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Abstract In a non-flat FRW model, we have considered
our Universe to be filled with non-interacting dark energy
and dark matter. For the dark energy models, we have
assumed Tachyonic Field (TF), Generalized Cosmic Chap-
lygin Gas (GCCG), New Variable Modified Chaplygin Gas
(NVMCG), Modified Chaplygin–Jacobi Gas (MCJG), and
Modified Chaplygin–Abel Gas (MCAG). We then analyzed
these dark energy models with varying cosmological parame-
ters in their optical depth behaviour and presented our result
graphically. Later on, a comparison of our findings of the
corresponding models in flat and non-flat Universe with the
�CDM model has also been presented.

1 Introduction

One of the most intriguing results of modern cosmology is
the acceleration of the Universe [1–4], and there are two main
theories to explain it. The first is the introduction of a rather
exotic form of the component called Dark Energy (DE) [5]
keeping Einstein’s theory of General Relativity (GR) as the
gravitational theory. The second option is to modify Ein-
stein’s GR theory and introduce a new gravitational theory
with more degrees of freedom to explain the Universe’s accel-
eration [6,7]. Moreover, in this paper, we will only concern
ourselves with DE as a cause of the Universe’s acceleration.

Dark Energy (DE) is a hypothetical form of energy with
a repulsive, negative kind of pressure and behaves just the
opposite of the force of gravity. Over the years, theorists
have come up with several forms of DE candidates while
explaining the acceleration, the simplest among them being
the cosmological constant � [5]. But the DE theory, too, isn’t
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devoid of complications. With the ever-growing number of
DE candidates being developed by cosmologists, the models
often suffer from two significant drawbacks − the cosmic
coincidence and the fine-tuning problem [8,9], among many.
The primary aim of being a researcher is to improve upon
such issues and develop better results.

While there are several cosmological tools that would help
us with the effective development of our theories, gravita-
tional lensing (GL) happens to be one of them. Einstein’s
theory of GR predicts that space-time gets curved in the pres-
ence of massive objects. As a result, light, while passing close
to such objects, get bent, thereby enlarging or distorting the
background objects. Thus, GL can help us understand the
matter content to the geometry and acceleration of the Uni-
verse. GL studies were mainly theoretical in the early years,
but with the development of observational cosmology, that
changed. At present, there are three-technique to study the
GL phenomenon [10]. The first is to study the time differ-
ences between the images and the subsequent lens map fol-
lowed by light with the help of Fermat’s principle; the second
is to study the bending or deflection angle while they pass
close to massive objects and lastly is the study of gravitational
lensing statistics.

Statistical studies about GL help us understand the mass
distribution of the Universe and also in determining the prob-
ability about the occurrence of some specific GL event under
some particularly given conditions. The goal of our present
work is to study the qualitative behaviour of a few DE mod-
els in a non-flat Universe in terms of its lensing probability.
We probed our DE models against their various DE param-
eters and recorded how the optical depth behaves/changes
over various source redshift values. It is also worth pointing
out that if we have excluded specific cosmological parame-
ters in our study, it would mean that that the change in such
parameters value doesn’t affect the overall lensing proba-
bility. Lastly, our manuscript here is being organized in the
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following form: Sect. 2 discusses the various cosmological
equations necessary for our study, Sect. 3 deals with the GL
probability, in Sect. 4, we presented the few DE models we
are going to use in our study, Sect. 5 deals with the com-
parison of the DE models with �CDM and also their cor-
responding flat Universe’s model, and finally, we conclude
with Sect. 6 discussing the results obtained.

2 Cosmology of FRW Universe

Considering the space-time to be isotropic and homogeneous
in nature, we have the FRW line element

ds2 = −c2dt2 + a2(t)[dχ2 + r2(χ){dθ2 + sin2 θdφ2}] (1)

where r(χ) = sin χ , r(χ) = χ or r(χ) = sinh χ depending
upon whether the Universe is closed (k = 1), flat (k = 0) or
open (k = −1) respectively. Next, we assume the Universe
to be filled with Dark Energy (DE) and Dark Matter (DM)
combinations. The Friedmann equations thus, take the form
(8πG = 1 = c, and wherever applicable after that.)

