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Abstract We study a non-supersymmetric SO(10) Grand
Unification Theory with a very high energy intermediate
symmetry breaking scale in which not only gauge but also
Yukawa coupling unification are enforced via suitable thresh-
old corrections and matching conditions. For gauge unifica-
tion, we focus on a few symmetry breaking patterns with the
intermediate gauge groups SU(4)C×SU(2)L×SU(2)R (Pati–
Salam) and SU(3)C × SU(2)L × SU(2)R × U(1)B−L (mini-
mal left-right symmetry) assuming an additional global U(1)
Peccei–Quinn symmetry, and having the Standard Model
supplemented by a second Higgs doublet field at the elec-
troweak scale. We derive the conditions as well as the approx-
imate analytical solutions for the unification of the gauge
coupling constants at the two-loop level and discuss the con-
straints from proton decay on the resulting high scale. Spe-
cializing to the case of the Pati–Salam intermediate breaking
pattern, we then impose also the unification of the Yukawa
couplings of third generation fermions at the high scale, again
at the two-loop level. In the considered context, Yukawa uni-
fication implies a relation between the fermion couplings to
the 10- and 126-dimensional scalar representations of the
SO(10) group. We consider one such possible relation which
is obtainable in an E6 model where the previous two scalar
fields are part of a single multiplet. Taking into account some
phenomenological features such as the absence of flavor
changing neutral currents at tree-level, we derive constraints
on the parameters of the low energy model, in particular on
the ratio of the two Higgs doublets vacuum expectation val-
ues tan β.

a e-mail: ruiwen.ouyang@gmail.com (corresponding author)

1 Introduction

A Grand Unified Theory (GUT) which describes the four
fundamental forces that are present in Nature has always
been the Holy Grail of particle physics. Leaving aside the
gravitational force which has a rather special status, it has
been shown already in the 1970s [1,2] that the concept of
gauge symmetries makes it possible to combine in a very
elegant manner the electromagnetic, weak and strong inter-
actions of the Standard Model (SM) into a single force at a
very high energy scale [3]. This would have been the case of
SU(5), the simplest and most economical gauge symmetry
group that contains the SU(3)C × SU(2)L × U(1)Y group
of the SM as a subgroup. Alas, when the three SM gauge
couplings are evolved with the energy scale, starting from
their experimentally measured values and including the SM
particle content, they shortly fail to meet at a single point,
the presumed GUT scale MU [4–7].

One solution to this problem was to invoke Supersymme-
try (SUSY) [8–13], a theory that predicts the existence of a
partner to each SM particle and has an extended Higgs sec-
tor consisting of two complex scalar fields to break the elec-
troweak symmetry down to the electromagnetic U(1) group
[14–16]. The new particle content modifies the slopes of the
renormalisation group evolution (RGE) of the gauge cou-
plings such that they meet at a GUT scale that is high enough,
MU ≈ 2 × 1016 GeV, to prevent a too fast decay of the pro-
ton [4–7]. Another virtue of SUSY, which made it extremely
popular in the past four decades, is that it solves the problem
of the large hierarchy between the weak and Planck scales
that induces quadratic “divergences” to the observed Higgs
boson mass. However, in order to resolve both the unifica-
tion and hierarchy problems, SUSY needs to be broken at
an energy not too far from the electroweak scale and, hence,
should involve superpartners with masses of a few hundred
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GeV to order a TeV at most. Unfortunately, such a low SUSY-
breaking scale has been excluded for most superparticles (in
particular the strongly interacting ones that are copiously
produced) by dedicated and non-conclusive searches at the
CERN LHC [17]. Thus, the theory lost some of its appeal as
it appears now to be less “natural”.

In principle, the existence of extra particles with the appro-
priate masses and quantum numbers to give the necessary
contributions to the RGEs is all what is needed to achieve
unification of the three gauge couplings. However, postulat-
ing the existence of extra fields for this reason alone might
be considered a somewhat contrived solution to the prob-
lem. A more appealing possibility is to consider symmetry
groups larger than SU(5) which break down to the SM gauge
group via a chain that involves intermediate symmetries. In
this case, the new scalar multiplets that break these inter-
mediate symmetries (and some of the associated new gauge
bosons) will generate additional contributions at the interme-
diate scale MI , which will modify the RG evolution of the
gauge couplings. Taking into account these threshold correc-
tions, it is then possible to unify the three couplings at a scale
MU [18,19].

Such a unification with an intermediate step can be real-
ized in the context of SO(10) [20,21]; see Refs. [22–25].
This group is particularly interesting as it has a representa-
tion of dimension 16 which can accommodate the 15 SM
chiral fermions of each generation, as well as an additional
Majorana neutrino. If the mass of this neutrino is very large,
of the order of 1012−14 GeV, other very pressing problems in
particle physics can also be addressed. This is, for instance,
the case of the complicated pattern of the SM neutrino masses
and mixings which can be explained by the see-saw mech-
anism. This is also the case of the baryon asymmetry in
the Universe which could be achieved through a leptoge-
nesis triggered by the additional Majorana neutrino. Hence,
SO(10) with an intermediate scale ofO(1012−14) GeV, could
explain the most acute problems of the SM that call for new
physics beyond it, leaving aside the hierarchy problem and
introducing a suitable axion that could account for the particle
that forms the dark matter in the Universe; see Refs. [26–28]
for reviews.

Another issue for which low-energy SUSY theories gained
popularity, is the unification of the Yukawa couplings of third
generation fermions [29–32]. This additional step in the uni-
fication paradigm is accomplished in the minimal supersym-
metric extension of the SM (MSSM), thanks to the pres-
ence of the two-Higgs doublets fields that are required by
the extended symmetry. In constrained scenarios, such as
the minimal supergravity model with universal “soft” SUSY-
breaking parameters [33–35], the top, bottom and tau Yukawa
couplings can be unified at the same scale MU that allows
for gauge coupling unification. Indeed, for large values of
the ratio of the vacuum expectation values of the two Higgs

fields, tan β, one can generate the required hierarchy for the
top and bottom quark masses, tan β ≈ mt/mb ≈ 60, and the
RG evolution that allows the couplings to also meet at MU .

In a recent letter, we have contemplated the possibility
of Yukawa coupling unification in the context of a non-
supersymmetric SO(10) model as well [36]. Focusing on the
most widely studied scenarios with intermediate symmetry
breaking, namely the Pati–Salam scenario with the interme-
diate group SU(4)C × SU(2)L × SU(2)R [2] and the mini-
mal left-right symmetry group SU(3)C × SU(2)L × SU(2)R

×U(1)B−L [37–39], we have shown that in a two-doublet
Higgs model (2HDM) extension present at the electroweak
scale, exactly like in the MSSM, one can first obtain the cor-
rect hierarchy for the masses mt and mb by again taking a
ratio tan β that is sufficiently high. In both schemes, it is then
possible to arrange such that the RG running of third gener-
ation Yukawa couplings, with suitable matching conditions
at the same intermediate scale MI for which gauge coupling
unification occurs, leads to Yukawa coupling unification at
the same GUT scale MU . This can be achieved while pre-
serving important phenomenological features such as repro-
ducing third family fermion and weak gauge boson masses,
ensuring the stability of the electroweak vacuum up to the
high scales and keeping the Yukawa couplings perturbative.

In this paper, we perform a more exhaustive analysis of the
possibility of simultaneous gauge and Yukawa coupling uni-
fication, extending the earlier analysis [36] in several direc-
tions. Firstly, the present discussion is more thorough and
general, as our results are valid for any breaking chain of
non-SUSY SO(10) models with only one intermediate scale
and we consider the interplay between gauge coupling uni-
fication, proton decay, the perturbativity of the Yukawa cou-
plings and, more importantly, the absence of flavor changing
neutral currents at tree-level. Secondly, for gauge coupling
unification, we present some approximations which highly
simplify the analytical discussions of the RGEs and we dis-
cuss unification in models in which one adds a global U(1)
Peccei–Quinn symmetry [40] that would allow the result-
ing axion to address the dark matter problem; this will have
important repercussions on the breaking pattern, the RGE
running of the couplings as well as on the fermionic mass
pattern. A third difference when compared to Ref. [36] is that
in the present work, we study the case in which the condition
for Yukawa couplings unification at the high scale is inspired
by the existence of an even larger E6 gauge symmetry.

The rest of the paper is organized as follows. In the next
section, we introduce the non-SUSY SO(10) model, discuss
its various intermediate breaking schemes and the weak scale
2HDM structure. In Sect. 3, we enforce gauge coupling uni-
fication using threshold effects and discuss some approxi-
mations. In Sect. 4, we analyze the issue of simultaneously
unifying the gauge and third generation fermion Yukawa cou-
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plings. A short conclusion is made in Sect. 5 and some ana-
lytical complementary material is given in an Appendix.

2 Non-SUSY SO(10) with an intermediate scale

In this section, we will summarize how unification of the
three gauge interactions of the SM can be achieved in a non-
supersymmetric SO(10) GUT with a spontaneous symmetry
breaking pattern that involves an intermediate gauge group
at a very high scale which breaks down to the SM gauge
group. A very interesting aspect of the SO(10) model is that
all fermions can be embedded into a single representation of
the symmetry group.

Indeed, the SO(10) group possesses a fundamental 16-
dimensional representation 16F in which, for each genera-
tion, the 15 SM chiral fermions1 as well as one right-handed
neutrino can be embedded. In this case, the allowed Yukawa
couplings of the scalar bosons to pairs of these fermions
belong to the direct product representation 16F×16F, which
can be decomposed into

16F × 16F = 10 + 126 + 120. (1)

Thus, the most general Yukawa interactions are given by the
expression

− LYukawa = 16F(Y1010H + Y126126H + Y120120H)16F,

(2)

where 10H, 126H, and 120H denote the scalar representations
of SO(10) group. However, among the large number of scalar
field components in these representations, we will assume all
those that do not participate in the symmetry breaking mech-
anism by acquiring vacuum expectations values (vevs) will
have masses of the order of the SO(10) symmetry-breaking
scale. This is known as the extended survival hypothesis [41–
44], by which one can safely decouple most of the redundant
ingredients in the SO(10) scalar representations at the GUT
scale and be left only with the light Higgs boson spectrum of
the low-energy effective theory which is present at the elec-
troweak scale. The hypothesis helps to drastically reduce the
number of scalar fields that couple to fermions and, hence,
to simplify the structure of the Yukawa sector of the model.

As was discussed in many instances, see for instance
Ref. [27], the Yukawa sector of the SO(10) model must con-
sist of a 126H representation, to trigger the see-saw mech-
anism via the breaking of the left-right symmetry at an
intermediate scale MI . One additional scalar representation,
either the 10H or the 120H, is needed to break the SM gauge
symmetry. Because the main difference between these two

1 For a single generation of the SM fermions, one has two chiralities
time six colored quarks and one charged lepton, plus a left-handed
neutrino; this makes 15 degrees of freedom in total.

representations is that the 120H decomposes into four scalar
doublets under the SM group, while the 10H representation
decomposes only in two scalar doublets, based on minimal-
ity one should consider the Yukawa sector of SO(10) with
only the 10H and the 126H representations, leading to the
so-called minimal SO(10) models. Note that more scalar rep-
resentations, which do not affect fermion masses, are needed
to achieve the correct symmetry breaking pattern down to the
Standard Model group, as will be discussed in the breaking
patterns below.

Given that the 10-dimensional representation of SO(10)
is real, the field 10H could in principle be real. However, it
was shown [27] that a scalar sector composed of a real 10H
and a complex 126H leads to an unrealistic mass spectrum
for the second and third generation fermions.2

The simplest possible extension is to complexify the orig-
inal real 10H, which leads to the following minimal SO(10)
model with complex scalar fields

− LY = 16F(Y1010H + Y10∗10∗
H + Y126126H)16F. (3)

The price to pay is that we need to introduce a new Yukawa
coupling Y10∗ which makes the theory less predictive. To
avoid the extra independent Yukawa coupling associated with
the 10∗

H, we will assume in this paper an additional global
U(1) Peccei–Quinn symmetry [40] with the following charge
assignment for some real parameter α

16F→eiα16F, 10H→e−2iα10H, 126H→e−2iα126H.

(4)

It reduces Eq. (3) to

− LY = 16F(Y1010H + Y126126H)16F. (5)

There are two additional motivations for adding such a global
symmetry to our model. A first one is that, when the U(1)PQ

symmetry is broken by assigning a vev to a SO(10) scalar,
it influences the symmetry breaking pattern and the renor-
malization group running of the gauge couplings, as we will
see shortly. Another and more phenomenological motivation
is that it implies the existence of an axion which can solve
the strong CP problem [40] and, at the same time, provide a
good candidate for the dark matter in the Universe.

