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Abstract We investigate the well-known phenomenon of
the beam–plasma instability in the gravitational sector when
a fast population of particles interacts with the massive scalar
mode of a Horndeski theory of gravity, resulting in lin-
ear growth of the latter amplitude. Following the approach
used in the standard electromagnetic case, we start from the
dielectric representation of the gravitational plasma, as intro-
duced in a previous analysis of the Landau damping for the
scalar Horndeski mode. We then set up the modified Vlasov–
Einstein equation, using a Dirac delta function to describe the
fast beam distribution. We thus provide an analytical expres-
sion for the dispersion relation, and we demonstrate the exis-
tence of a nonzero growth rate for the linear evolution of the
Horndeski scalar mode. A numerical investigation is then per-
formed with a trapezoidal beam distribution function, which
confirms the analytical results and allows us to demonstrate
how the growth rate decreases as the beam spread increases.

1 Introduction

One of the most intriguing features of plasma phenomenol-
ogy is Landau damping [1,2], i.e. the decay of an electro-
magnetic wave amplitude even when it propagates through
an ideal plasma [3]. Such a peculiar property possessed by
an electromagnetic plasma, unlike any other medium, is due
to the non-microscopic scale of the Debye length [4], which
describes the plasma’s quasi-neutrality. From a phenomeno-
logical point of view, electromagnetic waves in a plasma
acquire a longitudinal polarization (say, the photon takes an
effective nonzero mass [5–8]), and when the phase velocity
of the Langmuir modes is of the same order as the ther-
mal velocity of the plasma constituents (ions and electrons),
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energy can be transferred from the former to the latter. Since
Landau damping has an ideal (reversible) character, it is also
possible to demonstrate [9–13] that a fast population of par-
ticles can transfer its kinetic energy to a Langmuir mode,
enhancing the wave amplitude up to a nonlinear saturation
value. Indeed, the beam–plasma instability is conceptually
a reversed Landau damping phenomenon, at least in its lin-
ear regime. In fact, since the interaction of an electromag-
netic wave with an ideal plasma is a statistically reversible
process, depending on the specific conditions of the system
(mainly the resonance condition that the wave frequency is
near the plasma one), the amplitude of the wave can be either
suppressed (Landau damping) or enhanced (inverse Landau
damping). For the beam–plasma physics of interaction, it is
possible to transfer energy from a fast beam of charged par-
ticles to the so-called Langmuir waves of the plasma, i.e.
self-consistent electrostatic modes living in thermal plasma.
As shown in [11], when the resonance condition is fulfilled,
the topology of the dispersion relation acquires a peculiar
structure. Actually, in order to preserve the dielectric repre-
sentation of the plasma linear response, the beam must have
a tenuous number density with respect to the plasma one, and
the ratio of the two densities is a fundamental small param-
eter of the linear and nonlinear dynamics. As a consequence
of the smallness of this ratio, the dispersion relations in the
(k, ω)-space (we are referring to a one-dimensional problem)
are associated to the vanishing of either the plasma dielec-
tric function, namely when we are dealing with a Langmuir
mode, or when the wave phases are co-moving with the beam,
i.e. ω = kvB , vB being the beam speed. The overlap of these
two conditions naturally leads to the emergence of an unsta-
ble mode, corresponding to the amplification phenomenon of
the self-consistent Langmuir wave present in the plasma. It is
worth noting that since the beam is fast, the Langmuir modes
related to this enhancement process have a phase velocity
vph ∼ vb that is much greater than the thermal speed of the
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background plasma, and therefore they do not suffer from
Landau damping, which is very efficient only near the point
of inflection of the Maxwellian distribution function of the
electrons. Thus, we see that the interaction of a fast beam with
a thermal plasma is due, for what concerns its linear insta-
bility behavior, to the inverse Landau damping that the fast
particle induces on the existing resonant Langmuir modes.
The process is also characterized by nonlinear dynamics (see
[12]), in which the wave amplitude saturates, but this part of
the interaction is not discussed in the gravitational paral-
lelism proposed here. Despite the fundamental differences
between the electromagnetic and gravitational interaction, it
is possible to draw a parallel between them on the grounds
of the common results obtained for what concerns the phe-
nomenology associated to direct and inverse Landau damp-
ing. Indeed, in the case of a gravitational plasma (see [14–16]
for pioneering treatments, [17] for a comprehensive review,
and Sect. 2 for an in-depth discussion), the inertial forces
can be considered to act as a neutralizing background; in
other words, in the local inertial frame, a set of massive par-
ticles feels the gravitational perturbation of an incoming wave
only; that is, the static background curvature generated by the
whole medium can be gauged out with a convenient choice
of the coordinates. It was shown in [18] that for the case of
the dynamics predicted by a Horndeski theory [19–23], the
associated scalar mode is subject to Landau damping, in an
analogous way as in the standard electromagnetic sector.

This result opens an interesting scenario for studying the
amplitude profile of the Horndeski scalar mode when it
interacts with a gravitational medium (for a discussion of
the standard gravity case, see [24–29]). Here, starting from
the dielectric gravitational function derived in [18], we ana-
lyze the complementary question to the gravitational Landau
damping, i.e. the so-called gravitational beam–plasma insta-
bility. Namely, we investigate the interaction of gravitational
Langmuir modes, having a dispersion relation which annihi-
lates the dielectric function, with a fast population of massive
particles propagating through the medium.

We show that the beam–plasma instability takes place in
the gravitational sector as in the electromagnetic case. A
nonzero growth rate of the Langmuir waves is present as long
as the beam velocity and the phase velocity of the gravita-
tional scalar Horndeski mode are comparable. The analytical
study is developed by describing the beam distribution via a
Dirac delta function, say, by dealing with a null temperature
beam. As in the electromagnetic sector, the instability arises
in the presence of a degenerate point of the dispersion rela-
tion of the plasma and beam components. The significance
of this condition is to ensure that we are dealing with a Lang-
muir mode living in the gravitational medium, with a phase
velocity matching the beam one, allowing for the resonance
phenomenon at the ground of the energy transfer.

It must be noted that our study demonstrates that the insta-
bility takes place also in the limit of a vanishing scalar mode
mass, so that a phenomenologically viable model for the
beam–plasma instability is always attainable without vio-
lating the current constraints on the graviton mass [30–35].
Moreover, as the beam velocity approaches the speed of light,
the gravitational instability is suppressed, simply because the
Jüttner medium distribution function has a natural population
cutoff at that scale, and no real Langmuir modes can emerge
in that parameter region.

A numerical analysis is performed using a trapezoidal
form of the beam distribution function able to model a
finite (nonzero) temperature while still allowing for a semi-
analytical treatment. This numerical study confirms the main
results obtained in the cold beam scenario, with the addi-
tional important feature that the amplitude of the growth rate
decreases as the width of the trapezoid increases, i.e. at larger
beam temperatures. We conclude by observing that both the
analytical and numerical treatments describe a profile of the
growth rate that peaks around the critical wavenumber of the
degenerate point discussed above.

