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Abstract The task of reconstructing particles from low-
level detector response data to predict the set of final state par-
ticles in collision events represents a set-to-set prediction task
requiring the use of multiple features and their correlations in
the input data. We deploy three separate set-to-set neural net-
work architectures to reconstruct particles in events contain-
ing a single jet in a fully-simulated calorimeter. Performance
is evaluated in terms of particle reconstruction quality, prop-
erties regression, and jet-level metrics. The results demon-
strate that such a high-dimensional end-to-end approach suc-
ceeds in surpassing basic parametric approaches in disen-
tangling individual neutral particles inside of jets and opti-
mizing the use of complementary detector information. In
particular, the performance comparison favors a novel archi-
tecture based on learning hypergraph structure, HGPflow,
which benefits from a physically-interpretable approach to
particle reconstruction.

1 Introduction

Testing theories in high energy physics rely on the ability
to reconstruct high energy particle collision events using
information recorded by particle detectors. General-purpose
detectors enable this primarily through two sources of infor-
mation: charged particle trajectories (tracks) measured in an
inner tracking region and energy deposited by particle show-
ers in a surrounding array of calorimeter cells.
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Currently, experiments at the CERN Large Hadron Col-
lider (LHC) employ parameterized “particle-flow” algo-
rithms, which combine track and calorimeter information in
a complementary way while avoiding double counting.

The performance of particle-flow algorithms is limited to
an extent by detector design specifications, such as the pre-
cision and size of the inner tracking system, the magnetic
field strength in the tracking volume, the granularity of the
calorimeters, and their energy resolution. However, a num-
ber of intrinsic factors complicate the task of particle recon-
struction in the LHC environment: the busy and often colli-
mated signatures resulting from proton collisions, the pres-
ence of multiple simultaneous scattering events (pileup), and
finally, the extensive and irregular array of sensitive elements
required for granularity and angular coverage.

There are two main approaches to particle-flow algo-
rithms. The approach used by the ATLAS collaboration [1]
involves subtracting the expected shower profile for each
track in an event from the calorimeter deposits to infer the
energy contributed by nearby neutral particles. The CMS col-
laboration, on the other hand, employs a global particle-flow
algorithm where final state particles of different types are
reconstructed simultaneously [2]. Global particle-flow algo-
rithms allow a high physics analysis flexibility and eliminate
the need for overlap-removal algorithms while better exploit-
ing the strengths of each sub-detector system.

In this paper, we approach the global particle-flow
paradigm using machine learning (ML) models operating
on graph data. As in other applications to particle physics,
ML brings the advantage of replacing parameterized cuts (for
example, in energy subtraction schemes) with fully differen-
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tiable decision boundaries in the full space of relevant fea-
tures in data. The expressiveness of ML models also opens
new possibilities, such as reconstructing individual neutral
particles inside of jets. Similarly, the choice to represent input
data as graphs is motivated by several advantages: graphs
more naturally capture the spatial correlations encoded in
irregular detector geometry and also are well-suited for the
sparsity and variable cardinality of the input set. Graph neural
networks (GNN) have therefore emerged as an architecture
of choice in recent particle reconstruction models, as they
have in other particle physics tasks [3].

In a collision event, the true set of particles T upstream to
the detector sensitive volume gives rise to a set of detector-
level hits D. So the input set comprising the detector record
is sampled from p(D|T ). Then global particle-flow recon-
struction is the set-to-set task where the input set of detector-
level hits D is transformed into a typically much smaller
output set R comprising NR predicted particles. The pre-
dictions of a successful reconstruction algorithm R(D) will
correctly model the cardinality NT of T and the properties
(class, momentum, and angular coordinates) of its members.
Several ML approaches have been proposed in the literature
to predict R(D).

In [4] the object condensation (OC) approach was pro-
posed, which clusters nodes or pixels in latent space to
form candidate objects, in our case, particles. Recently, OC
has been used to predict clusters in CMS data [5,6], where
the authors focused on reconstruction efficiency and energy
regression of showers from single particles embedded in
pileup. We implement OC with modifications as explained
in Sect. 3.4 for the purpose of establishing a performance
baseline for an ML-based particle reconstruction.

The reduction in size from input to output set is handled in
the MLPF [7] approach by assigning input nodes to particle
classes in the output set or else to a dedicated “neglect class”.
This approach was also recently successfully tested using
CMS data [8,9], where the model predictions were trained
to match the output candidates from a standard particle-flow
algorithm. For predicting true particles, MLPF is limited to
cases where one or more clusters can be associated to each
particle. It would therefore be required to define a fractional
target definition in order to efficiently reconstruct particles
that do not contribute a dominant fraction of energy in any
single cluster (for example, a significant percentage of low-
pT photons).

In this paper, we contribute to the exploration of GNN-
based particle reconstruction by proposing two new algo-
rithms and comparing their performance alongside a modi-
fied OC implementation as a baseline and a parameterized
particle flow algorithm. Rather than full proton-proton col-
lision events, we focus on events comprising a single jet,
which represent the typical domain over which inter-particle
correlations are expected to play a significant role in recon-

struction. Our dataset incorporates full Geant4 [10] treat-
ment of particle showers in a nearly-hermetic calorimeter
simulation [11]. An example of a simulated single jet event
is shown in Fig. 1. In the true particle-flow paradigm, our
approach is built around the idea of combining low-level
features from calorimeter showers with the complementary
information provided by tracks.

We find that a novel application of recurrent hypergraph
learning leads to the most accurate results and preserves a
high degree of interpretability. This is achieved thanks to
a physics-inspired approach which allows the network to
exploit the relationships between properties of the target par-
ticles and their energy deposits in the detector.

2 Dataset

2.1 Detector simulation

Unlike the full detector models used to simulate experiments
at the LHC, publicly-available codes such asDelphes [12] do
not model particle interactions with sufficient complexity to
enable training a network with the full calorimeter signature
available at real detectors. This motivated the development of
the Configurable Calorimeter simulatiOn for AI (COCOA)
package [11], which we used to generate the datasets in this
paper.

The geometric coverage of the COCOA calorimeter is split
into a barrel (0.0 < |η| < 1.5) and two identical endcaps
(1.5 < |η| < 3.0) regions. The endcap region is situated in
a hermetic way such that there is no void in the transition
region. In depth, the calorimeter has a total of six concentric
layers: the first three layers comprising an electromagnetic
calorimeter (ECAL) and the next three a hadronic calorimeter
(HCAL). The calorimeters have uniform segmentation in η

and φ enabling high spatial resolution, as listed in Table 1.
The geometric depth of the cells is modulated as 1 / cosh η

in order to achieve a constant effective interaction depth with
increasing η.

