in the Palatini formalism and calculated the
tensor-to-scalar ratio and the spectral index using the slow-
roll parameters and the results obtained are matched with the
Planck 2018 data in f (R, ¢) theory of gravity.

Inspired by the above past relevant work, we investigated
the traversable wormhole solutions in f (R, ¢) gravity using
the Karmarkar condition. The arrangement of this paper is as
follows: Sect. 3 is dedicated to presenting the Class I method-
ology. In Sect. 3, we presented the embedding diagram for
further analysis of wormhole geometry. Some basic formal-
ism of the f(R, ¢) theory of gravity has been investigated
in Sect.4. In Sect. 5, we considered four compatible models
of f(R, ¢) gravity and discussed the energy conditions with
graphical analysis. The comparison of our current research
work with past related work has been discussed in Sect. 6.
Lastly, we have concluded our work in Sect.7.

2 Formation of traversable wormhole solution function

We have taken the spherically symmetric space-time as,

ds®> = —e"Ddr*> + " Ddr? + r2do? + r?sin® 0dg?. (1)

The non-zero Riemannian curvature components of above
line element Eq. (1) are given as,

Ri313 = R3131, Rz = Ro121, Ri221 = Rogno,

R2323 = R3232,
(2)

R4114 = Risa1,

Ri331 = R3113, R>330 = R3223,

Ri414 = R4141, Ra24p = Roana,

Ra224 = Roa42,  R4334 = R3443,  R4343 = R3434.

Now, we define the famous known Karmarkar constraint as

R1212R3434 + R1221 R4334
Rig14 = . 3)
R2323

By putting the values of all non-zero Riemannian curvature
components in the above Karmarkar relation, we get the fol-
lowing equation as

1 1 1

_a//e2 + _a/Zea _ _a/b/eb

2 4 4
1rb)(Ara'e®=" sin? 0) + L(rb')(3ra’e?=" sin? )

—ePr2sin? 6 4 r2sin% 6

“

Here, a and b are functions of the radial coordinate r. By
simplifying, we get the following relation as

S n 2b'a’
ba —a"2—a°= L
where ¢” is not equal to 1. Now by interpreting the above
equation, we get
e’ = Be“a? +1, Q)
Here B is a constant of integration. To construct wormhole

shape function, we have taken the Morris—Thorne metric as

1
ds® = —e*Ddr* + 1—5dr2 +r?d0* + r* sin> 0d¢>. (6)

r

By comparing Egs. (1) and (6), we obtain

e’ = . @)

For further calculation, we take a redshift function a(r) [43]
as

2n
a(r) =— - (3

where 7 is a constant. Using the above Egs. (5), (7) and (8),
we get the wormhole shape function as

P

e(ry=r— B EEEE—— 9
r* +4Bn2e

By Morris and Thorne, wormhole shape function must fulfill
the following important conditions:

e Atthe throat: r = e(r) atr =r,.
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e The essential condition %rf)/(r)
r=r,.
e &(r) must satisfy ¢’(r) < 1.

e For the maintenance of the asymptotical flatness of space

time geometry, @ — Qasr — oo.

> 0 must be satisfy at

Here, r represents the radial coordinate and r, is the throat
radius, and we have r, < r < oo. By evaluating Eq. (9) at
the throat condition, &(r,) — r, = 0, we get trivial solutions
atr = r,. To deal with this issue, we will add an arbitrary
constant C in Eq. (9) as

rS
er)y=r———— - +C. (10)
r* +4Bn2e
In the above equation, we apply the condition r = e(r) at
r = r, and after some simplification, we get

4
—c

B— % a1
4Cn2e

By using the above value of B in Eq. (10), we get

P

_— +C. 12
r4+r§(ro—C)+ 2

e(ry=r—
We can observe that the behavior of €(r) is positive through
the graphical representation in Fig. 1. The graphical analysis
of e(r) — r is initially positive and then becomes negative
with the movement of radial coordinate r, as shown in the
second plot of Fig. 1. Furthermore, it is clear from the third
plot of Fig. 1 that the @ — 0 as r — oo. Moreover, left
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plot of Fig. 2 shows the satisfaction of essential condition
% > 0 and it can be observed that &’(r) < 1 is

satisfied from the right plot of Fig. 2.