The paper is structured as follows: In Sect. 2 we eluci-
date the physical setting we intend to work with, introducing
the concept of “gravitational plasma.” In Sect. 3 we briefly
present the linearized field equations for tensor and scalar
gravitational waves from Horndeski theories of gravity on a
Minkowski background. In Sect. 4 we review the analysis of
the interaction between gravitational radiation and a medium
of massive particles in which collisions are neglected, outlin-
ing the possibility of Landau damping for the scalar mode. In
Sect. 5, we extend this previous result by studying the behav-
ior of self-consistent scalar waves, here denoted as gravi-
tational Langmuir modes, in the case in which a tenuous
beam of particles, distributed as a Dirac delta function, is
injected into the medium, evaluating explicit expressions for
the degenerate wavenumber and the correspondent amplitude
growth rate. In Sect. 6, using numerical methods, we ana-
lyze a more realistic setting for the beam–plasma scenario;
namely, we adopt for the beam distribution a trapezoidal
shape in order to investigate the dependence of the insta-
bility from the temperature of the beam. In addition to this,
we confirm the analytic results obtained for the delta beam,
particularly the behavior of the growth rate with respect to
the mass of the scalar mode and to the velocity of the beam.
In Sect. 7, we provide quantitative estimates of the predicted
amplification effect on scalar waves. Finally, in Sect. 8 we
comment on the results obtained and draw the final conclu-
sions.
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2 The concept of gravitational plasma

In this section, we analyze the concept of a “gravitational
plasma,” and we summarize the basic analogies and dis-
crepancies with respect to the electromagnetic case. What
makes the gravitational interaction really different from the
electromagnetic interaction is, apart from the nonlinearity of
its dynamics, the absence of a charge of the opposite sign,
able to shield the gravitational field generated by the differ-
ent type of sources. This fact could suggest that in a neu-
tral medium sensitive to gravitational interaction, there is no
chance to define an analogous quantity to the Debye length of
an electromagnetic plasma. In other words, it seems impos-
sible to recover the concept of a “neutralizing background”
for a gravitational medium, like the role played by ions in
a cold plasma. However, the equivalence principle offers an
intriguing point of view to solve this puzzling question when
describing a medium as a gravitational plasma, first explored
in the pioneering work [14] and explicitly stated in [18]. The
point is that in a local inertial frame, the background gravita-
tional field can be actually canceled, thus begetting the idea
that, at least in a small region of the space-time, a gravita-
tional analogy of the neutralizing background is provided by
the inertial forces. Hence, a gravitational medium in a local
inertial frame is essentially in a “quasi-neutrality” condition,
and its self-consistent gravitational fluctuations are not far
from the physical character of the so-called Langmuir waves
[2,36]. Clearly, that which is analogous to the Debye length
is the spatial scale on which the tidal forces are not signifi-
cantly appreciable in the considered system, i.e. the scale up
to which it is possible to speak of an inertial frame of refer-
ence. Once this theoretical framework is fixed, it is possible
to study the Vlasov equation coupled to the linear wave equa-
tion governing the dynamics of the gravitational radiation in
the theory of gravity under consideration. When the analy-
sis of gravitational waves from general relativity interacting
with a neutral gas is addressed, however, the gravitational
parallelism with ordinary plasma physics seems to fail, sim-
ply because no damping of the gravitational waves can take
place in an ideal gravitational medium [24–29]. Indeed, as
clearly elucidated by a number of works in the literature, ten-
sorial massless gravitational waves in a collisionless medium
are characterized by a superluminal phase velocity at all fre-
quencies, so that it is impossible for any massive particle to
be resonant with a specific mode and exchange energy with
it. It must be noted that all the studies dedicated to the general
relativity case analyze only the behavior of tensor polariza-
tions, neglecting the possibility of scalar and vector effective
modes arising within the medium, to which a different phe-
nomenology could be associated (for the emergence of extra
effective polarizations for gravitational waves in a molecular
medium, see [37]). Thus, in [18] (see also [38] on the case
of parity-violating theories of gravity), the gravitational ver-

sion of the Landau damping has been searched and actually
found in the context of Horndeski theories of gravity. Specif-
ically, it has been found that the massive scalar mode, corre-
sponding to an intrinsic longitudinal fluctuation mode [23],
can actually be characterized by a subluminal phase velocity
within the gravitational medium and be resonant with specific
modes. On the contrary, the tensorial part of the gravitational
radiation cannot be subject to such phenomenon, just as in
the general relativity case. In this work, our intention is to
study the inverse Landau damping phenomenon through the
beam–plasma interaction, i.e. the possibility for a fast parti-
cle population to make the gravitational medium Langmuir
modes unstable, thus transferring their energy to the scalar
mode of a Horndeski gravity model. Our findings demon-
strate that inverse Landau damping takes place as long as
the particles composing the beam have velocities compatible
with the allowed range of phase velocities for the Langmuir
gravitational modes. The present result is of interest because
the amplitude of the massive scalar mode in a propagating
gravitational fluctuation is expected to be small and rather
difficult to detect with the present ground-based interferom-
eters, and in the near future with space-based instruments.
Thus, the possibility to enhance the intensity of such a con-
tribution via the interaction with a fast particle beam could
improve the chance of detecting such non-Einsteinian modes
via their phenomenological impact on bounded gravitational
systems across the Universe. Finally, we observe that the
recent detection of a multi-messenger signal [39] has demon-
strated that the velocity of propagation of a hypothetical mas-
sive mode has to be extremely close or coinciding with the
speed of light. It is remarkable that the beam–plasma insta-
bility remains present even when the mass of the scalar mode
tends to zero, according to the requirement that its propaga-
tion speed is very near the value of c. In this respect, we can
claim that the new gravitational instability is still viable given
the present-day detection of the gravity phenomenology.

3 Gravitational waves from Horndeski theories

As is well known [19–21], any scalar–tensor gravitational
theory with a second-order equation of motion can be derived
from Horndeski action

S = 1

2κ

∫
d4x

√−g
5∑

i=2

Li , (1)

where the terms Li have the following expressions

L2 = K (ϕ, X),

L3 = −G3(ϕ, X)�ϕ,

L4 = G4(ϕ, X)R + G4,X

(
(�ϕ)2 − ΦμνΦ

μν
)

,

L5 = G5(ϕ, X)GμνΦ
μν+,

123



486 Page 4 of 16 Eur. Phys. J. C (2023) 83 :486

+1

6
G5,X

(
(�ϕ)3 − 3�ϕ ΦμνΦ

μν + 2Φμ
νΦ

ν
ρΦρ

μ

)
,

(2)

in which R is the Ricci scalar and Gμν is the Einstein tensor.
We have also introduced the compact notation

X ≡ −1

2
∇μϕ∇μϕ, Φμν ≡ ∇μ∇νϕ. (3)