The inner region of COCOA is immersed in a uniform
axial magnetic field of 3.8T that extends until a radius of
150 cm, where four 1.1 cm layers of iron immediately pre-
cede the ECAL. The ECAL is modeled as a homogeneous
calorimeter by mixing lead and liquid argon, correspond-
ing to ATLAS calorimeter materials, in volume proportion
1.2:4.6 leading to a radiation length of X0 = 2.5 cm. For the
HCAL, iron is used as the absorber material, and polyvinyl
toluene plastic material as the scintillating active material.
These are mixed with a volume proportion 1.1:1.0, yielding
a nuclear interaction length of λint = 26.6 cm. The simu-
lated energy deposits in each layer are smeared to reproduce
the expected sampling energy resolution. For our dataset, the
hadronic sampling term is 10%. The effect of pileup and elec-
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Fig. 1 A depiction of a single-jet event from the test dataset in both
the COCOA calorimeter layers (left) and as an input graph in η−φ

space (right). On the left, the actual geometry of the calorimeter cells
is shown, while on the right, they are represented by spheres with sizes
proportional to their energy divided by noise threshold (up to a maxi-

mum value). Lines represent tracks and their projected locations in η

and φ in each calorimeter layer. Connections between calorimeter cells
are the edges formed during graph construction (inter-layer edges and
track-cell edges are not shown). The markers at the bottom right indicate
the η−φ coordinates of the truth particles

Table 1 Characteristics of the six calorimeter layers: depths in radia-
tion length (X0) and nuclear interaction length (λint ), granularity, and
standard deviations of the simulated noise distributions

Layer Depth Granularity (η × φ) Noise [MeV]

ECAL1 4X0 256 × 256 13

ECAL2 16X0 256 × 256 34

ECAL3 2X0 128 × 128 41

HCAL1 1.5λint 64 × 64 75

HCAL2 4.1λint 64 × 64 50

HCAL3 1.8λint 32 × 32 25

tronic noise is mimicked using normal distributions centered
at zero with widths varying according to the layer. The choice
of material and smearing parameters is tuned to reproduce
the ATLAS calorimeter system’s single-particle response.

The effect of tracking is emulated by smearing truth
charged particles with a resolution σ(p)

p = a × p with

a = 10−5/GeV. The smearing of the track direction is
neglected as it is expected to have a subdominant effect in
our problem of interest.

Charged particles produced from hadrons decaying-in-
flight above a transverse radius R > 75 mm (250 mm) in

the barrel (endcap) have no tracks associated to them. To
focus on the reconstruction of particles as they appear at the
calorimeter, the dataset simulates photon conversions only
at the stage of the iron layer prior to the calorimeters, while
material interactions within the tracker are emulated solely
by the track q/p smearing.

2.2 Dataset generation

Event generation, followed by parton shower and hadroniza-
tion is performed with Pythia8 [13] with a single initial
state quark or gluon particle. The parton initial energy is
sampled in the range 10–200 GeV, and angular coordinates
are distributed uniformly in the range η ∈ [−2.5, 2.5], φ ∈
[−π, π ]. Final state particles are interfaced with Geant4 to
simulate their interaction with material, both showering in the
calorimeter and scattering and e.g. photon conversions in the
iron layer preceding it. Additional pileup collisions were not
simulated. The targets of the machine learning algorithms are
final state stable particles with transverse momentum above
1 GeV, which reach the calorimeter.

In each event, a standard clustering algorithm is used to
group calorimeter cells into “topoclusters” based on their
proximity and deposited energy, following the algorithm
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described in [14] with minor modifications. First, an energy
over noise ratio of ( E

σ
) > 4.6 is used to identify cluster

seeds. For each seed, a two-stage search is performed in its
vicinity to group neighboring cells with nonzero energy. The
first search collects neighboring cells with an energy-to-noise
threshold ratio above 2, and the second search further extends
the clusters with cells that have energy above 0. Finally, the
algorithm applies a set of rules to merge topoclusters sharing
seed cells and split topoclusters formed by particles in close
proximity.

A record is kept of contributing particles and their energy
contribution to each cell. Electronic noise is simulated in the
calorimeter cells at realistic levels and dominates a fraction of
the clustered cell. A small fraction of topoclusters, therefore,
consist purely of cells where noise was the dominant con-
tributor. One or more such topoclusters are present in 23%
of the training events.

In summary, the data used for ML comprise the following
object collections: cells which belong to a topocluster, all
tracks that reached the calorimeter, and the set of particles
which entered the calorimeter. An identical configuration is
used to generate the dataset of 50,000 events for training
and the independent dataset of 30,000 events for testing. In
addition, a “gluon jet” dataset containing 30,000 events is
generated by replacing the single incident quark by a gluon
with the same initial energy and angular distributions. The
quark and gluon jet datasets are provided in [15]. The results
obtained with this gluon jet sample are discussed in Sect. 4.5.
Figure 2 summarizes the number of various entities stored in
both the single jet and gluon jet test datasets.

2.3 Fiducial particle definitions for reconstruction targets

In a collision event, not all particles produced can be recon-
structed in the detector. When defining target truth particles
it is important to account only for those that can be detected,
i.e. those that are within the detector acceptance and have
sufficiently high transverse momentum to be reconstructed.
Beyond these simple criteria, particles produced in the colli-
sion can later decay or interact with the detector and convert,
radiate or interact and produce other particles. The specific
definition of the particles that are targets for the reconstruc-
tion algorithm, referred to as fiducial particles, is important to
remove ambiguities during training and in assessing the per-
formance of reconstruction. To qualify as fiducial particles,
truth stable particles must have the following properties:

– pT > 1 GeV
– be produced before the first calorimeter layer
– release a nonzero amount of energy in the calorimeter.

Additional consideration would be needed to achieve a
more realistic environment where bremsstrahlung, pair pro-

Fig. 2 Composition of the quark and gluon test samples in terms of
the cardinality of different sets of entities contained. The mean value in
each case is written in parentheses while the range and quartiles of the
distributions over events are shown in the box plot

duction, and the presence of soft particles in general might
result in highly collimated topologies, above the spatial
reconstruction capabilities of the detector. In this work, the
absence of pileup and the absence of material in the inner
tracking region justify the use of the three fiducial criteria
described above.

2.4 Input graph

We build a fixed heterogeneous graph out of each event
by connecting calorimeter cells and tracks based on their
proximity. Each cell is connected to the k nearest cells
in the same calorimeter layer, where k = 8 in the ECAL
and k = 6 in the HCAL. Additionally, each cell is con-
nected to the single nearest cell in its immediately adjacent
layer(s). A cell in layer l can only receive incoming edges
from other cells if they are separated in ΔR by less than
{dc−c

max }l = {0.05, 0.07, 0.14, 0.30, 0.30, 0.60} for the six
calorimeter layers. A set of indices and weights is assigned
per cell listing the true particles which contributed and their
relative contribution to the total cell energy. An index of −1
is given to energy contributions from noise.