3 Embedding diagram for wormhole geometry

In this section, we have used an embedding diagram to illus-
trate the behavior of wormhole geometry. To understand the
working of gravity in our universe, the embedding diagram
is very essential for it. Now we can set & = % and ¢t = const
in spherically symmetric space-time. Using this assumption
in Eq. (6), then it comes as

ds* =

r
dr? + r’d¢?. (13)

e
Now, we can write the above equation in three dimensional

cylindrical coordinates as,

ds®> = dr* + dh*> + r’d¢?, ds*

2
= dr? (1 + (?) ) +r2de>. (14)
r

After comparing Eqs. (13) and (14), we obtain

T :
r—e dr)

After simplification, we get

dh _ (1 - f)%l . (15)

il G
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An example of an embedding diagram for the bottom and top
universes can be seen in Figs. 8 and 7, by utilizing 6 = 7 and
t = const. Moreover, Eq. (15) indicates that the embedded
surface at the throat is vertical because Zh — o0. Further-
more, we have studied that how space is spherically flat apart
from the throat as % — 00 at the time r — 0. The embed-
ded diagram is shown in Figs. 7 and 8 for the upper and lower
universes, respectively, in radial coordinates with 277 rotation

about the h axis.

4 f(R, ¢) gravity

The action of f (R, ¢) theory of gravity is given as [38—42],

S=5g | 4V (R, §) + w@) 6™ + L), (16)
where,

e L, is lagrangian matter,

o k =8nG,

e g represents the determinant of g,

e f(R, ¢) is an analytic function of Ricci scalar and scalar

potential.

Now the field equation of f(R, ¢) gravity can be obtained
by varying the action in Eq. (16) with respect to the metric
tensor is given as,

1 .
frRuw =5 |+ 0@)9.6™ | g0 + 0@)90:0
_fr;,uv + guvaR = kT;uw )

Here, w is an arbitrary function of ¢, 1 = V,, V¥, V,, denotes
the covariant derivative and fr = 3 The energy momen-

= 3R
tum tensor is given by,

Tye = (p + punus — pigne + (Pr — PV, (18)

where p, p, and p; represent the energy density, radial
and tangential components of pressure respectively. We have
uy = e 282 and vz = e/ 2851. Furthermore, we have consid-

ered the spherically symmetric spacetime as

ds? = —e"Dar® + D ar? + r2do? + r?sin®0do>. (19)

By using line element Eq. (19), along with energy momen-
tum tensor Eq. (18) in Eq. (17), we get the following field
equations as

w(P)p' (r)?

2 b’(r)
)

p = —f/2+e—b[ fr— fR(

1 4a’ (r) 2 i / "
+ZfR< +a'(r)" —d' (b’ (r) + 2a (f”))],
(20)

d'(r)
2

2 1
pr=f2+e" |:f1/e (; + + b’(F)) + Ew(d))qﬁ/(i’)z

1 RV 4b/(}”) / / ”
_ZfR<a (r) —T—a(r)b (r) +2a (r)>],
2D
- v (] '(r) [ b'(r)
p= vt = - 7+ 2+ )
1 .
—Ew(¢)¢(r)
L (=2 20 d0) b0 2
+§fR<r_2+ 22 T >] @2)

Here, we have w(¢) = w, ¢™ and ¢ = r?, where
m, w, and B are arbitrary non-zero constants. For the further
analysis and calculation, we have used the famous software
MATHEMATICA.

5 Discussion of energy conditions for different models

In this section we have taken four different models of f (R, ¢)
gravity and investigated the nature of these constraints via
graphical representation. Moreover, we explain different
energy constraints and the method of predicting the existence
of wormholes by using these constraints. Energy conditions
are very important and helpful for explaining traversable
wormhole geometry because the violation of energy con-
ditions may predict the presence of wormholes. The energy
conditions, we utilize in our study can be explained as:

NEC :p+pr=0, p+p =0,

WEC : p >0, p+pr=0, p+p =0,

SEC:p+p =0, p+p =0, p+p~+2p=>0,

DEC:p =0, —|prl =0, —|pi| = 0.

Here, NEC, WEC, SEC and DEC stand for null energy con-
ditions, werak energy conditions, strong energy conditions
and dominant energy conditions respectively. Now we will
discuss the four different compatible models and investigates
the nature of these energy constraints via graphical represen-
tation.