ȧ2

a2 + k

a2 = 1

3
(ρm + ρx ) (2)

2
ä

a
+ ȧ2

a2 + k

a2 = −(pm + px ) (3)

where ρi and pi (i = m, x) respectively denotes the den-
sity and pressure of DM and DE. Considering DM and DE
are conserved separately, we may write their conservation
equations as

ρ̇m + 3
ȧ

a
(ρm + pm) = 0 (4)

and

ρ̇x + 3
ȧ

a
(ρx + px ) = 0 (5)

The DM equation of state (EoS) is pm = wmρm , where wm

is the constant EoS parameter. Thus, from the equation (4)
we get

ρm = ρm0a
−3(1+wm ) (6)

where ρm0 denotes the present-day DM density.
The Hubble parameter is defined by H = ȧ

a . Also, we have
the redshift definition z = a0

a − 1 where a0 = a(t0) = 1 is
the scale factor value at present epoch. Now, we can define
the normalized Hubble parameter by

h(z) = H2

H2
0

(7)

Thus, rewriting Eq. (2) in the form of Eq. (7), we get

h(z) = 1

3H2
0

[(ρm + ρx ) − 3k(1 + z)2] (8)

In the end, we define the parameters

�m = ρm0

3H2
0

, �x = ρx0

3H2
0

, �k = k

H2
0

(9)

where �m + �x − �k = 1 and all the parameter values are
defined at the present time.

3 Gravitational lens probability for multiple images

In the study of Gravitational Lensing Statistics, the natu-
ral cosmological distance that we quite often use is the co-
moving distance [11]. To demonstrate this, we set ds2 = 0
(as light rays follow the path of null geodesics). Thus, we get
the expression

χ =
∫

dt

a(t)
=

∫
da.

1

a
.
dt

da
(10)

Using the expression z = 1
a(t) − 1, Eq. (10) can be further

reduced to [12]

χ =
{∫ z

0
dz√
h(z)

(k = 0)

|�k |1/2
∫ z

0
dz√
h(z)

(k = ±1)
(11)

where h(z) can be found from Eq. (8) and its value depends
upon the various DE model used.

Other kinds of distance measurements fundamental in the
study of gravitational lensing are the luminosity distance
dL = a(t).r(χ) and the angular diameter distance dA = r(χ)

1+z
[13]. All the distance measurements are related to redshift z
through Eq. (11) in the form

dL = (1 + z)2dA =

⎧⎪⎪⎨
⎪⎪⎩

(1+z)χ
H0

(k = 0)
(1+z) sin χ

H0
√|�k | (k = 1)

(1+z) sinh χ

H0
√|�k | (k = −1)

(12)

Now, the differential optical depth per unit redshift is given
by

dτ

dzl
= n(1 + zl)

3σ̂
cdt

dzl
(13)

where n is the co-moving number density of lensing galaxies
[14–16], σ̂ is the dimensional cross-section of lensing, and
cdt/dzl is the proper distance interval. The cross-section σ̂

and the proper distance interval are given by

σ̂ = 16π3σ 4

(
dlAd

ls
A

dsA

)2

(14)

and

cdt

dzl
= H−1

0

(1 + zl)
√
h(zl)

(15)

where dlA, dlsA and dsA are the angular diameter distances
between the observer-lens, lens-source and observer-source,
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respectively and σ is the velocity dispersion function. Next,
considering the contributions of a group of galaxies with
varying luminosities and redshifts, the Schechter function
may be used to characterise the current luminosity function
of galaxies [17,18]

dn

dL
= n∗

i

L∗
i

(
L

L∗
i

)αi

e(−L/L∗
i ) (16)

where i = (S, S0, E) depending upon the galaxy morphol-
ogy, L∗

i and n∗
i are the characteristic luminosity and number

density, respectively. Further, using the power-law relation
L/L∗

i = (σ/σ ∗
i )gi between luminosity and velocity disper-

sion function, Eq. (16) reduces to

dn

dσ
= n∗

i

σ ∗
i

(
σ

σ ∗
i

)giαi+gi−1

e(−σ/σ ∗
i )gi gi (17)

Thus, integrating dτ from 0 to zs , we obtain

τ(zs) =
⎛
⎝ ∑

i=S,S0,E

Fi

⎞
⎠

∫ χs

0

[
r(χs − χl)

r(χs)

]2

r2(χl)dχl

(18)

where Fi denotes the ability of the i th class of galaxy mor-
phology in generating multiple images and depends solely
upon the intrinsic and statistical characteristics of the galax-
ies. Using Eq. (17), we may calculate Fi in the form

Fi = 16π3σ 4H−3
0

∫ ∞

0

n∗
i

σ ∗
i

(
σ

σ ∗
i

)giαi+gi−1

e(−σ/σ ∗
i )gi gi dσ

= 16π3σ 4H−3
0 n∗

i �(αi + 1) (19)

With the uncertainties widely discussed in the literature [19–
23], we will be treating F ≡ ∑

i=S,S0,E Fi as normalised
factor hereafter. Thus, from Eqs. (18) and (19) we derive
the simple analytical equation for the gravitational lensing
probability of a point source at zs for an FRW Universe with
DM and DE components given by

P(lens) = τ(zs)

F

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

χ3
s

30 (k = 0)
1

|�k |3/2

[ 1
8 (1 + 3 cot2 χs)χs

− 3
8 cot χs

]
(k = 1)

1
|�k |3/2

[ 1
8 (−1 + 3 coth2 χs)χs

− 3
8 coth χs

]
(k = −1)

(20)

4 Lensing for dark energy models

In this section, we study the lensing effects of some dark
energy models like Tachyonic Field, Generalised Cosmic

Chaplygin Gas, New Variable Modified Chaplygin Gas,
Modified Chaplygin–Jacobi Gas and Modified Chaplygin–
Abel Gas.