The breaking of SO(10) to the SM gauge group, which we
will denote for shortness by

GSM ≡ G321 = SU(3)C × SU(2)L × U(1)Y, (6)

can be triggered in several ways. As mentioned in the intro-
duction, in the case of non-SUSY SO(10) models, the exis-

2 If the 10H field is real and there is more than one generation of
fermions, the mass ratio of isospin up and down-type quarks is pre-
dicted to be of order 1 [27], in contradiction with the observed quark
masses: mt/mb � 1. This indicates that a more complicated scenario
should be considered.
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tence of intermediate scales MI play an important role in the
unification of the gauge couplings at some scale MU . More
precisely, as the evolution of the U(1) coupling needs to be
strongly modified to meet with the other two couplings at
a unique scale that should be high enough, large contribu-
tions from additional gauge bosons are required. These con-
tributions can be provided by the particles that are present
at the intermediate breaking step, i.e. at the scale MI . We
will stick to the breaking chains with only one intermediate-
step involving a left-right (LR) symmetry – with a SU(2)R

group – to invoke the see-saw mechanism for neutrinos. The
embedding of the SU(2)R symmetry above the intermediate
scale MI strongly affects the gauge coupling evolution.

In our analysis, we will interested in the following break-
ing patterns:

422 : SO(10)|MU

〈210H〉−−−−→ G422|MI

〈126H〉−−−−→ G321|MZ

〈10H〉−−−→ G31; (7)

422D : SO(10)|MU

〈54H〉−−−→ G422 × D|MI

〈126H〉−−−−→ G321|MZ

〈10H〉−−−→ G31; (8)

3221 : SO(10)|MU

〈45H〉−−−→ G3221|MI

〈126H〉−−−−→ G321|MZ

〈10H〉−−−→ G31; (9)

3221D : SO(10)|MU

〈210H〉−−−−→ G3221 × D|MI

〈126H〉−−−−→ G321|MZ

〈10H〉−−−→ G31, (10)

where D refers to a left-right discrete symmetry, called D
parity, transforming spinors of opposite chirality [45–48]. We
have used the following abbreviations for the gauge groups

G422 ≡ SU(4)C × SU(2)L × SU(2)R,

G3221 ≡ SU(3)C × SU(2)L × SU(2)R × U(1)B−L, (11)

with the former being the Pati–Salam (PS) group and the
latter being the minimal left-right (LR) gauge group.

To achieve the desired symmetry breaking in these sce-
narios, one would necessarily need to introduce scalar multi-
plets that acquire vevs at the corresponding high scales. In the
breaking chains above, the scalar content that acquires vevs
at the intermediate scale MI or at the electroweak scale MZ

consists of, respectively, the 126H and 10H representations;
while at the GUT scale MU , the relevant representations that
break the SO(10) symmetry are 210H, 54H and 45H; the lat-
ter will not enter our discussion here.

Despite the large number of scalars, under the extended
survival hypothesis, most of them have a mass of the order
of MU , and only certain scalar components from the 10H
and 126H representations acquire masses below the GUT
scale; they are the only ones to contribute to the running of
the various couplings between the two scales MI and MU .

Table 1 List of scalar multiplets containing light fields, for each inter-
mediate symmetry. They are the only ones which are not integrated out
below the SO(10) symmetry breaking scale mass MU

Intermediate symmetry Scalar multiplets

422 �10 ⊕ �126 ⊕ �R ⊕ �45R

422D �10 ⊕ �126 ⊕ �L ⊕ �R ⊕ �45L ⊕ �45R

3221 �10 ⊕ �126 ⊕ �R

3221D �10 ⊕ �126 ⊕ �L ⊕ �R ⊕ �45L ⊕ �45R

In the different scenarios, these are: (1, 2, 2) or (1, 2, 2, 0)
(�10) from 10H and (15, 2, 2) ⊕ (10, 1, 3) or (1, 2, 2, 0) ⊕
(1, 1, 3, 2) (�126 ⊕�R) from 126H for the gauge group G422

or G3221, correspondingly.
On the other hand, the global U(1)PQ symmetry in these

chains can be simultaneously broken at a distinct scale by
assigning a PQ charge to an SO(10) scalar [49–55]. For the
Pati–Salam model, one of the options could be that the 45H
scalar representation from SO(10) acquires a vev, in addition
to the vev of 126H that allows to break the linear combination
of PQ, B − L and T3R at the intermediate scale [27,56,57].
This allows for the breaking of the Peccei–Quinn symmetry
and the Pati–Salam symmetry with the minimal ingredients
from SO(10) and, at the same time, avoids the unnecessary
fine-tuning of introducing an SO(10) singlet [25]. For the lat-
ter, the only price we need to pay is to have an extra scalar field
(1, 1, 3) or (1, 1, 3, 0) (�45R) from the 45H that contributes
to the running of gauge couplings between the intermediate
and the GUT scales.

For the breaking chain involving an intermediateD parity,
namely 422D or 3221D in our case, similar arguments can be
invoked, except that we have to also add the representation
(10, 3, 1) or (1, 3, 1,−2) (�L) from 126H representation as
well as the (1, 3, 1) or (1, 3, 1, 0) (�45 L) from 45H repre-
sentation in order to preserve the D parity. Lastly, for the
special case of the 3221 chain in Eq. (9) and because the 45H
is assigned a vev directly at the GUT scale to break down
both the SO(10) and the Pati–Salam symmetry to their G3221

subgroup, the PQ symmetry is expected to be also broken at
the GUT scale together with the SO(10) symmetry, and thus
no scalars from the 45H scalar representation survive at the
intermediate scale. Table 1 gives, for each breaking chain,
the surviving scalars at the intermediate scale.

As a result, in the different breaking patterns, the number
of Higgs multiplets that contribute to the renormalization
group running of the gauge couplings above the intermediate
scale is different. Broadly speaking, the larger the number of
Electroweak scalars that contribute to the RGEs is, the faster
the couplings will evolve, and the lower the intermediate
or the GUT scale will be. As we will shortly see, this will
have very important consequences in the scenarios that we
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are adopting in our analysis, which has an extended Higgs
sector at the electroweak scale.

Above the intermediate scale MI , only the two Higgs bi-
doublet fields, decomposing from the 10H and 126H repre-
sentations, will couple to the fermions. Starting from Eq. (5),
the Yukawa Lagrangian for fermions at the intermediate scale
MI can be written in each of considered schemes as

− L422
Y = F̄L(Y10�10 + Y126�126)FR

+YRF
T
R C�RFR + h.c.,

−L422D
Y = F̄L(Y10�10 + Y126�126)FR + YL F

T
L C�L FL

+YRF
T
R C�RFR + h.c.,

−L3221
Y = Q̄L(Y10,q�10+Y126,q�126)QR+L̄ L(Y10,l�10

+Y126,l�126)LR

+YRL
T
Riσ2�RLR + h.c.,

−L3221D
Y = Q̄L(Y10,q�10 + Y126,q�126)QR

+L̄ L(Y10,l�10

+Y126,l�126)LR

+YL L
T
L iσ2�L LL + YRL

T
Riσ2�RLR + h.c.,

(12)

where FL ,R are generic left or right-handed SU(4) fermion
fields, Q, L are quark/lepton fields, and σ2 one of the Pauli
matrices. In both cases, we have assumed that terms like
F̄T
L φ̃FR with φ = � or � and φ̃ = σ T

2 φ∗σ2 are forbidden
by suitably chosen U(1)Y charges [58].

At the intermediate scale, the corresponding left-right
symmetry is broken by the right-handed triplet. As we assume
that both the 10H and the 126H representations are complex,
their vevs should be aligned in the following way to break the
intermediate SU(2)L × SU(2)R × U(1)B−L symmetry down
to the electromagnetic U(1)EM symmetry

〈�10〉 = 1√
2

(
κu

10e
iθu10 0

0 κd
10e

iθd10

)
,

〈�126〉 = 1√
2

(
κu

126e
iθu126 0

0 κd
126e

iθd126

)
,

〈�L〉 = 1√
2

(
0 0

κLeiθL 0

)
,

〈�R〉 = 1√
2

(
0 0

κReiθR 0

)
, (13)

where for later convenience we use the following notation to
denote the 10H and 126H vevs

vba = κae
iθba (a = 10, 126; b = u, d). (14)

In our vevs assignment, the left-handed triplet should also
acquire a tiny but nonzero vev,3 vL ∼ 0, while the right-
handed triplet should have an intermediate-scale vev, vR ∼
MI .

Below the intermediate scale, the low-energy models
include, besides the triplet field �R that gives masses to
the heavy right-handed neutrino species, four Higgs doublet
fields φ1,...4: the two doublets φ1 and φ3 from the bi-doublet
�10 and which have opposite hypercharge Yφ = ±1 and the
doublets φ2 and φ4 again with opposite hypercharge from
the bi-doublet �126. The fields φ1 and φ2 will couple to up-
type quarks and the heavy right-handed neutrinos, while the
fields φ3 and φ4 will couple to down-type quarks and the
light leptons. While the triplet fields acquire a very large
vev, 〈�R〉 = vR ∼ O(MI ), the bi-doublet fields acquire
vevs of the order of the electroweak scale. This should imply
the relation

∑4
i=1 v2

i = v2
SM � (246 GeV)2 between vevs,

when their running is neglected. This ensures that the right-
handed gauge bosons are very heavy, MWR , MZR ≈ gvR ,
while the SU(2)L W and Z bosons have weak scale masses,
MW , MZ ≈ gvSM.

In fact, one should arrange such that only two linear com-
binations of the four scalar doublet fields φ1, . . . φ4 acquire
masses of the order of the electroweak scale, while the masses
of the two other field combinations should be close to the very
high scale MI . The two fields with weak scale masses will
be ultimately identified with the doublets Hu and Hd of the
low energy 2HDM that we adopt here. At the intermediate
scale MI , these fields should match the �10 and �126 fields,
the interactions of which have been given in Eq. (12), and
will be discussed in details in Sect. 4.

To achieve this peculiar configuration, one has to tune
the parameters of the scalar potential of the model and a
discussion of this issue, together with the constraints to which
these parameters should obey, has been made in e.g. Refs. [59,
60] and we refer to them for the relevant details.

Hence, for each decomposing bi-doublet, only one Higgs
doublet remains light and the rest of the scalar multiplets
acquire intermediate scale masses. In this respect, at low ener-
gies, we will have in fact a model with two Higgs doublet
fields Hu and Hd that couple separately to isospin + 1

2 and
− 1

2 fermions and acquire vevs vu and vd

〈Hu〉 = 1√
2

(
0

vu

)
, 〈Hd〉 = 1√

2

(
0

vd

)
, (15)

to generate masses to the W and Z bosons, thus implying the

relation
√

v2
u + v2

d = vSM � 246 GeV. We further define the
ratio of these two vevs to be tan β = vu/vd . The most gen-
eral renormalizable scalar potential of this two Higgs doublet

3 The vev of the left-handed triplet must be tiny but non-zero in order
to comply with the phenomenology of the light neutrinos which have
masses of the order of 1 eV or less.
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model may be written [61]

VH = m2
11H

†
d Hd + m2

22H
†
u Hu −

(
m2

12HdHu + h.c.
)

+λ1

(
H†
d Hd

)2 + λ2

(
H†
u Hu

)2

+λ3

(
H†
d Hd

) (
H†
u Hu

)
+λ4 (HdHu)

(
H†
u H

†
d

)
+
[
λ5 (HdHu)

2 + λ6

(
H†
d Hd

)
(HdHu)

+λ7

(
H†
u Hu

)
(HdHu) + h.c.

]
. (16)

We will later discuss in details the above scalar sector, in
particular when it comes to the perturbativity of the various
couplings and the stability of the corresponding vacua. These
impose severe constraints on the model as we will see.

The Yukawa interactions of the fermions are those of a
Type-II 2HDM [61] with a Lagrangian given by

− L2HDM
Y = Yu Q̄L Hu uR + Yd Q̄L Hd dR

+Ye L̄ L Hd eR + h.c., (17)

with QL/LL the quark/lepton left-handed doublets and fR
the right-handed singlets. In our discussion, only the third
generation fermions will be considered and the small Yukawa
couplings of the first two generations will be neglected. The
relations between the masses and Yukawa couplings are then
simply given by

mt = 1√
2
Ytvu, mb = 1√

2
Ybvd , mτ = 1√

2
Yτ vd . (18)

Having introduced these essential elements, we can now
discuss the unification of the gauge and Yukawa couplings.

3 Gauge couplings unification with thresholds

3.1 Approximate solutions of the RGEs

In this section, we present some analytical expressions for
the renormalization group evolution of the three SM gauge
couplings, which can be used to derive the unification scale
MU and the universal coupling constant αU at this scale for
any breaking pattern of the non-SUSY SO(10) GUTs with
an intermediate scale MI . The RGEs with an energy scale μ

of the couplings αi = g2
i /4π , where gi are the coupling con-

stants of the SU(3), SU(2) and U(1) groups for respectively
i = 3, 2, 1, are given by the following differential equations

dα−1
i (μ)

d ln μ
= − ai

2π
−
∑
j

bi j

8π2α−1
j (μ)

. (19)

Including the Yukawa interactions, the solutions take the fol-
lowing approximate form in terms of a reference scale μ0

α−1
i (μ) = α−1

i (μ0) − ai
2π

ln
μ

μ0

− 1

4π

∑
j

bi j
a j

ln
α j (μ)

α j (μ0)
+ �i

Y . (20)

The one- and two-loop β coefficients (as they are usually
called; not to be confused with the ratio of vevs tan β), ai
and bi j , are given explicitly in Appendix A1 for the symme-
try groups and representations that we are considering. �i

Y
stands for the Yukawa couplings contributions that enter at
two-loops but, as they only have a very small impact on the
running of the gauge couplings compared to the other two-
loop contributions, we will neglect them in our computation.
The detailed calculation including the two-loop Yukawa con-
tributions to the gauge couplings can be found in Ref. [62]
for instance.