A choice of the free functions K and Gi corresponds to
the selection of a definite second-order theory of gravity
(for instance, general relativity is recovered for G4 = 1
and keeping null all others functions). It must be noted
that the detection of the multi-messenger signal GW170817-
GRB170817A [39] has set severe constraints on the parame-
ter space of Horndeski action: specifically, in order to repro-
duce the observed physics, the function G4 must depend only
on the scalar field ϕ, and the G5 must be constant. More-
over, a recent work [40] demonstrates that the function G3

should also be independent of the kinetic term X , in order
to satisfy Witten’s positive energy theorem [41]. However,
we point out that these limitations on the choice of the free
functions characterizing Horndeski action do not affect the
results obtained in the present work. We are interested in
describing gravitational wave propagation on a Minkowski
background; therefore, we perform the usual splitting of the
metric tensor

gμν = ημν + hμν, (4)

where ημν is the Minkowski spacetime metric, namely ημν =
diag (−1, 1, 1, 1), and hμν is the metric perturbation satisfy-
ing |hμν | � 1 in all spacetime points in which (4) is valid.
We also perform an analogous decomposition on the scalar
field by setting

ϕ = φ0 + φ, (5)

with φ0 representing the background value, and φ a perturba-
tion whose size is assumed to be |φ| � |φ0|. By adding the
matter contribution in the action (1), we write the linearized
field equations for the metric and scalar field perturbations
(for details of the derivation of the field equations in vacuum,
see [22]) as

G(1)
μν − G4,ϕ(0)

G4(0)

(
∂μ∂ν − ημν�

)
φ = κ ′′T (1)

μν , (6)
(
� − M2

)
φ = κ ′T (1). (7)

The functions K and Gi , together with their derivatives, are
all evaluated at the point ϕ = φ0, and the kinetic term is
retained null, i.e. X = 0. The notation G(1)

μν indicates the
linearized version, with respect to hμν , of the Einstein tensor,

whereas T (1)
μν and T (1) are the perturbations in the stress–

energy tensor and in its trace induced by the presence of

gravitational waves. The scalar field perturbation φ obeys
the Klein–Gordon equation (7) with mass given by

M2 = − K,ϕϕ(0)

K,X (0) − 2G3,ϕ(0) + 3G2
4,ϕ(0)

G4(0)

, (8)

and the positivity of this term must be ensured in order to pre-
vent a tachyonic behavior in vacuum. The coupling constants
are expressed as

κ ′ = G4(0)κ

G4(0)
(
K,X (0) − 2G3,ϕ(0)

) + 3G2
4,ϕ(0)

, (9)

κ ′′ = κ

G4(0)
, (10)

where κ = 8πG is the Einstein gravitational constant.1 The
contributions from the metric and scalar field perturbations
in Eq. (6) can be decoupled by defining the generalized trace-
reversed tensor

h̄μν ≡ hμν − 1

2
ημν (h + 2αφ) , (11)

with h = ημνhμν and α = G4,ϕ(0)

G4(0)
. It results that the new met-

ric perturbation is solution of an inhomogeneous d’Alembert
equation

�h̄i j = −2κ ′′T (1)
i j , (12)

which must be solved together with the additional constraints
∂μh̄μν = 0, h̄0i = 0, and h̄ = 0. Thus, the tensor h̄μν

contains only two degrees of freedom, carrying the usual
plus and cross polarizations acting on the transverse plane
with respect to the direction of propagation.

4 Gravitational Landau damping

In a recent work [18], the propagation of gravitational waves
from Horndeski theories in an isotropic collisionless medium
of massive particles was analyzed. In this section, we reiterate
its key points and present the main result, namely the possibil-
ity of energy exchange between the background medium and
gravitational waves through Landau damping for the scalar
degree φ only. The medium is described through a distribu-
tion function f (�x, �p, t), defined on the single-particle phase
space and normalized in order to give the total number of
particles when integrated over the entire domain

N =
∫

d3x d3 p f (�x, �p, t), (13)

and the density of particles when integrated on all momenta

n =
∫

d3 p f (�x, �p, t). (14)

1 In all sections, we adopt natural units c = 1.
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We choose to retain the contravariant components of the posi-
tion xi and the covariant components of the momentum pi
as generalized coordinates in phase space, in order to deal
with simpler equations in the following. Therefore, the phase
space volume element is d3xd3 p ≡ dx1dx2dx3dp1dp2dp3.
The stress–energy tensor of the set of particles is obtained
from

Tμν = 1√−g

∫
d3 p

pμ pν

p0 f (�x, �p, t), (15)

with g the determinant of the metric tensor gμν given in (4).
The time evolution of the medium distribution function is
ruled by the Vlasov equation

D f

dt
= ∂ f

∂t
+ dxi

dt

∂ f

∂xi
+ dpi

dt

∂ f

∂pi
= 0. (16)

Let us consider a medium that, in the absence of gravita-
tional waves, has reached thermal equilibrium and whose
distribution function is an isotropic, homogeneous, and time-

independent configuration f0(p), where p ≡
√

δi j pi p j is
the momentum Euclidean modulus. At the initial time t = 0,

we turn on the disturbance provided by gravitational radia-
tion, and the ensemble of particles is driven out of equilibrium
by a force term

dpi
dt

= 1

2p0

(
pl pm

∂ h̄lm
∂xi

+ αm2 ∂φ

∂xi

)
, (17)

where p0 =
√
m2 + gi j pi p j is the particle energy, and m

its mass, calculated from the geodesic equation for the met-
ric (4). For continuity, the distribution function must obey

f (�x, �p, 0) = f0(
√
gi j (�x, 0)pi p j ), which at first order in the

perturbations results in

f (�x, �p, 0) = f0 (p) − f ′
0(p)

2

(
pi p j

p
h̄i j (�x, 0) − α p φ(�x, 0)

)
, (18)

where f ′
0(p) ≡ d f0

dp . For any positive time, a perturbation
δ f arises in the distribution function as the response of the
medium to the presence of gravitational perturbing fields.
We demand that the size of this perturbation with respect to
the equilibrium configuration be of the same magnitude as
that of gravitational waves. Then, the Vlasov equation (16)
can be linearized with respect to the distribution function
perturbation, resulting in

∂δ f

∂t
+ pi

p0

∂δ f

∂xi

− f ′
0(p)

2p

(
pi p j

∂ h̄i j
∂t

− αp2 ∂φ

∂t
− αp0 pi

∂φ

∂xi

)
= 0. (19)

The set of Eqs. (7), (12) and (19) become closed once the
source terms in the wave equations are evaluated in terms of
the distribution function perturbation, namely

T (1) = −m2
∫

d3 p
δ f (�x, �p, t)

p0 , (20)

T (1)
i j =

∫
d3 p

pi p j

p0 δ f (�x, �p, t). (21)

We search for plane wave solutions of this differential
problem, choosing the z axis of our coordinate system to be
coincident with the direction of wave propagation. Then, by
performing a Fourier transform on the spatial coordinate z,
labeled by a real Fourier parameter k, together with a Laplace
transform on the time coordinate t , with complex Laplace
parameter s, the solution of the linearized Vlasov equation
(19) can be readily written as

