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Abstract In this paper, we will use the coincident gauge to
investigate new solutions of the f (Q) theory applied in the
context of black holes, regular black holes, and the black-
bounce spacetime. For each of these approaches, we com-
pute the linear solutions and the solutions with the constraint
that the non-metricity scalar is zero. We also analyze the
geodesics of each solution to interpret whether the space-
time is extensible or not, find the Kretschmann scalar to
determine the regularity along spacetime, and in the con-
text of regular black holes and black-bounce, we calculate
the energy conditions. In the latter black-bounce case we
realize that the null energy condition (NEC), specifically
the NEC1 = WEC1 = SEC1 ↔ ρ + pr ≥ 0, is satisfied
outside the event horizon.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 f (Q) gravity . . . . . . . . . . . . . . . . . . . . . 4

2.1 Geodesics . . . . . . . . . . . . . . . . . . . . 6
3 Definition of the metric, geometric objects, and the

equations of motion . . . . . . . . . . . . . . . . . 6
4 Black hole solutions in the f (Q) theory . . . . . . 8

4.1 Black Holles in symmetric teleparallel theory
equivalent to general relativity . . . . . . . . . 8

4.2 Black hole solution considering Q = 0 . . . . . 9
5 Regular Black Hole solutions in the f (Q) theory . . 10

5.1 Regular Black Hole solutions at STTEGR . . . 10
5.2 Solution for the regular Bardeen black hole . . 10
5.3 First solution of regular black holes with the zero

non-metricity scalar, Q = 0 . . . . . . . . . . . 11

a e-mail: tarcisojunior17@gmail.com
b e-mail: esialg@gmail.com (corresponding author)

5.4 Second solution of regular black holes with zero
non-metricity scalar, Q = 0 . . . . . . . . . . . 12

6 Black-bounce solutions in the f (Q) theory . . . . . 13
6.1 Solutions of black-bounce in symmetric telepar-

allel theory equivalent to general relativity
(STTEGR) . . . . . . . . . . . . . . . . . . . . 13

6.2 First black-bounce solution with zero non-
metricity scalar, Q = 0 . . . . . . . . . . . . . 14

6.3 Second black-bounce solution with zero non-
metricity scalar, Q = 0 . . . . . . . . . . . . . 15

6.4 Third black-bounce solution with zero non-
metricity scalar, Q = 0 . . . . . . . . . . . . . 16

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 18
References . . . . . . . . . . . . . . . . . . . . . . . . 20

1 Introduction

The theory of general relativity (GR), proposed by Albert
Einstein in 1915, is the theory of gravity that currently shows
the greatest agreement with the experimental tests by which
it was challenged. In this context, we can cite some tests, for
example, at the level of the solar system such as the precession
of Mercury perihelion [1] and the deflection of light by the
curvature of spacetime near a massive body [2]. In addition
to these tests, other of his predictions have been confirmed
recently, such as the detection of gravitational waves made in
2016 performed by the LIGO (Laser Interferometer Gravita-
tional Wave Observatory) collaboration and Virgo [3–9] and
the very existence of black holes from their image construc-
tion, which was carried out by the international collaboration
“Event Horizon Telescope” (EHT) [10–15].

In constructing GR, Einstein concluded that the concept
of gravity is described by the curvature of space-time, with
the mathematical structure described by Riemannian geom-
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etry [16,17]. On this occasion, the connection used to define
the covariant derivative in GR is known as the Christoffel
symbol or Levi-Civita connection. However, there are other
objects described by non-Riemannian geometries that are
capable of describing gravitational interaction beyond cur-
vature [18], which are: the torsion tensor T α

μν and the non-
metricity tensor Qαμν . Therefore, these tensors are the basis
for establishing geometries used to mathematically structure
other theories of gravity, but with a different description of
the curvature of GR. These groups are grouped to define new
tensors from their arrangements. The first is the contorsion
tensor, this object is defined only in terms of the torsion ten-
sor, while the second is the disformation tensor, defined with
respect to the non-metricity tensor. Thus, these new quantities
constitute, together with the connection of the GR, form the
three components of the most general possible connection,
the affine connection. Alternative theories of gravity can thus
be developed from the composition of the affine connection.

Among the gravity models that can be described by affine
geometry, there are first two specific cases of equivalence
with GR. The first is known as the teleparallel equivalent
of general relativity (TEGR), where gravitational effects are
attributed only to the torsion tensor T α

μν [19–22]. Therefore,
in the TEGR, the curvature Rα

μνβ and the non-metricity ten-
sor Qαμν are assumed to be zero, and consequently this the-
ory is characterized by a flat geometry. That is, in the telepar-
allel case, the parallel transported vectors do not change.
Moreover, instead of presenting an action with the curvature
scalar R as in the theory GR, in the teleparallel theory we
have an action written in terms of the torsion scalar plus a
boundary term (T+BT ), which leads us to conclude that their
functional actions are equivalent, this implies field equations
written in terms of the torsion.

While the second formulation, known as the teleparallel
symmetric equivalent of general relativity (STEGR), con-
tains the non-metricity tensor responsible for describing the
gravitational interaction [23]. So we have in this theory that
the curvature Rα

μνβ together with the torsion tensor Tα is
zero. And as already mentioned in the teleparallel theory,
STEGR is also developed by a non-Riemannian geometry
of flat spacetime. It is attributed to this theory, as one of the
simplest gravitational formulations, because the affine con-
nection can be globally cancelled on a variety, thus allowing
the covariant derivative to be described only in terms of the
partial derivative, this choice of coordinate is called the coin-
cident gauge [24]. These two approaches together with GR
constitute the so-called “The Geometrical Trinity of Grav-
ity” [25].

However, despite the undoubted success of GR, this theory
has some limitations in describing some phenomena of the
Universe. At present, cosmological observations based on
Type Ia Supernovae indicate that the Universe is in a phase
of accelerated expansion [26,27]. But, this scenario lacks a

convincing explanation from GR, i.e. in GR dynamics an
exotic fluid exerting negative pressure, called dark energy
(DE), is used, which has been inferred to ensure this scenario
of the Universe. However there is no agreement on its origin.
Observations indicate that DE governs approximately 70%
of the total energy density of the Universe [28,29]. It this
context, that the scientific community uses new approaches
to deepen the understanding in a more precise way, not only,
the current expansion scenario of the Universe, but also dark
matter, which has been postulated to explain the gravitational
dynamics of galaxies [30].

On the other hand, in 1915 Karl Schwarzschild devel-
oped the first exact solution of the GR equations [31], which
later became known as black holes. This solution has some
peculiarities, such as the structure known as the event hori-
zon, a region from which, having reached it, not even a
particle can escape [32]. And it also predicts the existence
of spacetime singularities at its center [33], a regime that
makes GR inapplicable. However, Bardeen proposed a solu-
tion to the GR field equations in which the singularity does
not exist [34], this formulation is called regular black holes
(RBH) [35]. Using nonlinear electrodynamics coupled to
GR, Beato and Garcia found exact solutions for the source
of RBHs [36,37]. We also recommend [38–42] Zhong-Ying
Fan and Xiaobao Wang develop a method to obtain general
solutions of black holes with electric or magnetic charges
in General Relativity coupled with nonlinear electrodynam-
ics [43,44]. In their study, they concluded that the solutions of
static, spherically symmetric black holes are regular through-
out spacetime. Thermodynamics was also investigated, and
consequently the first law of thermodynamics and Smarr’s
formula were found. And finally it was possible to general-
ize this procedure to obtain solutions for regular black holes
with cosmological constant. Another class of black holes,
namely those with rotation, is of great interest for astrophys-
ical observations. Therefore, using the Newman-Janis algo-
rithm method [45], the authors develop generic solutions for
rotating black holes in general relativity coupled to nonlin-
ear electrodynamics[46,47]. In this work, the properties of
rotating black hole solutions are discussed and some classes
of geodesics are explored. It is also found that within the
Cauchy horizon the weak and strong energy conditions are
violated.

In addition, the theory GR predicts the existence of
the spacetime structures capable of connecting two dis-
tant regions of the Universe or even of two different Uni-
verses, these objects are called wormholes [48]. And they
often require exotic matter that can violate energy con-
ditions to remain stable [48]. The term wormholes, was
established by Misner and Wheeler [49,50]. In 1935, Ein-
stein and Rosen found the first wormhole solution using
GR. Today this solution is known as the Einstein–Rosen
bridge or Schwarzschild wormholes [51]. Morris and Thorne
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were the ones who described a comprehensive study of
traversable wormholes. Their work has contributed greatly
to the spread of this subject [52,53]. A study of the quasi-
normal modes, echoes, and shadow radii generated by worm-
holes from the Einstein–Maxwell–Dirac theories [54,55] and
in the Randall–Sundrum braneworld context [56], both with-
out considering the use of exotic matter, was developed
by [57]. And still in the context of wormholes in Einstein–
Dirac–Maxwell theory without exotic matter in their struc-
ture, a study of epicyclic oscillatory motion was developed
and from the frequency of orbital and epicyclic motion of test
particles, the geodesics of quasiperiodic oscillations of high
frequency models observed in active galactic nuclei were dis-
cussed [58]. In the work [59] solutions for asymmetric worm-
holes and soft matter were found, however, without satisfying
the undesirable physical requirements of the Einstein–Dirac–
Maxwell theory.

Recently Simpson and Visser proposed a formalism called
black-bounce [60]. This structure of spacetime interpolates
between Schwarzschild black holes and wormholes, and is
described by a static spherically symmetric and asymptoti-
cally flat metric. Moreover, this new approach is free of sin-
gularities. In their construction, Simpson and Visser propose
a metric consisting of a real parameter which, depending on
its value, can describe the Schwarzschild metric, traversable
wormholes, and the black-bounce. Thus, spacetime is reg-
ular if the bounce parameter is nonzero. After its devel-
opment many works have been done on this subject, for
example studies regarding regularity, causal structure and
the energy conditions [61]. Solutions with GR coupled with
nonlinear electrodynamics and a scalar field [62–64]. Black-
bounce solutions with charge and rotation [65–67]. Weak
and strong deflecting gravitational lenses in black-bounce
spacetime [68]. A study of quasinormal modes was devel-
oped using the WKB method with Padé expansion [69], in
their development the authors conclude that the transition
between black hole and wormhole is characterized by echoes.
For some more discussion of this content see [70–72]. And
still in Simpson–Visser geometry a study of circular geodesic
motion and epicyclic oscillatory motion was developed [73].