In addition, at the intermediate symmetry breaking scales,
threshold effects [18,19] due to all the particles that have
masses in the vicinity of these scales and, in particular, all
the scalar fields that develop vevs at these scales, will be
active. These higher order corrections will modify the match-
ing conditions of the gauge couplings at the symmetry break-
ing scale, depending on the particle content. For a general
symmetry breaking from a group G to a subgroup H at the
scale μ, the matching conditions with the threshold correc-
tions included take the form

α−1
i,G(μ) = α−1

i,H(μ) + λGi,H
12π

, (21)

where λGi,H are weighted by the parameters ηi = ln(Mi/μ)

with Mi being the masses of the heavy particles integrated
out at the low energy scale. The complete expressions for
the one-loop threshold corrections λGi,H at the relevant scale
are given in Ref. [25] for the models that we are considering
here.

At this stage, combining Eqs. (20) and (21), the gauge
couplings at a low scale α−1

i,H(μ0) can be evolved to an arbi-
trary high scale μ where the gauge couplings are embedded
into a higher symmetric group G as

α−1
i,G(μ) = α−1

i,H(μ0) − aHi
2π

ln
μ

μ0

− 1

4π

∑
j

bHi j
aHj

ln
α j,H(μ)

α j,H(μ0)
+ λGi,H

12π
, (22)

where the two-loop corrections can be approximated with the
following relation

− 1

4π

∑
j

bGi j
aGj

ln
α j,G(μ)

α j,G(μ0)
≈ − αU

8π2 θGi ln
μ

μ0
, (23)
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where αU is the universal gauge coupling at the GUT scale
and the coefficient

θGi ≡
∑
j

bGi j
ln(1 + aGj αU t)

aGj αU t
and t = 1

2π
ln

μ

μ0
(24)

are defined with the same way as in Ref. [62]. The exact
forms of the coefficients θGi are given in Appendix A2 for all
the considered symmetry groups.

The unification of the gauge couplings at the scale MU sets
the boundary conditions for the RGEs, which are valid for
any breaking pattern of SO(10) with an intermediate gauge
group GI

α−1
U = α−1

i,GI
(MU ) + λ

SO(10)

i,GI

12π
. (25)

At the intermediate scale MI , depending on the symmetry
breaking chain, the gauge couplings are related with the ones
at low-energy by proper normalization of the generators. As
an example, in the particular symmetry breaking chains that
we consider, one has

422/422D : α−1
4,G422

(MI ) = α−1
3,G321

(MI ),

α−1
2L ,G422

(MI ) = α−1
2,G321

(MI ),

α−1
2R ,G422

(MI )=5

3
α−1

1,G321
(MI )−2

3
α−1

3,G321
(MI ),

(26)

in the 422/422D cases and, in the case of the 3221 and 3221D
breaking chains,

3221 : α−1
3,G3221

(MI ) = α−1
3,G321

(MI ),

α−1
2L ,G3221

(MI ) = α−1
2,G321

(MI ),

α−1
B−L ,G3221

(MI ) = κα−1
2R ,G3221

(MI )

=
(

2κ + 3

5κ

)−1

α−1
1,G321

(MI ),

3221D : α−1
3,G3221

(MI ) = α−1
3 (MI ), α−1

2L ,G3221
(MI )

= α−1
2R ,G3221

(MI ) = α−1
2,G321

(MI ),

α−1
B−L ,G3221

(MI ) = 5

2
α−1

1,G321
(MI ) − 3

2
α−1

2,G321
(MI ).

(27)

In the 422D chain we also requireα−1
2L ,G422

(MI ) = α−1
2R ,G422

(MI )

to preserve the D parity, and in the 3221 chain, we assume
α−1
B−L ,G3221

(MI ) = κα−1
2R ,G3221

(MI ) as we are matching three
couplings to four. This normalization factor κ of O(1) is to
be solved for together with the scales MI and MU .

For the purposes of achieving unification, it is enough
to consider the differences between the various gauge cou-
plings, α−1

i,G − α−1
j,G , whose running depends only on the

parameters

�
G
i j = aGi − aGj

2π
+ θGi − θGj

8π2 αU . (28)

In fact, it turns out that for each intermediate symmetry GI ,
it is enough to consider only one combination of the various
�G

i j , which we will call CGI . For the cases GI = G422 and
GI = G3221 they read

CG422 = 3

5

�
G422
42R

�
G422
42L

and CG3221 = 3�
G3221
32R

+ 2�
G3221
3B−L

5�
G3221
32L

. (29)

With the boundary conditions defined in Eq. (25) and the
matching conditions at MI for different breaking chains (e.g.
Eqs. (26)–(27)), the RGEs of SO(10) in Eq. (22) can be trans-
formed into the following general equations, where the inter-
mediate scale MI , the unification scale MU , and the universal
SO(10) coupling αU , are related to the initial conditions of
the gauge couplings in the SM

ln

(
MI

MZ

)
= (α−1

1EW
−α−1

3EW
)−CGI (α

−1
2EW

−α−1
3EW

)+DGI

CGI �
G321
32 −�

G321
31

,

(30)

ln

(
MU

MI

)
=−α−1

2EW
−α−1

3EW

�
GI
3I 2L I

− �
G321
32

�
GI
3I 2L I

ln

(
MI

MZ

)
− D′

GI

�
GI
3I 2L I

,

(31)

α−1
U � α−1

3EW
− 1

CGI �
G321
32 − �

G321
31

×
[(

aG321
3

2π
− �

G321
32

�
GI
3I 2L I

aGI
3I

2π
+ O

(
αU θGi
8π2

))

×(α−1
1EW

− α−1
3EW

)

−
(
CGI

aG321
3

2π
− �

G321
31

�
GI
3I 2L I

aGI
3I

2π
+ O

(
αU θGi
8π2

))

×(α−1
2EW

− α−1
3EW

)

]
. (32)

The four constant terms CGI , �
G321
31 , �

G321
32 and �

GI
3I 2L I

(in
this last term, 3I and 2L I refer to the corresponding gauge
couplings in the intermediate gauge group GI , containing
the SM SU(3)C and SU(2)L components; for instance, if
GI = G422, the factor refers to �

G422
42L

) are all determined
by the β coefficients of the low-energy models G321 and the
intermediate-scale model GI from Eqs. (28) and (29).

We have calculated these factors using the work of
Refs. [63,64] for each breaking chains we consider and we
list them in the Appendix A3; they can easily be calcu-
lated from the quantum number of the light fields in the
different breaking chains of SO(10). The shorthand notation
(α−1

1EW
, α−1

2EW
, α−1

3EW
) was used to denote the gauge couplings
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at the electroweak scale (α−1
1,G321

(MZ ), α−1
2,G321

(MZ ), α−1
3,G321

(MZ )). The factors DGI and D′
GI

include all threshold cor-
rections for each breaking chain and are given by

DG422 = DG422
13,G321

+ 3

5
DSO(10)

2R4,G422
− CG422 D

′
G422

,

D′
G422

= DG422
23,G321

+ DSO(10)

2L4,G422
,

DG3221 = DG3221
13,G321

+ 3

5
DSO(10)

2R3,G3221

+2

5
DSO(10)

B−L3,G3221
− CG3221 D

′
G3221

,

D′
G3221

= DG3221
23,G321

+ DSO(10)

2L3,G3221
, (33)

where the parameter DG
i j,H depicts the difference between

the threshold corrections of the gauge couplings αH
i and αH

j
defined as

DG
i j,H = 1

12π

(
λGi,H − λGj,H

)
. (34)

3.2 Uncertainties of the calculation at the two-loop order

The initial conditions on the SM gauge couplings (α−1
1 , α−1

2 ,

α−1
3 ), evaluated in the MS renormalization scheme with two-

loop accuracy, are the coupling values at the electroweak
scale that we take to be the Z boson mass MZ = 91.2 GeV,
namely [65],(
α−1

1EW
, α−1

2EW
, α−1

3EW

)
=
(

59.0272, 29.5879, 8.4678
)
,

(35)

where the hypercharge coupling αY has been normalized
with the usual GUT condition leading to α1/αY = 5/3. In
the equation above, we have neglected for convenience the
experimental errors on the inverse couplings constants (as
well as the estimated theoretical uncertainties) and kept only
the central values. These errors, in particular the one that
affects the strong coupling α3 will lead to an uncertainty on
the obtained scales MU and MI of the order of a few per-
cent at most and will therefore not affect our discussion in a
significant way.

With the above initial conditions, the solutions to Eqs. (30)
and (31) can be derived order by order. At one-loop order, the
two-loop coefficients can be ignored, which is equivalent to
setting αU to zero in Eqs. (28) and (29). Neglecting also the
one-loop threshold corrections DGI and D′

GI
, the solutions

of Eqs. (30) and (31) in this case, denoted as ln (MI /MZ )1
and ln (MU/MI )1, are determined by the one-loop values
of the four constants (CGI , �

G321
31 , �

G321
32 and �

GI
3I 2L I

) (see
Appendix A3 for details). The universal coupling at one-
loop order α

1-loop
U can also be obtained in a similar way by

substituting back the one-loop values of these four constants
in the right-handed side of Eq. (32).

We summarize the results for the three one-loop quantities
ln (MI /MZ )1, ln (MU/MI )1 and α

1-loop
U in the first panel

of Table 2 for some considered breaking chains when the
threshold corrections (as well as the Yukawa couplings) are
neglected.

At two-loop order, Eqs. (30) and (31) can be seen
as implicit functions of the independent variables αU ,
ln (MI /MZ ) and ln (MU/MI ). Denoting the right-handed
sides of these equations as F (αU , ln (MI /MZ ) , ln (MU/MI ))

and G (αU , ln (MI /MZ ) , ln (MU/MI )) correspondingly,
Eqs. (30) and (31) can be rewritten as

F

(
αU , ln

(
MI

MZ

)
, ln

(
MU

MI

))
− ln

(
MI

MZ

)
= 0, (36)

G

(
αU , ln

(
MI

MZ

)
, ln

(
MU

MI

))
− ln

(
MU

MI

)
= 0. (37)

Because the one-loop solutions ln (MI /MZ )1 and ln (MU/MI )1
when αU = 0 are exact solutions to the above Eqs. (36) and
(37), the small required corrections can be found by perform-
ing the following variations to the one-loop solutions

∂F

∂αU

∣∣∣∣
αU=0

δαU +
⎡
⎢⎣ ∂F

∂ ln
(

MI
MZ

)
∣∣∣∣∣∣
αU=0

− 1

⎤
⎥⎦ δ ln

(
MI

MZ

)

+ ∂F

∂ ln
(
MU
MI

)
∣∣∣∣∣∣
αU=0

δ ln

(
MU

MI

)
= 0, (38)

∂G

∂αU

∣∣∣∣
αU=0

δαU + ∂G

∂ ln
(

MI
MZ

)
∣∣∣∣∣∣
αU=0

δ ln

(
MI

MZ

)

+
⎡
⎢⎣ ∂G

∂ ln
(
MU
MI

)
∣∣∣∣∣∣
αU=0

− 1

⎤
⎥⎦ δ ln

(
MU

MI

)
= 0. (39)

A careful investigation of the above differential forms
reveal that indeed all the other derivatives vanish when
αU = 0 except for ∂F/∂αU and ∂G/∂αU due to the fact
that the derivatives of the two-loop factor �G

i j satisfies the

relation ∂�G
i j/∂t |αU=0 = 0. Therefore, the two-loop solu-

tions ln (MI /MZ )2 and ln (MU/MI )2 can be approximated
by

ln

(
MI

MZ

)
2

= ln

(
MI

MZ

)
1
+ δ ln

(
MI

MZ

)
≈ ln

(
MI

MZ

)
1

+ ∂F

∂αU

∣∣∣∣
αU=0

δαU , (40)

ln

(
MU

MI

)
2

= ln

(
MU

MI

)
1
+ δ ln

(
MU

MI

)
≈ ln

(
MU

MI

)
1

+ ∂G

∂αU

∣∣∣∣
αU=0

δαU , (41)
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Table 2 A summary table of our approximate analytical estimates of
the intermediate scales MI , the unification scales MU , and the values
of the universal SO(10) coupling constant αU for different intermediate

breaking groups GI and low-energy models GSM, where the Yukawa
contributions and the threshold corrections are neglected

G321 GI log
(

MI1
GeV

)
log
(
MU1
GeV

)
α

1-loop
U log

(
MI2
GeV

)
log
(
MU2
GeV

)
α

2-loop
U

SM G422 11.102 16.314 0.0275 9.627 16.718 0.0313

SM G3221 9.807 16.165 0.0223 9.942 15.929 0.0262

2HDM G422 11.429 15.988 0.0273 10.133 16.346 0.0304

2HDM G3221 10.234 15.896 0.0226 10.398 15.652 0.0230

where δαU = α
1-loop
U should be substituted in the above equa-

tion. The universal grand unified coupling at the two-loop
level α

2-loop
U can also be solved numerically from Eq. (32)

by substituting the one-loop value of ln (MI /MZ )1 and
ln (MU/MI )1 into the parameters CGI , �

G321
31 , �

G321
32 , and

�
GI
3I 2L I

.4

In summary, neglecting all the threshold corrections, as the
coupling constant αU is rather small, it is a good approxima-
tion to expand the coefficients �

GI
i j in terms of this coupling

to find, first the one-loop solutions. The two-loop solutions
are then obtained by inserting the one-loop solutions into
Eqs. (40) and (41).