δ f (k,s)( �p) =
f ′
0(p)
2p

(
pi p j

(
s h̄(k,s)

i j − h̄(k)
i j (0)

)
− α

(
p2s + ikp3 p0

)
φ(k,s) + αp2φ(k)(0)

)

s + ik p3
p0

. (22)

Here, we denote with h̄(k)
i j (0) and φ(k)(0) the initial value of

the projections in the Fourier space of the unknown functions
h̄i j (z, t) and φ(z, t). The dependence of δ f (k,s)( �p) on both

h̄(k,s)
i j and φ(k,s) could result in a coupling between scalar and

tensor modes in the wave equations, but it turns out that the
spurious contributions cancel out due to the symmetries of
integrals (20) and (21). Hence, the wave equations for h̄(k,s)

i j

and φ(k,s) remain decoupled at linear order, and we can cal-
culate their solutions as

φ(k,s) =

(
s + αm2κ ′

2

∫
d3 p

f ′
0(p)p

p0s + ikp3

)
φ(k)(0)

(s2 + k2 + M2)ε(φ)(k, s)
, (23)

h̄(k,s)
i j =

(
s − κ ′′

4

∫
d3 p

f ′
0(p)

(
p2

1 + p2
2

)2

p(p0s + ikp3)

)
h̄(k)
i j (0)

(s2 + k2)ε(h)(k, s)
, (24)

where we have defined the complex dielectric functions

ε(φ)(k, s) = 1 + αm2κ ′

2
(
s2 + k2 + M2

)
∫

d3 p
f ′
0(p)

p

p2s + ikp0 p3

p0s + ikp3
,

(25)

ε(h)(k, s) = 1 − κ ′′

4(s2 + k2)

∫
d3 p

f ′
0(p)

p

(
p2

1 + p2
2

)2
s

p0s + ikp3
, (26)
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describing the allowed modes for scalar and tensor gravita-
tional waves throughout the medium. Specifically, by intro-
ducing the complex frequency ω ≡ is, with ωr and ωi

its real and imaginary part, respectively, it can be shown
that scalar and tensor perturbations within the medium
are damped or growing waves of the form e−i(ωt−kz) =
eωi (k)te−i(ωr (k)t−kz), where the dispersion relation ωr (k) is
the curve along which the real part of the dielectric function
is null,

ε(φ,h)
r (k, ωr (k)) = 0, (27)

whereas the characteristic frequency ωi (k) is calculated
from2

ωi = − ε
(φ,h)
i (k, ω)

∂ε
(φ,h)
r (k,ω)

∂ω

∣∣∣∣∣∣
ω=ωr

. (28)

In order to obtain these quantities for scalar and tensor pertur-
bations, we first have to specify the equilibrium distribution
function f0(p). For this purpose, we assume a Jüttner func-
tion

f0(p) = n

4πm2ΘK2 (ζ )
e−

√
m2+p2

Θ , (29)

with n the particle density, Θ the medium temperature in
units of the Boltzmann constant kB , and Kl(·) the modified
Bessel function of the second kind. The parameter ζ ≡ m

Θ
,

namely the ratio between rest and thermal energy, quantifies
the magnitude of relativistic effects, reproducing the ultrarel-
ativistic limit for ζ → 0 and the Newtonian one for ζ → ∞.
The explicit expression of the dielectric functions for scalar
and tensor perturbation in the case of a Jüttner background
is

ε(φ)(k, ω) = 1 − ακ ′n
8π

(
k2 + M2 − ω2

)
Θ2K2 (ζ )

×
∫

d3 p
p2

3 − ω2

k2−ω2

(
p2

1 + p2
2

)
p2

3 − ω2

k2−ω2 (m2 + p2
1 + p2

2)
e−

√
m2+p2

Θ , (30)

ε(h)(k, ω) = 1 − κ ′′n
16π

(
k2 − ω2

)
m2Θ2K2 (ζ )

ω2

k2 − ω2

×
∫

d3 p

(
p2

1 + p2
2

)2

p2
3 − ω2

k2−ω2 (m2 + p2
1 + p2

2)
e−

√
m2+p2

Θ . (31)

In plasma physics, this kind of integral is usually addressed
by assuming that the phase velocity of the signal vp ≡ ωr

k
is much greater than the mean thermal velocity of particles
vT and expanding the denominator as a power series in the

2 In these formulas, that are valid in the weak damping scenario |ωi | �
|ωr |, we have introduced the real and imaginary part of the dielectric
functions, denoted as εr and εi , respectively.

small parameter vT
vp

. Then, integrating term by term and trun-
cating at a chosen order, a real quantity, identified with the
real part of the dielectric function εr , is obtained. From this
function it is possible to extract the dispersion relation ωr (k).
The imaginary part εi is instead calculated by exploiting the
residue theorem for the integration around the Landau pole(
u − vp

)−1 on a semicircular path in the complex upper half-
plane. In our case, we can of course make the request that
the phase velocity be much greater than the thermal veloc-
ity of particles. Indeed, for ζ � 1, the mean velocity pre-
dicted by Jüttner distribution rapidly reaches values of order
10−1 or less. Therefore, for a relativistic phase velocity value
close to unity, the error associated to a truncated power series
in vT

vp
can be made satisfactorily small. However, the situa-

tion here is a bit more involved with respect to the electro-
magnetic case, since we have to deal with a more elaborate
form of the denominator contained in the integrals, where
the phase velocity plays a role in determining the position
of the pole. Specifically, we see that a necessary condition
for the presence of a pole in the domain of integration is a
subluminal phase velocity for the perturbations within the
medium. Indeed, in this case, the dielectric functions will
acquire a imaginary contribution coming from the poles at

the points p3 = ±
√

v2
p

1−v2
p
(m2 + p2

1 + p2
2). On the contrary,

for a superluminal phase velocity, the Landau pole lies out-
side the domain of integration; thus, we have a purely real
dielectric function and, consequently, a vanishing imaginary
part of the frequency. In all the cases, the condition vp < 1
must be checked a posteriori from the analysis of the disper-
sion relation obtained, through formula (27), from the real
part of the dielectric function calculated as a truncated power
series. This being said, we report the dispersion relation for
tensor modes

ωr (k)
2 = 1

2

(
k2 + 12ω2

h
ζ − γ (ζ )

ζ 2

+
√(

k2 + 12ω2
h
ζ − γ (ζ )

ζ 2

)2

+ 48ω2
hk

2 γ (ζ )

ζ 2

)
,

(32)

where we have introduced the function γ (ζ ) ≡ K1(ζ )
K2(ζ )

and the

proper frequency for tensor excitations ω2
h ≡ κ ′′mn

6 = κ ′′ρ
6 ,

with ρ = mn the mass density characterizing the medium.
From this expression, it can be immediately seen that the
phase velocity for tensor waves is always greater than the
speed of light. Therefore, the dielectric function is purely
real, and the propagation of tensor gravitational waves in
the medium is featured by dispersion only, reproducing the
results obtained in the context of general relativity [24–28].
By applying the same expansion of the denominator in (30),
we obtain the real part of the dielectric function for scalar
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waves, which we report here for future convenience,

ε(φ)
r (k, ωr ) = 1 + 3γω2

φ

k2 − 3ω2
r

ω2
r (k

2 + M2 − ω2
r )

, (33)

from which it is possible to calculate the connected dispersion
relation, i.e.