In view of the above, alternative approaches have been
proposed to address the shortcomings of GR. There are, for
example, the f (R) theories [74–77], which are generaliza-
tions of the GR theory, where instead of describing the action
by a Ricci scalar R, arbitrary functions of this scalar are
used. Starobinsky theory is a proposal that accounts for quan-
tum corrections to an inflationary model by adding the R2

term to the Einstein–Hilbert [78] action. Other possibilities
for theories of gravity are to use the trace of the energy–
momentum tensor in the action, for example f (R,�) [79,80]
and f (R,�, Rμν�

μν) [81–86], where �μν represents the
energy–momentum tensor, � is the trace of this tensor,
and Rμν is the Ricci tensor. Another approach to explain

the expansion of the Universe, is to use functions of the
Gauss–Bonnet invariant, G, in the gravitational action with
f (G) [87–91], f (G,�) [92–94] and also f (R,G) [95–100].

But just as there are generalizations f (R), we also have
their analog in teleparallel theories, i.e. instead of functions
of the scalar R, arbitrary functions of the torsion scalar in
the Lagrangian f (T) [101] are used. This construction rep-
resents a reasonable explanation for the late acceleration of
the universe without including an exotic component [101].
This construction represents a reasonable explanation for the
late acceleration of the universe without including an exotic
component [101]. We also have other constructions from
this extension, like the one with the trace of the energy–
momentum tensor f (T,�) [102–106], the inclusion of the
Gauss–Bonnet analog invariant TG , which we occasionally
have the theory f (T, TG) [107]. Another interesting solution
of the extension f (T), was applied in the context of black-
bounce spacetime [108].

Recently, a new formulation of modified theories of grav-
ity based on nonlinear functions of the non-metricity scalar
f (Q) has been proposed [24,109]. Given the limitations of
GR and analogous to the modified theories f (R) and f (T),
we have, for example, also in the theory f (Q) a great inter-
est in phenomenological applications from a new point of
view, which is a promising basis for the study of its grav-
itational effects in general. On the level of cosmology of
the Friedmann–Lemaitre–Robertson–Walker (FLRW) uni-
verse, the f (Q) theory has the same interpretations as the
f (T) theory. However, these formulations show a differ-
ent behavior at the level of cosmological perturbation the-
ory [109]. Other cosmological approaches can be found
in references [110,111]. An extension of this theory, the
f (Q,�) theories, have also been developed [112–114].
Wormholes were applied on the basis of f (Q) [115–118].
The f (Q) was used to study topological vacuum solutions
described by a static and spherical symmetry [119]. Relevant
work has been done to study the evolution of primordial black
holes in gravity f (Q) [120]. Another interesting study of
black holes applied in this extension is the use of symmetries
for spherically symmetric and stationary spacetimes [121]. In
the work [122] the author explores the understanding of the
coincident doctrine building on the reference [121]. Space-
time configurations for the metric that are static and spheri-
cally symmetric are found and discussed.

So, our goal in this paper is to use the coincident gauge to
obtain and investigate solutions of the gravity f (Q) applied
in the context of black holes, regular black holes and black-
bounce space-time. The structure of this paper is organized as
follows, in the Sect. 2 we present the symmetric teleparallel
theory, the f (Q) theory and the coincident gauge. In Sect. 3
we discuss the metric we will use to obtain our solutions,
as well as the components of some geometric quantities and
hence the field equations of f (Q). We show in Sect. (4) solu-
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tions of black holes in the f (Q) theory, first in Sect. 4.1 we
find the linear solution. And subsequently in Sect. 4.2 we
discuss and analyze the case where the non-metricity scalar
is zero. In Sect. 5 we develop the solutions for regular black
holes, in the subsequent subsections we find the solutions
for the symmetric teleparallel theory and for the null non-
metricity scalar, respectively. In Sect. 6 we develop the solu-
tions for black-bounce spacetime for the linear case, and also
for the case where we consider Q = 0, and we also analyze
the energy conditions. In one of the cases, due to the com-
plexity of the solutions, we analyze the energy conditions
graphically. And finally, we present and discuss our conclu-
sions and the prospects for future research that we intend to
conduct in Sect. 7.

2 f (Q) gravity

The connection is a mathematical object that defines the
covariant derivative and tells us how tensors should be trans-
ported through the manifold. In general relativity, established
by Riemannian geometry, the connection is determined by a
symmetric connection known as Christoffel symbol or Levi-
Civita connection. However, there are two objects that make
up a more general connection formed by its antisymmetric
part and another component given by the relaxation of the
metricity condition. This connection is known as an affine
connection, its explicit form is,

�
β
μν =

{
β
μν

}
+ K β

μν + Lβ
μν, (1)

where the first term indicates the Christoffel symbol, which
is compatible with the metric,

{
β
μν

}
= 1

2
gβα

(
∂μgνα + ∂νgαμ − ∂αgμν

)
. (2)

The second term in turn is the antisymmetric component
of the connection known as contorsion, K β

μν , expressed in

terms of the torsion tensor T β
μν = 2Γ

β
[μν] = −T β

νμ,

K β
μν = 1

2
T β

μν + T β

(μ ν), (3)

and finally we have the disformation tensor Lβ
μν ,

Lβ
μν = 1

2
Qβ

μν − Q β

(μ ν) = Lβ
νμ, (4)

which is defined in terms of the non-metricity tensor,

Qβμν ≡ ∇βgμν, (5)

where we now have that the covariant derivative ∇μ is related
to the affine connection (1).

To simplify the equations of motion, it is appropriate to
define the superpotential, whose explicit form is,

Pβ
μν = −1

2
Lβ

μν − 1

4

[(
Q̃βgμν − Qβ

)
gμν + δ

β

(μQν)

]
,

(6)

where Qα = gμνQαμν = Q ν
α ν e Q̃α = gμνQμαν = Qν

αν

are the traces of the non-metricity tensor.
So we can define the non-metricity scalar in a more compact
form by contracting the non-metricity tensor (5) with the
superpotential (6),

Q = −Qβμν P
βμν. (7)

The curvature tensor described by general relativity is defined
by the Levi-Civita connection,

Rβ
μαν = ∂α�

β
νμ − ∂ν�

β
αμ + �

β
αρ�ρ

νμ − �
β
νρ�ρ

αμ, (8)

it is possible to perform a contraction in this tensor leading
to the Ricci tensor,

Rμν = Rβ
μβν, (9)

the contraction of the Ricci tensor gives us the Ricci scalar,

R = gμνRμν. (10)

Using the affine connection, the Riemann tensor (8) can
be rewritten from the following decomposition,

Rβ
αμν=

C
Rβ

αμν+
C∇μV

β
να−C∇νV

β
μα+V β

μρV
ρ
να−V β

νρV
ρ
μα,

(11)

where Rβ
αμν is described in terms of the affine connection,

C
Rβ

αμν and the derivative
C∇ are quantities that are related to

the Christoffel symbol (2), and the tensor V β
μν is given by,

V β
μν = K β

μν + Lβ
μν. (12)

Furthermore, for a torsion-free connection T β
μν = 0, and

from the appropriate contractions imposed on the Riemann
tensor, the relation (11) reduces to,

R = C
R − Q + C∇β

(
Qβ − Q̃β

)
, (13)
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where
C
R is the Ricci scalar expressed in terms of the Christof-

fel symbol.
Starting from the teleparallel condition (TC) given by

R = 0, i.e. we will have a flat space-time that establishes
the teleparallel geometries, we will find in this way a more
general approach associating the Ricci scalar with the non-
metricity scalar,

C
R = Q − C∇β

(
Qβ − Q̃β

)
. (14)

Consequently, this relation informs us that the non-metricity
scalar differs from the Ricci scalar by a total derivative term
or a boundary term,

BQ = C∇β

(
Qβ − Q̃β

)
. (15)

Then, the proposal of a gravitational theory known as
the symmetric teleparallel equivalent of general relativity
(STEGR), in which the gravitational interaction is described
by means of the non-metricity tensor, is thus given by the
following action,

SSTEGR =
∫ √−gd4x

[
Q + 2κ2Lm

]
. (16)

we have that κ2 = 8πG/c4, whereG is the gravitational con-
stant and Lm is the Lagrangian of the matter field. Note that
from the relation (14) it appears that the action of STEGR
theory differs from the Einstein–Hiblert action of GR by a
boundary term (BQ), which means that STEGR is an equiv-
alent formulation of general relativity.
A non-linear extension of the STERG theory, is to use the
following action,

SfQ =
∫ √−gd4x

[
f (Q) + 2κ2Lm

]
. (17)

where f (Q) can be an arbitrary function of the non-metricity
scalar Q.
The field equations of the theory f (Q), are obtained by vary-
ing the action (17) with respect to the metric [109],

2√−g
∇α

(√−g fQ (Q) Pα
μν

)+ 1

2
gμν f (Q)

+ fQ (Q)
(
PμανQ

αβ
ν − 2QαβμP

αβ
ν

)
= κ2�μν, (18)

where the momentum–energy tensor is given by �μν and to
simplify the equations we use the following notation fQ ≡
∂ f (Q)
∂Q

.
If we perform the functional variation of the equation (16),

we find the linear equations of the STEGR theory, which are
obtained when we do in (18) f (Q) = Q.

We can rewrite the equations of motion (18) in a more con-
venient way according to the proposal of [121,123,124],

fQ (Q)Gμν − 1

2
gμν

(
f (Q) − fQ (Q)Q

)

+2 fQQ (Q) Pα
μν∂αQ = κ2�μν. (19)

where Gμν is the Einstein tensor described by (2) and we

denote fQQ ≡ ∂
∂Q

(
∂ f (Q)
∂Q

)
.