• Tachyonic Field (TF):
Following the work of A. Sen [24,25], pressure px and
energy density ρx of the “Tachyonic Field” or “TF” are
given by

px = −V (φ)

√
1 − φ̇2

ρx = V (φ)√
1 − φ̇2

(21)

where φ denotes the TF and V (φ) the associated poten-
tial. In Eq. (5), we may use the above relation to get

V̇

V φ̇2
+ φ̈

φ̇
(1 − φ̇2)−1 + 3

ȧ

a
= 0 (22)

Assuming (from Ref. [26])

V = 1

(1 − φ̇2)m
, (m > 0) (23)

we obtain the solution of Eq. (22) in the form

φ = 2a3/2

√
3A

2F1

×
[

1 + 2m

4
,

3 + 2m

4
,

5 + 2m

4
,−A− 2

2m+1 .a
6

2m+1

]

(24)

where A is the integrating constant. Now, V can be
expressed as

V =
[

1 +
(

A

a3

) 2
2m+1

]m

(25)

Thus, using Eqs. (23) and (25), we get the pressure and
energy density expression from Eq. (21) in the form

px = −[1 + (A(1 + z)3)
2

2m+1 )] 2m−1
2 ,

ρx = [1 + (A(1 + z)3)
2

2m+1 )] 2m+1
2 (26)

Equation (26) can be further rewritten as

px = px0[At + (1 − At )(1 + z)
6

2m+1 )] 2m−1
2 ,

ρx = ρx0[At + (1 − At )(1 + z)
6

2m+1 )] 2m+1
2 (27)
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Fig. 1 Optical depth vs. source redshift graph for Tachyonic Field in a closed Universe where wm = 0.01, m = 2, At = 0.25 and �k = 0.01

Fig. 2 Optical depth vs. source redshift graph for Tachyonic Field in an open Universe where wm = 0.01, m = 2, At = 0.25 and �k = − 0.01

where px0 = −(1 + A
2

2m+1 )
2m−1

2 and ρx0 = (1 +
A

2
2m+1 )

2m+1
2 are the pressure and energy density of

TF, respectively, at the present time with At = (1 +
A

2
2m+1 )−1.
Substituting ρm and ρx from Eqs. (6) and (27) respec-

tively in Eq. (8), we get the normalised Hubble parameter
in the form

h(z) = �m(1 + z)3(1+wm)

+�x [At + (1 − At )(1 + z)
6

2m+1 )] 2m+1
2 − �k(1 + z)2

(28)

where �m , �x , �k are given by (9) and m, wm are con-
stants.

In order to calculate the optical depth for this model, we
substitute Eq. (28) in (11) and later on Eq. (11) in (20).
Then we go on plotting the required graphs as shown
below. Figures 1 and 2 shows the optical depth vs. source
redshift graph for varied �m and �x while keeping the
rest parameters constant. We observe that the lensing

probability decreases with an increase in the parameter
value of �m . Moreover, the opposite happens for the �x

parameter. It is also worth noting that the change in lens-
ing probability isn’t that significant for varied �m and
�x parameters, as evident from the first figure of Figs. 1
and 2. Further, an increase in the source redshift value
also increases the optical depth of this model. Again,
upon plotting the optical depth vs At graph (Figs. 3, 4),
we notice that the optical depth behaviour increases with
the increase in At values and the source redshift value.

• Generalised Cosmic Chaplygin Gas (GCCG):
“Generalised Cosmic Chaplygin Gas” or “GCCG” was
proposed as a dark energy candidate by Gonzalez-Diaz
[27]. The EoS of this model is of the form

px = ρ−α
x [C + (ρ1+α

x − C)−ω] (29)

where C = A
1+ω

− 1 with −l < ω < 0 (l > 1) and α, A
are constants. Here, when ω → 0 or ω = −1 or A → 0,
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Fig. 3 Optical depth vs. At graph for Tachyonic Field in a closed Uni-
verse wherewm = 0.01,m = 2,�m = 0.23,�x = 0.78 and�k = 0.01

Fig. 4 Optical depth vs. At graph for Tachyonic Field in an open
Universe where wm = 0.01, m = 2, �m = 0.23, �x = 0.76 and
�k = − 0.01

the GCCG reduces to a Generalised Chaplygin Gas or
de-Sitter fluid at late time or px = ωρx respectively.
Further, in the future, GCCG propagates between dust
and �CDM model.