ωr (k)
2 = 1

2

(
k2 + M2 − 9γω2

φ

+
√(

k2 + M2 − 9γω2
φ

)2 + 12γω2
φk

2

)
. (34)

Now it is easy to verify that a subluminal phase velocity is
ensured for all wavenumbers as long as the inequality

M2 < 6γω2
φ (35)

is satisfied. Here we introduced, in analogy with the tensor
case, the proper frequency ω2

φ ≡ ακ ′ρ
6 . Then, for sublumi-

nal phase velocities, the pole appearing in integral (30) falls
inside the domain of integration, and the connected dielectric
function acquires a non-null imaginary part. Using (28), we
calculate the characteristic frequency

ωi (k) = − πζ

4kK1(ζ )

ω4
r (k

2 + M2 − ω2
r )e

− ζ√
1− ω2

r
k2

3ω4
r − 2k2ω2

r + M2k2 + k4 , (36)

which can be easily shown to be negative for any value of
the wavenumber. The threshold effect introduced by inequal-
ity (35) clearly separates, for a fixed value of M , media that
are able to damp scalar waves from those which leave the
wave amplitude unaffected. Nevertheless, the same inequal-
ity can be seen as a criterion that selects the maximum mass
allowed for a Horndeski scalar wave in order to be damped
by a medium of assigned mass density ρ, restricting the range
of variation of the parameters involved in the definition of M
given in (8). As reported in Fig. 1, the phase velocity con-
verges to the speed of light in the short-wavelength limit
k → ∞ for any value of the mass M . Note that here and in
the following, the overbar denotes quantities normalized by
a factor ω−1

φ , e.g. k̄ ≡ k
ωφ

and equivalently for the others.

Particularly, for M2 < 6γω2
φ , the function vp(k) is

bounded, monotonically increasing with k, and exhibiting
a global minimum reached for vanishing wavenumbers,
namely

lim
k→0

vp(k) ≡ vmin = 1√
3 − M2

3γω2
φ

. (37)

When the mode mass is in the range 6γω2
φ < M2 < 9γω2

φ ,
we still deal with a bounded but monotonically decreasing
function of the wavenumber, and the quantity vmin has the
role of global maximum. Lastly, for M2 > 9γω2

φ , the phase
velocity becomes unbounded, showing a divergent behavior

Fig. 1 Phase velocity as a function of the normalized wavenumber k̄
for mass M of the scalar mode in the ranges shown in the legend

Fig. 2 Damping rate as a function of the wavenumber for values of the
mass of the scalar mode shown in the legend

in the large-wavelength limit. Thanks to these findings, we
are able to outline an interesting and somewhat counterintu-
itive feature of the propagation of scalar waves from Horn-
deski theories in matter: for increasing values of the mode
mass M , the phase velocity becomes larger at any fixed k.
Particularly, the minimum value of the lower bound vmin, i.e.

3− 1
2 , is reached for a massless scalar wave. Moreover, scalar

massless radiation from Horndeski theories will be damped
by any material medium, given that in the case M = 0, the
inequality (35) is satisfied by any ρ �= 0. Also, when we look
at the behavior of the characteristic frequency ωi (k) at fixed
ζ , we find that the maximum magnitude of the damping is
expected for vanishing mass at any k, as it can be clearly
observed from the curves depicted in Fig. 2.

For growing masses in the range M2 < 6γω2
φ , we expect

decreasing absolute values of ωi (k). The minimum phase
velocity vmin defined in (37) is a striking peculiarity of grav-
itational Landau damping, and it is absent in the analysis
of the standard electromagnetic phenomenon. In the subse-
quent section, in which we study the interaction of Langmuir
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scalar modes with a tenuous beam of massive particles, we
will illustrate the consequences of this important feature.

5 Beam–plasma instability for a monochromatic
tenuous beam

In this section, we analyze the self-consistent scalar pertur-
bations in a material medium which can be described as the
superposition of two distinct populations of particles of the
same massm: an isotropic component at thermal equilibrium,
which we refer to as “gravitational plasma”, and a suprather-
mal anisotropic distribution, describing a beam of particles
injected in the medium from an external source. As in the pre-
vious section, in the absence of gravitational waves, the phase
space properties of this gravitational beam–plasma system
are depicted by a static and homogeneous total distribution
function

f T OT
0 (p1, p2, p3) = f P0 (p) + f B0 (p1, p2, p3), (38)

in which f P0 represents the plasma contribution, and f B0 the
beam component. It must be noted that, with respect to the
case presented before, the total background distribution func-
tion is not endowed with isotropy. The presence of the beam
introduces a preferred direction. Of course, the background
distribution function is normalized such that the integration
on the entire phase space must return the total number of
particles

∫
d3 p d3x f T OT

0 (p1, p2, p3) = NP + NB, (39)

where the subscripts P and B stand again for plasma and
beam contributions, respectively. As previously done, we
assume that for any negative time, no gravitational waves
are present. For t ≥ 0, we perturb the medium with a scalar
mode φ, in terms of which the external force dpi

dt entering the
Vlasov equation has the form

dpi
dt

= αm2

2p0

∂φ

∂xi
. (40)

Following the steps already described, we linearize the
Vlasov equation (16) with respect to the distribution per-
turbation δ f , obtaining

∂δ f

∂t
+ pi

p0

∂δ f

∂xi
+ d f P0

dp

α

2p

(
p2 ∂φ

∂t
+ pi p0 ∂φ

∂xi

)

+αm2

2p0

∂ f B0
∂pi

∂φ

∂xi
= 0, (41)

and we readily obtain, in the Fourier–Laplace space, plane
wave solutions traveling along the z axis, namely

δ fk,s = α

2

d f P0
dp

pφk(0) −
(
ikm2

p0

∂ f B0
∂p3

+ p2s + ikp3 p0

p

d f P0
dp

)
φk,s

s + ik p3
p0

(42)

for the distribution perturbation, and

φk,s =

(
s + αm2κ ′

2

∫
d3 p

d f P0
dp

p
p0s+ikp3

)
φk(0)

(s2 + k2 + M2)
(
εP (k, s) + εB(k, s)

) (43)

for the scalar field. Then we see that the presence of the
beam alters the scalar field solution only through a modifi-
cation in the dielectric response of the medium. Indeed, in
the denominator of (43) together with the plasma function
already defined, namely

εP (k, s) = 1 + αm2κ ′

2
(
s2 + k2 + M2

)
∫

d3 p
p2s + ikp3 p0

p
(
p0s + ikp3

)

×d f P0
dp

, (44)

we have the appearance of an additional term, taking into
account the beam contribution to the dispersion relation, i.e.