If we assume that the matter content behaves like a perfect
fluid, where �

μ
ν = diag[ρ,−pr ,−pt ,−pt ], we have that the

energy conditions can be extended to the theory f (Q).

NEC1,2 = SEC1,2 = WEC1,2 = ρ + pr,t ≥ 0, (20)

SEC3 = ρ + pr + 2pt ≥ 0, (21)

DEC1,2 = ρ − | pr,t |≥ 0 ou ρ ± pr,t ≥ 0, (22)

DEC3 = WEC3 = ρ ≥ 0. (23)

where we associate the radial and tangential components with
indices 1 and 2, respectively.

Starting from TC, which corresponds to a variety with a
plane geometry characterizing a pure inertial connection, it
is possible to perform an gauge transformation of the linear
group GL(4,R) parameterized by α

μ [25,109],

�α
μν =

(
−1

)α

β
∂[μ

β
ν]. (24)

So we can write that the most general possible connec-
tion, through the general element of GL(4,R), which is
parametrized by the transformation of α

μ = ∂μξα , where
ξα is an arbitrary vector field,

�α
μν = ∂xα

∂ξρ
∂μ∂νξ

ρ. (25)

This result shows us that the connection can be removed by a
coordinate transformation.The transformation that results in
the connection (25) being removed is called gage coincident
[24].

Consequently, from the coincident gauge we have that the
non-metricity tensor defined by (5) becomes,

Qβμν ≡ ∂βgμν. (26)

In this manuscript we use the coincident gauge to compute
our solutions.

We will calculate the Kretschmann scalar K = Rβμνα

Rβμνα to ascertain the regularity of the space-time of our
solutions. Then, from the expression (11) this scalar takes
the form of
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K = C
K + L

K + 2
C
Rβαμν

(
gδβ∇μL

δ
να−gδβ∇νL

δ
μα

+LβμρL
ρ
να−LβνρL

ρ
μα

)
. (27)

where
C
K is the Kretschmann scalar described by GR and

L
K

is the scalar depending uniquely on the distortion.
From this we can conclude that a spacetime is regular, i.e.

without curvature singularities, if the Kretschmann scalar
shows no divergences. So we calculate the Kretschmann
scalar for each model. But since the curvature Rα

βμν = 0,
which directly implies that the global Kretschmann scalar
(27) is null, This gives us the following relation,

− L
K−2

C
Rβαμν

(
gδβ∇μL

δ
να−gδβ∇νL

δ
μα

+LβμρL
ρ
να−LβνρL

ρ
μα

)
=C
K .

From this relation, we will then use
C
K to determine the reg-

ular space-time solutions that we will discuss in the next
sections.

2.1 Geodesics

Let us start with the Lagrangian to find the equations of the
geodesic

L = gμν ẋ
μ ẋν = ε, (28)

where ε → (−1, 0, 1) which indicate respectively the space-
like, lightlike and timelike geodesics. Then we will only have

L=
[
g00 (r) ṫ2+g11 (r) ṙ2+g22 (r) θ̇2+g33 (r, θ) φ̇2

]
=ε.

(29)

The Euler–Lagrange equation

d

dτ

(
∂L
∂ ẋμ

)
− ∂L

∂xμ
= 0, (30)

give us the following equations for the coordinates t , r , θ and
φ

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g00(r)ṫ = E .

g11 (r) r̈ − [g′
00 (r) ṫ2 + g′

11 (r) ṙ2 + g′
22 (r) θ̇2 + g′

33 (r, θ) φ̇2
]

= δ

g22 (r) θ̈ + ġ22 (r) θ̇ − g̊33 (r, θ) φ̇2 = 0

g33 (r, θ) φ̇ = −l.

(31)

where E and l are the energy and angular momentum, respec-
tively. And in our notation we use that ( ′ ) denotes the deriva-
tive with respect to the radial coordinate, (˚) represents the
derivative with respect to proper time.

Starting from the following expression

gμν ẋ
μ ẋν = g00 (r) ṫ2 + g11 (r) ṙ2 + g22 (r) θ̇2

+ g33 (r, θ) φ̇2 = ε. (32)

Now lets substitute in the Eq. (32) the following relations

g00(r)ṫ = E, (33)

g33 (r, θ) φ̇ = −l, (34)

choosing the motion in the equatorial plane to be θ = π/2,
we get

ṙ2 = g11 (r) ε −
(

g11 (r)

g00(r)g33(r, θ)

)

×
(
g33(r, θ)E2 + g00(r)l

2
)

. (35)

Another very important expression that will help us under-
stand the causal structure of our geometry in a meaning-
ful way is the geodesics. Geodesics describe the paths on
which the particles move. However, there are two types
of geodesics, namely those that describe the shortest dis-
tance between two points on a curve, the so-called metric
geodesics, and affine geodesics, which define the straight-
est possible curves in a geometry. In Riemannian geome-
try or general relativity, the distinction between these two
geodesics is irrelevant because the two geodesics are equiv-
alent. However, in more general geometries, as in the case of
symmetric teleparallel theory, the two definitions are relevant
because we have one equation for the geodesic described by
the connection describing all of spacetime and another by the
Levi-Civita connection. Then, in order to describe and better
understand the causal structure from the solutions of each
case we will treat, we will also calculate the equations of the
geodesics, and we will use the geodesics described by the
Levi-Civita connection because they are the most compati-
ble with the observational data [125]. Since the equation of
the geodesic with the global space-time connection is simply
d2xμ

dτ 2 = 0, which clearly cannot describe the geodesics of
black holes and black bounces, we must surely choose the
equation of the geodesic with the Levi-Civita connection.

3 Definition of the metric, geometric objects, and the
equations of motion

We will now point out the main components of the geometric
quantities of the theory with which we are concerned in this
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manuscript. However, in order to simplify the discussion of
the solutions we will deal with later in the context of black
holes, regular black holes and black-bounce, we assume the
most general possible static and spherically symmetric metric
represented by,

ds2 = ea(r)dt2 − eb(r)dr2 − �(r)2
[
dθ2 + sin2 (θ) dφ2

]
,

(36)

where a(r), b(r) and �(r) are radial functions of the coor-
dinates and are independent of time, and the determinant of
the metric tensor is given by g = −ea(r)+b(r)�4(r) sin2 θ .
Note that the metric constraint is determined by the value of
�(r). Therefore, for each case we will discuss later, we will
give the corresponding metric from (36).

With the metric defined, we will now compute the com-
ponents of the tensor objects that establish the symmetric
teleparallel theory. Thus, we have that the non-zero compo-
nents of the non-metricity tensor (5) are,

Q100 = ea(r)a′ (r) , Q111 = −eb(r)b′ (r) ,

Q122 = −2�(r)�′(r),
Q133 = −2 sin2 (θ)�(r)�′(r),
Q233 = −2 cos (θ) sin (θ)�2(r). (37)

where the symbol (′) represents the derivation according to
the coordinate r . In possession of the nonmetricity tensor, we
obtain the nonzero components of the disformation tensor
(4),

L0
01 = L0

10 = −1

2
a′ (r) ,

L1
00 = −1

2
e[a(r)−b(r)]a′ (r) ,

L1
11 = −1

2
b′ (r) ,

L1
22 = e−b(r)�(r)�′(r),

L1
33 = e−b(r) sin (θ)�(r)�′(r),

L2
21 = L2

12 = L3
31 = L3

13 = −�′(r)
�(r)

,

L2
33 = cos (θ) sin (θ) ,

L3
32 = L3

23 = − cot (θ) . (38)

The nonzero components of the (6) are:

P0
01 = P0

10 = 1

8

[
a′(r) − b′(r) − 4�′(r)

�(r)

]
;

P1
00 = −e[a(r)−b(r)]�′(r)

�(r)
;

P0
02 = P0

20 = P1
12 = P1

21 = −1

4
cot (θ) ;

P1
22 = 1

4
e−b(r)�(r)

[
�(r)a′(r) + 2�′(r)

] ;

P1
33 = 1

4
e−b(r) sin2(θ)�(r)

[
�(r)a′(r) + 2�′(r)

] ;

P2
00 = −ea(r) cot(θ)

2�2(r)
;

P2
11 = eb(r) cot(θ)

2�2(r)
; P2

12 = P2
21 = P3

13 = P3
31

= −1

8

[
a′(r) + b′(r)

] ;

P3
32 = P3

23 = cot(θ)

4
. (39)

From the Eq. (7) the non-metricity scalar is given by,

Q = −2e−b(r)�′(r)
[
�(r)a′(r) + �′(r)

]

�2(r)
. (40)

The evolutionary equations, considering the metric (36) and
the Eqs. (37), (38), (39) and (40) are given below,

1

2

[
f (Q) − fQ(r)Q(r)

]
− 2e−b(r) fQQ(r)Q′(r)�′(r)

�(r)
+

+ e−b(r) fQ(r)

�2(r)

[
�(r)

(
b′(r)�′(r)−2�′′(r)

)+eb(r)−�′2(r)
]

= 1

2
κ2ρ, (41)

1

2
f (Q) − 1

2
fQ(r)

×
[
Q(r) + 2e−b(r)

(
�(r)a′(r)�′(r) − eb(r) + �′2(r)

)

�2(r)

]

= −1

2
κ2 pr , (42)

1

2
e−b(r) fQQ(r) cot(θ)Q′(r) = 0, (43)

fQQ(r) cot(θ)Q′(r)
�2(r)

= 0, (44)

−e−b(r) f (Q)

4�(r)

[
2a′(r)�′(r)+�(r)

(
2a′′(r)−a′(r)b′(r)+a′2(r)

)

−2b′(r)�′(r) + 2eb(r)Q(r)�(r) + 4�′′(r)
]

+ e−b(r)

4�(r)

×
[
−2 fQQ(r)Q′(r)

(
�(r)a′(r)+2�′(r)

)
+2eb(r) f (Q)�(r)

]

= −1

2
κ2 pt . (45)

The geodesic equation for the (36) metric is given as

(
dr

ds

)2

= −e−a(r)−b(r)
[
l2ea(r) + E2�2(r)

]

�2(r)
+ e−b(r)ε,

(46)

where l is angular momentum, E is energy and s is the affine
parameter.