A. Model-I

The first model, we have considered for our analysis is,

f(R,¢) =

where « is free parameter and ¢ = ¢ (r). Using this model
in Egs. (20)—(22), we have

(R +aR?) x¢(r), (23)

o= %e_hr_z""ﬁ[ — Z(ebrzR(l + Ra)
+BQ2+28 — ()" wop + 4Ra(1 + B)))
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+7(1 + 2Ra) (=28’

+d' (4+rad —rb)+ 2ra”)], (24)

1

pr = —e tp 2P |:2(ebr2R(l + Ra)

4
+B(4 + 8Ra + (rP) ™ wop))
+r(1 4+ 2Ra)(—ra”? +4b'(1 + B)

+(2B +b'r)a’ — Zra"):|, (25)

1
Zefbrfﬂﬂ [eb(Z + 4Ra + r2R(1 + Ra))

—rPY""woB? +2(1 + 2Ra)(—1 + B?)

+r(1 +2Ra)((—1+ B)a’ + (1 + ﬁ)b’)]. (26)

According to the graphical analysis of the above Egs. (24—
26), it can be seen that the behavior of p is positive and
decreasing, which can be seen in Fig. 3. Furthermore, the
graphical nature of p + p; is positive but the nature of p + p,
is negative, as shown in the right and middle plot of Fig. 3.
The negative trends of p + p, are the justification that NEC
is violated. As NEC is linked with WEC, so we can also
conclude that WEC is violated. Moreover, it can be observed
in Fig. 9 that the behavior of p — p, and p — p; is positive,
so DEC is satisfied. The graphical behavior of p + 2p; + p;
is also negative which means that SEC is violated as seen
in Fig. 9. Hence, the violation of these energy constraints
especially WEC and NEC indicates the presence of exotic
matter, which may justify wormhole existence in the f (R, ¢)
gravity model.

B. Model-II

In this case we have taken another compatible model for the
investigation of wormholes geometry. Our second model is
given as

f(R,$) =M «R. 27)

@ Springer

Using this model Eq. (27) in Egs. (20)—(22), we have:

—b
Z—z[ZrzﬂrﬂMwoﬁz —rPM(2ebr 2R L aMB(MB + 1)
.

p =
+r@MBY +d' (=4 — ra’ +rb") — 2ra")], (28)
—b
pr = %[ZrzﬁrﬂMwoﬁz + rﬁM(ZehrzR +8MpB
+r(=ra? + 41+ MB)Y +d' 2MB + rb') — 2rd"))], (29)
—b
pr = ;—2[ — 2B BM o2 4 rBM (P2 4+ P2R) + r(—1 + MB)d
;

+r(1+ MB)(—2+2MB + rb))]. (30)

According to the graphical analysis of the above Eqgs. (28—
30), it can be seen that the nature of p is positive but decreas-
ing towards the boundary as can be seen in the first plot of
Fig. 4. Furthermore, the nature of p+ p; is positive and p+ p,
is negative, which can be seen in the right and middle plot
of Fig. 4, which represent the disturbance of NEC. We can
also notice that not only NEC but WEC is also disobeyed.
Besides this, it can be seen through the extreme left and mid-
dle plot of Fig. 10 that the nature of p — p, and p — p; is
positive, so DEC is not violated in this case. The behavior of
p + 2p; + pr, which can be seen in Fig. 10, is also negative
which indicates the violation of SEC. Hence, the violation of
these energy constraints specially WEC and NEC indicates
the presence of wormholes in this model.

C. Model-IIT

Here we have considered another special model which is
given as,

F(R, @) = (1 +k%¢(r)%E) * R,

where k, 8, and £ are arbitrary constants. By using the above
model Eq. (31) in Egs. (20)—(22) as a result we obtain the
following equations as:

1
o= m[ —2r2R(1 + k*r*Pg)

3D

+e b(r(d (4 +rad —rb +2ra”
+r2 2rPmwop? + kK2 E(—8B(1 + 28)
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+r(—4Bb' +ad' (4 +rd —rb + 2ra”))))], 32)

pr = —[2r*R(1 + k*r?Pt)

1
Ar
e~ b(2r~ 2By 0p?

+4k2r 2B BE 4 + ra + 2rD))

+(1+ K2 r?PE)(—ra® + 4Y +rd'b — 2rad")], (33)
pr = %[e_b(—Z +2¢” + e’r*R

—rd +rb + r*f(=r"Pwop?