εB(k, s) = ikαm4κ ′

2
(
s2 + k2 + M2

)
∫

d3 p
1

p0
(
p0s + ikp3

) ∂ f B0
∂p3

.

(45)

The plasma population will again be described through a
Jüttner distribution as given in (29), where in this case we
indicate the density of particles with the symbol nP . For
what concerns the beam distribution, we start by considering
the simplest case, namely a monochromatic beam of the form

f B0 (p1, p2, p3) = nBδ(p1)δ(p2)δ(p3 − pB), (46)

in which pB and nB are the beam momentum and density
of particles, respectively. Under this hypothesis, the term εB

can be exactly integrated and results in

εB(k, ω) = 3ηω2
φ

k2 + M2 − ω2

(
1 − v2

B

) 3
2
(
1 + v2

B − 2ω
k vB

)
(
vB − ω

k

)2 ,

(47)

where the complex frequency ω and the plasma character-
istic frequency ωφ were previously defined, and we have
introduced the beam velocity vB = pB√

m2+p2
B

and the densi-

ties ratio η ≡ nB
nP

. For what concerns the plasma term εP , we
first proceed by ignoring any imaginary contribution from
the Landau pole, identifying this object with the real part
of the dielectric function for the scalar mode obtained from
the truncated series, as given in (33). Hence, the allowed
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modes for plasma disturbances in interaction with the beam
are found from the condition εP +εB = 0, which in our case
can be cast combining Eqs. (33) and (47) in the form

εP (k, ω)
(
ω2 − k2 − M2

) (
vB − ω

k

)2

(
1 + v2

B − 2ω
k vB

) (
1 − v2

B

) 3
2

= 3ω2
φη. (48)

Solving this equation with respect to ω would return the exact
dispersion relation, but it turns out that this task implies the
treatment of a complete sixth-degree polynomial. The prob-
lem can be simplified by making the assumption to deal with
a tenuous beam, that is, considering the ratio of the particle
densities much smaller than unity, i.e. η � 1. In this case,
the right-hand side of (48) is almost vanishing, and we can
obtain approximate solutions by investigating the cases in
which the left-hand side is exactly null. We can enumerate
three separate scenarios:

1. A first class of solutions is generated by the points (k, ω)

which satisfy εP (k, ω) = 0 and ω �= vBk. These points
correspond to the plasma dispersion relation reported in
(34).

2. Secondly, we have the points (k, ω) pertaining to the beam
dispersion relation ω = vBk which do not lay on the curve
describing the plasma dispersion relation, i.e. points that
satisfy εP (k, vBk) �= 0.

3. The third possibility is that there exist a number of degen-
erate points (k0, ω0) which satisfy both dispersion rela-
tions, namely εP (k0, ω0) = 0 and ω0 = vBk0. We find
that this condition is fulfilled by a single wavenumber k0,
which is determined by the following expression

k0 =
√√√√3γω2

φ

(
3v2

B − 1
) − M2v2

B

v2
B

(
1 − v2

B

) . (49)

In order to ensure the reality of k0, the following inequality
must hold

3γω2
φ

(
3v2

B − 1
)

− M2v2
B ≥ 0, (50)

and this translates into a lower bound for the beam veloc-
ity, namely

vB ≥ 1√
3 − M2

3γω2
φ

= vmin. (51)

As anticipated, the minimum phase velocity vmin plays
an important role in the gravitational beam–plasma inter-
action, as it regulates the range of beam velocities that
allow for the existence of a degenerate point of the two
dispersion relations.

Now we focus our analysis on the properties of the disper-
sion relation in the proximity of the degenerate point. The
physical relevance of this family of solutions is given by the
coexistence of both the plasma and the beam coupling to the
oscillation mode. We proceed by expanding (48) up to third
order in terms of the small quantities δω = ω − ω0 and
δk = k − k0. Thus, neglecting quartic terms, we obtain the
following cubic equation

(
δω

ω0
− δk

k0

)2 (
P

δω

ω0
+ Q

δk

k0

)
= C, (52)

where we defined

P ≡ ω0
∂εP

∂ω

∣∣∣∣
k0,ω0

Q ≡ k0
∂εP

∂k

∣∣∣∣
k0,ω0

C ≡ −3η
ω2

φ

ω2
0

(
1 − v2

B

) 5
2(

1 − v2
B + M2

k2
0

) .

(53)

By considering the form of the plasma dielectric function
(33) and the expression of the degenerate point (k0, vBk0),
with k0 given by (49), the parameters just defined have the
following explicit expressions:

P =
2

(
1 − 2v2

B + v4
B

(vmin)
2

)

1 − 4v2
B + 3v4

B

Q = 2v2
B

3γω2
φ

M2 − 6γω2
φ

1 − 4v2
B + 3v4

B

C = − η

(
1 − v2

B

) 5
2(

3v2
B − 1

) .

(54)

For vB > vmin and M2 < 6γω2
φ , it turns out that the quanti-

ties P and C are negative, whereas Q is positive. It is found
that equation (52) possesses a single real and a couple of
complex conjugate solutions for any allowed value of the
quantities involved in the definition of the parameters P , Q,
and C . Thus, scalar radiation with wavenumber k ≈ k0 and
frequency ω ≈ ω0 will be affected by both a shift in the
phase, i.e. dispersion, and a modification in the amplitude,
due to the imaginary parts of the complex solutions. In partic-
ular, the emergence of an instability region for wavenumbers
around k0 is expected, caused by the presence of a disper-
sion relation with a positive imaginary part. We denote this
particular branch of the dispersion relation as δω�(δk). We
report the expression of its imaginary part in correspondence
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to the degenerate point, i.e. for δk = 0

Im (δω�(0))

ω0
=

⎛
⎜⎜⎜⎜⎝

√
27η

(
1 − v2

B

) 7
2

16

(
1 − 2v2

B +
(

v2
B

vmin

)2
)

⎞
⎟⎟⎟⎟⎠

1
3

. (55)

It must be noted that this expression is exactly coincident
with the analogous formula derived in the electromagnetic
case in [11], except for the supplementary factor

G ≡
(
1 − v2

B

) 7
6

(
1 − 2v2

B +
(

v2
B

vmin

)2
) 1

3

(56)

which is a genuine outcome of this gravitational version of
the beam–plasma instability. In particular, the presence of
this extra term implies that the amount of energy conveyed
from the beam to the Langmuir scalar modes goes to zero
as the beam velocity approaches the speed of light. For vB
in the allowed range [vmin, 1), it can be easily shown that G
is a monotonic decreasing function and attains its maximum

value when vB = vmin, namely
(
1 − v2

min

) 5
6 . Thus, given that

the minimum value for vmin is reached for vanishing mass
of the scalar mode, we claim that the maximum instability is
predicted in the case M = 0 and for a beam velocity equal

to 3− 1
2 , with a numerical value

(
Im (δω�(0))

ω0

)
max

=
(

η

6
√

2

) 1
3 ≈ 0.49 η

1
3 . (57)

It must be noted that, despite the formal resemblance between
formulas (55) and (57) with the analogous ones in the elec-
tromagnetic sector as given in [11], here the gravitational
coupling constant κ that appears in the definition of the
proper frequency ωφ also affects the values of the degen-
erate wavenumber and frequency, namely k0 and ω0, respec-
tively. Thus, it is easy to determine that, given the much
smaller value of κ compared to the electromagnetic coupling
constant, in the gravitational version of the inverse Landau
damping phenomenon we will deal with much smaller effects
with respect to the electromagnetic analogue. In all cases, we
postpone the discussion about the magnitude of the predicted
effects to Sect. 7, where we will provide quantitative esti-
mates of the amplification phenomenon in a concrete physical
scenario. In the following section, we will proceed to analyze
the gravitational beam–plasma system employing numerical
techniques, in order to enlarge the range of applicability of
our predictions.