In this manuscript we will analyze two cases. The first
case deals with the linear theory, that is, with the equation
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(19), in general we see that we are clearly in the GR the-
ory with f (Q) = f0Q + f1, with effective cosmological
constant being given by e f f = 1

2
f0
f1

and κ2
e f f = κ2

f1
. The

next case would be described with the non-metricity Q = 0,
f (Q) = f0 and fQ(Q) = f1, where we fall back to GR with

the cosmological constant e f f = 1
2 f0 f1 and κ2

e f f = κ2

f1
.

The components of the non-metricity tensor (37), show that
for the case of the Minkowski metric where a′ = b′ = 0,
�(r)′ = 1 and �(r) = r , reveal that not all components can-
cel each other out. However, in the case where the geometry
has only curvature, we have that all components of the Rie-
mann tensor for the Minkowski metric are identically zero,
and so are all other objects described from the curvature. We
see that this is not analogously true for a space which has
only the non-metric tensor. The same is true for the disfor-
mation tensor (4), whose components are described by (38),
and the same is true for the superpotential, whose compo-
nents are given by (39). Thus, using the equation (40) we see
that the non-metricity scalar given by (48) is not an invariant
on diffeomorphism, this is in contrast to the invariant of GR
, which is the curvature scalar, since we can already see for
the Minkowski metric that the nonmetricity scalar diverges at
the point where r = 0. We note, however, that the definition
of the equation (15) with zero curvature for r = 0 has no
divergence.

4 Black hole solutions in the f (Q) theory

In this topic we will define the metric on which we will
develop our black hole solutions. Then, using the equations of
motion, we will discuss the black hole solutions for STEGR
and for the case when the non-metricity scalar is zero.

The black hole solutions are obtained by applying �(r) =
r to (36) so that the metric is described by,

ds2 = ea(r)dt2 − eb(r)dr2 − r2
[
dθ2 + sin2 (θ) dφ2

]
, (47)

where the determinant of the metric tensor is given by g =
−ea(r)+b(r)r4 sin2 θ .
From (7), the non-metricity scalar for the metric in question
(47), becomes

Q = −2e−b(r)
[
ra′(r) + 1

]

r2 . (48)

Thus, assuming �(r) = r in the (37), (38) and (39) compo-
nents, and using the scalar (48) the evolutionary equations
are written as,

1

2
[ f (Q) − fQ(r)Q(r)] − 2e−b(r) fQQ(r)Q′(r)

r

+e−b(r) fQ(r)
[
rb′(r) + eb(r) − 1

]

r2 = 1

2
κ2ρ, (49)

1

2

{
f (Q) − fQ(r)

[
Q(r) − 2e−b(r)

(
ra′(r) − eb(r)

)

r2

]}

= −1

2
κ2 pr , (50)

1

2
e−b(r) fQQ(r) cot(θ)Q′(r) = 0, (51)

fQQ(r) cot(θ)Q′(r)
r2 = 0, (52)

−e−b(r) fQ(r)

4r

[
2a′(r) − 2b′(r)

+r
(

2a′′(r) − a′(r)b′(r) + a′2(r) + 2eb(r)Q′(r)
)]

+e−b(r)

4r

[
2eb(r) f (Q)r − 2 fQQ(r)Q′(r)

(
ra′(r) + 2

)]

= −1

2
κ2 pt . (53)

4.1 Black Holles in symmetric teleparallel theory
equivalent to general relativity

With the intention of finding regular solutions, we consider
the following functions f (Q) = Q + 2λ, fQ(r) = 1 and
fQQ(r) = 0, where λ is a constant that reduces the expres-
sions (49–53) to the following forms,

e−b(r)
(
rb′(r) + eb(r) − 1

)

r2 + λ = κ2ρ(r) (54)

e−b(r)
(−ra′(r) + eb(r) − 1

)

r2 + λ = −κ2 pr (r) (55)

e−b(r)

4r

{
4
(
ra′(r) + 1

)

r
+ 2b′(r) + 2reb(r)

×
[

2λ − 2e−b(r)
(
ra′(r) + 1

)

r2

]}

+e−b(r)

4r

{
2b′(r)−2ra′′(r)−a′(r)

(
2−rb′(r)

)−ra′2(r)
}

=−κ2 pt (r) (56)

Because of the spherical symmetry of the Einstein solutions,
we can make pr (r) = −ρ(r). So we assume that a(r) =
−b(r), so the evolutionary equations are as follows,

e−b(r)
(
rb′(r) + eb(r) − 1

)

r2 + λ = κ2ρ(r) (57)

e−b(r)
(
rb′(r) + eb(r) − 1

)

r2 + λ = κ2ρ(r) (58)

e−b(r)

4r

[
2rb′′(r) + 2reb(r)

(
2λ − 2e−b(r)

(
1 − rb′(r)

)

r2

)
− rb′2(r)

]
(59)
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+e−b(r)

4r

[
(
2−rb′(r)

)
b′(r)+2b′(r)+4

(
1−rb′(r)

)

r

]

= −κ2 pt (r) (60)

Now we have that the scalar of nonmetricity is,

Q = 2e−b(r)
(
rb′(r) − 1

)

r2 . (61)

And the scalar of Ricci is,

C
R = e−b(r)

[−r2b′′(r) + r2b′(r)2 − 4rb′(r) − 2eb(r) + 2
]

r2 .

(62)

We know that symmetric teleparallel differs from general
relativity except for one divergence term. So, to ensure the
correctness of our solutions, we take the derivative of the
traces of the non-metricity tensor for the black hole case.
On this occasion we find the following expression for the
boundary term (15),

BQ=e−b(r)
[
r2b′′(r)+r2

(−b′(r)2
)+6rb′(r)+2eb(r)−4

]

r2 .

(63)

it is therefore easy to verify that it follows from the Eqs. (61),
(62) and (63) in (14) that our solutions are satisfied.
For the black hole we consider that b(r) = − ln

( − 2 M
r −

λr2

3 + 1
)
, which by symmetry gives us the following compo-

nents ρ(r) = 2λ
κ2 , and pt (r) = − 2λ

κ2 . Which recover the black
hole solutions of general relativity. For these conditions the
non-metricity scalar is described by

Q = 2λ − 2

r2 . (64)

And the Ricci scalar is,

C
R = −4λ. (65)

The total derivative term becomes,

BQ = 6λ − 2

r2 . (66)

Again using (14) we verify that the expressions for the non-
metricity scalars (64) and Ricci, together with the term (66),
guarantee the veracity of our solutions.

As we commented above, the non-metricity scalar (64)
may not adequately indicate what happens to spacetime, but

for this solution in particular, the Kretschmann
C
K is divergent

at the point r = 0, indicating a singularity at r = 0, and

this time the non-metricity scalar correctly indicates what
happens to spacetime in the case of r = 0 which diverges.
Moreover, the analysis of geodesics for this approach leads
to the same results as [126,127].

4.2 Black hole solution considering Q = 0

For this case we will use b(r) = −2 ln
(
1 − 2M

r

)
, where

Q = 0 we have,

−2e−b(r)
(
ra′(r) + 1

)

r2 = 0, (67)

whose solution is,

a(r) = − ln

(
r

r0

)
. (68)

Where r0 is a constant. We will use in our solutions r0 = 1.
We note that the Kretschmann scalar for this case diverges

in the limit from r → 0. And the Kretschmann scalar ana-
lyzed at the horizon radius, is described by 1/4M4. In the
limit of r → ∞ the Kretschmann scalar now shows an
asymptotically flat behavior.

The equation of the geodesic (46), which is described by
the parameters a(r) and b(r), is thus in this case dated by

ṙ2 = −1

r

(
1 − 2M

r

)2 (
E2r2 + l2

r

)
+
(

1 − 2M

r

)2

ε,

(69)

where l is the angular momentum and E is the energy.
We verify that the geodesic equation (69) for r is very

small. We note that the solution obtained for r(s) diverges
when we take the limit of s → −∞, which thus implies that
this geodesic equation is extensible. As well as for very large
r , where we have that the geodesic equation is also extensible
to future infinity. Now when we now consider this geodesic
equation (69) for r → 0, we have as a solution a function of
r(s) described by the following approximation r(s) ∼ s1/3.
This approximation shows us that the geodesic equation is
not extensible to any real value. This result can be confirmed

using the Kretschmann scalar
C
K , which diverges in the limit

r(s) → 0, which agrees with our previously discussed result.
We also note that the solution of the geodesic equation, when
evaluated at the horizon radius, presents r(s) proportional to
a constant, i.e., the geodesic equation is extensible at this
horizon.

Let us assume the following functions f (r) = 0, fQ(r) =
1 and fQQ(r) = 0. Now the components (49–53) are given
by,

ρ(r) = 4M2

κ2r4 , (70)
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pr (r) = − 1

κ2r2 , (71)

pt (r) = r2 − 4M2

4κ2r4 . (72)

Since we are doing Q = 0, we have that the Ricci scalar (13)
becomes,

C
R = −12M2 + r2

2r4 , (73)

where the divergence term (15) is given by,

BQ = 12M2 + r2

2r4 . (74)

Then, we have that R and BQ satisfy (14).
Since we have treated a case where the non-metricity

scalar Q = 0, we cannot treat this scalar to explore the diver-
gences of the space, but to compensate, the boundary term
BQ is divergent, indicating a singularity. As we have already

mentioned above,
C
K also diverges at this point.