Tracks are likewise connected to cells based on closest
separation in ΔR between the cell and the projected η−φ

coordinate of the track in the corresponding calorimeter layer.
A track is connected to a maximum number of k = 4 cells in
each ECAL layer and k = 3 cells in each HCAL layer. For
track-cell edges, a larger maximum ΔR is allowed: {dt−c

max}l =
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Fig. 3 Comparison of the different ways in which the three ML reconstruction algorithms map the input set of nodes in the form of a graph to the
output set of predicted particles, to be compared with the set of truth particles. Colors indicate distinct particles and the nodes for which they are
the dominant contributor

{0.15, 0.15, 0.40, 1.10, 1.10, 2.00}. A depiction of the graph
connectivity for tracks and cells is shown in Fig. 1.

Topoclusters are represented in the input graph by a sep-
arate set of nodes with edges connecting each to the set of
cells belonging to the topocluster. The angular coordinates
of a topocluster are taken at its energy barycenter.

3 Particle reconstruction algorithms

3.1 Parameterized particle-flow algorithm

To compare the performance of the ML algorithms, we imple-
mented a traditional parameterised particle-flow algorithm
[1], which we refer to as PPflow. The algorithm aims at
subtracting the energy deposited in the calorimeter from
charged particles associated to tracks. To this end, shower
templates are derived from single π+ samples and param-
eterized as a function of the track pT and the layer where
the first nuclear interaction takes place. The energy sub-
traction is performed in concentric rings of radius equal to
a single cell pitch built from the extrapolated track posi-
tion in each calorimeter layer. The ring’s energy is progres-
sively subtracted from the topoclusters until the expected
total energy determined in the single π+ template is reached.
The remaining energy in the topoclusters after this subtrac-
tion is considered as originating from neutral particles. The

PPflow algorithm does not aim at reconstructing the sin-
gle particles composing the jets, but rather it is designed
to estimate the overall neutral energy component for each
topocluster.

3.2 Common description for the ML algorithms

We investigate three ML-based particle reconstruction mod-
els for the set-to-set prediction R(D): object condensation
(OC) as an existing ML baseline, transformer set prediction
network with slot attention (TSPN-SA), and a hypergraph
architecture (HGPflow). Descriptions of each algorithm is
given in Sects. 3.4, 3.5, and 3.6. Section 4 compares their
relative particle-level performance and a comparison to the
PPflow baseline for jet reconstruction.

There are commonalities to all three algorithms. Predicted
particles in each case are inferred from the node features (skip
connections) concatenated with a node representation vector
from a common encoder network, discussed in Sect. 3.3.
Tracks are treated similarly in each case: the charged particle
cardinality in an event is set by the number of tracks, and
the charged particles’ η and φ are determined directly from
the tracks without regression. While the OC algorithm takes
calorimeter cells as input nodes, the other two algorithms
use topoclusters instead, to reduce the dimensionality of the
input. Figure 3 illustrates the core differences between the
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ways each algorithm maps the set of detector-level nodes D
to the set of predicted particles R.

The choice to use calorimeter cells compared to using the
coarser topoclusters can be compared in terms of an injec-
tive condition: the degree to which the energy deposit in a
node can be mapped back to a single parent particle. In the
case of cells, although contributions from more than one par-
ent particle are present in general, the injective condition is
more valid than in the case of topoclusters. Since the injec-
tive condition is an assumption of the OC algorithm (i.e. in
the definition of the entries of Iki in Eq. 1), this motivates the
choice of cells as input nodes.

Having contributions to a node from more than one
parent particle can be learned in the TSPN-SA architec-
ture in an unsupervised way via node-particle attention.
The HGPflow architecture, on the other hand, is fully
equipped to disentangle multiple-particle contributions to a
node thanks to supervised learning of the incidence matrix,
discussed in Sect. 3.6. In both cases, computing gradi-
ents for predictions on edges becomes significantly more
expensive for cell-level inputs compared to topocluster-level
inputs, which was the main motivation for choosing the
latter.

The loss associated with predicted particle properties is
computed similarly in each algorithm. Particle class is trained
using a categorical cross-entropy term between the predicted
and the target class. A mean squared error loss term is used to
regress continuous properties ηi and pT,i . The φ prediction
is trained using 1 − cos(φpred − φtarg).

The total number of trainable parameters in the neural
network blocks of the OC, TSPN-SA, and HGPflow algo-
rithms is compared in Table 2 including the node encoding
network in each. An estimate of their computational per-
formance is also shown. For each of the three algorithms,
hyperparameter optimization scans have not been performed,
except on the threshold cuts used during inference for OC
and HGPflow. The code for the algorithms is provided in
[16].

3.3 Graph nodes encoding

Each event is represented as a heterogeneous graph com-
prising track, cell, and topocluster nodes connected by edges
as defined in Sect. 2.4. The embedding model described in
the following is shared among the different network archi-
tectures. Figure 4 illustrates the network components of the
encoding model: input feature vectors associated with track
and cell nodes are passed through separate networks to embed
them in a common representation space of dimension 100.
The cell features input to the embedding are (energy, posi-
tion, φ, η, layer). Similarly, the track input features are the

Table 2 Comparison of the three particle reconstruction algorithms
in terms of model size and computational resources. The number of
trainable parameters belonging to the node encoding model is shown
alongside the total. The time per event is averaged over 100 single jet
events evaluated sequentially, and the memory is estimated as the peak
memory over the same. Results are obtained on the same GPU (NVIDIA
TITAN RTX)

Algorithm # Parameters Speed* Memory
Total (Node enc.) [ms/event] [MiB/event]

OC 1.8M (0.2M) 249 1480

TSPN-SA 1.5M (0.2M) 465 1448

HGPflow 1.8M (0.2M) 257 1394

*Algorithms not optimized for execution time

track parameters (q/p, θ , φ, d0, z0)1 and the extrapolated η–
φ coordinates of the track at each calorimeter layer. The latter
are important features because a charged particle after exiting
the magnetic field travels in a straight line which no longer
points back to the origin (assuming no material interactions).
In addition to their hidden representation, these nodes are also
given an additional binary feature which flags whether they
originate from cells or tracks.

The node encodings are then updated to incorporate the
graph relational structure via 4 successive blocks of message
passing along edges. In each block, a dedicated network is
used with the following three inputs concatenated: current
node representation, sum of representations from neighbor-
ing nodes, and a graph-level global representation (the mean
of all current node representations). Following the message
passing blocks, topocluster representations are computed by
the energy-weighted mean of the cell representation vectors
belonging to the topocluster.

3.4 Modified object condensation (OC)

The OC algorithm was proposed in [4] for tasks of segment-
ing a set of input nodes into a set of target objects and predic-
tion of their properties, which it does simultaneously. In the
particle reconstruction case, the input set comprises tracks
and calorimeter cells and the output set of objects are the
progenitor particles (“parents”) with their classes and prop-
erties. The set-to-set procedure for OC is shown in the top
row of Fig. 3. Our implementation follows the original OC
approach with some modifications which are stated in the
following description.