6 Numerical analysis

In this section, we aim to extend our previous analysis, made
assuming a monochromatic beam distribution, to more gen-
eral and realistic scenarios. The description of the beam par-
ticles in terms of Dirac delta functions (46) is ideal. Even sup-
posing a perfectly monochromatic mechanism for the gen-
eration of the supra-thermal component, these particles can
subsequently interact with the surrounding medium, leading
to a spreading of the distribution function; alternatively, the
dependence of the generating mechanism on some external
phenomenon can lead to the same result. In order to investi-
gate this aspect, we perform a new analysis of the total disper-
sion relation εP + εB = 0 in the presence of a more realistic
beam distribution function f B0 . However, even for reasonable
assumptions like Gaussian or Cauchy distributions, the inte-
gral in (45) does not have an explicit expression and requires a
fully numerical approach. To overcome this, in the following,
we will use a toy model which can be integrated explicitly
but which still retains some freedom, in order to gain insights
on the warm (non-δ) beam scenario. For this reason, let us
define the following trapezoidal distribution function:

f B0 ( �p) = nB δ(p1) δ(p2) g(p3)

= nB δ(p1) δ(p2)
4

B2 − b2

{ (
p3 − pB + B

2

)

×
[
H

(
p3 − pB + B

2

)
− H

(
p3 − pB + b

2

)]

−
(
p3 − pB − B

2

) [
H

(
p3 − pB − b

2

)

−H

(
p3 − pB − B

2

) ]}

+ 2

B + b

[
H

(
p3 − pB + b

2

)
− H

(
p3 − pB − b

2

)]
,

(58)

where H is the Heaviside step function, pB represents the
mean beam momentum, and the free parameters B and b
indicate the major and minor bases of the trapezoid, respec-
tively. It is worth noting that choosing delta functions on the
p1 and p2 momenta does not affect the obtained numerical
results, since the imaginary contribution from the Landau
pole comes from the beam-aligned direction only.

We adopt the ratio B/pB as a qualitative measure of the
beam temperature, i.e. the beam spreading in momenta space,
with the value 0 as a limiting case corresponding to a perfectly
cold beam. In addition, the ratio b/B regulates the shape of
the distribution, and it can be tuned in order to analyze dif-
ferent scenarios, with the limiting cases of b/B = 1 and 0
corresponding to a box-shaped distribution and a triangular
one, respectively. The choice of the parameters describing
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Fig. 3 (Top) The beam distribution function, marginalized to its p3
component, in momentum space, superimposed with a matching Gaus-
sian distribution (dashed line). (Bottom) The single particle distribution
function in velocity space FT OT

0 , as the sum of plasma (blue) and beam
(red) distributions (here we choose η = 0.1 for illustrative purpose)

the trapezoid is made in order to obtain the best resemblance
with a standard Gaussian distribution, according to the fol-
lowing criteria: (i) the distribution must be centered around
the mean of the target Gaussian μ, for symmetry reasons, (ii)
the distribution must have the same maximum value as the
target Gaussian, and (iii) the quadratic difference between
the distributions, integrated over the whole domain, must be
minimal. By consequence of these requests, we obtain the
correspondence of the trapezoid to a Gaussian distribution
with parameters μ and σ by setting pB = μ, b = σ/2, and
B = 9σ/2.

Concerning the background plasma, we still assume a Jüt-
tner distribution, so that (33) holds, while the beam dielectric
function can be derived from (45) performing suitable substi-
tutions. In particular, it is possible to explicitly integrate over
the transverse plane by writing the integral in terms of the
relativistic velocities ui = pi/p0. Then, the beam dielectric
function results in

εB(k, ω) = 3ω2
φ

k2 + M2 − ω2

4ηm2

B2 − b2

[Γ (u1, u2) − Γ (u3, u4)] , (59)

where we defined

Γ (ui , u j ) =
∫ u j

ui

du√
1 − u2

1

u − ω
k

. (60)

The integral has the explicit solution∫
du√

1 − u2

1

u − v

=
log (u − v) − log

(
1 − uv + √

1 − u2
√

1 − v2
)

√
1 − v2

,

(61)

and the integration boundaries are given in terms of the dis-
tribution parameters by

u1 = pB − B
2√

m2 + (
pB − B

2

)2
u2 = pB − b

2√
m2 + (

pB − b
2

)2

u3 = pB + b
2√

m2 + (
pB + b

2

)2
u4 = pB + B

2√
m2 + (

pB + B
2

)2
.

(62)

We emphasize that the calculation of the dispersion relation
from the equation εP + εB = 0 is turned from an integral
problem into the solution of a transcendental equation involv-
ing logarithms, which can be solved rather easily through
numerical methods. We also remark that in this numerical
analysis, we consider the frequency ω as a complex quantity
ab initio. Therefore, when treating the total dielectric func-
tion, we determine the curves ωr,i (k) by requiring that both
its real and imaginary parts vanish simultaneously.

We are interested in characterizing the branch of the dis-
persion relation with a positive imaginary part (still assuming
ωi � ωr ), i.e. the one corresponding to inverse gravitational
Landau damping, resulting in the growth of the wave dur-
ing the initial time evolution, until nonlinear effects become
important. Hence, in what follows we will focus on this root
of the total dispersion relation only. As for the free parame-
ters, we start from the following baseline scenario: m = ωφ ,
M2 = γω2

φ , ζ = 100, pB = 4/3 ωφ , B/pB = 10−4, and
b/B = 1/9. With this choice for the parameter values, we
calculate a beam velocity vB = 0.8. Additionally, all compu-
tations are run with a fixed value η = 10−5, which guarantees
the validity of the weak damping condition.