Using Eq. (29), we get the solution of (5) as

ρx =
[
C +

(
1 + B

a3(1+α)(1+ω)

) 1
1+ω

] 1
1+α

=
[
C +

(
1 + B(1 + z)3(1+α)(1+ω)

) 1
1+ω

] 1
1+α

(30)

where B is a constant. Using Eqs. (6) and (30) in (8), we
get the normalised Hubble parameter in this model of the
form

h(z) = �m(1 + z)3(1+wm)

Fig. 5 Optical depth vs. source redshift graph for Generalised Cosmic
Chaplygin Gas in a closed Universe where α = 0.5, ω = −0.5, B = 2,
C = 3, wm = 0.01 and �k = 0.01

Fig. 6 Optical depth vs. source redshift graph for Generalised Cosmic
Chaplygin Gas in an open Universe where α = 0.5, ω = − 0.5, B = 2,
C = 3, wm = 0.01 and �k = − 0.01

+ 1

H2
0

{
C +

(
1 + B(1 + z)3(1+α)(1+ω)

) 1
1+ω

} 1
1+α

−�k(1 + z)2 (31)

where �m , �k are given by (9) and ω, B, wm are con-
stants.
As done in the previous model, we calculate the co-
moving distance and optical depth for this model as well
and plot the necessary graph shown in Figs. 5 and 6. Opti-
cal depth vs. source redshift graph of this model with
varying �m shows that the lensing probability decreases
along with the increase in the value of �m consistent with
our findings in Tachyonic Field.

• New Variable Modified Chaplygin Gas (NVMCG):
For the unification of DM and DE, the pure “Chap-
lygin Gas” (CG) model was introduced with the EoS
px = −B/ρx (B > 0) [28,29]. This model was later
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Fig. 7 Optical depth vs. source redshift graph for New Variable Modi-
fied Chaplygin Gas in a closed Universe where m = 4, n = 2, α = 0.3,
A0 = 2, B0 = 2, C0 = 3, H0 = 72, wm = 0.01 and �k = 0.01

Fig. 8 Optical depth vs. source redshift graph for New Variable Modi-
fied Chaplygin Gas in an open Universe where m = 4, n = 2, α = 0.3,
A0 = 2, B0 = 2, C0 = 3, H0 = 72, wm = 0.01 and �k = − 0.01

generalised to px = −B/ρα
x (0 ≤ α ≤ 1) known as the

generalised Chaplygin Gas [30,31]. It was further modi-
fied to the form px = Aρx − B/ρα

x (0 ≤ α ≤ 1), where
A > 0, B > 0 are constants. This form of CG is named
modified Chaplygin Gas [32,33]. For its in-homogeneity
behaviour, assuming B as a function of a(t), the CG in
this form is called variable Chaplygin Gas [34,35]. Also,
treating CG as a Born-Infeld scalar field [36], B(a) gets
related to the scalar potential. Now, treating the constant
B as a variable (B = B(a)), in the case of generalised
Chaplygin Gas, we get variable generalised Chaplygin
Gas [37], and the modified Chaplygin Gas gets reduced
to variable modified Chaplygin Gas [38]. Further, consid-
ering constants A, B too as a function of a(t) in variable
modified Chaplygin Gas, we get another new form called
the new variable modified Chaplygin Gas or NVMCG

[39]. The EoS of NVMCG is given by

px = A(a)ρx − B(a)

ρα
x

(0 ≤ α ≤ 1) (32)

Now, assuming A(a) = A0a−n and B(a) = B0a−m

where A0, B0, n, m are positive constants; we get the
solution of Eq. (5) using Eq. (32) as

ρx (z) = (1 + z)3e
3A0(1+z)n

n

×
[
C0 + B0

A0

(
3A0(1 + α)

n

) 3(1+α)+n−m
n

×�

(
m−3(1+α)

n
,

3A0(1+α)

n
(1+z)n

) ] 1
1+α

(33)

whereC0 is the integrating constant and�(a, x) the upper
incomplete gamma function. Thus, substituting (6) and
(33) in (8), we get the normalised Hubble parameter of
this model in the form

h(z) = �m(1 + z)3(1+wm) + ρx (z)