+k2 (=24 "2+ r*R) + 88%)¢

+PrE((=1+2B)a + (1 +2B8)b))]. (34)

By analyzing the graphical analysis of the above equations,
we can predict the presence of wormholes for this model.
With the help of the graphical analysis of the above Eqs. (28)—
(30), we can demonstrate that the nature of p is positive but
decreasing, which is given in the extreme left plot of Fig. 5.
Furthermore, for the disobeying nature of NEC, we must
need at least p + p, < 0 or p + p; < 0. As the behavior
of p + p; is positive and p + p, is negative, can be seen in
the right and middle plot of Fig. 5 that shows the disobeying
nature of NEC. We can also exhibit that not only NEC but
WEC is also disobeyed because both are linked. It is shown
in Fig. 11 that the nature of p — p; and p — p, is positive,
so we can observe that DEC is not disobeyed in this case.
The behavior of p + 2p; + p,, which is given in Fig. 11,
is also negative which indicates the disobeying behavior of
SEC. Hence, the disturbance of these energy constraints may
justify the existence of a wormhole in this model.

D. Model-1V

Last model that we have considered for our investigation is
given as,

f(R,$) = ¢(r) + R*3, (35)

Now by utilizing above model Eq. (35) in Egs. (20)—(22), we
have:

1
p = 6—[ —3r(rP + RY3) + emb@r 2B yop?
.

+2R*3(a' (4 +rd —rb') +2rd"))], (36)
1 1
pr = z(rﬁ + RY3) + efb(zrfﬂz’grmﬁu)o,B2

/
_%R]/3(a/2 _ ﬂ —d'b + Za”)), (37)
r

1
o= 5 [3r(? + RY) 4 &b (=371 uop?
.
+AR'3 (=2 + 26" —rd’ +rb))]. (38)

With the help of the graphical analysis of the above Eqs. (36)—
(38), we can observe that the nature of p is positive with
decreasing behavior, as given in the first plot of Fig. 6. As
the nature of p + p; is positive and p + p, is negative that can
be seen through the right and middle plot of Fig. 6, which rep-
resents the disobeying behavior of NEC. We can also demon-
strate that not only NEC but WEC is also showing disobeying
behavior because whenever NEC disobeyed WEC must be
violated. Besides this, it can be seen from the left and middle
plot of Fig. 12 that the graphical analysis of p — p, is positive
and p — p; shows positive but also negative behavior near the
boundary, so we can conclude that DEC is disobeyed. The
behavior of p + 2p; + p,, which is given in Fig. 12, is also
negative which indicates the violation of SEC. Hence, the
disobeying nature of these energy constraints, particularly
NEC and WEC may justify the existence of a wormhole in
this model.

6 Comparison
Shamir and Fayyaz [44] constructed a wormhole shape

function by employing the Karmarkar condition for static
traversable wormhole geometry and generated the worm-
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hole geometry that connected two asymptotically flat regions
of spacetime and satisfied the required conditions. In our
work, we have discussed the embedding diagram in three-
dimensional Euclidean space to present the wormhole con-
figurations and investigate the traversable wormhole geome-
tryin f (R, ¢) gravity. Moreover, the authors [44] considered
three different models to discuss the wormhole geometry in
f(R) gravity but we have considered four different models
in f(R, ¢) gravity to investigate the behavior of traversable
wormholes, which make our work more generalized and
comprehensive than the previous investigation. Godani and
Samanta [45] discussed the wormhole solutions in f (R) the-
ory of gravity by taking well defined f (R) gravity model and
particular shape functions. However, in this work we first
construct the shape function by using the Karmarkar condi-
tion and then discuss the wormhole solutions for more than
one model, which is the interesting feature of our work. Sharif
and Fatima [46] evaluated the traversable wormhole solutions
through Karmarkar condition in f(R, T') theory of gravity.
They considered two different f(R,T) = f(R) + f(T)
gravity models, where f(R) was taken as exponential grav-
ity model and Starobinsky model but f(7T) = AT was fixed
for the sake of simplicity. In our present work, we investigate
the traversable wormhole solutions for f (R, ¢) gravity mod-
els by taking the product of Ricci scalar R and scalar potential
¢, which make our work more interesting with the previous
investigations. Banerjee et al. [46] presented a class of solu-
tions for static and spherically symmetric wormholes geome-

@ Springer

tries by considering specific choices for the f(Q) form and
for constant redshift with different shape functions. We have
done analysis for wormhole solutions by constructing the
wormhole geometry, and investigate the energy conditions
for all considered cases. Furthermore, we perform a more
detailed analysis by taking different values of C appeared in
the shape function i.e., C = 1.9 (color Green), C = 1.8
(Blue color), C = 1.7 (color Pink), C = 1.6 (color Red),
C = 1.5 (color Brown), C = 1.4 (color Yellow), C = 1.3
(color Black). This is also a very crucial point of our research
work, which make our work different from the previous one.
Mishra et al. [48] discussed the traversable wormhole geom-
etry by taking three shape functions and constant redshift but
our analysis is different because we choose a more general
redshift function depending upon the radial coordinate r.