C
K=1296M4−1920M3r+952M2r2−160Mr3+17r4

4r8 . (75)

5 Regular Black Hole solutions in the f (Q) theory

Regular black hole solutions are appreciated because they
avoid divergences. In this context, we want to find regular
STEGR solutions and Bardeen-type black hole solutions in
this section. Then we note that the equations found agree
with the expressions of the general relativity theory. We also
study solutions where we consider the non-metricity scalar
to be zero, and consequently analyze the expressions of the
energy conditions.

However, although we call them regular black holes, these
solutions are singular, because of the functional form of the
metric component.

5.1 Regular Black Hole solutions at STTEGR

Regular black hole solutions in STTEGR can be obtained
when we consider in (41–45), f (r) = Q, fQ(r) = 1 and
fQQ(r) = 0, having the non-metricity scalar,

Q = −2e−b(r)
(
ra′(r) + 1

)

r2 . (76)

Therefore, the evolutionary equations in STTEGR are,

e−b(r)
(
rb′(r) + eb(r) − 1

)

r2 = κ2ρ(r), (77)

e−b(r)
(
eb(r) − ra′(r) − 1

)

r2 = −κ2 pr (r), (78)

e−b(r)

4r

[
2b′(r) − 2a′(r)

+r
(
a′(r)b′(r) − a′(r)2 − 2a′′(r)

+2eb(r)Q(r) − 2eb(r)Q′(r)
)]

= −κ2 pt (r). (79)

In spherical symmetry, by making pr (r) = −ρ(r) and
imposing a(r) = −b(r), the evolutionary equations are
reduced as,

e−b(r)
[
rb′(r) + eb(r) − 1

]

r2 = κ2ρ(r) (80)

e−b(r)
[
rb′(r) + eb(r) − 1

]

r2 = κ2ρ(r) (81)

e−b(r)
[
2rb′′(r) − rb′(r)2 + (2 − rb′(r)

)
b′(r) + 2b′(r)

]

4r
= −κ2 pt (r) (82)

5.2 Solution for the regular Bardeen black hole

The Bardeen model is a particular case given by b(r) =
− ln

(
1 − 2 Mr2

(q2+r2)
3/2

)
, so the equations of motion from the

expressions (80–82) are,

6Mq2

κ2
(
q2 + r2

)5/2
= ρ(r), (83)

M
(
9q2r2 − 6q4

)

κ2
(
q2 + r2

)7/2 = pt (r). (84)

Now, in this case, the non-merticity scalar takes the form
of,

Q = 12Mq2

(
q2 + r2

)5/2
− 2

r2 . (85)

From the definition of the de Ricci scalar we obtain,

C
R = 6Mq2

(
r2 − 4q2

)
(
q2 + r2

)7/2 . (86)

The boundary term is described by,

BQ = 6Mq2r2

(
q2 + r2

)7/2 + 36Mq4

(
q2 + r2

)7/2 − 2

r2 , (87)

therefore, we have that the Eqs. (85), (86) and (87) satisfy
the equation (14). We see that the non-metricity scalar (85)
diverges in the limit r → 0, but by subtracting (87), we see
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that the Ricci scalar (86) is always finite for any value of the
coodenate r .

This solution presents a divergence due to the metric func-
tion a(r), which was obtained from the metric function b(r)
from the Bardeen model and throughQ = 0. This is reflected
in other quantities like the geodesics and the curvature scalar.

Calculating the value of the Kretschmann
C
K for the

Bardeen metric, we see that the Kretschmann scalar is finite
for any value of the radial coordinate, which proves that this
spacetime is regular. Also here we find out that only with
the analysis of the non-metricity scalar it is not possible to
determine what happens with the space-time.

5.3 First solution of regular black holes with the zero
non-metricity scalar, Q = 0

Suppose that b(r) = −2 ln
[
1 − 2Mr2/(r2 + q2)3/2

]
and in

this way we can find the solution for a(r) from the condition
Q = 0. In the case of regular black holes, the non-metricity
scalar (7), becomes

0 = −2e−b(r)
[
ra′(r) + 1

]

r2 , (88)

then we find the following solution,

a(r) = − ln

(
r

r0

)
(89)

where r0 is a constant. We will use r0 = 1.
We also compute the Kretschamnn scalar in terms of the

metric functions a(r) and b(r) of this case, so we see that this
scalar diverges when we evaluate the limit r → 0. Evaluating
the Kretschmann scalar on the horizon radius, we see that
this scalar depends only on the constants which are present
in this case. And when we analyze the Kretschmann scalar
for r → ∞, we notice an asymptotically flat behavior.

The equation of the geodesic for this case becomes,

ṙ2 = −1

r

(
E2r2 + l2

r

)(
1 − 2Mr2

(
q2 + r2

)3/2

)2

+ε

(
1 − 2Mr2

(
q2 + r2

)3/2

)2

, (90)

where l is the angular momentum and E is the energy.
Checking the geodesic equation (90) for r → ∞, we

note that the solution found for r(s) is extensible when we
make s → ∞. From this we conclude that the geodesic
equation is extensible to this limit. And when we consider
r to be very small, we also find that the geodesic equation
is extensible. When we evaluate the geodesic equation at the
horizon radius, we obtain a solution for r(s) ∼ s2, indicating
that this geodesic equation is extensible.

To simplify the equations we will adopt that f (Q) = 0,
fQ(r) = 1 and fQQ(r) = 0. From the evolutionary equa-
tions, but taking into account the symmetry in question, it
follows that the components of the momentum–energy ten-
sor are written in the form,

κ2ρ(r) =
4M
(
M
(
r4 − 5q2r2

)+ 3q2
(
q2 + r2

)3/2
)

(
q2 + r2

)4 ,

(91)

κ2 pr (r) = − 1

r2 , (92)

κ2 pt (r) = −M2r2
(
r2−5q2

)
(
q2+r2

)4 − 3Mq2

(
q2+r2

)5/2
+ 1

4r2 .

(93)

Performing the limit r → 0 we have that ρ(r) → 6 M/q3κ2,
pr → −∞ and pt → +∞. For the r → ∞ limit, on the
other hand, all components are zero.

Since we are considering Q = 0, we have that the Ricci
scalar is now given by,

C
R =

6M
(

5Mq2r2
√
q2+r2−Mr4

√
q2+r2−3q2

(
q2+r2

)2)

(
q2+r2

)9/2

− 1

2r2 . (94)

And the term of divergence (15) reads as,

BQ =
6M

(
−5Mq2r2

√
q2+r2+Mr4

√
q2+r2+3q2

(
q2+r2

)2
)

(
q2+r2

)9/2

+ 1

2r2 . (95)

And again, it is clear to see, in conjunction with the adopted
non-metricity scalar, that the expressions (94) and (95) satisfy
(14).

Starting from the equations of motion (91–93) and the
expressions of the energy conditions (20–23) for outside the
event horizon, i.e. in regions where t is the time component,
we have that the energy conditions are now given by,

NEC1 = SEC1 = WEC1

= 1

κ2

⎡
⎣4M

(
M
(
r4 − 5q2r2

)+ 3q2
(
q2 + r2

)3/2
)

(
q2 + r2

)4 − 1

r2

⎤
⎦ ≥ 0

(96)
NEC2 = SEC2 = WEC2

= 1

4κ2

[
12M2r2

(
r2 − 5q2

)
(
q2 + r2

)4 + 36Mq2

(
q2 + r2

)5/2
+ 1

r2

]
≥ 0,

(97)
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SEC3 = 1

2κ2

[
4M2r2

(
r2 − 5q2

)
(
q2 + r2

)4 + 12Mq2

(
q2 + r2

)5/2
− 1

r2

]
≥ 0,

(98)

DEC1 = 1

κ2

⎡
⎣4M

(
M
(
r4 − 5q2r2

)+ 3q2
(
q2 + r2

)3/2
)

(
q2 + r2

)4 + 1

r2

⎤
⎦ ≥ 0,

(99)

DEC2 = 1

4κ2

[
20M2r2

(
r2 − 5q2

)
(
q2 + r2

)4

+ 60Mq2

(
q2 + r2

)5/2
− 1

r2

]
≥ 0,

(100)
DEC3 = WEC3

=
4M
(
M
(
r4 − 5q2r2

)+ 3q2
(
q2 + r2

)3/2
)

κ2
(
q2 + r2

)4 ≥ 0. (101)

Analyzing our energy conditions above, we find that
NEC1, SEC3 and DEC are violated when we evaluate these
solutions for very small r . And only the NEC2 energy condi-
tion is satisfied. The energy conditions NEC1, SEC3, DEC2

and DEC3, are violated when we evaluate these energy con-
ditions for very large r . While the energy conditions NEC2

and the DEC1, are satisfied.
We will not show all energy conditions inside the event

horizon, neither for this case nor for the cases of the next
solutions, because all components of the metric do not change
their sign when analyzed inside the event horizon. So we
will always have one temporal and three spatial coordinates.
It follows that the energy conditions outside the horizon are
the same as the energy conditions inside the horizon. So in
all following cases, i.e. for solutions of Q = 0, we will show
only the energy conditions outside the event horizon.

5.4 Second solution of regular black holes with zero
non-metricity scalar, Q = 0

Now let us adopt b(r) = −2 ln[1 − 2Mr/(r2 + A2)]. In the
case of regular black holes the non-metricity scalar (7) for
this case is,

0 = −2e−b(r)
[
ra′(r) + 1

]

r2 , (102)

whose solution is,

a(r) = − ln

(
r

r0

)
, (103)

where r0 is a constant. We will use r0 = 1.
In this case, the Kretschmann scalar diverges when we

take the r → 0 limit. At the horizon radius the Kretschamnn
scalar depends only on the constants. And when we evaluate
it at r → ∞, this scalar has an asymptotically flat behavior.