The OC algorithm is based on clustering nodes accord-
ing to their parents in a learned few-dimensional space x .
The clustering is supervised by adding to the loss poten-
tials defined on this space: a repulsive potential V̂ (x) ∝
1 The track impact parameters d0 and z0 measure the distance of closest
approach of the track to the beam line in the transverse and longitudinal
directions, respectively.
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Fig. 4 The encoding model used to derive a learned node representation

max(2 − Δx, 0) between nodes that belong to different par-
ent particles, and an attractive one V̆ (x) ∝ Δx2 for nodes
having a common parent. The goal is that after training the
resulting clusters of nodes will correspond to the set of parent
particles.

However, calculating the sum of N 2 pairwise potential
terms during training becomes expensive for problems of
even moderate N . This is addressed by designating a sin-
gle representative node for each parent particle, called a
condensation point, to impose the potentials on all other
nodes during training. A separate network is trained to pre-
dict a score, β ∈ [0, 1], with a target value of 1 for con-
densation points and 0 otherwise. An increasing function
q(β) = arctanh2β + qmin (with qmin a hyperparameter) is
used in analogy to charge in the loss term responsible for the
clustering potentials:

LV = 1

N

N∑

i=1

q(βi )

K∑

k=1

[
Iki V̆c,k(xi ) + (1 − Iki )V̂c,k(xi )

]

(1)

where Iki is an N × K matrix determining whether particle
k is the parent of node i . The matrix will be revisited in
Sect. 3.6.

For each node i , which is a cell, the properties loss is of
the same form as discussed in Sect. 3.2, where target class is
either photon, neutral hadron or charged particle. Similar to
LV above, the particle property loss is also weighted by q(β)

such that nodes with the highest β receive the most supervi-
sion during training. These nodes are ultimately selected for
the output set during inference by requiring their predicted
β > tβ and that they be separated in the clustering space by
Δx > td , where tβ and td are two threshold hyperparameters.

Compared to the original OC model, our implementation
has two modifications connected to the condensation score
β. The condensation points defined during training do not
have a physical meaning and are learned in an unsupervised
way. In our approach, we instead use the following physics-
oriented definition:

CPT
k =

{
track ∈ k, if k is charged particle

argmaxz(cells ∈ k), if k is neutral particle
(2)

where z is the energy over noise threshold ratio for each cell.
This definition removes the need to identify a representa-
tive node for charged particles, assuming a 1–1 mapping to
tracks in the event. For neutral particles, on the other hand,
the β prediction is fully supervised and can be interpreted as
the likelihood that a cell has maximal z in a given shower.
Since this cell also serves as an approximate location of the
shower center, the η and φ for neutral particles are regressed
via a learned offset to the cell η–φ coordinates. During infer-
ence, condensation points passing the tb and td thresholds
are further required to be classified as either photon or neu-
tral hadron, whereas cells classified as charged particles are
discarded (since this role is fulfilled by tracks).

A second modification compared to the original OC
approach is that instead of a ∼ (1 − β) regression-type loss
computed on condensation points only, we train the β predic-
tion using a binary cross-entropy loss evaluated for all nodes.
The reasoning behind a classification-type loss is to directly
penalize the network for predicting large β for nodes which
are not condensation points, i.e. false positives. In an abla-
tion study, each modification was seen to bring substantial
improvement at essentially no additional model complexity.

Besides the two modifications above, our OC implemen-
tation differs from that of [6] in a few regards. Firstly, they
propose an upgrade to the original OC algorithm where par-
ticles are represented in the clustering space not only by a
singular condensation point but by the β-weighted average
over a learned distance scale. The authors of [6] report that
these and other modifications lead to improved training sta-
bility and reduced noise, so we recognize the potential for
improving our implementation as well. Finally, we point out
that our model has significantly more parameters (Table 2),
with GravNet blocks [17] replaced by the node encoding
model described in Sect. 3.3. Our choice of network block
sizes has not been optimized for computational efficiency
and allocates a large proportion of its parameters to the node
prediction networks compared to the message-passing net-
works.
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Fig. 5 The TSPN-SA architecture. The cardinality of the set of output particles is predicted from the global representation, while their properties
are predicted from representation vectors resulting from successive slot attention blocks

3.5 Transformer set prediction network with slot attention
(TSPN-SA)

The Transformer Set Prediction Network (TSPN) was ini-
tially developed for the permutation-invariant encoding and
decoding of variable-size sets of feature vectors [18]. The
utility of this for set-to-set problems in particle physics is
clear: a model is needed that predicts an output set of enti-
ties (i.e. particles) based on an input set of different entities
(i.e. calorimeter clusters, tracks), where both sets typically
have different cardinality. The model is divided into two net-
works: the first for predicting neutral particles and the second
for predicting charged particles (discussed later).

As shown in the top part of Fig. 5, the first architecture
starts with a set encoder network whose output is used to pre-
dict the number of neutral particles, N pred This prediction is
trained using a categorical cross-entropy loss over 25 classes,
which is an upper bound on the number of neutral particles
per event. The cardinality prediction is used during test time.
During training, the truth cardinality is enumerated to form
a set of numbers that are passed through embedding layers
to instantiate the initial set of random vectors. These vec-
tors combined with the global representation vector function
as queries for a series of 3 slot-attention (SA) blocks [19].
The SA blocks are not part of the original TSPN proposal
but were found to be fundamental for performance in our
application (abbreviated TSPN-SA). Each block contains 3
iterations where the particle hidden representation is updated
using the attention-weighted representations of the topoclus-
ters and tracks in the event. Finally, the updated hidden repre-
sentations are inputs to two dedicated neural network blocks
aimed at predicting the kinematics (pT, η, φ) and the class
of the particle candidates.

The neutral particle properties loss function for the TSPN-
SA algorithm is defined as the sum of a categorical cross-
entropy term for class ti and a mean-squared error (MSE)

term for the continuous properties pi = {ηi , φi , pT,i } com-
puted for each particle candidate. The target particles are
defined by matching to the set of predicted particles using
the Hungarian assignment algorithm [20], with the loss itself
being the distance metric.

The second part of the TSPN-SA algorithm, for predicting
charged particles, makes explicit use of the prior knowledge
originating from track-particle objects. Each track is pro-
moted to a particle, such that the cardinality of the output set
is fixed by the number of tracks. Similar to the neutral archi-
tecture, SA blocks are used to update the hidden representa-
tion of the charged particle candidates. Unlike the model for
neutral particles, the only predicted quantity for charged par-
ticles is their transverse momentum in order to improve over
the track resolution. For charged particles, the track index is
used to match with the corresponding target particle. As in
the OC algorithm, the η and φ of the charged particles are
taken directly from their representative tracks. Finally, the
total loss for the TSPN-SA algorithm is the sum of neutral
particle cardinality loss, the neutral particle properties loss,
and the charged particle pT MSE loss. These loss terms are
minimized simultaneously during training.