We summarize our results for the one-loop and two-loop
predictions for ln (MI /MZ ), ln (MU/MI ), and αU separately
in Table 2. This approximation is in a good agreement with
the numerical results to be discussed in Sect. 3.4. One can
observe from Table 2 that the one-loop solutions agree with
the numerical results given in Ref. [25] at the 4σ confidence
level, while the two-loop solutions agree with the numerical
results in Table 3 from Sect. 3.4 at the 2σ confidence level.

In practice, one can solve these equations iteratively, as
is done for instance in Ref. [62], to obtain more accurate
predictions of the scales MI and MU . However, as we are
assuming the approximation in Eq. (23) for a unification
of gauge couplings, without integrating out higher deriva-
tives, the approximation by the first derivatives in Eqs. (40)
and (41) already includes uncertainties of the order of one-
percent, which is also comparable with the contributions
from the Yukawa couplings that we neglect in our computa-
tion. Besides the uncertainties from our approximations and
leaving aside the Yukawa contributions, the largest uncer-
tainty actually comes from the threshold corrections DGI

and D′
GI

, which are shown in several analyses to be able to
modify the predictions of the unification scales by more than
an order of magnitude; see for instance Refs. [25,36,66].

4 At the two-loop level, the most important contributions to αU are due
to (CGI , �G321

31 , �G321
32 , and �

GI
3I 2L I

) corrected by the two-loop β coeffi-
cients (see explicitly Appendix A3), so that one can safely neglect the
terms proportional to (αU θG

i /8π2) in Eq. (32), which can be considered
as higher-order corrections [62].

Finally, we should note that in principle, analytical expres-
sions cannot be derived when a multi-step symmetry break-
ing with more than one intermediate scale is present, unless
additional constraints on the intermediate scale are imposed.
Our analytical results generalize the formulae derived in
Ref. [62] for SUSY-SO(10) GUTs to the non-SUSY case
and to the case with one intermediate symmetry breaking.5

3.3 Impact of proton decay

Before moving to the numerical results, let us first have a
brief discussion6 on the constraints that come from proton
decay on our SO(10) GUTs with intermediate breaking, and
more precisely on the values of the unification scale MU

and unification coupling αU . The most-constraining decay
channel on the proton lifetime is the one in which one has a
pion and a positron in the final state [69,70]. In this particular
mode, the proton lifetime in years can be roughly estimated
to be [25]:

τ(p → e+π0) � (7.47×1035 year)(
MU

1016 GeV

)4 (0.03

αU

)2

.

(42)

The strongest current experimental constraint, including
other decay channels, for proton decay come from the Super-
Kamiokande experiment [71–75] which sets the bounds on
the proton lifetime

τ(p → e+π0) > 1.67 × 1034 year (43)

at the 90% confidence level, which yields the following
bound

5 This formalism can be generalized to the supersymmetric case dis-
cussed for example in Ref. [67] where a general analytical method is
applied for a SUSY SU(5) GUT. For SUSY SO(10) GUTs like the ones
discussed in Ref. [68], one can identify the intermediate scale to be the
SUSY-breaking scale and use the formalism presented here to derive
the unification scale MU .
6 For a detailed account, see the recent and more general discussion
given in Ref. [66].
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Table 3 A summary table of the numerical results of the intermedi-
ate scale, the unification scale, and the universal gauge coupling at the
two-loop level, neglecting all the threshold corrections as well as the
estimated proton lifetimes obtained for each considered breaking chain

with two Higgs doublets at the electroweak scale. The ratio of vevs is
fixed to tan β = 65 as the results do not change significantly for lower
values of tan β

Breaking chain log
(

MIc
GeV

)2-loop
log
(
MUc
GeV

)2-loop
α

2-loop
U τ(p → e+π0)/year

422 10.03 16.19 0.032 3.82 × 1036

3221 10.66 15.45 0.023 7.84 × 1033

422D 13.65 14.66 0.026 4.22 × 1030

3221D 11.82 14.63 0.024 3.89 × 1030

ln

(
MU

MZ

)
+ 1

2
ln
(
α−1
U

)
> 33.1, (44)

where the unification scale ln
(
MU
MZ

)
and coupling α−1

U can

be obtained from Eqs. (30)–(32) with values that are sum-
marized in Table 2 given in the previous subsection.

In the general case, the analytical expressions for the β

coefficients can be found in Refs. [63,64], where the depen-
dence on the number of fermion families and Higgs doublets
is explicitly given. We can thus express all β coefficients as
a function of the number of scalars running from the elec-
troweak scale to the intermediate scale. One can generally
state that the more colorless scalars contribute to the gauge
couplings, the lower the unification scale would be and, thus,
the shorter the proton lifetime would be.

For the low-energy model G321 studied in our paper,
namely the 2HDM, and without including the threshold cor-
rections as is shown for example in Table 2, the only two
breaking chains that survive the constraint from proton decay
are the 422 and the 3221 breaking chains, with the latter one
sitting right on the edge of the proton decay bounds that
could be spoiled easily by slightly going beyond our approx-
imation. Including the threshold corrections could raise the
unification scale by an order of magnitude to avoid a too fast
proton decay. The shift of scales MI and MU when including
the threshold corrections numerically is discussed in the next
subsection.

3.4 Numerical results

In this subsection, we will give more precise results that we
obtain numerically by deriving and solving the RGEs for
each considered breaking chain up to two-loop order, using
the Mathematica package SARAH [76]. In our present case,
from the electroweak scale MZ to the intermediate scale MI ,
the low-energy model G321 is not the SM but is assumed
to be the 2HDM whose two-loop RGEs are also given in
Appendix B. Note also that in our numerical treatment, the
contributions of the Yukawa couplings, determined from the
fermion masses at the electroweak scale and the parameter
tan β of the 2HDM, have been also included.

We also include the one-loop threshold corrections numer-
ically at the scales MI and MU , by randomly sampling the
parameters ηi = ln(Mi/μ) of Eq. (21) within the range of
values ηi ∈ [−1, 1]. The systems of two-loop RGEs would
then be solved together with the given one-loop threshold cor-
rections to determine the values of the two scales MI and MU

for each sampling parameter set, by requiring all the gauge
couplings to match at the grand unified scale MU including
the threshold corrections when appropriately adjusting the
intermediate scale MI . We took at least 10,000 points for
the parameters ηi within the selected range of ηi values and
determined the sets of all scales (MI , MU ) that allow for
gauge coupling unification for each breaking chain.

The results are given by the four panels of Fig. 1 which
shows for the four considered breaking patterns, the scat-
ter plots for the set of scales (MI , MU ) with the randomly
sampled threshold corrections, when the ratio of the 2HDM
vevs is chosen to be tan β = 65. The intermediate and the
GUT scales when all the threshold corrections are taken to be
zero (ηi = 0) are defined as the central values (MIc, MUc)

that are specified in each plot. As we have already noticed
in Ref. [36], both the two-loop corrections and the threshold
corrections have a significant impact.

In particular, our results in Fig. 1 show the effect of the
additional Higgs doublet contributions to the gauge coupling
running for our considered breaking chains (again the β coef-
ficients are given in Appendix A1), when comparing for
instance to the work of Ref. [25] (especially to their Fig-
ure 3), where only the SM particle content is used in the
running at low energy. The extra contributions in the 2HDM
to the running of the gauge couplings, even though not very
large, results in a unification scale MU that is significantly
smaller. In fact, for some of the breaking scenarios that we
consider, in particular the 422D and 3221D chains, the result-
ing MU values could easily fall into the values excluded by
proton-decay bounds even when large threshold corrections
are included.

As an example, the evolution of the inverse of the gauge
coupling constants squared α−1

i for the selected 2HDM ratio
of vevs tan β = 65 when all threshold corrections ηi are
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Fig. 1 The scatter plots for the set of (logarithms of the) scales
(MI , MU ) of the four breaking patterns considered, with randomly sam-
pled threshold corrections for ηi ∈ [−1, 1] when the ratio of vevs of
the two Higgs fields is chosen to be tan β = 65. Note that these results

are not sensitive to tan β. The central values (MIc, MUc) that we indi-
cate represent the intermediate and the GUT scales with all threshold
corrections taken to be zero, ηi = 0

taken to be zero from the scale MU down to the scale MI

and then down to the weak scale MZ is shown in Fig. 2
as a function of the (logarithm of the) energy scale μ. We
have used the program SARAH in which we have imple-
mented the full two-loop RGEs for the considered breaking
patterns 422 (upper left), 422D (bottom left), 3221 (upper
right) and 3221D (bottom right). While the three couplings
are clearly different at the scale MI , of the order of a few
times 1010−13 GeV, the slope are significantly modified at
this energy by the additional contributions so that the cou-
plings meet at a scale MU of the order 1014−16 GeV. The

small impact of the experimental errors on the couplings is
illustrated by the narrow vertical red bands that are drawn at
the scales MI and MU .

Finally, we also summarize in Table 3 our numerical
results for our four considered breaking patterns, when the
threshold corrections are not included. The relevant interme-
diate and unification scales at the two-loop level MIc and
MUc as well as the unification coupling αU , are to be com-
pared with those given in Table 2; in addition, we display the
estimated proton lifetime in each scenario.
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Fig. 2 The evolution of the inverse of the gauge coupling constants
squared α−1

i as a function of the (logarithm of the) energy scale μ for
the value tan β = 65, when all threshold corrections ηi are taken to be
zero from the electroweak scale to the GUT scale in the 2HDM+422

(upper left), 2HDM+3221 (upper right), 2HDM+422D (bottom left) and
2HDM+3221D (bottom right) models. The red vertical bands reveal the
uncertainty on the measurement of gauge couplings at the electroweak
scale

From this table, one can see that when the threshold correc-
tions are switched off, only the breaking chain 422 with the
Pati–Salam symmetry as an intermediate step and a 2HDM at
the low energy scale, survives the proton decay bound from
Kamiokande, namely τ(p → e+π0) > 1.67 × 1034 year. In
addition, even though the 3221 chain seems to lie at the edge
of the dangerous region excluded by proton decay, any small
amount of threshold corrections at a given symmetry break-
ing scale could easily rescue it, by raising the unification
scale by an order of magnitude, as can be seen from Fig. 1.
The same situation occurs in the 422D breaking chain, but

large threshold corrections (ηi � 1) would be needed to pre-
vent fast decay of proton in this case. Finally, for the 3221D
breaking chain resulting to a 2HDM at the low energy scale,
we find that the bound from proton decay is violated unless
extremely large (an potentially unrealistic) threshold correc-
tions (ηi � 1) are taken into account.

Before we close this section, let us make a brief com-
ment on the fact that gauge coupling unification in non-
SUSY SO(10) models with only one intermediate scale suf-
fers from the severe constraints from proton decay, if no large
threshold corrections are imposed, except for the 422 break-
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ing chain. As we have seen above, the two-loop RGEs of
these SO(10) models have approximate analytical solutions
which are completely determined by the β coefficients for
any breaking chain. In other words, there are no free param-
eters in determining the symmetry breaking scales except
for the threshold corrections (e.g. in the D factors given in
Eq. (33)) and the value of the parameter tan β of the low
energy 2HDM. The latter parameter generally affects only
marginally gauge coupling unification, but it will be strongly
constrained when the Yukawa interactions of the fermions
are included as we will see in the next section. This will be
particularly the case when one invokes the requirement of
the perturbativity of the Yukawa couplings (the absence of
Landau poles) and by the consistency of the values for the
fermion masses that can be obtained at the intermediate scale.

Thus, the surviving parameter space for non-SUSY mini-
mal SO(10) models with an intermediate scale is rather small,
thus rendering the model quite predictive. We move now to
the unification of third generation Yukawa couplings. In this
case, we will ignore the models 422D and 3221D with a PQ
symmetry as they lead to a low unification scale and, hence,
are in conflict with the limits from proton decay.

4 Yukawa coupling unification

4.1 Yukawa unification in non-SUSY SO(10)

Following the paradigm of the unification of the gauge cou-
pling constants, one is tempted to push the idea further and
to consider also the possibility of unifying the fermionic
Yukawa couplings in the framework of the same GUT sym-
metry group. In this context, one is forced to ignore the rather
small Yukawa couplings of the first- and second-generation
fermions as the masses of these particles are below the few
GeV scale which allows them to be realistically described
without being affected by the strong interaction uncertain-
ties that are encountered at the corresponding mass scale.
In our work, we will thus consider only the Yukawa cou-
plings of third-generation fermions, the top quark, the bottom
quark and the tau lepton, with the additional simplification
of neglecting all possible mixings. The three fermions will
be assumed to have a common Yukawa coupling at the GUT
scale MU within the natural context of SO(10) unification
where the fermions are embedded into a single irreducible
representation 16F of the symmetry group.