The equation of the geodesic is described by,

ṙ2 = −1

r

(
1 − 2Mr

A2 + r2

)2 (
E2r2 + l2

r

)

+ε

(
1 − 2Mr

A2 + r2

)2

, (104)

where l is the angular momentum and E is the energy.
By analyzing the geodesic equation (104) for r very large,

we obtain a solution for r(s) that diverges at infinity at s →
∞, suggesting that the geodesic equation is extensible at
future infinity. When we analyze the equation of the geodesic
for r(s) → 0, we find that the equation of the geodesic is
not extensible for this condition. This can also be checked
using the Kretschmann scalar, since this scalar diverges in the
limit of r(s) → 0. We now analyze the geodesic equation
for the horizon radius, which in this case is given by r →
M + √

M2 − A2. The solution we obtain for r(s) shows us
that this equation is extensible when evaluated in this limit.
Therefore, this spacetime is geodesically complete.

Considering f (Q) = 0, fQ(r) = 1 and fQQ(r) = 0.
Now the moment-energy tensor has the components as,

κ2ρ(r) =
4M
(

2A4 + A2r(2r − 3M) + Mr3
)

r
(
A2 + r2

)3 , (105)

κ2 pr (r) = − 1

r2 , (106)

κ2 pt (r) =(
A2+r(r−2M)

) (
A4+2A2r(r−3M)+r3(2M+r)

)

4r2
(
A2+r2

)3 .

(107)

Performing the limit r → 0 we have an indeterminacy for
the component ρ(r) → 0, for the other components we have
divergences pr → −∞ and pt → +∞. And for the r →
−∞ limit the components ρ(r), pr (r) and pt (r) are null.
Then, the representation of the Ricci scalar is,

C
R =
− A6+3A4r(8M+r)+3A2r2

(−12M2+8Mr+r2
)+12M2r4+r6

2r2
(
A2+r2

)3 .

(108)

And the expression for the total derivative term (15),

BQ =
A6+3A4r(8M+r)+3A2r2

(−12M2+8Mr+r2
)+12M2r4+r6

2r2
(
A2+r2

)3 .

(109)

Since the non-metricity scalar is zero, the terms of R (108)
differ from BQ (109) by a negative sign, which guarantees
our results of (14). For this solution, since Q = 0 and by the

direct relation that
C
R = −BQ , we find that for the point at
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r = 0 a singularity is evident. So we can conclude that for
the solutions of Q = 0 the solutions remain singular even if
the metric function b(r) is regular. In contrast to the linear
theory, it is shown that spacetime is regular even if the non-
metricity scalar is singular and the metric functions a(r) and
b(r) are regular.

Thus, the energy conditions outside the horizon are,

NEC1 = SEC1 = WEC1 = 1

r2κ2

[
4Mr

(
2A4 + A2r(2r − 3M) + Mr3

)
(
A2 + r2

)3 − 1

]
≥ 0, (110)

NEC2 = SEC2 = WEC2 = A6 + 3A4r(8M + r) + 3A2r2
(−12M2 + 8Mr + r2

)+ 12M2r4 + r6

4κ2r2
(
A2 + r2

)3 ≥ 0, (111)

SEC3 = −A6 + A4r(8M − 3r) + A2r2
(−12M2 + 8Mr − 3r2

)+ 4M2r4 − r6

2κ2r2
(
A2 + r2

)3 ≥ 0, (112)

DEC1 = 1

κ2r2

[
4Mr

(
2A4 + A2r(2r − 3M) + Mr3

)
(
A2 + r2

)3 + 1

]
≥ 0, (113)

DEC2 = −A6 + A4r(40M − 3r) + A2r2
(−60M2 + 40Mr − 3r2

)+ 20M2r4 − r6

4κ2r2
(
A2 + r2

)3 ≥ 0, (114)

DEC3 = WEC3 = 4M
(
2A4 + A2r(2r − 3M) + Mr3

)

κ2r
(
A2 + r2

)3 ≥ 0. (115)

We note that the energy conditions NEC1, SEC3, and
DEC2 are violated for very small r , while the energy con-
ditions NEC2, DEC1 and DEC3 are satisfied. And for r
very large, the energy conditions NEC1, SEC3, DEC2 are
violated, while the energy conditions NEC2, DEC1, and
DEC3 are satisfied.

6 Black-bounce solutions in the f (Q) theory

We will now examine the black-bounce solutions in f (Q)

theory. Complementing this, we develop the solutions for

STEGR starting from the Simpson–Visser interpretation and
then or the cases where we consider the non-metricity scalar
to be zero.We note that the equations of the components of
the momentum–energy tensor, which we obtain in the case
of STEGR, are the same as in the case of the black-bounce
of general relativity. For each case we address, we calculate
the energy conditions and discuss their authenticity.

Black-bounce type solutions are obtained by considering the
static spherically symmetric line element (36), recall

ds2 = ea(r)dt2 − eb(r)dr2 − �(r)2
[
dθ2 + sin2 (θ) dφ2

]
,

whose the evolutionary equations are given by (41–45).

6.1 Solutions of black-bounce in symmetric teleparallel
theory equivalent to general relativity (STTEGR)

Here, too, we can obtain black-bounce solutions in STTEGR
with the help of the evolutionary equations (41–45) f (Q) =
Q, fQ(r) = 1 and fQQ(r) = 0.

e−b(r)
[
�(r)

(
b′(r)�′(r) − 2�′′(r)

)+ eb(r) − �′(r)2
]

�(r)2 = κ2ρ(r), (116)

−e−b(r)
[
�(r)a′(r)�′(r) − eb(r) + �′(r)2

)

�(r)2 = κ2 pr (r), (117)

e−b(r)
(−2a′(r)�′(r)−�(r)

(
2a′′(r)−a′(r)b′(r)+a′(r)2

)+2b′(r)�′(r)−4�′′(r)
]

4�(r)
= −κ2 pt (r). (118)
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Using the symmetry where a(r) = −b(r), �(r) =√
L2

0 + r2 and b(r) = − ln
[
1 − (2M/�(r))

]
, we find the

following components,

ρ(r) = −
L2

0

(√
L0

2 + r2 − 4M
)

κ2
(
L2

0 + r2
)5/2

, (119)

pr (r) = − L2
0

κ2
(
L2

0 + r2
)2 , (120)

pt (r) =
L2

0

(√
L2

0 + r2 − M

)

κ2
(
L2

0 + r2
)5/2

. (121)

Note that the expressions (119–121) are the same black-
bounce solutions obtained in the Simpson–Visser model of
general relativity [60]. So, from symmetric teleparallel theory
we get the same black-bounce solutions as with the general
relativity theory.
Now we have that the non-metricity scalar is given by,

Q = − 2r2

(
L0

2 + r2
)2 . (122)

Thus, the Ricci scalar is,

C
R =

2L0
2
(√

L0
2 + r2 − 3M

)

(
L0

2 + r2
)5/2

. (123)

We get the following expression for the boundary term,

BQ = 6L0
2M

(
L0

2 + r2
)5/2

− 2

L0
2 + r2

, (124)

and from the expressions (122), (123) and (124) it follows
again that the relation (14) is satisfied. We can verify that
(122), (123) and (124), are always finite for any value of the
radial coordinate r .

We note here that, unlike solutions for black holes and
regular black holes, both the non-metricity scalar Q and the
boundary term BQ are always regular throughout spacetime.
This was not the case even for the Minkowski metric.

6.2 First black-bounce solution with zero non-metricity
scalar, Q = 0

Black-bounce solutions can be obtained by means of the

following imposition �(r) =
√
L2

0 + r2, where we use
b(r) = −2 ln [1 − (2 M/�(r))], this way we get the arbi-
trary function a(r). So we can makeQ = 0 to get the function

a(r). The equation (7) becomes,

−2e−b(r)�′(r)
[
�(r)a′(r) + �′(r)

]

�2(r)
= 0. (125)

so we have the following solution for a(r),

a(r) = −1

2
ln

(
L2

0 + r2

r2
0

)
. (126)

where r0 is a constant. We will use r0 = 1.
We verified from the solution (126) and the parameter

b(r), that the Kretschamnn scalar behaves regularly in space-
time. For we note that the Kretschmann scalar is regular for
any value of r and that in the middle, i.e. in the limit r(r) → 0,
this scalar behaves like a constant which depends only on m
and L0. At the radius of the horizon the scalar also behaves
like a constant. And at r → ∞ this scalar is asymptotically
flat.

The equation of the geodesic (46) for this case is,

(
dr

ds

)2

= − 1√
L2

0 + r2

⎛
⎝1 − 2M√

L2
0 + r2

⎞
⎠

2

×
⎛
⎝E2

(
L2

0 + r2
)

+ l2√
L2

0 + r2

⎞
⎠

+ε

⎛
⎝1 − 2M√

L2
0 + r2

⎞
⎠

2

, (127)

where l is the angular momentum and E is the energy.
We note that the geodesic equation (127), when ana-

lyzed for r → ∞, yields a solution for r(s) that diverges
at s → ∞, implying that the geodesic equation is extensi-
ble to future infinity. This equation is also extensible when
we evaluate for very small r(s). We also note that the solu-
tion we obtain in this case gives us a geodesic equation
that is also extensible to r(s) → 0. This result can be con-
firmed by the Kretschmann scalar, which we discussed ear-
lier. Now analyzing the geodesic equation for the horizon

radius rH =
√

4M2 − L2
0, we find from the solution we

obtain for r(s) that the equation (127) is also extensible at
rH . Therefore, this space-time is geodesically complete.

To simplify the equations for the components of the
momentum–energy tensor, we assume the following func-
tions: f (Q) = 0, fQ(r) = 1, and fQQ(r) = 0. Thus, the
components of the moment-energy tensor resulting from the
expressions (41–45) and (126) are

ρ(r) = −
L4

0 + L2
0

[
8M

(
M −

√
L2

0 + r2
)

+ r2
]

− 4M2r2

κ2
(
L2

0 + r2
)3 , (128)
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pr (r) = − 1

κ2
(
L2

0 + r2
) , (129)

pt (r) =
2L4

0 + L2
0

(
8M

(
M −

√
L2

0 + r2
)

+ 3r2
)

− 4M2r2 + r4

4κ2
(
L2

0 + r2
)3 .