7 Concluded remarks

The purpose of this research is to study the wormhole geom-
etry by using the Karmarkar condition in the f(R, ¢) the-
ory of gravity. For our current analysis, we have used spe-
cial four models of f(R, ¢) theory of gravity and investi-
gated the validity of different types of energy constraints.
It is worthwhile to mention here that modified gravity the-
ories with a scalar field may accommodate a wide range of
dark energy and modified gravity models [49]. The addition
of scalar field helps to modify the cosmological and galac-
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tic dynamics leaving the solar system unaffected. As far as
wormhole study is concerned, the addition of scalar field
supports any asymptotically well-behaved traversable worm-
hole. In our work, scalar field helps in violating NEC which
is necessary for the existence of exotic matter and wormhole
geometry. The stable behavior of wormhole is also supported
by the addition of scalar field, though we have not discussed
this in present work. To the best of our knowledge, it is the
first attempt to explore wormhole solutions in f (R, ¢) grav-
ity with Karmarker condition. The detailed outcomes of our
research work are as follows:

The graphical representation of energy density is positive
but decreasing towards the boundary as can be seen in the
first plot of Fig. 3. The graphical nature of p + p; is positive
but p + p, is negative, as seen in Fig. 3. It can be noticed that
NEC and WEC are violated due to the negative behavior of
the p+ p, component. Moreover, the graphical representation
of p — p, and p — p; is positive, which means that DEC is
satisfied as seen in Fig. 9. The graphical trends of p+2p; + p,
are negative, which is the justification that SEC is violated as
seeninFig. 9. Hence, the violation of these energy constraints
specially WEC and NEC indicates the presence of wormholes
in this model.

According to the graphical analysis for Model 11, it can be
seen that the nature of energy density is positive and becomes
decreasing, when we move on the radial coordinate as plotted
in Fig. 4. It can also be noticed that NEC is violated due to
the negative nature of p + p, as seen in Fig. 4. It can also be
observed that WEC is also violated because NEC is violated.
For our second model, DEC is satisfied because p — p, > 0
and p — p; > 0, but SEC is violated dueto p+2p; +p, < O,
as seen in Fig. 10. The significant consequences of energy
condition violation, especially violation of the NEC, may
indicate the presence of exotic matter, which may justify
wormhole existence in the f (R, ¢) gravity model.

In our third model, we observe that the graphical trends
of energy density are maximum near the origin and positive
as seen in Fig. 5. Furthermore, it can be seen that p; + p is
positive but p, + p is negative, which is the justification that
NEC is violated. We can also conclude that not only NEC but
WEC is also violated because both are connected. It is also
noticed that the nature of p — p, and p — p; is positive, so
DEC is again satisfied in our third model. It can be seen from
Fig. 11 that the nature of p 4+ 2p; 4 p, is negative, which is
a violation of SEC.

In our fourth and last model, the behavior of energy den-
sity is also positive with decreasing nature as shown in Fig. 6.
Furthermore, the behavior of p; + p is positive and p, + p
is negative, which indicates the violation of NEC and WEC.
Besides this, it can be seen from Fig. 12 that the graphical
analysis of p — p, is positive and p — p; shows positive but
also negative behavior near the boundary, so we can conclude
that DEC is disobeyed. The behavior of p +2p; + p,, which

is given in Fig. 12, is also negative which indicates the vio-
lation of SEC. Hence, the disobeying nature of these energy
constraints, particularly NEC and WEC may justify the exis-
tence of a wormhole in this model. From above discussion,
we can conclude that in above all four models these energy
constraints are violated. Since these energy constraints are
very important in the study of wormholes. The significant
consequences of energy condition violation, especially vio-
lation of the NEC, may indicate the presence of exotic matter,
which may justify wormhole existence in the f (R, ¢) gravity
models.

Finally, itis stated that the shape function acquired through
the Karmarkar technique yields validated wormhole config-
urations with even less exotic matter correlating to the proper
choice of f (R, ¢) gravity models and acceptable free param-
eter values. As a nutshell, the present models fulfill all of the
criterion for the presence of a wormhole. In particular, it is
concluded that the gravitational field emerging from higher
order terms of modified gravity with scalar field favor the
existence of the wormhole geometries.
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