3H2
0

− �k(1 + z)2 (34)

where ρx (z) can be calculated from (33), �m , �k are
given by (9) and m, n, B0, C0, wm are constants.
Calculating optical depth as previously done, we plot our
necessary graphs for this model. Firstly, Figs. 7 and 8
shows the optical depth vs source redshift graph with
varying �m in an open and closed Universe, respectively.
It has been found that the optical depth decreases when
we increase our �m value, which has already been found
in our previous two models. However, it should be noted
that the graph gets parallel to the zs axis for zs > 1, imply-
ing that the optical depth behaviour doesn’t get affected
for increasing zs values. Secondly, we plotted our optical
depth vs A0 graph in Figs. 9 and 10. The lensing prob-
ability for zs = 2, 3 coincides with each other while for
zs = 1, initially, for smaller values of A0 it gives differ-
ent lensing probability but ultimately coincide with each
other after A0 crosses certain values in the graph imply-
ing for higher A0 values, change in source redshift (zs)
does not affect its optical depth behaviour. Further, we
also plotted optically depth vs H0 and optical depth vs α

graphs in Figs. 11, 12, 13 and 14 respectively. We see in
the first figure of Figs. 11 and 12 that the lensing prob-
ability linearly increases with an increase in H0 values.
Also, the graphs for zs = 2, 3 coincide with each other,
the reason for which can be verified from the second fig-
ure of Figs. 11 and 12 where we see that the graphs get
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Fig. 9 Optical depth vs. A0 graph for New Variable Modified Chap-
lygin Gas in a closed Universe where m = 4, n = 2, α = 0.3, B0 = 2,
C0 = 3, wm = 0.01, H0 = 72, �m = 0.23 and �k = 0.01

Fig. 10 Optical depth vs. A0 graph for New Variable Modified Chap-
lygin Gas in an open Universe where m = 4, n = 2, α = 0.3, B0 = 2,
C0 = 3, wm = 0.01, H0 = 72, �m = 0.23 and �k = − 0.01

parallel to zs axis after crossing zs > 1 value, implying
no change in optical depth behaviour for increasing zs
values. Next, from the first figure of Figs. 13 and 14 the
increasing value of α increases our lensing probability
with the graphs for zs = 2, 3 coinciding with each other,
thereby implying that redshift has no effect in its lensing
probability (second figure of Figs. 13, 14).

• Modified Chaplygin–Jacobi Gas (MCJG):
Hyperbolic functions are special cases of elliptic func-
tions. “Jacobi elliptic functions” being a collection of
fundamental elliptic functions, Villanueva [40] substi-
tuted the Jacobi elliptic function in place of the cosine
hyperbolic function obtained by the generalised Chaply-
gin Gas in the Hubble parameter to derive the EoS known
as the generalised Chaplygin–Jacobi Gas. Thus, by sub-
stituting the “Jacobi elliptic cosine function” cn(�) for
the hyperbolic function, the generating function of Mod-

ified Chaplygin Gas

H(φ) = Hc Sech
− 1

1+α (�) (35)

may be rewritten as

H(φ) = Hc cn
− 1

1+α (�) (36)

where cn(�) ≡ cn(�,μ) with μ ∈ [0, 1] being the
elliptic modulus.

Following the work done by [41], we may write the
EoS of “Modified Chaplygin–Jacobi Gas” as

px = [(2μ − 1)(1 + A) − 1]ρx − μB

ρα
x

+ (1 − μ)(1 + A)2

B
ρ2+α
x (37)

Substituting the value of px from (37) in Eq. (5), we get

ρ1+α
x = B

1 + A

[
a3(1+α)(1+A) + μD

a3(1+α)(1+A)
− (1 − μ)D

]

(38)

where D(> 0) is constant. For larger values of a(t), we

have ρx 	 ( B
1+A )

1
1+α and px 	 −( B

1+A )
1

1+α = −ρx

which is equivalent to the “�CDM model” where the

cosmological constant � = ( B
1+A )

1
1+α . Also, in the phase

of the Universe where y = a3(1+α)(1+A)−(1−μ)D 	 0,

we getρx 	 ( B
1+A

D
y )

1
1+α . This relates to a Universe phase

in which the polytropic EoS px = (1−μ)(1+A)
B ρα+2

x is
followed. Thus, the mentioned expression of ρx may be
rewritten as

ρ1+α
x

= B

1 + A

[
(1 − As)(1 + z)3(1+α)(1+A) + As

μAs − (1 − μ)(1 − As)(1 + z)3(1+α)(1+A)

]

(39)

where As = 1
1+μD with 1 − μ < As < 1. Thus, the

energy density value measured at the present time is
ρ1+α
x0 = B

(1+A)[μAs−(1−μ)(1−As )] . Substituting ρm0 from
Eq. (6) and ρx0 from the above expression respectively
in the Eq. (8), we get the normalised Hubble parameter
in the form

h(z) = �m(1 + z)3(1+wm) + �x [μAs

−(1 − μ)(1 − As)] 1
1+α
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Fig. 11 Optical depth vs. H0 and optical depth vs. source redshift with varied H0 graphs for New Variable Modified Chaplygin Gas in a closed
Universe where m = 4, n = 2, α = 0.3, A0 = 2, B0 = 2, C0 = 3, wm = 0.01, �m = 0.23 and �k = 0.01