Below the intermediate scale MI and down to the elec-
troweak scale, the Yukawa interactions of these fermions
are those of a Type-II 2HDM with a Lagrangian given by
Eq. (17), which leads to the masses given in Eq. (18) in terms
of the two vevs vu and vd defined at the electroweak scale.
The choice of the 2HDM as the low-energy scale directly fol-
lows from the requirement that the top and bottom Yukawa

couplings should be comparable and this cannot be achieved
in the context of the SM with its single Higgs doublet field.
In turn, in extended Higgs sectors, the large ratio between
the top and bottom quark masses could be due to a large
ratio of the vevs of the Higgs multiplets that give rise to the
masses of the up- and down-type fermions. The simplest of
such an extension7 is a 2HDM of Type II. More specifically,
one would have for the parameter tan β which is defined as
the ratio of the two vevs vu and vd of the fields Hu and Hd

that break the electroweak symmetry

tan β = vu/vd ∼ mt/mb ≈ O(60). (45)

Note that in the equation above, mt and mb are the mass
parameters of the top and bottom quarks evaluated at the
weak scale MZ , and not the physical masses.

In the context of the SO(10) unification group that we are
considering here, with either a 10H or a 126H scalar repre-
sentation coupling to fermions, the third generation masses
must depend on a single parameter for consistency reasons.
However, instead of just one SO(10) scalar representation, we
consider the possibility that both a complex 10H and a 126H
scalar interact with fermions; see Eq. (5). Fermion masses
can therefore receive non-negligible contributions from two
Yukawa couplings. Thus, a discussion on Yukawa unifica-
tion implies that Y10 and Y126 are somehow related, which
in turn implies some connection between the two scalars in
our model. One tantalizing possibility is that both the 10H
and the 126H are part of a single irreducible representation
of an even larger gauge group. A natural candidate is the
exceptional group E6 for the following reasons:

• The smallest non-trivial representation of E6, the one of
dimension 27, decomposes as 16+10+1 and, therefore,
contains the SM fermions plus vector-like ones.

• A scalar representation 351′
H can couple to the bilinear

product of fermions in the representation 27 × 27 and,
furthermore, it decomposes as10H+126H+· · · under the
SO(10) group. Note that 351′ is a complex representation
and, therefore, 10H must be associated to a complex field.

• The E6-symmetric Yukawa interaction Y × 27F · 27F ·
351′

H can be written as a sum of terms which, individ-
ually, are symmetric only under SO(10): c10Y × 16F ·
16F · 10H + c126Y × 16F · 16F · 126H + · · · for specific
Clebsch–Gordon factors c10, c126, . . .. These last num-
bers are therefore a prediction of an E6-symmetric the-
ory, hence the enlarged symmetry enforces a particular

7 The idea of Yukawa coupling unification emerged and was developed
in the late 1980s in the context of supersymmetric theories, to predict the
mass of the not yet discovered top quark and to understand the origin of
the top-bottom mass hierarchy; see e.g. Ref. [77]. For consistency rea-
sons, the minimal supersymmetric standard model or MSSM required
two Higgs doublets fields of Type-II.
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ratio Y10/Y126 since

Y10

Y126
= c10Y

c126Y
= c10

c126
. (46)

• An exactly E6-symmetric theory does not involve the
coupling 16F · 16F · 10∗

H and, hence, there is not such
an interaction at leading order. Its absence can be under-
stood by the fact that E6 contains an extra U(1) subgroup
which commutes with SO(10), under which the fields are
changed precisely in the manner described in Eq. (4).

The crucial ratio of Yukawa couplings discussed above
turns out to be(

Y10

Y126

)
E6

=
√

3

5
, (47)

with the understanding that at the GUT scale, the SO(10)
contractions 16F ·16F ·10H and 16F ·16F ·126H normalized
in such a way that the two SM doublets (one in 10H and
the other in 126H) contribute to the top quark mass with
the same Clebsch–Gordon factor. If we were to write the
G321-invariant Yukawa interactions involving the four Higgs
doublets Hu/d,10/126 contained in 10H and 126H, they would
have the form

Q̄L

(
Y 10
u H∗

u,10 + Y 126
u H∗

u,126

)
uR

+Q̄L

(
Y 10
d Hd,10 + Y 126

d Hd,126

)
dR

+L̄ L

(
Y 10
e Hd,10 + Y 126

e Hd,126

)
eR + h.c. (48)

At the unification scale, the matching relations are as follows:

Y 10
u = Y 10

d = Y 10
e = Y10; Y 126

u = Y 126
d = −1

3
Y 126
e = Y126.

(49)

Combining these two expressions, we obtain the fermion
mass formulas

mt = vu10Y10 + vu126Y126, mb = vd10Y10 + vd126Y126,

mτ = vd10Y10 − 3vd126Y126. (50)

In addition, we have the Dirac neutrino mass which is given
by

mνD = vu10Y10 − 3vu126Y126. (51)

Note however that we do not consider a direct breaking of
the SO(10) symmetry to the SM group G321; the purpose of
the previous equations is simply to clarify the normalization
of the SO(10)-invariant Yukawa couplings that we are con-
sidering in Eq. (5). (Furthermore, we consider only two light
Higgs doublets, which are necessarily a combination of the
four doublets in Eq. (48).)

The number indicated in Eq. (47) is quite peculiar since
the ratio of Clebsch–Gordon factors is often a rational num-
ber (Ref. [78] contains a large list of examples, none of which
involves an irrational number). We also cannot avoid com-
menting on the fact that

√
3/5 is also used to canonically

normalize the SM hypercharge; nevertheless, as far as we
can tell, this equality is just a coincidence.

The ratio of Eq. (47) was derived with the Subgroup
Coefficients function of GroupMath [79] but it can
also readily be derived from the available literature. Note in
particular that eqs. (77) and (78) and Table 6 of Ref. [80]
directly imply that Y × 27F · 27F · 〈351′

H

〉
contains the terms[

1/
(

2
√

10
)
Yvu10 − 1/

(
2
√

6
)
Yvu126

]
t tc.8

In the following, we will consider the consequences of
the above relation. However, it is beyond the scope of the
present work to present a fully realistic E6 model for Yukawa
unification as this would entail several challenges.9

Let us also mention that in our earlier work [36], we have
considered some of the implications of requiring the sim-
ple relation Y10 = Y126 at the scale where the gauge cou-
plings unify. While we do not have a mechanism that would
prescribe this relation, we will nevertheless consider here
in more detail some of its consequences. It is worth keep-
ing in mind that

√
3/5 ≈ 0.77 is not far off from 1, hence

the two Yukawa unification conditions, Y10 = CY126 with
C = √

3/5 or 1, should not lead to dramatically different
results.

4.2 Matching conditions in the 422 breaking chain

Having introduced the Yukawa unification conditions in our
SO(10) model from a top-down perspective, we then seek
the relations of the low-energy Yukawa couplings in different
breaking chains of SO(10). We first note that the field content
needed to enforce the D parity symmetry yields a unification
scale that is unacceptably low, making the proton lifetime too
short in the 422D and the 3221D breaking chains, as can be
seen from Table 3 and the relevant discussion in the Sect. 3.4.
We thus ignore these two possibilities in our next discussion.
In fact, we will also not discuss the 3221 breaking chain
of this particular SO(10) model; some of the elements have
been presented in Ref. [36] and others will be postponed to a

8 The individual values of the two Clebsch–Gordon factors, including
their relative sign, are convention-depend and therefore unphysical; the
absolute value of their ratio is not.
9 For example, a realistic scalar sector would necessarily have a large
number of scalars transforming as (2,±1/2) or (1, 0) under the elec-
troweak group, whose vevs affect fermion masses. Providing masses
to all the scalars is another challenge. Also, on top of the 16F (three
generations of it), one would have vector-like fermions transforming as
10F and 1F which can mix with the spinor representation, complicating
the identification of what are the SM fermions. We thank Vasja Susič
for his helpful comments on this and other E6-related topics.
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forthcoming paper. Thus, for illustration, we will discuss in
the following only the evolution of the Yukawa couplings in
the 422 breaking chain.

One should first recall that enforcing Yukawa unification
can be seen as finding a solution for the system of RGEs
of Yukawa couplings satisfying the boundary conditions and
the initial conditions obtained from the experimental observ-
ables. However, even in a model as simple as a 2HDM, the
general RGEs of the Yukawa couplings, which can be read
from Appendix B, do not admit an approximate solution like
the ones for the gauge couplings discussed in Sect. 3. There-
fore, we will leave the discussion of the numerical evaluation
of all the Yukawa couplings between different energy scales
to the end of the present section, and we first concentrate here
on the boundary conditions.

The boundary conditions for Yukawa couplings at the
GUT scale MU , where the full SO(10) is restored, relate
the couplings in a very specific way which is dictated by
appropriate Clebsch–Gordon coefficients originated from the
decomposition of the tensor product for the fermion bilinear
and the scalar field representation. Below the SO(10) scale,
given that the gauge symmetry group is smaller and less con-
straining, there can be more than two Yukawa couplings, as
shown in Eq. (12). For the 422 breaking chain, in which the
Yukawa couplings can be identified as Y 422

10 , Y 422
126 and Y 422

R ,
the matching conditions can be read from Ref. [48] which
gives:

Y10(MU ) = 1√
2
Y 422

10 (MU ), Y126(MU ) = 1

4
√

2
Y 422

126 (MU )

= 1

4
Y 422
R (MU ). (52)

Note that the numerical factors shown here are not intrinsi-
cally physical since they depend on how one contracts the
SU(4)C × SU(2)L × SU(2)R group indices which, inciden-
tally, are not shown in Eq. (12). Obviously, whatever con-
vention is adopted, it must be followed consistently. In the
present case, this means that the factors of

√
2 and 4 shown

above must drop out when matching the 321 and 422 Yukawa
couplings at MI .

As was mentioned in Sect. 4.1, the Yukawa unification
in non-SUSY SO(10) can be defined as Y10 = CY126, with
C the ratio of CG coefficients decomposing the scalar rep-
resentation of higher symmetry into SO(10) multiplets 10H
and 126H.10 Motivated by E6 in Eq. (47), we take this factor
to be

√
3/5, which, after combining the GUT-scale matching

condition in Eq. (52), implies that the 422-Yukawa couplings
at MU must fell on the line �(MU ) in the two-dimensional

10 The special case where C = 1 has been studied in [36] for a sim-
plified SO(10) model with a real 10H representation without implying
any further unification of the scalar representation.

parameter space (Y 422
10 (MU ), Y 422

126 (MU )) defined by

Y 422
10 (MU )

Y 422
126 (MU )

= 1

4

√
3

5
. (53)

Comparing Eqs. (49) and (52), we obtain from Eq. (50)
the following fermion masses in the 422-symmetric phases

mt = vu10√
2
Y 422

10 + vu126

4
√

2
Y 422

126 , mb = vd10√
2
Y 422

10 + vd126

4
√

2
Y 422

126 ,

mτ = vd10√
2
Y 422

10 − 3vd126

4
√

2
Y 422

126 , (54)

in addition to the Dirac/Majorana neutrino masses written as

mνD = vu10√
2
Y 422

10 − 3vu126

4
√

2
Y 422

126 ,mνR = 1

4
vRY

422
R . (55)

We can now match the intermediate-scale fermion mass
matrices in Eq. (54) to the low-energy ones in Eq. (18), as
the consistency between both theories implies that the masses
predicted from the low-energy effective theory and the high-
energy theory should be the same at the symmetry breaking
scale. It follows that for the breaking chains 422, the matching
conditions of the Yukawa couplings at the intermediate scale
read

Ytvu = vu10Y
422
10 + 1

4
vu126Y

422
126 ,

Ybvd = vd10Y
422
10 + 1

4
vd126Y

422
126 ,

Yτ vd = vd10Y
422
10 − 3

4
vd126Y

422
126 . (56)

The above matching conditions contain six free parameters:
the four vevs of the Higgs bi-doublets and two intermediate-
scale Yukawa couplings. With the three electroweak-scale
Yukawa couplings Yt,b,τ (MZ ) in the 2HDM obtained from
the experimental inputs, we actually have enough degrees
of freedom to be able to fix these free parameters by the
Yukawa couplings RGEs, as has been done in the litera-
ture, see Refs. [36,53–55]. We will discuss such a numer-
ical fitting procedure in detail in the next subsection. How-
ever, by imposing the constraints from the scalar potential,
such as forbidding dangerous flavor changing neutral cur-
rents (FCNCs), we find that the allowed parameter spaces
can be largely reduced as will be discussed shortly.

Finally, we emphasize that YR is not a free parame-
ter which contributes to the running of other Yukawa cou-
plings. This is because, for every possible set of (Y 422

10 (MI ),
Y 422

126 (MI )), there is a uniquely determinedY 422
R (MI ) defined

by the GUT-scale matching condition in Eq. (52) as their val-
ues at MI and at MU are related by their RGEs

Y 422
126 (MU ) = √

2Y 422
R (MU ). (57)

Therefore, in practice, we scan for all the possible values of
YR(MI ) to satisfy the above relation (within a certain accu-
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racy), together with (Y 422
10 (MI ), Y 422

126 (MI )) to determine the
initial conditions at MI for solving the RGEs from the inter-
mediate scale to the GUT scale.