(130)

Let us now analyze the limit of the components ρ(r), pr (r),
and pt (r) to ensure that the solutions are free of divergences
in spacetime. In this way, we can derive the necessary fluid
for the case when Q = 0. Then, taking the limit of r → ∞
we will have (ρ(r), pr (r),pt (r))→ 0, and for r → 0,

ρ(r) →
8M

(√
L2

0 − M

)
− L2

0

κ2L4
0

, (131)

pr (r) → − 1

κ2L2
0

, (132)

pt (r) →
−4
√
L2

0M + L2
0 + 4M2

2κ2L4
0

. (133)

Note that we cannot determine the liquid in the infinite future.
At the origin of the system, we find that the density compo-
nents and the radial and tangential pressures depend on a
certain value of L0.
Now the ricci scalar has the shape,

C
R =

2L4
0 + L2

0

(
−24M

√
L2

0 + r2 + 24M2 + r2
)

− r2
(
12M2 + r2

)

2
(
L2

0 + r2
)3 .

(134)

With the boundary term (15) being,

BQ =
−2L4

0 + L2
0

(
24M

(√
L2

0 + r2 − M

)
− r2

)
+ 12M2r2 + r4

2
(
L2

0 + r2
)3 ,

(135)

so sinceQ = 0, the scalar (134) and the boundary term (135)
are relations satisfying the equation (14). Now spacetime
is always regular. This time the scalars give us the correct
interpretation that spacetime remains regular for any value
of the radial coordinate.

By means of the Eqs. (128–130), we can develop the
energy conditions for regions outside the horizon being given
by,

NEC1 = SEC1 = WEC1

=
−2L4

0 + L2
0

(
8M
√
L2

0 + r2 − 8M2 − 3r2
)

+ 4M2r2 − r4

κ2
(
L2

0 + r2
)3 ≥ 0

(136)

NEC2 = SEC2 = WEC2

=
−2L4

0 + L2
0

(
24M

√
L2

0 + r2 − 24M2 − r2
)

+ 12M2r2 + r4

4κ2
(
L2

0 + r2
)3 ≥ 0,

(137)

SEC3=
−2L4

0 + L2
0

(
8M
√
L2

0 + r2−8M2 − 3r2
)

+4M2r2 − r4

2κ2
(
L2

0+r2
)3 ≥0,

(138)

DEC1 =
L2

0

(
8M
√
L2

0 + r2 − 8M2 + r2
)

+ 4M2r2 + r4

κ2
(
L2

0 + r2
)3 ≥ 0,

(139)

DEC2=
−6L4

0 + L2
0

(
40M

√
L2

0 + r2−40M2−7r2
)

+20M2r2 − r4

4κ2
(
L2

0+r2
)3 ≥0,

(140)
DEC3 = WEC3

= −
L4

0 + L2
0

(
8M

(
M −

√
L2

0 + r2

)
+ r2

)
− 4M2r2

κ2
(
L2

0 + r2
)3 ≥ 0. (141)

In this case only NEC2 is violated, the other energy con-
ditions are satisfied for very small r . The energy conditions
DEC1 and DEC3 are satisfied for very large r , while the
other energy conditions are violated.

6.3 Second black-bounce solution with zero non-metricity
scalar, Q = 0

For this case we will consider b(r) =
− 2 ln [1 − 2Mr/(L2

0 + r2)] and �(r) =
√
L2

0 + r2, the
solution to a(r) is given by,

a(r) = −1

2
ln

(
L2

0 + r2

r2
0

)
, (142)

where r0 is a constant. We will use r0 = 1.
We note that the Kretschamnn scalar for this case also

shows a regular behavior in spacetime for any value of r . In
the limit of r → 0 this scalar behaves like a constant and is
proportional to K ∼ L−4

0 . In the horizon radius this scalar
also behaves like a constant which depends onm and L0. And
in the limit of r → ∞ the solution shows an asymptotically
flat behavior.

The equation of the geodesic (46) is now described by,
(
dr

ds

)2

= − 1√
L2

0 + r2

(
1 − 2Mr

L2
0 + r2

)2

×
⎛
⎝E2 (L2

0 + r2)+ l2√
L2

0 + r2

⎞
⎠+ ε

(
1 − 2Mr

L2
0 + r2

)2

, (143)

where l is the angular momentum and E is the energy.
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We note that the solution obtained from the equation of
the geodesics (143), if analyzed very large for r , is extensible
to future infinity. This equation can also extensible to very
small r . We also note that the geodesic equation in this case
is extensible to r(s) → 0. This can be confirmed with our
result for the Kretschmann scalar described earlier. For the
radius of the horizon r → rH , which in this case is given by
rH = M + √

M2 − L2, we note that the geodesic equation
is also extensible. Therefore this space-time is geodesically
complete.

Assuming that the following functions are f (Q) = 0,
fQ(r) = 1, and fQQ(r) = 0, we obtain the following com-
ponents of the momentum–energy tensor from the expres-
sions (41–45) and (142), which are now described as follows

ρ(r) =

− −
L6

0 + 2L4
0r(r − 6M) + L2

0r
2
(

16M2 − 12Mr + r2
)

− 4M2r4

κ2
(
L2

0 + r2
)4 ,

(144)

pr (r) = − 1

κ2
(
L2

0 + r2
) , (145)

pt (r) =[
L2

0 + r(r − 2M)
][

2L4
0 + L2

0r(3r − 8M) + r3(2M + r)
]

4κ2
(
L2

0 + r2
)4 . (146)

The asymptotic limits of r → ∞ for the components are null
(ρ(r), pr (r),pt (r))→ 0, and for r → 0 they reduce to,

ρ(r) → − 1

κ2L2
0

, (147)

pr (r) → − 1

κ2L2
0

, (148)

pt (r) → 1

2κ2L2
0

. (149)

At the origin of the system, we see that the density com-
ponents and the radial and tangential pressures depend on a
certain value of L0.

For this case we have the following Ricci scalar,

C
R =
2L6

0 + 3L4
0r(r − 12M) + 12L2

0Mr2(4M − 3r) − r4
(
12M2 + r2

)

2
(
L2

0 + r2
)4 . (150)

Then we have,

BQ =
−2L6

0 + 3L4
0r(12M − r) + 12L2

0Mr2(3r − 4M) + 12M2r4 + r6

2
(
L2

0 + r2
)4 , (151)

again we have that the expressions (150) and (151) satisfy
the expression (14). The space-time is always regular.

From the components of (144–146), the energy conditions
for regions outside the horizon are,

NEC1 = SEC1 = WEC1

= −2L6
0 + L4

0r(12M − 5r) − 4L2
0r

2
(
4M2 − 3Mr + r2

)+ 4M2r4 − r6

κ2
(
L2

0 + r2
)4 ≥ 0,

(152)
NEC2

= SEC2 = WEC2

= −2L6
0 + 3L4

0r(12M − r) + 12L2
0Mr2(3r − 4M) + 12M2r4 + r6

4κ2
(
L2

0 + r2
)4 ≥ 0,

(153)

SEC3 = − 2L6
0 +L4

0r(5r−12M)+4L2
0r

2
(
4M2−3Mr + r2

)−4M2r4+r6

2κ2
(
L2

0 + r2
)4 ≥ 0,

(154)

DEC1 = r
(
L4

0(12M + r) + 2L2
0r
(−8M2 + 6Mr + r2

)+ 4M2r3 + r5
)

κ2
(
L2

0 + r2
)4 ≥ 0,

(155)
DEC2

= − 6L6
0 +L4

0r(13r − 60M)+4L2
0r

2
(
20M2−15Mr+2r2

)− 20M2r4 + r6

4κ2
(
L2

0 + r2
)4 ≥ 0,

(156)
DEC3

= WEC3

= − L6
0 + 2L4

0r(r − 6M) + L2
0r

2
(
16M2 − 12Mr + r2

)− 4M2r4

κ2
(
L2

0 + r2
)4 ≥ 0. (157)

We note that all energy conditions are violated for very
small r . The energy conditions NEC1, SEC3 and DEC2 are
violated for too large r , while the other energy conditions are
satisfied.

6.4 Third black-bounce solution with zero non-metricity
scalar, Q = 0

In the latter case we will assumeb(r)=−2 ln [1−2M/�(r)],
but with,

�(r) =
√√√√(L2

0 + r2
)

exp

(
r0

r2
1 + r2

)
, (158)

we use this proposal with the intention of obtaining black-
bounce solutions satisfying NEC1. The solution is,

a(r) = − r0

2
(
r2

1 + r2
) − 1

2
ln

(
L2

0 + r2

r2
3

)
, (159)

where r3 is a constant. We will use r3 = 1.
The Kretschamnn scalar behaves in this case like a con-

stant in the limit r → 0. In the horizon radius this scalar
also behaves like a constant. However, when we evaluate the
scalar for r → 0, we do not find asymptotically flat behavior.
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(
dr

ds

)2

= −e
− r0

2(r2+r2
1)√

L2
0 + r2

⎛
⎜⎜⎝1 − 2M√

(
L2

0 + r2
)
e

r0
r2+r2

1

⎞
⎟⎟⎠

2

×
⎛
⎜⎝ l2e

− r0
2(r2+r2

1)√
L2

0 + r2
+ E2

(
L2

0 + r2
)
e

r0
r2+r2

1

⎞
⎟⎠+

+ε

⎛
⎜⎜⎝1 − 2M√

(
L2

0 + r2
)
e

r0
r2+r2

1

⎞
⎟⎟⎠

2

(160)

where l is the angular momentum and E is the energy.

The solution of the geodesic equation for r(s) very large
(160), is an extensible solution at future infinity. And the
geodesic equation for r(s) very small, is a solution that is
also extensible. Now the solution of r(s) given by (160) is
also extensible for r(s) → 0. We also note that this equa-
tion, analyzed at the radius of the horizon, is also extensible.
Therefore, this spacetime is geodesically complete.