Fig. 12 Optical depth vs. H0 and optical depth vs. source redshift with varied H0 graphs for New Variable Modified Chaplygin Gas in an open
Universe where m = 4, n = 2, α = 0.3, A0 = 2, B0 = 2, C0 = 3, wm = 0.01, �m = 0.23 and �k = − 0.01

Fig. 13 Optical depth vs. α and optical depth vs. source redshift with varied α graphs for New Variable Modified Chaplygin Gas in a closed
Universe where m = 4, n = 2, A0 = 2, B0 = 2, C0 = 3, H0 = 72, wm = 0.01, �m = 0.23 and �k = 0.01
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Fig. 14 Optical depth vs. α and optical depth vs. source redshift with varied α graphs for New Variable Modified Chaplygin Gas in an open
Universe where m = 4, n = 2, A0 = 2, B0 = 2, C0 = 3, H0 = 72, wm = 0.01, �m = 0.23 and �k = − 0.01

Fig. 15 Optical depth vs. source redshift graph for Modified
Chaplygin–Jacobi Gas in a close Universe where A = 0.2, α = 0.02,
As = 0.99, μ = 0.89, wm = 0.01 and �k = 0.01

×
[

(1−As)(1+z)3(1+α)(1+A)+As

μAs−(1−μ)(1−As)(1+z)3(1+α)(1+A)

] 1
1+α

−�k(1 + z)2 (40)

where �m , �x , �k are given by (9) and A, α, As , μ, wm

are constants.
Calculating τ(zs), our optical depth vs. source red-

shift graph with varied �m and �x is shown in Figs. 15
and 16. Our graph here shows that the lensing probability
decreases with an increase in �m value (and a decrease
in �x value). Our findings here are consistent with all the
previous models discussed above.

• Modified Chaplygin–Abel Gas (MCAG):
As already been done in the MCJG model, here too, we
replace the hyperbolic function in (35) by the “Abel ellip-
tic functio” F(�), so that we get the generating function

Fig. 16 Optical depth vs. source redshift graph for Modified
Chaplygin–Jacobi Gas in an open Universe where A = 0.2, α = 0.02,
As = 0.99, μ = 0.89, wm = 0.01 and �k = − 0.01

in the form

H(�) = HcF
− 1

1+α (�) (41)

where F(�) = √
1 + e2ϕ2(�) with ϕ(�) ≡ ϕ(�, c, e)

which is the “Abel elliptic function” and c, e ∈ IR. Fol-
lowing the work done by [41], we may write the EoS of
“Modified Chaplygin–Abel Gas” in the form

px = [(e2 + 2c2)(1 + A) − 1]ρx − c2B

ρα
x

− (e2 + c2)(1 + A)2

B
ρ2+α
x (42)

Substituting px from (42) in Eq. (5), we get

ρ1+α
x = B

1 + A

[
a3e2(1+α)(1+A) + c2K

a3e2(1+α)(1+A) + (e2 + c2)K

]

(43)
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where K (> 0) is constant. For larger values of a(t), we
get px 	 −ρx corresponding to the “�CDM model”

where the cosmological constant � = B
1+A

1
1+α . For

smaller values of a(t), we get px 	 −ρx correspond-
ing to the inflationary phase of the Universe. As a result,
MCAG propagates between the phases of inflation and
the �CDM . Thus, the previously described ρx equation
may be rewritten as

ρ1+α
x = c2B

1 + A

×
[

(1 − Bs)(1 + z)3e2(1+α)(1+A) + Bs

c2Bs + (e2 + c2)(1 − Bs)(1 + z)3e2(1+α)(1+A)

]

(44)

where Bs = 1
1+c2K

(0 < Bs < 1) with ρ1+α
x0 =

c2B
(1+A)[c2Bs+(e2+c2)(1−Bs )] representing the present energy
density value. Thus, substitutingρm0 from Eq. (6) andρx0

from the above expression respectively in Eq. (8), we get
the normalised Hubble parameter in the form

h(z) = �m(1 + z)3(1+wm)

+�x [c2Bs + (e2 + c2)(1 − Bs)] 1
1+α

×
[

(1 − Bs)(1 + z)3e2(1+α)(1+A) + Bs

c2Bs+(e2+c2)(1−Bs)(1+z)3e2(1+α)(1+A)

] 1
1+α

−�k(1 + z)2 (45)

where �m , �x , �k are given by (9) and c, e, α, A, Bs ,
wm are constants.
As already been done in all the previous models, we
calculated our the optical depth and plotted the optical
depth vs. source redshift graph for this model as shown
in Figs. 17 and 18. The graph shows that the lensing
probability decreases with an increase in �m value (and
decreasing �x value) as found in the other models as
well.