4.3 The evolution of Yukawa couplings

In this subsection, we give the details of the numerical fit-
ting procedure for the parameter space allowing to address
the possibility of Yukawa coupling unification, following
Ref. [36], where two breaking patterns of a non-SUSY
SO(10) model with a real 10H representation were discussed.
The analysis is restricted to the 422 case, and is based on
numerically solving the RGEs and the matching conditions
in Eq. (56) simultaneously.

In our numerical evaluation of the RGEs, the Yukawa cou-
plings at the electroweak scale chosen to be the Z boson
mass MZ = 91.2 GeV, have to be fitted with the physical
observables which are the top, bottom and tau masses using
the relations in Eq. (18). The following input values of the
MS running fermion masses in the SM [65,81,82] (we again
ignore here the related experimental uncertainties) will be
used

[mt (MZ ),mb(MZ ),mτ (MZ )] = [168.3, 2.87, 1.73] GeV.

(58)

We convert these inputs into the corresponding masses in
the 2HDM by using the appropriate RGEs in the evolution
from the scale of the fermion masses to the scale MZ . With
the value of tan β and the fermion masses at the electroweak
scale MZ , one can obtain the Yukawa couplings Yt,b,τ (MZ )

in the 2HDM, which are then evaluated from MZ to MI by
the Mathematica program SARAH [76] similar to what we
did in the case of the evolution of the gauge couplings in
Sect. 3.4.

As was discussed in Sect. 2, after complexifying the 10H
field by introducing an extra U(1)PQ symmetry, we can sep-
arate the up- and down-type Higgs component of the bi-
doublet field �10 in our intermediate-scale left-right sym-
metric model. As a result, we will have a few more free
parameters, which are the vevs vu10 and vd10 instead of a sin-
gle vev v10 in Ref. [36], and also the relative phases between
them, for fitting all the experimental inputs. Counting on the
freedom of modifying the scales MI and MU by appropriate
threshold corrections when enforcing gauge coupling uni-
fication, it turns out that within some corners of the huge
possible parameter space, we will always be capable of find-
ing solutions for Yukawa coupling unification, unless there
are additional constraints from the scalar potential. One such
example is the constraints from FCNCs when matching the
intermediate-scale left-right model to the low-energy 2HDM,
which will be discussed shortly after this subsection.

In the 2HDM, when electroweak symmetry breaking is
achieved, the SU(2)L gauge bosons WL will acquire masses
from the vevs of both Higgs doublets. This implies a relation
between tan β and the SM vev given by v2

u + v2
d = v2

SM ≈
(246 GeV)2 at the scale MZ . Similarly, in the intermediate
left-right model, the electroweak symmetry was broken by
the vevs of bi-doublets which then gives the following rela-
tion

(
vu10

)2 +
(
vd10

)2 + (vu126

)2 +
(
vd126

)2 = v2
u + v2

d = v2
SM.

(59)

In the absence of knowledge of technical details about the
intermediate-scale scalar potential, this is the only constraint
that we would have for constraining the parameter space.

With the above equation, we can eliminate one free vev.
Furthermore, with the matching conditions and the Yukawa
coupling conditions defined in Eqs. (46) and (52), we can
eliminate one free 422-Yukawa coupling. Note that all the
other Yukawa couplings and vevs in the 2HDM can be com-
puted from the sole parameter tan β by the masses of the
top and bottom quarks and the tau lepton that are experi-
mentally given. As a result, we have tan β, one 422-Yukawa
coupling and three vevs, in total five free parameters, when
solving the three Eq. (56).11 We can thus numerically scan
for some definite values of the two free parameters, tan β and
YU which is the free Yukawa coupling at the GUT scale, to
get the numerical solutions of these matching conditions for
obtaining Yukawa unification.

Therefore, differently from the case discussed in Ref. [36]
where in addition to the different matching condition at MU ,
the parameter space is very constrained because of the fact
that the field 10H is real. We conclude that the model with a
complexified 10H field is more general and has a much larger
parameter space, thus allowing for Yukawa unification that
is not restricted to high values of tan β anymore as found in
Ref. [36].

Because of the largely allowed parameter spaces, we show
in Fig. 3 only two particular examples of the sets of parame-
ters needed to achieve Yukawa coupling unification: one for
tan β = 30 (in the top panels) and the other for tan β = 65 (in
the bottom panels) when Y 422

126 (MU ) = 1, where the GUT-
scale matching conditions motivated from E6 in Eqs. (52)
and (53) have been applied to numerically solve the RGEs of
Yukawa couplings from MZ to MU . In Table 4, we explicitly
list the important free parameters for Yukawa unification.

11 Rigorously speaking, we should take into account the effects from
the runnings of vevs for vu and vd when solving the matching conditions
in Eq. (56) at the intermediate scale, which makes about 10% deviation
from their electroweak-scale values after running to MI by their RGEs.

123



Eur. Phys. J. C (2023) 83 :529 Page 17 of 25 529

Fig. 3 The runnings of Yukawa couplings in the 422 breaking chains
of our non-SUSY SO(10) model including the threshold corrections
of gauge couplings, where the E6 factor in Eq. (47) has been used to

define the Yukawa unification at the GUT scale. Because of the large
parameter spaces allowed, we only show here two particular examples
when tan β = 30 (in the top) and tan β = 65 (in the bottom)

Table 4 The set of third generation fermion Yukawa couplings at the
scales MZ , MI and MU , and the relevant vevs at the electroweak and
intermediate mass scales at the two-loop level that lead to both gauge

coupling and Yukawa coupling unification in our non-SUSY SO(10)
model with intermediate 422 breaking

Scale MZ MI MU MI

tan β Yt Yb Yτ Y 422
10 Y 422

126 Y 422
R Y 422

10 Y 422
126 vu10 vd10 vu126 vd126

30 0.97 0.35 0.20 0.17 0.82 0.52 0.19 1.0 204.9 12.7 105.1 −0.33

65 0.97 1.19 0.64 0.17 0.82 0.52 0.19 1.0 194.3 16.0 118.2 0.09

4.4 Matching conditions with constraints from FCNCs

At the intermediate scale, the two bi-doublets (�10 and
�126) first split into four intermediate-scale Higgs doublets
(denoted as Hu/d,10 and Hu/d,126 in Eq. (48)), and then
two linear combinations of them become light forming the
two Higgs doublets (Hu and Hd ) of the low-energy 2HDM,
while the other two linear combinations acquire masses at
the intermediate-scale [59]. Without presenting the technical
details about the splitting of bi-doublets in the scalar sector
and to simplify our model, we adopt a simple parameteri-
zation to forbid the FCNCs for the four intermediate-scale

Higgs doublets in Eq. (48) in the mass eigenstates assuming
no complex phases involved as

(
Hu

Hheavy
u

)
=
(

cos θU sin θU
− sin θU cos θU

)(
Hu,10

Hu,126

)
(

Hd

Hheavy
d

)
=
(

cos θD sin θD
− sin θD cos θD

)(
Hd,10

Hd,126

)
, (60)

where the Hu and Hd are the admixtures of two scalar dou-
blets coupling only to the isospin up/down fermionic sec-
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tor,12 which will be identified as the two Higgs fields in
low-energy 2HDM, and Hheavy

u and Hheavy
d are the doublets

acquiring intermediate-scale masses via the interactions like
tr(�2�2

R). Indeed, this assumption implies that the up/down-
type Higgs doublet consists of the up/down components of
the two Higgs bidoublets (�10 and �126) at MI , which can
be seen as the definition of the mixing angle θU/D

cos θU=vu10

vu
, sin θU=vu126

vu
, cos θD=vd10

vd
, sin θD=vd126

vd
.

(61)

The above parameterization includes the constraints from
FCNCs when matching the intermediate-scale left-right
model to the low-energy 2HDM, so equivalently, we can
express the matching conditions for Yukawa couplings at
MI derived in Eq. (56) by the mixing angles θU/D as

Yt (MI ) = cos θUY
422
10 (MI ) + 1

4
sin θUY

422
126 (MI ), (62)

Yb(MI ) = cos θDY
422
10 (MI ) + 1

4
sin θDY

422
126 (MI ), (63)

Yτ (MI ) = cos θDY
422
10 (MI ) − 3

4
sin θDY

422
126 (MI ). (64)

Because above the intermediate scale the bottom quark
will couple exactly the same way to the Higgs bi-doublets
as the tau lepton does, we can eliminate one free parameter
θD from the last two matching conditions for Yb(MI ) and
Yτ (MI ), and get a relation for the Yukawa couplings at MI :

(
Y 422

10 (MI )
)2 =

(
Y 422

126 (MI )
)2

(3Yb(MI ) + Yτ (MI ))
2

16
[(
Y 422

126 (MI )
)2 − (Yb(MI ) − Yτ (MI ))

2
] .

(65)

This equation defines a curve γ (MI ) in the parameter space
(Y 422

10 (MI ), Y 422
126 (MI )) as a function of tan β. Note that

Eq. (65) also implies the lower bound for Y 422
10 (MI ) by

Y 422
10 (MI ) >

3Yb(MI ) + Yτ (MI )

4
, (66)

while requiring Y 422
10 (MI ) <

√
4π implies the lower bound

of Y 422
126 (MI ) by

Y 422
126 (MI ) >

Yb(MI ) − Yτ (MI )√
1 − (3Yb(MI )+Yτ (MI ))

2

64π

. (67)

For a straightforward comparison, we show in Fig. 4 sev-
eral curves γ (MI ) depicted by Eq. (65) for certain values
of tan β and the intermediate scale MI taken from 108 to

12 More general combinations of the 4 scalars of the type

Hu = αu
1 Hu,10 + αu

2 Hu,126 + βu
1 H

∗
d,10 + βu

2 H
∗
d,126,

Hd = αd
1 Hd,10 + αd

2 Hd,126 + βd
1 H

∗
u,10 + βd

2 H
∗
u,126,

are highly constrained by FCNC [58,59].

Fig. 4 The curves γ (MI ) defined in Eq. (65) when tan β is taken to
be 60 (red), 50 (orange), 40 (green), 30 (cyan), 20 (blue), where the
parameter MI is chosen to be 1011 GeV (solid), 1010 GeV (dashed),
109 GeV (dotted), 108 GeV (dot-dashed)

1011 GeV, where the minimum of Y 422
10 (MI ) and Y 422

126 (MI )

are given by Eqs. (66) and (67) correspondingly.
If we assume all the vevs are positive, i.e. 0 < θD < π/2,

from Eqs. (60)–(61) we can separate the intermediate-scale
Yukawa couplings Y 422

10 (MI ) and Y 422
10 (MI ) as

Y 422
10 (MI ) cos θD = 1

4
(3Yb(MI ) + Yτ (MI )) ,

Y 422
126 (MI ) sin θD = Yb(MI ) − Yτ (MI ). (68)

It suggests that if the coupling Y 422
126 (MI ) had the same posi-

tive sign as Y 422
10 (MI ) in order to be able to be unified at MU ,

then at MI we must have Yb(MI ) − Yτ (MI ) > 0. Indeed, it
is only an artifact by assuming the positivity of vevs, as the
latter relation is nothing but
√

2(mb − mτ ) = (Yb − Yτ )vd = 4Y126v
d
126, (69)

from subtracting the SO(10) mass matrices in Eq. (50) if we
are matching the SO(10) directly to the 2HDM.

As was discussed in Sect. 3, the intermediate scale MI

and the unification scale MU are totally fixed by the input
parameters tan β and the threshold corrections, irrelevant
of the Yukawa couplings. However, once the intermediate-
scale Yukawa couplings are switched on, what we deduce
from Eq. (68) is that an upper bound on MI exists such that
Yb(MI ) > Yτ (MI ). As both Yb and Yτ are functions of tan β

only, we can thus derive a scale Mbτ as a function of tan β,
determined (within some accuracy) by the point at which the
curves for their RG running from the weak scale MZ upwards
intersect so that Yb(Mbτ ) = Yτ (Mbτ ). Then the assumption
of Eq. (68) translate to

MI ≤ Mbτ (assuming the positivity of vevs). (70)

This is exemplified in Fig. 5 where the scale Mbτ leading to
the unification of the bottom quark and tau lepton couplings
in 2HDM are shown as a function of the input value of tan β
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Fig. 5 The unification scale for the bottom quark and tau lepton (Mbτ )

in the 2HDM which is determined by the point at which the curves for
their RG running from the weak scale MZ upwards intersect

at the low scale. This scale increases with increasing values
of tan β and, in order to have reasonably high values of MI >

1010 GeV, needs rather large tan β values,13 tan β > 55.
The parameter θU for determining the top Yukawa cou-

pling in the 2HDM, on the other hand, cannot be eliminated
without further assumptions. Thus, in practice, we treat it as a
free parameter that should fit the mass of the top quark. Again
by assuming the positivity of vevs, from Eq. (62) we can esti-
mate that the top Yukawa coupling in the 2HDM should lie
in the region of

Min

[
Y 422

10 (MI ),
Y 422

126 (MI )

4

]
≤ Yt (MI )

≤
√√√√(Y 422

10 (MI )
)2 +

(
Y 422

126 (MI )

4

)2

, (71)

which, when combined with Eqs. (66) and (67), gives

Yt (MI ) > Min

[
3Yb(MI ) + Yτ (MI )

4

Yb(MI ) − Yτ (MI )

4
√

1 − (3Yb(MI )+Yτ (MI ))
2

64π

⎤
⎦

= Yb(MI ) − Yτ (MI )

4
√

1 − (3Yb(MI )+Yτ (MI ))
2

64π

. (72)

This criterion thus helps us check easily whether a parameter
θU exists for fitting the mass of the top quark.