3.6 HGPflow: particles as hyperedges

A hypergraph is a generalization of a graph where hyperedges
can each connect one, two, or multiple nodes (Fig. 6). While
connectivity in a graph of N nodes is described by an N × N
adjacency matrix, a hypergraph containing K hyperedges is
described by an incidence matrix I (N×K ). In the context of
particle reconstruction, calorimeter deposits and tracks can
be represented as nodes in a hypergraph, while each particle
is represented by a hyperedge connecting the set of nodes to
which it contributed. We proposeHGPflow: an algorithm that
treats particle reconstruction as a task of learning hyperedges

123



Eur. Phys. J. C (2023) 83 :596 Page 9 of 18 596

Fig. 6 The two stages of learning in the HGPflow algorithm. The
objective of the first stage is to predict the fractional entries in the energy-
weighted incidence matrix, where columns correspond to hyperedges
(i.e. particles). This is done by accumulating the loss over a sequence of

recursive updates. In the second stage, the incidence matrix is frozen and
the network minimizes losses for particle property predictions, defined
relative to proxy quantities

and their properties. There are two objectives in the training
of HGPflow:

1. predict the incidence matrix defining the hyperedges
2. predict the hyperedge (i.e. particle) properties.

The first objective is similar to the task of separating over-
lapping charged and neutral showers which was the focus
of [21]. In this first stage, the HGPflow network predicts
(N + 1) × K entries comprising a zero-padded incidence
matrix and an additional row of binary values that indicates
whether the particle corresponding to a given column exists
or not. Since the number of particles per event varies, the
number of columns K is set to an upper bound on the num-
ber of particles estimated from the training set (in our case
K = 30). To express a non-injective map from particles to
nodes, we define a target incidence matrix which has frac-
tional rather than binary-valued entries. The entry relating
node i to particle a is the following:

[I ]ia = Eia∑
particles b Eib

= Eia

Ei
(3)

where Eia is the amount of energy that particle a contributes
to the total energy Ei of node i . For nodes which are tracks,
incidence entries are simply 1, whereas for topoclusters they
compute the fraction of the topocluster’s energy that came
from a given particle. An example of target and predicted
incidence matrix entries are shown in Fig. 7 for one event.

Predicted rows in the incidence matrix are normalized
using Softmax (i.e. sum over all hyperedges for a given
node is 1) before being compared to the target via Kullback–
Leibler divergence loss.

L inc =
∑

a

KLi

(
I targ
ia , Softmaxi (I

pred
ia )

)
. (4)

The predicted entries of the indicator row are passed through
a sigmoid function and compared to the (binary) target entries

Fig. 7 Schematic representation of the truth and predicted incidence
matrix in HGPflow for one event. The left part of the diagram shows the
three truth particles in the event. One of them has a track (Tr) associated
to it. The three particles deposit their energy into four topoclusters (TC).
The links represent the fractional energy originated by a given particle
in a given topocluster or track. The right part of the diagram shows the
predicted values of the incidence matrix for each reconstructed particle

using a binary cross entropy loss function. Predicted columns
are rearranged using the Hungarian algorithm to minimize
the loss.

The incidence matrix prediction network is trained using
the recurrent strategy proposed by [22], described briefly
hereafter. The loss in Eq. 4 is calculated for a sequence of
16 refinement blocks each comprising an updated prediction
of the incidence matrix followed by an update of node rep-
resentation vectors V , and hyperedge representation vectors
E . The iteration t → t + 1 is performed with the following
three successive steps:

I t+1
ia = φI

(
vti , e

t
a, I

t
ia

)
(5)

V t+1 = φV

({
vti , ρE→V (i, t), v0

∣∣i = 1 . . . n
})

(6)

Et+1 = φE
({
eta, ρV→E (a, t)

∣∣a = 1 . . . k
})

(7)
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where ρE→V (i, t) = ∑
a I

t+1
ia eta and ρV→E (a, t) =∑

i I
t+1
ia vti are aggregations of node (v) and hyperedge (e)

representation vectors weighted by the updated incidence
matrix. The updates are performed at each step using the
same networks φI , φV , and φE , where the latter two net-
works are DeepSets models [23].

To reduce computational cost, not every iteration of
the backward pass is included in the gradient step. Two
sequences of 4 adjacent iterations are randomly selected out
of the 16 for which the incidence loss is computed and added
to the loss from the prediction at the end of the sequence.

The second training objective of the HGPflow network
(Fig. 6c) is to predict particle properties for each hyper-
edge. The corresponding loss function contains classifica-
tion and regression terms evaluated by matching predicted
and target particles using the Hungarian algorithm. Particles
corresponding to hyperedges where the predicted indicator
was below the threshold are matched to dummy targets and
weighted by zero in the loss. Classification between photons
and neutral hadrons is performed for hyperedges which do
not contain a track and are thus identified as neutral parti-
cles. The regression task benefits from a unique advantage
enabled by learning the incidence matrix (Eq. 3): particle
kinematics can be approximated as weighted sums and aver-
ages over the input features of the topoclusters contained in
the hyperedge. Proxy quantities (denoted ˆ ) for energy and
angular coordinates can be computed as:

Êa =
∑

nodes i

Ei Iia, {η̂a, φ̂a} =
∑

nodes i

{ηi , φi } Ĩia (8)

where a dual incidence matrix Ĩ , normalized over node
instead of particle indices, can be defined:

Ĩia = Eia∑
nodes j E ja

= Eia

Ea
= Ei · Iia∑

nodes j

(
E j · I ja

) . (9)

The property prediction networks in HGPflow are therefore
given the simpler objective of learning corrections to the
approximate values from Eq. 8. The loss terms used for the
property predictions follow the description in Sect. 3.2.

Therefore, neutral particle kinematics (pT, η, φ) are
regressed by predicting an offset to the proxy values in Eq. 8.
For charged particles, an offset is likewise predicted for the
pT measured from the associated track. The properties loss
is computed by matching predicted and target particles using
the Hungarian algorithm [20].

4 Performance of particle reconstruction in jets

One of the most challenging tasks of global particle flow
algorithms is the reconstruction of particles in dense environ-
ments, in particular jets. In this section, the performance of

the ML reconstruction algorithms will be assessed by quan-
tifying the similarity between the set of predicted and set of
target particles. The following four types of metrics are meant
to evaluate the cardinality, class, and properties predictions:

– Efficiency and fake rate
– Classification purity
– Particle angular and momentum resolution
– Jet-level quantities.