Considering again the functions f (Q) = 0, fQ(r) = 1
and fQQ(r) = 0, the components of the moment-energy
tensor are given by,

ρ(r) = 1

κ2
(
L2

0 + r2
)2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
L2

0 + r2
)
e
− r0

r2+r2
1 −

r2
(−L2

0r0 + r4 − r2
(
r0 − 2r2

1

)+ r4
1

)2
⎛
⎜⎜⎝1 − 2M√

(
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pr (r) = − e
− r0

r2
1 +r2

κ2
(
L0

2 + r2
) , (163)
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−4r8

(
Mr0 − r2

1

√
(
L2

0 + r2
)
e

r0
r2+r2

1

)
+ r6

((
3r2

0 − 8r0r2
1 + 6r4

1

)
√
(
L2

0 + r2
)
e

r0
r2+r2

1 − 4Mr0
(
r0 − 2r2

1

))

4κ2
(
L2

0 + r2
)2 (

r2 + r2
1

)4
√
(
L2

0 + r2
)
e

r0
r2+r2

1

+4r4r4
1

(
(
r2

1 − 2r0
)
√
(
L2

0 + r2
)
e

r0
r2+r2

1 + 3Mr0

)
+ r2r8

1

√
(
L2

0 + r2
)
e

r0
r2+r2

1 + r10

√
(
L2

0 + r2
)
e

r0
r2+r2

1 +

4κ2
(
L2

0 + r2
)2 (

r2 + r2
1

)4
√
(
L2

0 + r2
)
e

r0
r2+r2

1

+L4
0r0

((
6r4 + r2

(
3r0 + 4r2

1

)− 2r4
1

)
√
(
L2

0 + r2
)
e

r0
r2+r2

1 − 4M
(
3r4 + r2

(
r0 + 2r2

1

)− r4
1

))

4κ2
(
L2

0 + r2
)2 (

r2 + r2
1

)4
√
(
L2

0 + r2
)
e

r0
r2+r2

1

+2L2
0

[ (
r8 + r6

(
3r0 + 4r2

1

)+ r4
(
3r2

0 − 2r0r2
1 + 6r4

1

)+ r2
(
4r6

1 − 5r0r4
1

)+ r8
1

)
√
(
L2

0 + r2
)
e

r0
r2+r2

1

4κ2
(
L2

0 + r2
)2 (

r2 + r2
1

)4
√
(
L2

0 + r2
)
e

r0
r2+r2

1

+

−2M
(
r8 + 4r6

(
r0 + r2

1

)
+ 2r4

(
r2

0 + 3r4
1

)
+ 4r2r4

1

(
r2

1 − r0

)
+ r8

1

) ]
. (164)

We also check in this case that the condition (14) is satis-
fied.

The energy conditions resulting from (162–164) are repro-
duced in the Fig. 1 from the null energy condition (because
they turn out to be quite extensive and challenging), where
the regions outside the event horizon are represented by the
solid red curve and the regions inside the horizon by the
dotted-trace curves with blue color.

From the energy conditions (162–164) we see that NEC1,
as shown in Fig. 1, is satisfied for r1 → ∞ and from −r1 to
−∞. Here r1 is a value inside the horizon violated near the
throat. However, in general relativity, most models described
by the relation �′′(r)/�(r) > 0 imply that NEC1 or NEC2

are always violated. Unlike our model, where this condition
is satisfied [128]. When we consider r very large, we find
that NEC2 is also satisfied, as is DEC1. On the other hand,
SEC3 and DEC2 are violated. We note, however, that the
energy condition DEC3 may or may not be violated by the
choice of constants.

7 Conclusion

In this paper we study solutions of black holes, regular black
holes and black-bounce spacetime in the theory f (Q) using
the coincident gauge. This theory is an extension of the sym-
metric teleparallel theory, where we use arbitrary functions of
the non-metricity scalarQ in the action. We analyze the linear
cases of our solutions and the solutions with the constraint
Q = 0. We also calculate the Kretschmann scalar to observe
regularities of spacetime, and briefly discuss the causal struc-
ture of spacetime using geodesics and the energy conditions
of regular black holes and black-bounce. We also calculate
the Kretschmann scalar to observe regularities of spacetime
and briefly discuss the causal structure of spacetime using
geodesics, and the energy conditions of the solutions of reg-
ular black holes and black-bounce.

In the black hole solutions discussed in Sect. 4, we obtain
the linear case where we analyze the Kretschmann scalar and

123



Eur. Phys. J. C (2023) 83 :475 Page 19 of 23 475

Fig. 1 Graphical representation
of the null energy condition (20)
of spacetime, for the
components ρ, pr and pt ,
equations (162), (163) and
(164), respectively. Where we
consider M = 10, r0 = 1,
r1 = 1, and L0 = 1

find a divergence at r = 0, this is a singularity. For the causal
structure, we note that the geodesic equation is not extensi-
ble along spacetime in this case. This agrees with the result
we obtained, for example, with the Kretschmann scalar for
r → 0. For the causal structure, we note that the geodesic
equation is not extensible along spacetime in this case. This
agrees with the result we obtained with the Kretschmann
scalar for r → 0. We solve with Q = 0 (4.2), use the metric
function given by b(r) = −2 ln [1 − 2M/�(r)], and obtain
a(r) = − ln (r/r0). So we find that spacetime is not geodesi-
cally complete. And by the Kretschmann scalar we have a
spacetime which is not regular.

We also obtain the solutions for regular black holes Sect. 5.
For the Bardeen model, i.e., the linear case, we analyze the
Kretschmann scalar and verify that our solutions are regu-
lar throughout spacetime. In the next case Sect. 5.1, we use
the metric function b(r) = −2 ln

[
1 − 2Mr2/(r2 + q2)3/2

]
in the constraint where Q = 0, and consequently find the
free function a(r) = − ln (r/r0). Using the metric func-
tions b(r) and a(r), we find that the geodesics are exten-
sible over the entire spacetime. Therefore, this spacetime
is geodesically complete. We calculate the energy density
and the radial and tangential pressures. We find that this
fluid, or rather the radial and tangential pressure components,
diverge at the origin of spacetime. In the origin the density
is determined by a certain value of the parameter q and in
the future infinity all components are equal to zero. This
is confirmed by the Kretschmann scalar, which diverges at
r → 0 and shows an asymptotically asymptotic flat behavior
for r → ∞. The energy conditions show that only NEC2 is
satisfied for very small r , while for very large r only NEC2

and DEC1 are satisfied. In the second case of RBH Sect. 5.2,
with the non-metricity scalar zero, we use the metric func-
tion given by b(r) = −2 ln[1 − 2Mr/(r2 + A2)], so that
we find a(r) = − ln (r/r0). Therefore, we can prove that the

spacetime of this solution is geodesically complete. On the
other hand, even if the non-metricity scalar is singular, we
have that the metric functions a(r) and b(r) are regular, and
consequently it shows that spacetime is regular. The energy
conditions NEC1, SEC3 and DEC2 are violated for very
small r , while the other energy conditions are satisfied. And
the energy conditions for very large r show for this case that
NEC1, SEC3 and DEC2 are violated, while the others are
satisfied.

In Sect. 6 we study the solutions in the context of black-
bounce. We verify for the case (STEGR) in Sect. 6.1 that
the (119–121) are the same solutions as in the Simpson–
Visser model of GR. And we also note that the non-metricity
scalar (122) and the boundary term (124) are regular through-
out spacetime. This is in contrast to solutions for black holes
and regular black holes, where we do not have a regular
non-metricity scalar throughout spacetime. In the first black-
bounce case withQ = 0 (Sect. 6.2), we used the metric func-

tion b(r) = −2 ln [1 − (2 M/�(r))] and �(r) =
√
L2

0 + r2

to obtain the free function a(r) = − 1
2 ln

(
L2

0+r2

r2
0

)
, which is

regular over spacetime. From the functions a(r) and b(r) in
this case, we verify that the Kretschamnn scalar has regular
behavior along spacetime. And we also examine the causal
structure and find that this space-time is geodesically com-
plete. We calculate the components of the fluid associated
with this case, and by analyzing these components at the ori-
gin, we find that this fluid depends on constants such as L0.
And with infinite future all components are zero. Checking
the energy conditions for this fluid, we see that only NEC2 is
satisfied, while the others are violated for r very small. And
for very large r only DEC1 and DEC3 are satisfied.

In the second black-bounce solution withQ = 0 (Sect. 6.3),
we use the metric function, given by b(r) =
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−2 ln

[
1 − 2Mr

(L2
0+r2)

]
, where we finda(r) = − 1

2 ln

(
L2

0+r2

r2
0

)
.

Using the metric functions in this case, we find that the
Kretschamnn scalar has a regular behavior along spacetime
for any value of r . Also in this case it is a complete geodesic
spacetime. From the analysis of the energy conditions for
density and radial and tangential pressure, we see that all
energy conditions are violated for very small values of r .
While only NEC1, SEC3 and DEC2 are satisfied for very
large r .

In Sect. 6.4 we have developed the third black-bounce
solution for Q = 0. But now we use a special case with

�(r) =
√
(
L2

0 + r2
)

exp

(
r0

r2
1 +r2

)
with the metric function

b(r) = −2 ln [1 − 2 M/�(r)], and we now have the fol-

lowing function a(r) = − r0
2
(
r2

1 +r2
) − 1

2 ln

(
L2

0+r2

r2
3

)
. This

case shows that the Kretschamnn scalar is regular throughout
spacetime. We also highlight the geodesics where we find that
spacetime is geodesically complete. The energy conditions
for this model are extremely challenging, so we constructed
a graph of NEC1 to observe its behavior. On this occasion
we conclude that this energy condition is satisfied. Unlike in
the black-bounce case of GR, where this energy condition is
violated.

We are aware of the challenges of the theory f (Q) and that
it is a theory that has only recently been formulated. On the
other hand, although we find many works on this formulation,
we want to use this theory to study other topics. In the future,
we plan to use f (Q) theory to study other approaches such as
black hole thermodynamics, quasi-normal modes, black hole
shadows, gravitational waves, applications in Kerr metrics,
and perturbation theory. Moreover, we also see a possibility
of using new gauges in this theory to apply in the context of
black-bounce, for example.
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