13 Note that we cannot have much higher values of tan β, i.e. tan β < 65
in general, to avoid the bottom quark Yukawa couplings running into a
non-perturbative regime at high energy scales.

Fig. 6 The curves γ (MU ) obtained from numerically evaluating the
curves γ (MI ) from MI to MU by the RGEs of 422 breaking chain,
where the scales MI and MU are determined by enforcing the gauge
unification with randomly taking threshold corrections for ηi =
ln(Mi/μ) ∈ [−1, 1]. The uncertainties of random threshold correction
thus generate the uncertainties of these curves γ (MU ), which are plot-
ted for the parameter tan β corresponding to 60 (dark red), 50 (orange),
40 (green), 30 (cyan), and 20 (blue). The red line �(MU ) corresponds to
the condition of Yukawa unification motivated by E6 unification given
in Eq. (53). The intersections of �(MU ) and γ (MU ) thus define the
solutions for Yukawa unification motivated from E6

4.5 Numerical results for Yukawa unification

In principle, with the RGEs obtained for the 422 breaking
chain of our SO(10) model, we can run all the 422-Yukawa
couplings on the curves γ (MI ) from MI to MU to get a new
curve γ (MU ). The intersections of the curve γ (MU ) with
the line �(MU ) defined in Eq. (53) at the GUT scale MU thus
define the solutions admitting the Yukawa unification in the
422 breaking chain.

When evaluating the curve γ (MI ) to the GUT scale, the
exact values of MI and MU will be determined by numerical
solving the RGEs to ensure the unification of gauge cou-
plings as done in Sect. 3.4. The randomly-taken threshold
corrections would thus bring some uncertainties in deter-
mining the exact values of the two scales MI and MU which
eventually affect the curves γ (MI ) and γ (MU ). However, as
can be seen from the analytical results in Fig. 4, the curves
γ (MI ) almost remain intact when varying the scales MI ,
suggesting that the threshold corrections of gauge couplings
only make a tiny difference in determining the curves γ (MI )

and similarly to γ (MU ), contrary to what happens in gauge
coupling unification, i.e. Fig. 1. We can thus safely choose
some random-sampling threshold corrections when visual-
izing the curves γ (MU ) as shown in Fig. 6 below, where
for each tan β we explicitly show the uncertainty regions
allowed by varying the parameters of threshold corrections
from ηi = ln(Mi/μ) ∈ [−1, 1].

When considering a different scenario of Yukawa unifi-
cation for the 422 breaking chains of the non-SUSY SO(10)
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Fig. 7 Values of the intermediate scale MI and tan β consistent with
gauge and Yukawa unification (the green region), using the E6 factor in
our non-SUSY SO(10) model

models, one can merely change the slope of the line �(MU )

by defining the ratios of Y10 and Y126 in Eq. (46), while the
curves γ (MU ) remain the same. To be compared with the
E6 case, we also show the condition of Yukawa unification
for the ratio C = c10/c126 = 1, which is presented by the
dashed red line in Fig. 6.

As a consistency check, we must combine all the condi-
tions that we derive to constrain the parameter space, includ-
ing the proton decay bound of Eq. (44), the GUT-scale match-
ing condition in Eqs. (52) and (53), the lower bounds of the
Yukawa couplings in Eqs. (66) and (67), and the perturba-
tive bound when requiring that all Yukawa couplings must
be smaller than

√
4π at all energy scales.

One then immediately finds that these constraints also
influence the intermediate scale MI , especially through
Eq. (70). Thus, the unification of third generation Yukawa
couplings also has a repercussion on gauge coupling unifica-
tion. This refines the naive statement that we initially made
in Sect. 3, namely that the contributions of the Yukawa cou-
plings hardly affect the RGEs of the gauge couplings and,
hence, their unification.

Including all the constraints, and enforcing the unification
of the Yukawa couplings with the E6 ratio, one can visualize
the numerical solutions in the 422 breaking chain of our non-
SUSY SO(10) model in Fig. 7. It shows, in green, the param-
eter region in which both gauge and Yukawa coupling unifi-
cation can be achieved in the plane [tan β, log(MI /GeV)] as
tan β is the most important parameter in determining uni-
fication in the two cases. As can be seen, for each tan β

value, there can be multiple solutions depending on the exact
threshold corrections resulting in the different intermediate
scale MI and at a later stage, the unification scale MU . Thus,
after considering the constraints of FCNCs, in addition to all
the other constraints, the parameter tan β is again very con-
strained in this 422 intermediate breaking model and only

relatively lower values (compared to those discussed in the
earlier analysis of Ref. [36]), tan β � 30 for MI � 1012 GeV,
are favored14

As a preliminary conclusion, the constraints from FCNCs
largely reduce the allowed parameter spaces for Yukawa cou-
pling unification motivated by E6 symmetry. This only favors
lower values of tan β in the 422 breaking chain for instance.
Thus, the 422 breaking chain of our non-SUSY minimal
SO(10) model is very constrained, with the only parame-
ter which can be varied being the value of the input tan β of
the low-energy 2HDM. This renders the model quite predic-
tive. The other nice feature is that Yukawa unification, with a
common coupling at the high scale being naturally of order
unity, implies that a condition at the high scale has an impact
on the low energy parameters such as tan β.

5 Conclusions

The unification of fundamental forces plays an extremely
important role in particle physics. A wide range of studies
have dealt with the unification of the three gauge couplings
of the SM either by sticking to the minimal SU(5) gauge
group and extending the SM particle spectrum, as is the case
in Supersymmetric theories, or keeping the SM particle con-
tent and extending the unifying gauge symmetry group. In
this last option, the SO(10) group has been the most widely
studied as it is the simplest one beyond the minimal SU(5)
group. It possibly leads to a left-right symmetry group and
it has a fundamental representation of dimension 16 which
could contain all SM fermions plus an additional Majorana
neutrino. If the mass of the latter particle is high enough,
O(1012 −1014) GeV, one could explain the pattern of masses
and mixing of the SM light neutrino species and address the
problem of the baryon asymmetry in the universe by invok-
ing a leptogenesis triggered by this additional heavy neutrino.
Unification is achieved by considering that this large mass
of the Majorana neutrinos is in fact due to the intermediate
scale of the breaking of SO(10) into the SM group via an
intermediate step, corresponding, for instance, to the Pati–
Salam or the minimal left-right symmetry groups. This is
achieved by including the threshold effects of the additional
Higgs and gauge bosons at this intermediate scale MI , which
then modify the renormalization group evolution of the cou-
pling constants and make them intersect at a single point, the
unification scale MU .

14 We should note that in this green region in which both gauge and
Yukawa unification occur, the vevs of the Higgs bi-doublets, for exam-
ple, vd126, are complex and are negative according to Eq. 70 and Fig. 5.
If we require the vevs to be positive, unification occurs only for lower
values of MI and higher values of tan β. The corresponding region will
not intersect with the green region.
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It is very tempting to extend the unification paradigm to
the case of the Yukawa couplings of fermions, in particular
those of the third generation which are heavy enough to allow
for a perturbative treatment at the low energy scale. This has
been attempted in an earlier analysis in Ref. [36] in both the
Pati–Salam and the minimal left-right intermediate schemes,
which showed that, ignoring constraints from flavor chang-
ing neutral currents, one can achieve the Yukawa unification
in the context of a low energy two-Higgs doublet model in
which the ratio of the two vevs is very high, tan β ≈ 60, and
reproduce the hierarchy of the fermion masses of the third
generation from the running of Yukawa couplings.

In this paper, we generalized our previous analysis made
in Ref. [36] to the case with a complex 10H field, where
a U(1)PQ global symmetry was introduced to forbid the
Yukawa couplings with the field 10∗

H, in order to relax
the parameter space in the previous over-constrained model
which also changes the RGEs of the gauge couplings. We then
derived the analytical approximate solutions of the RGEs
of gauge couplings enforced by unification at the two-loop
level. The procedure in our chosen non-SUSY SO(10) model
with an intermediate scale can also be applied for any break-
ing patterns of SO(10). The uncertainties of our approxi-
mation were also discussed, including the constraints from
proton decay experiments. All our approximate analytical
results have been compared with the numerical results given
in Tables 2 and 3, and a good agreement was found.

We have then discussed the possibility of unifying the
Yukawa couplings of third generation heavy fermions at the
high scale which, in the present context, implies a rela-
tion between the fermion couplings to the scalar represen-
tations 10 and 126. Specializing to the Pati–Salam interme-
diate SO(10) breaking chain, we have considered the partic-
ular case where the coupling is obtainable in an E6 model
where the previous two scalars are part of a single multiplet
and which leads to the relation Y10 = √

3/5 Y126. We con-
cluded that Yukawa unification is a very strong constraint
which, when imposing the absence of flavor changing neu-
tral currents at tree–level induced by the two light Higgs
doublet fields, is achieved only for tan β values that are not
too large. Our non-SUSY SO(10) model is thus very predic-
tive and can be testified by future electroweak-scale experi-
ments.

Our present exploratory analysis raises rather interesting
questions which require further attention and studies of the
subject. In particular, there are still some phenomenological
issues to be discussed within this model, such as the prob-
lem of the stability of the electroweak vacuum and the origin
of neutrino masses. Because our low-energy effective the-
ory is based on a 2HDM scenario, we must constrain our
scalar potential to enforce a stable vacuum that is bounded
from below as, for instance, discussed in Refs. [83–88]. We
expect the discussions held in these references to also apply

in our case as we are dealing with the same Type-II 2HDM
scenarios. On the other hand, if the neutrinos are to acquire
masses from a Type-I/II see-saw mechanism, the scale of
the right-handed neutrino mass, which is assumed to be of
the order of the intermediate scale MI , cannot be too small
as to avoid unnatural fine-tuning in the determination of the
light neutrino masses. These neutrino masses thus contribute
to setting another constraint on the intermediate scale. All
these aspects and others need further attention and we plan
to address them in future work.
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Appendix A: Lists of useful coefficients

A.1 β coefficients for different gauge groups and
representations

The one-loop and two-loop β coefficients ai and bi j , can be
calculated from Refs. [63,64] in the general case. We list the
values of the β coefficients for some particular gauge groups
GI with the considered scalar representations that are relevant
for our discussions and which are given in Table 5.
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Table 5 The coefficients ai and bi of the β functions of the RGEs of
the gauge couplings αi for the different breaking schemes that we are
considering

GI ai bi j

G321(SM)

⎛
⎜⎝

−7

− 19
6

41
10

⎞
⎟⎠

⎛
⎜⎝

−26 9
2

11
10

12 35
6

9
10

44
5

27
10

199
50

⎞
⎟⎠

G321(2HDM)

⎛
⎜⎝

−7

−3
21
5

⎞
⎟⎠

⎛
⎜⎝

−26 9
2

11
10

12 8 6
5

44
5

18
5

104
25

⎞
⎟⎠

G422

⎛
⎜⎝

− 7
3

2
28
3

⎞
⎟⎠

⎛
⎜⎝

2435
6

105
2

249
2

525
3 73 48

1245
2 48 835

3

⎞
⎟⎠

G422 × D

⎛
⎜⎝

2
3

28
3

28
3

⎞
⎟⎠

⎛
⎜⎝

3551
6

249
2

249
2

1245
2

835
3 48

1245
2 48 835

3

⎞
⎟⎠

G3221

⎛
⎜⎜⎜⎝

−7

− 8
3

−2
11
2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−26 9
2

9
2

1
2

12 37
3 6 3

2

12 6 31 27
2

4 9
2

81
2

61
2

⎞
⎟⎟⎟⎟⎠

G3221 × D

⎛
⎜⎜⎜⎝

−7

− 4
3

− 4
3

7

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−26 9
2

9
2

1
2

12 149
3 6 27

2

12 6 149
3

27
2

4 81
2

81
2

115
2

⎞
⎟⎟⎟⎟⎠

A.2 The two-loop θGi coefficients in our approximations

At two loop level, the solutions of the two-loop RGEs of
gauge couplings takes the general implicit form of Eq. (20):

α−1
i,G(μ) = α−1

i,G(μ0) − aGi
2π

ln
μ

μ0
+ γ G

i + �G
i,Y , (A.1)

where the two-loop contributions are functions of gauge cou-
plings α−1

j,G(μ) read

γ G
i = − 1

4π

∑
j

bGi j
aGj

ln
α j,G(μ)

α j,G(μ0)
. (A.2)

This two-loop factor can be approximated by expanding
the variables α−1

j,G(μ) using the one-loop RGEs [62]:

γ G
i ≈ − 1

4π

∑
j

bGi j
aGj

ln
α−1
j,G(μ0)

α−1
j,G(μ0) − aGj t

= − 1

4π

∑
j

bGi j
aGj

ln
(

1 + aGj t α j,G(μ)
)

, (A.3)

where we define t = 1
2π

ln μ
μ0

.
In Grand Unified Theories, all the gauge couplings inter-

sect at the unification scale MU for the value of αU , so we
can approximate the gauge couplings at an arbitrary high

scale μ to be the universal gauge couplings αU at the GUT
scale. Now the two-loop factors γ G

i become independent of
the gauge couplings at the high scale so we can express them
by the θi coefficients as in Refs. [62,67]:

γ G
i ≈ − αU

8π2 θGi ln
μ

μ0
and θGi ≡

∑
j

bGi j
ln(1 + aGj αU t)

aGj αU t
.