The efficiency and fake rate are defined as follows:

ε ≡ N (matched pred)

N (targ)
, f ≡ N (unmatched pred)

N (pred)
. (10)

The quality of the regression tasks is evaluated from dis-
tributions of their residuals, defined as (ytarg − ypred)/ytarg

for particle property y ∈ {pT, η, φ}.

4.1 Particle matching

Predicted and target particles are matched using the Hungar-
ian algorithm to find the pairings which minimize the distance
between their properties, defined by the following metric:

dmatch =
√

(ΔpT/ptruth
T )2 + ΔR2 (11)

where Δ denotes the difference between a predicted and tar-
get property, and ΔR2 = Δη2+Δφ2. Matching is performed
separately for neutral particles and charged particles since the
latter are distinguished by the presence of a track. The coeffi-
cients cpT and cΔR are set to 1 and 5 for neutral particles while
for charged, matching is based only on ΔR (i.e. cpT = 0).
Prioritizing spatial matching helps decouple reconstruction
efficiency from classification accuracy, which in particular
will dominate at low-pT because of the similarity of photon
and neutral hadron signatures.

In each event, when the cardinality of the predicted set
of particles is larger than that of the target, the non-matched
predictions are labeled as “fake” particles. Conversely, inef-
ficiency arises when not enough neutral or charged particles
were predicted in order to match every target.

4.2 Charged particle performance

Charged particles include electrons, muons, and charged
hadrons. In jets charged pions produced during hadroniza-
tion account for around 90% of all charged particles. Leptons
such as electrons and muons are present in less than 3% of
the jets. Electrons are produced from photon conversions and
hadrons decaying in flight while muons are mostly produced
by the latter mechanism. Given the large class imbalance
and the fact that no dedicated studies have been performed to
improve the classification of electrons inside jets, the three
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Fig. 8 Resolution of charged particle-flow candidates and tracks as a
function of the associated particle transverse momentum. At high pT
the particle-flow candidates show improved resolutions over the tracks

classes are grouped together and characterized as a single
class of charged particles.

Tracking efficiency presents an upper bound on the effi-
ciency of charged particle reconstruction (see Sect. 2.1).
Since fake tracks are not emulated in the data, charged par-
ticle fake rates are neglected in this study. In any case, the
rate of fake tracks at 1 GeV is typically at the percent level
for the ATLAS and CMS experiments, which is expected to
have a small impact.

In cases where the track belonging to a charged particle is
not reconstructed, the target particle is relabelled to avoid
confusing the network during training. Charged hadrons
without a track are relabelled as neutral hadrons, and elec-
trons without a track as photons. Photon pairs from neutral
pion decays prior to the calorimeter are treated as two distinct
target particles.

A key characteristic of charged particle reconstruction is
the resolution of pT with respect to the true value. It is well
known that at low transverse momentum tracks provide the
best momentum estimate over the calorimeter resolutions. An
opposite trend appears at high energies where the calorime-
ter systems provide the most accurate energy measurement.
Figure 8 shows the resolutions of charged particles recon-
structed with the three ML approaches and compared to the
track resolutions for charged particles with pT > 15 GeV.
Below this value, the particle pT regression is replaced with
simply the track pT since an improvement is not expected.
An increasing improvement at high pT is observed for all the
ML algorithms demonstrating that indeed the complementar-
ity between the calorimeter and tracking measurements has
been learned during training.

4.3 Photon and neutral hadron performance

The presence of photons inside jets is mainly due to decays
of neutral pions and to a lesser extent from bremsstrahlung

processes. Long-lived neutral hadrons on the other hand
trace back to the shower of the initial partons. Disentangling
these two components is not a trivial task and is detector-
dependent – for COCOA it is observed that 70% of neutral
hadrons below 5 GeV release all their energy in the ECAL
layers, making it difficult to distinguish them from photons.
This fraction steeply decreases with the energy of the ini-
tial hadrons to approach percent levels at around 20 GeV.
Neutral particle reconstruction is further complicated inside
the collimated environment because of the frequent over-
laps between neutral showers. For this reason, efficiency and
fake rate plots are computed by considering photon and neu-
tral hadron predictions inclusively, without requiring a match
between predicted and target class.

Efficiencies, fake rates, and class prediction accuracy for
photons and neutral hadrons are shown in Fig. 9. The effi-
ciency of reconstructing photons with pT > 2 GeV is
above 90% for HGPflow, rising to 98% for photons above
pT > 30 GeV. For TSPN-SA and OC, the efficiency for
photons reaches 95% and 90%, respectively. Neutral hadrons
above 5 GeV are reconstructed with efficiencies ranging from
76 to 86% for the three algorithms. Figure 9c shows that the
rate of producing unmatched photon predictions drops from
16% (30%) at a predicted pT of 2 GeV to 1.4% (11%) above
30 GeV for HGPflow (TSPN-SA). For neutral hadrons, the
fake rate (Fig. 9d) is a factor of 2–4 times larger across the full
pT range for HGPflow, and 1.6–2.8 times larger for TSPN-
SA.

For the TSPN-SA and HGPflow algorithms, reconstruct-
ing neutral particles at low-pT is challenging because a large
fraction of the target particles does not contribute a leading
amount of energy to any topocluster in the event (33% of
photons and 25% of neutral hadrons). In HGPflow, this is
compensated in a supervised manner by learning subdomi-
nant contributions to topoclusters as fractional entries in the
predicted incidence matrix. This limitation could be further
overcome by using cell-level input nodes such as for the OC
algorithm.

Efficiency and fake rate plots are complemented by study-
ing the probability of misclassification between photons and
neutral hadrons. In Fig. 9e and f, both HGPflow and TSPN-
SA algorithms exhibit high accuracy of classification for pre-
dictions matched to photons, and for neutral hadrons an accu-
racy that rises with pT: from 51 to 76% for HGPflow and from
16 to 63% for TSPN-SA. A lower accuracy is expected when
considering that due to the class imbalance between photons
and neutral hadrons of 5.8:1 (inclusive), a random classifier
would have an accuracy of roughly 15% for neutral hadrons.
Moreover, the class imbalance is pT-dependent, with the pro-
portion of photons dropping off faster than neutral hadrons.