5 Comparison of the DE models with �CDM and
corresponding flat Universe

The �CDM, also known as the concordance model, is the
simplest form of dark energy candidate that solves the accel-
erated expansion of the Universe. The EoS of this model is
given by p = −ρ, and thus, the normalised Hubble parame-
ter takes the form

h(z) = �m(1 + z)3(1+wm) + �� − �k(1 + z)2 (46)

Fig. 17 Optical depth vs. source redshift graph for Modified
Chaplygin–Abel Gas in a closed Universe where c = 0.39, e = 0.17,
α = 0.08, A = 0.27, Bs = 0.5, wm = 0.01 and �k = 0.01

Fig. 18 Optical depth vs. source redshift graph for Modified
Chaplygin–Abel Gas in an open Universe where c = 0.39, e = 0.17,
α = 0.08, A = 0.27, Bs = 0.5, wm = 0.01 and �k = −0.01

where �� = �/3H2
0 . Here, we proceed by comparing

the optical depths of the above-discussed DE models with
�CDM and also with their corresponding flat models.

• TF: A comparison of the TF model against �CDM is
shown in Fig. 19 for the cases of open (k = −1), flat
(k = 0) and closed (k = 1) Universes. In a flat Universe
(Fig. 19b), �CDM shows a higher possibility of finding
multiple images due to a background source than TF. The
same holds for the cases of a non-flat open and closed
Universe, as seen from Fig. 19a, c respectively.

• GCCG: The comparison of the GCCG model against
�CDM is shown in Fig. 20. This model’s lensing prob-
ability for open (k = −1), flat (k = 0) and closed
(k = 1) Universe is higher than the corresponding
�CDM model. Here, Fig. 20a shows the change in opti-
cal depth behaviour for the open Universe, Fig. 20b for
flat and Fig. 20c for closed Universe.
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Fig. 19 Graphs showing the change in optical depth behaviour of TF
and �CDM model against source redshift zs in an open, flat and closed
Universe where the parameter values chosen are as follows TF (open):
wm = 0.01,m = 2, At = 0.25, �m = 0.23, �x = 0.76, �k =
−0.01; TF (flat): wm = 0.01,m = 2, At = 0.25, �m = 0.23, �x =

0.77; TF (closed): wm = 0.01,m = 2, At = 0.25, �m = 0.23, �x =
0.78, �k = 0.01 and �CDM (open): wm = 0.01, �m = 0.23, �� =
0.76, �k = −0.01; �CDM (flat): wm = 0.01, �m = 0.23, �� =
0.77; �CDM (closed): wm = 0.01, �m = 0.23, �� = 0.78, �k =
0.01

• NVMCG: In the NVMCG model, Fig. 21 shows compar-
ison of optical depth behaviour against �CDM model.
For all the cases of open, flat and closed Universe,
NVMCG model shows a higher possibility of finding
gravitational lenses when zs < 1 compared to �CDM.
After zs crosses the value 1 lensing probability for
NVMCG becomes constant while for �CDM it keeps
on increasing (Fig. 21a–c).

• MCJG: The graphs for optical depth behaviour are
depicted in Fig. 22. The optical depth behaviour of this
model is highly consistent with �CDM model in an open,
flat and closed Universe, unlike the other DE models. Fig-
ure 22a shows optical depth behaviour in an open Uni-
verse, Fig. 22b in flat and Fig. 22c in closed.

• MCAG: This model’s optical depth behaviour is similar
to that of �CDM model. The graph of the optical depth
behaviour of this model is shown in Fig. 23. Figure 23a

shows the comparison of optical depth in open Universe
w.r.t �CDM model which is exactly the same as that of
�CDM model. The same is true for the flat and closed
Universe as well (Fig. 23b, c), with graphs of both the
models coinciding with each other.

6 Conclusions

In our study, we have considered our Universe to be a non-
flat FRW model, which is composed of dark matter and dark
energy (DE). Then we studied the optical depth behaviour of
some DE models like tachyonic field (TF), generalized cos-
mic Chaplygin gas (GCCG), new variable modified Chaply-
gin gas (NVMCG), modified Chaplygin–Jacobi gas (MCJG)
and modified Chaplygin–Abel gas (MCAG). Although stud-
ies from Refs. [42,43] showed that cosmological parameters
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Fig. 20 Graphs showing the change in optical depth behaviour of
GCCG and �CDM models against source redshift zs in an open, flat
and closed Universe where the parameter values chosen are as follows
GCCG (open): α = 0.5, ω = −0.5, B = 2,C = 3, wm = 0.01, �m =
0.23, �k = −0.01; GCCG (flat): α = 0.5, ω = −0.5, B = 2,C =