(A.4)

In summary, the above equation shows the leading-order
corrections of the two-loop β coefficients bi j to the full two-
loop RGEs, which provides the possibility to obtain analyt-
ical solutions for the original implicit differential equations.
The coefficients θi are a combination of two-loop β coef-
ficients bGi j scaling by the one-loop β coefficients aGj times
universal coupling αU and the logarithmic scales t . We there-
fore define the following combination to simplify the com-
mon factor appearing in the coefficient θGi between the scales
Ma and Mb as:

�ab ≡ 1

2π
αU ln

(
Ma

Mb

)
, (A.5)

where Ma is the high scale to be identified as either the GUT
scale MU or the intermediate scale MI later, while Mb is
the reference low scale to be identified as either the interme-
diate scale MI or the Electroweak scale MZ . These scaling
factors will finally appear in the four constant terms CGI ,

�
G321
31 , �

G321
32 and �

GI
3I 2L I

from definition Eq. (28), and they
will be determined from solving Eqs. (30)–(32) in Sect. 3.2.
We summarize the explicit form of the corresponding coef-
ficients θGi for the symmetry groups and representations we
considered in Table 6.

A.3 Some constant coefficients for the SO(10) breaking
chains

We have shown in Sect. 3.1 that the two-loop RGEs with the
boundary conditions defined as the gauge coupling unifica-
tion in Eq. (25) and the matching conditions with an inter-
mediate scale, e.g. Eqs. (26) and (27), will have the solutions
in Eqs. (30)–(32). These solutions are only dependent on
the four constant coefficients CGI , �

G321
31 , �G321

32 and �
GI
3I 2L I

,

where �G
i j gives the difference between the β coefficients of

the gauge coupling α−1
i,G and those of α−1

j,G :

�G
i j = aGi − aGj

2π
+ θGi − θGj

8π2 αU . (A.6)

As explained in the main text, for each intermediate sym-
metry group GI it is enough to consider a particular combi-
nation of the �G

i j , which we call CGI . They can be proven
to have the following forms for the typical breaking chains
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Table 6 The coefficients θi for
the symmetry groups and
different breaking schemes that
we are considering in our study

GI θG
i

G321(SM)

⎛
⎜⎜⎝

− 44 ln(1−7�I Z )
35�I Z

− 81 ln((6−19�I Z )/6)
95�I Z

+ 199 ln((10+41�I Z )/10)
205�I Z

− 12 ln(1−7�I Z )
7�I Z

− 35 ln((6−19�I Z )/6)
19�I Z

+ 9 ln((10+41�I Z )/10)
41�I Z

26 ln(1−7�I Z )
7�I Z

− 27 ln((6−19�I Z )/6)
19�I Z

+ 11 ln((10+41�I Z )/10)
41�I Z

⎞
⎟⎟⎠

G321(2HDM)

⎛
⎜⎜⎝

− 44 ln(1−7�I Z )
35�I Z

− 6 ln(1−3�I Z )
5�I Z

+ 104 ln((5+21�I Z )/5)
105�I Z

− 12 ln(1−7�I Z )
7�I Z

− 8 ln(1−3�I Z )
3�I Z

+ 2 ln((5+21�I Z )/5)
7�I Z

26 ln(1−7�I Z )
7�I Z

− 3 ln(1−3�I Z )
2�I Z

+ 11 ln(5+21�I Z )/5)
42�I Z

⎞
⎟⎟⎠

G422

⎛
⎜⎜⎝

− 2435 ln(1−7�U I /3)
14�U I

+ 105 ln(1+2�U I )
4�U I

+ 747 ln(1+28�U I /3)
56�U I

− 75 ln(1−7�U I /3)
�U I

+ 73 ln(1+2�U I )
2�U I

+ 36 ln(1+28�U I /3)
7�U I

− 3735 ln(1−7�U I /3)
14�U I

+ 24 ln(1+2�U I )
�U I

+ 835 ln(1+28�U I /3)
28�U I

⎞
⎟⎟⎠

G422 × D

⎛
⎜⎜⎝

3551 ln(1+2�U I /3)
4�U I

+ 747 ln(1+28�U I /3)
28�U I

3735 ln(1+2�U I /3)
4�U I

+ 979 ln(1+28�U I /3)
28�U I

3735 ln(1+2�U I /3)
4�U I

+ 979 ln(1+28�U I /3)
28�U I

⎞
⎟⎟⎠

G3221

⎛
⎜⎜⎜⎜⎜⎝

− 27 ln(1−8�U I /3)
16�U I

− 9 ln(1−2�U I )
4�U I

+ 26 ln(1−7�U I )
7�U I

+ ln(1+11�U I /2)
11�U I

− 37 ln(1−8�U I /3)
8�U I

− 3 ln(1−2�U I )
�U I

− 12 ln(1−7�U I )
7�U I

+ 3 ln(1+11�U I /2)
11�U I

− 9 ln(1−8�U I /3)
4�U I

− 31 ln(1−2�U I )
2�U I

− 12 ln(1−7�U I )
7�U I

+ 27 ln(1+11�U I /2)
11�U I

− 27 ln(1−8�U I /3)
16�U I

− 81 ln(1−2�U I )
4�U I

− 4 ln(1−7�U I )
7�U I

+ 61 ln(1+11�U I /2)
11�U I

⎞
⎟⎟⎟⎟⎟⎠

G3221 × D

⎛
⎜⎜⎜⎜⎜⎝

− 27 ln(1−4�U I /3)
4�U I

+ 26 ln(1−7�U I )
7�U I

+ ln(1+7�U I )
14�U I

− 167 ln(1−4�U I /3)
4�U I

− 12 ln(1−7�U I )
7�U I

+ 27 ln(1+7�U I )
14�U I

− 167 ln(1−4�U I /3)
4�U I

− 12 ln(1−7�U I )
7�U I

+ 27 ln(1+7�U I )
14�U I

− 243 ln(1−4�U I /3)
4�U I

− 4 ln(1−7�U I )
7�U I

+ 115 ln(1+7�U I )
14�U I

⎞
⎟⎟⎟⎟⎟⎠

Table 7 The four constant coefficients CGI , �G321
31 , �G321

32 and �
GI
3I 2L I

,
and their corresponding derivatives appearing in the solutions of the
RGEs of SO(10) in Eqs. (30)–(32) for our considered breaking chains.

The numerical results presented here are those whenαU is taking to zero,
which is relevant for calculating the two-loop solutions in Eqs. (40) and
(41)

Breaking chains CGI �
G321
31 �

G321
32 �

GI
3I 2L I

∂CGI
∂αU

∂�
G321
31

∂αU

∂�
G321
32

∂αU

∂�
GI
3I 2L I

∂αU

G422 → G321(SM) 21
13 − 111

20π
− 23

12π
− 13

6π
266349
6760π

− 897
200π2 − 587

120π2
1721
48π2

G422 → G321(2HDM) 21
13 − 28

5π
− 2

π
− 13

6π
266349
6760π

− 231
50π2 − 26

5π2
1721
48π2

G3221 → G321(SM) 24
13 − 111

20π
− 23

12π
− 13

6π
− 669

3380π
− 897

200π2 − 587
120π2 − 145

24π2

G3221 → G321(2HDM) 24
13 − 28

5π
− 2

π
− 13

6π
− 669

3380π
− 231

50π2 − 26
5π2 − 145

24π2

GI = G422 and GI = G3221:

CG422 = 3�
G422
42R

/(5�
G422
42L

), CG3221

= (3�
G3221
32R

+ 2�
G3221
3B−L)/(5�

G3221
32L

), (A.7)

which are basically a combination of the difference between
theβ coefficients of the gauge couplings of intermediate sym-
metry group GI . At one-loop level, we can neglect all the
two loop coefficients θGi by setting αU = 0 in Eq. (A.6), so

the coefficients �G
i j are merely constants. At two-loop order,

because the coefficients �G
i j are a functions of the set of

variables (ln (MI /MZ ) , ln (MU/MI ) , αU ), Eqs. (30)–(32)

are implicit functions and were solved approximately using
Eqs. (40) and (41). For this approximation, we need to calcu-

late the derivatives ∂F
∂αU

∣∣∣
αU=0

and ∂G
∂αU

∣∣∣
αU=0

, which is equiv-

alent to finding
∂�G

i j
∂αU

∣∣∣∣
αU=0

. These derivatives are independent

of the scale factor t = 1
2π

ln μ
μ0

, so they are also constants
when αU = 0. We summarize the numerical values of these
coefficients for our considered breaking chains in the follow-
ing Table 7.
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Appendix B: Two-loop RGEs of the low-energy 2HDM

The RGEs for the three gauge couplings g1, g2, g3 are:

16π2 dg1

dt
= 21

5
g3

1 + g3
1

800π2

(
208g2

1 + 180g2
2 + 440g2

3

−85Y 2
t − 25Y 2

b − 75Y 2
τ

)
, (A.8)

16π2 dg2

dt
= −3g3

2 + g3
2

160π2

(
12g2

1 + 80g2
2 + 120g2

3

−15Y 2
t − 15Y 2

b − 5Y 2
τ

)
, (A.9)

16π2 dg3

dt
= −7g3

3 − g3
3

160π2

(
−11g2

1 − 45g2
2 + 260g2

3

+20Y 2
t + 20Y 2

b

)
, (A.10)

while those for the third generation Yukawa couplings
Yt ,Yb,Yτ , are:

16π2 dYt
dt

= Yt

(
3Y 2

t − 17g2
1

20
− 9g2

2

4
− 8g2

3

)

+1

2
Yt
(
Y 2
b + 3Y 2

t

)

+ 1

16π2

[
Y 2
b Yt

(
−9Y 2

b

4
− 3Y 2

τ

4
− 41g2

1

240
+ 33g2

2

16

+16g2
3

3
− 2λ3 + 2λ4

)

+Y 3
t

(
−27

4
Y 2
t + 223

80
g2

1 + 135

16
g2

2 + 16g2
3 − 12λ2

)

−1

4

(
Y 2
b Y

3
t + Y 4

b Yt − 6Y 5
t

)

+Yt

(
−27Y 4

t

4
−9

4
Y 2
b Y

2
t +1

8

(
17g2

1+45g2
2+160g2

3

)
Y 2
t

+1267g4
1

600
− 9

20
g2

2g
2
1 + 19

15
g2

3g
2
1

−21g4
2

4
− 108g4

3 + 9g2
2g

2
3 + 6λ2

2 + λ2
3 + λ2

4

+6λ2
5 + λ3λ4

)]
, (A.11)

16π2 dYb
dt

= Yb

(
3Y 2

b + Y 2
τ − 1

4
g2

1 − 9

4
g2

2 − 8g2
3

)

+1

2
Yb
(
Y 2
t +3Y 2

b

)

+ 1

16π2

[
YbY

2
t

(
−9Y 2

t

4
− 53g2

1

240
+ 33g2

2

16

+16g2
3

3
− 2λ3 + 2λ4

)

+Y 3
b

(
−27Y 2

b

4
−9Y 2

τ

4
+187g2

1

80
+135g2

2

16
+16g2

3−12λ1

)

−1

4

(
Y 3
b Y

2
t + YbY

4
t − 6Y 5

b

)

+Yb

(
−27Y 4

b

4
− 9Y 4

τ

4
− 9

4
Y 2
b Y

2
t + 5

8

(
g2

1 + 9g2
2

+32g2
3

)
Y 2
b + 15

8

(
g2

1 + g2
2

)
Y 2

τ − 113g4
1

600

−27

20
g2

2g
2
1 + 31

15
g2

3g
2
1 − 21g4

2

4
− 108g4

3 + 9g2
2g

2
3

+6λ2
1 + λ2

3 + λ2
4 + 6λ2

5 + λ3λ4

) ]
, (A.12)

16π2 dYτ

dt
= Yτ

(
3Y 2

b + Y 2
τ − 9

4
g2

1 − 9

4
g2

2

)
+ 3

2
Y 3

τ

+ 1

16π2

[
Y 3

τ

(
−27

4
Y 2
b −9

4
Y 2

τ +387

80
g2

1+135

16
g2

2−12λ1

)

+3Y 5
τ

2

+Yτ

(
−9Y 4

τ

4
− 27Y 4

b

4
− 9

4
Y 2
b Y

2
t + 5

8

(
g2

1 + 9g2
2

+32g2
3

)
Y 2
b + 15

8

(
g2

1 + g2
2

)
Y 2

τ

+1449g4
1

200
+ 27

20
g2

2g
2
1 − 21g4

2

4
+ 6λ2

1 + λ2
3 + λ2

4

+6λ2
5 + λ3λ4

) ]
. (A.13)
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