The OC algorithm behaves similarly to the others for
reconstruction efficiency of neutral particles, albeit with
lower performance in most bins. For the fake rate, and in
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Fig. 9 Top: efficiency of matching predicted neutral particles to truth
photons (a) and neutral hadrons (b) in a jet as a function of the associ-
ated truth particle pT. Middle: fake rate, i.e. probability that predicted
photons (c) and neutral hadrons (d) are not matched to any truth neutral
particle, as a function of the predicted particle pT. Bottom: the prob-

ability that the predicted neutral particles which are matched to truth
photons (e) and neutral hadrons (f) are assigned the correct class. For
each curve, the misclassification probability is simply the difference of
the curve from 1
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Fig. 10 Distributions of relative residuals between predicted and true pT (a), η (b), and φ (c) of reconstructed neutral particles

particular, for photons, OC exhibits an increase with pT. The
classification accuracy for OC is also lower for photons and
shows a different trend in pT for neutral hadrons compared
to HGPflow and TSPN-SA. These differences are related to
the fact that in OC neutral particle predictions correspond
to a subset of calorimeter cells passing the selection defined
by the tb and td threshold cuts. This introduces a sensitivity
of the neutral particle cardinality to the number of cells per
particle, which grows as a function of particle pT. The trend
in fake rate appears to reflect this. Furthermore, towards high
pT a growing majority of cells belong to showers of charged
particles, which makes the classification task more challeng-
ing in the OC approach (which involves 3 classes, unlike
HGPflow and TSPN-SA). Introducing pT-dependent weights
on the β and x prediction tasks could help counter this
effect.

Finally, relative residuals are used to quantify the ability
to correctly predict the pT, η, and φ of the reconstructed neu-
tral particles, shown in Fig. 10a, b, and c, respectively. The
HGPflow algorithm shows the best performance at estimat-
ing accurately both angular variables and momentum. It is
interesting to note that the TSPN-SA algorithm has the worst
performance for the angular variables. This is related to the
usage of topoclusters in a less supervised way compared to
HGPflow, where it is known which topoclusters contributed
to the formation of a particle. The OC algorithm instead uses
the more granular calorimeter cells directly showing similar

performance to the HGPflow algorithm for angular regres-
sion.

The models also perform differently for neutral particle pT

regression, shown in Fig. 10a. The OC model has a tendency
to overestimate the neutral particle pT. A similar trend is less
pronounced in the TSPN-SA regression, while the distribu-
tions of predictions from HGPflow exhibit the least skew, in
addition to the smallest mean and variance of the three.

4.4 Jet-level performance

The ability to efficiently reconstruct jets and correctly predict
their properties is a priority for experiments at the LHC. Jet
performance depends on the overall efficiency, fake-rates and
kinematic regression of the constituent particles, therefore
being an important test for the ML reconstruction algorithms.

Following evaluation of the networks, jets are built using
the anti-kt algorithm [24] with a radius parameter of 0.4 and
a minimum number of 2 constituents. We define three sets of
jets with differing input constituents:

– Truth jets: jets built using the set of target particles
– ML jets: jets built using the sets of particles predicted by

the OC, TSPN-SA, and HGPflow algorithms
– PPflow jets: jets built using tracks and topoclusters with

the charged energy subtraction procedure of a parame-
terized particle-flow algorithm (see Sect. 3.1).
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Fig. 11 Jet-level performance metrics shown for the three algorithms and the PPflow reference in comparison to true jets. Angular residuals
between reconstructed and true jets (a and b), the number of jet-constituents in (c), and the calibrated pT relative residuals in (d)

The number of constituents is shown in Fig. 11c for each
algorithm and compared to that of the true jet. The ML algo-
rithms, by accounting for neutral particles in the jet, are able
to model this reasonably well. On the other hand, the PPflow
distribution overestimates the truth distribution as expected,
since its constituents are tracks and topoclusters rather than
particles (Fig. 12).

In order to further optimize the jet-pT and provide a more
quantitative figure of the jet resolutions, a simplistic calibra-
tion is applied. First jet pT residual distributions are com-
puted in different pT bins. For each, a dedicated scale factor
is computed. A functional fit is performed and the corre-
sponding scale factor is applied to reconstructed jets based
on their pT. This procedure is applied separately to each
reconstruction algorithm.

Relative residuals are shown in Fig. 11. As observed for
neutral particles, HGPflow shows the best performance at
the jet-level. In terms of jet angular observables, HGPflow
is comparable to the traditional PPflow approach while for
jet pT resolution it shows a 24% improvement relative to
PPflow. The TSPN-SA jet pT resolution is better than OC,
while for angular observables OC performs slightly better.

To help visualize the jet reconstruction task, Fig. 12 dis-
plays an event from the test dataset showing predictions from
the trained HGPflow algorithm. In this example, each of the
four neutral particles at truth level can be matched to a pre-
dicted particle with the correct class and an η–φ prediction
consistent within the cell granularity. The calorimeter panels
illustrate the tight arrangement of topoclusters used as input
nodes for the HGPflow prediction.

4.5 Performance on gluon jets

To study the ability of the particle reconstruction algorithms
to generalize beyond the training data to a new physics pro-
cess, we evaluate the trained models on the dataset of single
gluon jet events described in Sect. 2.2. The difference aris-
ing at the parton shower for gluon-initiated jets reflects itself
in the dataset feature distributions, for example, the larger
multiplicity of cells, tracks, and particles shown in Fig. 2.
Since the appropriate upper bound on the number of particles
was determined based on the training dataset, a single gluon
jet found to contain > 30 particles was excluded from the
dataset in order to evaluate HGPflow. The results for the three
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Fig. 12 Event display of a single jet event from the test dataset. In
the top left panel, the η−φ coordinates of truth particles with momen-
tum above 1 GeV are shown as circles along with the set of predicted
particles from the HGPflow algorithm shown as crosses. The set of par-
ticles and their pT at truth level are as follows: two photons in blue
(1.8, 3.0 GeV), a pair of neutral K 0

L mesons in grey (12.3, 22.3 GeV),
and two charged pions in red (2.2, 6.5 GeV). The circles of R = 0.4
represent anti-kt jets built from the truth (solid) and predicted (dashed)
particle sets that nearly overlap in η–φ and have pT agreement within
35%. In the top right panels, the truth and predicted particles are shown

overlaid on a zoomed region of the ECAL2 and HCAL2 layers. In the
bottom panels, the detector-level information serving as input to the
reconstruction algorithms is shown for each of the first two layers of
both ECAL and HCAL in the same η−φ plane. Cells that have the same
border color belong to the same topocluster. Green and blue fill is used
to indicate the energy of cells in the ECAL and HCAL layers, respec-
tively. The arrows describe the tracks for charged particles from the
interaction point with the arrowheads indicating the angular coordinate
extrapolated at the given layer
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Fig. 13 Distributions of the number of constituents per jet (a), and distributions of relative residuals between predicted and true pT (b) for the
three ML particle reconstruction algorithms evaluated on the sample of gluon jets

ML algorithms are shown along with the PPflow comparison
in Fig. 13. Overall, the algorithms demonstrate an ability to
generalize: the number of predicted constituents is shifted
slightly lower with respect to truth compared to the quark
jet case (Fig. 11c), while the jet relative pT residual distribu-
tions are comparable to Fig. 11d. The rank of the algorithms
in terms of performance remains the same as before, with
HGPflow again boasting narrower jet pT resolution than the
PPflow comparison.