3, wm = 0.01, �m = 0.23; GCCG (closed): α = 0.5, ω = −0.5, B =
2,C = 3, wm = 0.01, �m = 0.23, �k = 0.01 and �CDM (open):
wm = 0.01, �m = 0.23, �� = 0.76, �k = −0.01; �CDM( f lat) :
wm = 0.01, �m = 0.23, �� = 0.77; �CDM (closed): wm =
0.01, �m = 0.23, �� = 0.78, �k = 0.01

are not the only aspect that affects the strong lensing probabil-
ity, in our study, however, we have considered them to under-
stand how they affect the strong lensing probability. Later on,
we compared our findings in the case of flat Universe of the
corresponding DE models and our standard �CDM model.
It should also be noted that if we avoided specific cosmolog-
ical parameters in our study, it would mean that the change
in such parameter values doesn’t affect our lensing probabil-
ity. Our findings in the present study can be summarized as
follows:

• With an increasing value of �m , all the DE models dis-
cussed here have decreasing lensing probability.

• For the parameter At in TF, lensing probability increases
with the increase in At and the redshift value. For GCCG,
lensing probability decreases with the redshift value.

• In the NVMCG model, it seems that redshift has little to
no effect on its optical depth behaviour (Figs. 7, 8, 9, 10,
11, 12, 13, 14). Initially, when 0 < zs ≤ 1, the lensing
probability increased smoothly, but after zs crossed 1, it
became constant. Further, while for increasing H0 and
α in NVMCG the lensing probability increases but the
same decreases for increasing A0 values.

• For MCJG and MCAG, lensing probability decreases
smoothly with the redshift value.

• Comparison of the DE models with �CDM and also
their corresponding models in a flat Universe is shown in
Figs. 19, 20, 21, 22, 23. Variation in lensing probability
can be observed in the case of TF, GCCG and NVMCG
when compared with �CDM model in an open, flat and
closed Universes (Figs. 19, 20, 21). But in the case of
MCJG and MCAG, the lensing probability is highly con-
sistent with �CDM model (Figs. 22, 23).
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Fig. 21 Graphs showing the change in optical depth behaviour of
NVMCG and �CDM models against source redshift zs in an open,
flat and closed Universe where the parameter values chosen are as
follows NVMCG (open): m = 4, n = 2, α = 0.3, A0 = 2, B0 =
2,C0 = 3, wm = 0.01, �m = 0.23, �k = −0.01; NVMCG (flat):
m = 4, n = 2, α = 0.3, A0 = 2, B0 = 2,C0 = 3, wm =

0.01, �m = 0.23; NVMCG (closed): m = 4, n = 2, α = 0.3, A0 =
2, B0 = 2,C0 = 3, wm = 0.01, �m = 0.23, �k = 0.01 and �

CDM (open): wm = 0.01, �m = 0.23, �� = 0.76, �k = −0.01; �

CDM (flat): wm = 0.01, �m = 0.23, �� = 0.77; � CDM (closed):
wm = 0.01, �m = 0.23, �� = 0.78, �k = 0.01
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Fig. 22 Graphs showing the change in optical depth behaviour of
MCJG and �CDM models against source redshift zs in an open,
flat and closed Universe where the parameter values chosen are as
follows MCJG (open): A = 0.2, α = 0.02, As = 0.99, μ =
0.89, wm = 0.01, �m = 0.23, �x = 0.76, �k = −0.01; MCJG
(flat): A = 0.2, α = 0.02, As = 0.99, μ = 0.89, wm = 0.01, �m =

0.23, �x = 0.77; MCJG (closed): A = 0.2, α = 0.02, As = 0.99, μ =
0.89, wm = 0.01, �m = 0.23, �x = 0.78, �k = 0.01 and � CDM
(open): wm = 0.01, �m = 0.23, �� = 0.76, �k = −0.01; �

CDM (flat): wm = 0.01, �m = 0.23, �� = 0.77; � CDM (closed):
wm = 0.01, �m = 0.23, �� = 0.78, �k = 0.01
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Fig. 23 Graphs showing the change in optical depth behaviour of
MCAG and �CDM models against source redshift zs in an open, flat
and closed Universe where the parameter values chosen are as fol-
lows MCAG (open): c = 0.39, e = 0.17, α = 0.08, A = 0.27, Bs =
0.5, wm = 0.01, �m = 0.23, �x = 0.76, �k = −0.01; MCAG
(flat): c = 0.39, e = 0.17, α = 0.08, A = 0.27, Bs = 0.5, wm =

0.01, �m = 0.23, �x = 0.77; MCAG (closed): c = 0.39, e =
0.17, α = 0.08, A = 0.27, Bs = 0.5, wm = 0.01, �m = 0.23, �x =
0.78, �k = 0.01 and �CDM (open): wm = 0.01, �m = 0.23, �� =
0.76, �k = −0.01; �CDM (flat): wm = 0.01, �k = 0.23, �� = 0.77;
�CDM (closed): wm = 0.01, �m = 0.23, �� = 0.78, �k = 0.01
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