5 Discussion

5.1 Perspective on the ML algorithms

Compared to the OC and TSPN-SA algorithms and the
PPflow benchmark, HGPflow shows the best performance
in terms of jet momentum resolution, which was not directly
a training objective. This traces back to superior modeling
of neutral particle momentum shown in Fig. 10a. Unlike the
other ML models, which must learn implicitly that a given
energy deposit in the calorimeter cannot be associated with
more than one parent particle, HGPflow benefits from being
structured around the concept of energy conservation. Suc-
cessfully predicting an incidence matrix defined via Eq. 3
and the hyperedge indicator row entails knowing the energy
contributions a given topocluster received from all particles
(Fig. 7). Furthermore, the normalization ensures that energy
attributed to a given particle candidate is not counted again in
assignments to other particles. Since both the hyperedge rep-
resentation and the proxy for neutral particle energy (Eq. 8)
are weighted by entries of the incidence matrix, the prop-
erty predictions which stem from these inputs inherit a bias
towards energy conservation.

The hypergraph approach allows common elements of
both the OC and TSPN-SA approaches to be handled in a

more clear formalism. In the OC potential loss (Eq. 1), a
binary-valued incidence matrix Iik functions as a lookup
table determining whether a node is repelled or attracted
to the representation of a particle (i.e. condensation point).
The clustering of nodes according to parent particle can
thus be thought of as an indirect way of learning Iik , lim-
ited by the extent to which the injective condition applies
(discussed in Sect. 3.2). Likewise, the TSPN-SA algorithm
is built around an attention matrix between particle candi-
dates k and nodes i from the input set which resembles an
incidence matrix, although it is normalized along columns
rather than rows. The attention weights also have a latent
rather than physical meaning and are learned in an unsuper-
vised way. On the other hand, HGPflow not only explicitly
predicts the incidence matrix, which is the key to unraveling
overlapping particle showers, but expresses it in the physical
basis of energy contributions with the advantage mentioned
previously.

We anticipate that the structure of HGPflow can be
extended in at least three ways. First, the input set gran-
ularity has been set without tuning to that of topoclusters
from a standard ATLAS-like algorithm. This granularity can
be increased to further enable the segmentation of overlap-
ping energy deposits from nearby particles. Second, in the
trainings for our results, the two objectives of incidence and
properties prediction have been carried out nearly indepen-
dently. However, a more powerful representation learning
scheme could lead to a model which learns these two objec-
tives in a synergistic way, allowing the incidence predic-
tion to be informed by the properties prediction and vice
versa. Finally, while Table 2 indicates an acceptable infer-
ence time of HGPflow, more optimization is needed to reduce
its training duration. This could be achieved by hyperpa-
rameter optimization in the recurrent training configura-
tion and by exploring alternatives to the Hungarian match-
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ing, which the authors of [22] identified as a computational
bottleneck.

Similarly, besides the modifications proposed in [5], we
suspect that the OC algorithm can be substantially improved
in future work. While the TSPN-SA and HGPflow algorithms
both have neural network layers for information exchange
following the node encoding (i.e. successive attention and
incidence weighted-updates), the node predictions of our OC
algorithm are likely limited by a comparatively narrow recep-
tive field. One way to increase the receptive field in OC is to
add additional message passing blocks in the node encoder
model, although a limited study of this option did not lead to
conclusive improvement. Another possibility is introducing
an attention mechanism. The distance between nodes i and
j in the latent clustering space entails a term ai j = xi · x j
with the form of attention, e.g. in the attractive potential,
V̆ ∝ Δx2 � −2ai j . Therefore the clustering mechanism in
OC seems a natural point to introduce transformer blocks
for enhanced information exchange, at the cost of computing
additional gradients for the set of edges.

5.2 Datasets for future work

Several opportunities emerge for future investigation on new
datasets. The performance reported in this work for R = 0.4
quark and gluon jets suggests the application to substructure
reconstruction in large-R jets from boosted boson decays.
The goal of studying particle reconstruction on a single jet
dataset was to focus on the local system of overlapping par-
ticle showers which represents the kernel of the problem at
the full-event level. For this reason, we envision that recon-
structing full events could proceed by mapping the same
trained model onto spatial partitions of the detector hits
D defined by topological and jet clustering algorithms, for
instance. Given an effective scheme to deal with potential
overlap, each partition could be treated as an approximately
isolated set of input nodes, graph edges, and attention or inci-
dence matrix weights. In this case the resource requirements
reported in Table 2 would scale linearly with the number of
partitions. Ignoring overlap, an upper bound on the number
of R = 0.4 partitions of a full event could be estimated as
2π · 6/0.4 � 102.

Studying the robustness of the models in the presence of
pileup will also be an important follow-up task (see [6] for
existing work in this direction). Likewise, the impact of inter-
actions with material upstream of the calorimeter needs to be
thoroughly addressed in a future dataset. In this case, elec-
tron pair production from early conversions and photons from
bremsstrahlung will require a thoughtful definition of target
particles to ensure that they can be feasibly distinguished
during training. For example, photon conversions could be
treated as a separate class, and electrons could be defined as

targets depending on the quality of their associated track (if
present at all).

6 Conclusions

In this paper, we applied ML-based reconstruction algo-
rithms to the dense environment of a jet. Single-jet datasets
were generated using a realistic calorimeter model to mimic
the complexity and input features of data from the LHC.
Particle-flow reconstruction is inherently a set-to-set task
suited for ML applications. Three ML algorithms – a modi-
fied version of Object Condensation, a set-transformer archi-
tecture with slot attention (TSPN-SA), and a novel hyper-
graph learning approach (HGPflow) – were compared by
their ability to reconstruct particles in the jet and jet-
level quantities using an input graph comprising tracks
and calorimeter clusters. In particular, the algorithms were
trained to reconstruct individual neutral particles in the dense
environment, a task going beyond the scope of traditional
particle flow algorithms.

For charged particles, the algorithms learned to exploit the
complementary information provided by calorimeter activity
to improve on the measured track momentum. The efficiency
of reconstructing photons and neutral hadrons reached 90%
and 80%, respectively, for pT > 10 GeV. The neutral particle
fake rates were more variable for each algorithm, with the
best performance being 10% and lower for pT > 10 GeV.

Jets formed from the predicted particles were compared to
those from the true particles and also a parameterized parti-
cle flow baseline. HGPflow showed the best performance and
surpassed the baseline in terms of both angular and momen-
tum resolution of the jet. This can be explained from the fact
that the hypergraph formalism is structured around energy
conservation, which also makes its predictions more inter-
pretable from a physics point of view. We anticipate that
the suitability of the hypergraph formalism for the set-to-set
task of particle reconstruction is yet to be fully leveraged.
By demonstrating the potential of ML algorithms to disen-
tangle the jet dense environment, our findings motivate the
application to full collision events in future work.
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