In the following figures, the barred quantities correspond
to variables normalized to ω−1

φ , as stated in Sect. 4. The
curves depicted in Fig. 4 are obtained as numerical solu-
tions of the system of equations � (

εP + εB
) = 0 and

Im
(
εP + εB

) = 0. More specifically, for each fixed value
of the wavenumber k̄, we search for the only couple of real
numbers ω̄r (k̄) and ω̄i (k̄) (with ω̄i > 0) which guarantees the
vanishing of the complex total dielectric function. The real
part of ω̄ (top panel of Fig. 4) turns out to be mostly linear, and
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Fig. 4 Real (top panel) and imaginary (bottom panel) parts of the quan-
tity ω̄(k̄), with parameters corresponding to the baseline scenario

Fig. 5 Imaginary part of the frequency ω̄i in the baseline scenario, as
a function of vp

this is consistent with the tenuous beam scenario here con-
sidered. Indeed, for η � 1, the presence of the beam alters
the dielectric response of the medium only as a small pertur-
bation. As a result, the real part of the frequency, describing
dispersion of the wavelengths within the medium, is essen-
tially similar to the one described by formula (34), derived
with analytical treatments. Concerning the imaginary part, it
can be noted from the bottom panel of Fig. 4 that the insta-
bility exists only for wavenumbers larger than a minimum
value, and it reaches a maximum in close proximity of the

Fig. 6 Imaginary part of ω̄(k̄) for different temperature values as
reported in the legend. The blue dots are the numerical solution of
(48) corresponding to a perfectly cold beam scenario

critical wavenumber k̄0 calculated from (49) according to the
chosen parameters, equal to 3.01.

In Fig. 5, we show how the growth rate results non-null in
a narrow range of phase velocities around vB = 0.8. In par-
ticular, the instability is active for velocities smaller than vB ,
corresponding to the positive slope of the beam distribution
function, as is expected from the standard electromagnetic
theory. In fact, the inverse Landau damping process depends
on the sign of the derivative of the distribution function taken
at the considered velocity. Thus, positive values of ω̄i can
only be obtained for velocities smaller than vB , where the
beam distribution function has a positive slope, as can be
inferred from Fig. 3.

Now we perform three sets of computations with a run-
ning on different parameters: (i) the width of the distribution
B/pB , i.e. the beam temperature, (ii) the mass of the gravi-
tational wave M , and (iii) the beam mean momentum pB .

In Fig. 6 we display the imaginary part of the frequency
obtained with the same method as the previous figure, for
increasing values of the ratio B/pB , which is a quantitative
measure of the beam temperature, i.e. its spreading in the
velocity space. As shown in the figure, the increase of the
beam temperature determines a decrease of the maximum
allowed growth rate of the instability. This result is coherent
with the standard electromagnetic analysis in [11], accord-
ing to the decrease of the slope of the distribution function.
Indeed, as previously stated, the magnitude of the effect is
correlated to the derivative of the beam distribution func-
tion calculated at the considered phase velocity. Addition-
ally we also remark that with the increase of the beam tem-
perature, the wavenumber at which the maximum growth
rate is reached decreases and departs from the critical value
k̄0 calculated for a perfectly cold beam through the analyti-
cal treatment. Furthermore, we stress that in the finite width
case, a maximum wavenumber k arises for the existence of
the instability, and the allowed range shrinks with increasing
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Fig. 7 Growth rate ω̄i as a function of vp , for values of the mass of
the scalar mode shown in the legend

Fig. 8 Maximum instability growth rate calculated for the following
beam mean velocities: vB = 0.8, 0.89, 0.94, 0.97. The colors indicate
different beam temperatures as shown in legend

temperature, as can be noticed from the B/pB = 5 · 10−2

case depicted in the figure.
Now we investigate the role of the scalar mode mass M in

determining the magnitude of the amplification effect, by cal-
culating the growth rate ω̄i at increasing values of the mass,
with the same technique previously outlined. The obtained
values are plotted in Fig. 7 as a function of the phase velocity
vp in order to emphasize once again (see Fig. 5) the local-
ization of the effect in velocity space. We see that the insta-
bility growth rate increases as the mass of the scalar mode
decreases. In this respect, it is worth noting that this behav-
ior is consistent with the analogous feature of the Landau
damping case presented in Fig. 2. This result has a relevant
physical meaning because it allows the survival of the insta-
bility within the severe constraints obtained on the mass of
the scalar mode from the observations of gravitational wave
propagation [42]. We remark that in the case of vanishing
mass, we expect the possibility of energy exchange between
the scalar mode and any material medium, irrespective of the
proper frequency ωφ ∝ √

ρ, given that the condition (35) is
identically satisfied in the massless scenario.

To conclude our analysis we are interested in studying the
dependence of the instability on the beam velocity, which
in the finite temperature case is just the mean velocity cal-
culated from the beam distribution function. As shown in
Eq. (56), we expect the growth rate to decrease for beam
velocities approaching the speed of light. This feature has
a simple physical explanation, since the background parti-
cle distribution is nearly vanishing close to v = 1, and thus
the beam interacts with a Langmuir mode supported by a
small number of plasma particles. In order to test this ana-
lytical prediction, we perform three runs of simulations at
different temperatures. In each run, we calculate ω̄i (k̄) for
a definite value of the beam velocity, localizing the max-
imum of the curve together with the corresponding phase
velocity. Then, varying the parameter vB , we repeat the cal-
culation. The data obtained are displayed in Fig. 8, with the
values of the beam velocity used in the calculation reported
in the caption. We observe that the numerical analysis fol-
lows the expected behavior, regardless of the beam tempera-
ture. Still, the aforementioned dependence of the instability
from the beam temperature is confirmed, i.e. warmer beams
attain smaller values of the growth rate. In conclusion, we
point out that all the tests performed through numerical tech-
niques have confirmed the results outlined in the analytical
section, while extending our predictions to the case of a finite
beam temperature. Although the beam distribution is taken
as a trapezoid for numerical convenience, this choice pre-
serves the essential features, allowing for the investigation
of a more realistic scenario with respect to the perfectly cold
case. However, despite the good accuracy offered by our sim-
plified model in characterizing the linear approximation of
the beam–plasma system, we remark that an eventual anal-
ysis of the instability evolution throughout its quasi-linear
regime would require an even more realistic description of
the beam contribution, leading to a fully numerical treatment,
as argued at the beginning of this section.

7 Quantitative estimates

In this section, we aim to give some estimates of the pre-
dicted effect magnitude of scalar wave amplification due to
the gravitational beam–plasma interaction. As explained in
the previous sections, when we look at the imaginary part of
the frequency ωi as a function of the scalar mode mass M ,
its maximum value is obtained in the massless limit M → 0.
Therefore, we will always consider a vanishing mass for the
scalar mode, given also the fact that this scenario is strongly
favored by recent observations. Moreover, as shown in Fig. 6,
warmer beams correspond to weaker effects. For this reason,
we will assume a perfectly cold beam, well described by a
delta distribution, by making use of the analytical formu-
las (49) and (55). Now a simple consideration holds: from
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a direct inspection of (49), which we report here in the case
M = 0, namely

k0 = ωφ

√
3γ

(
3v2

B − 1
)

v2
B

(
1 − v2

B

) , (63)

the order of magnitude of the critical wavenumber k0 is
roughly given by the medium proper frequency ωφ ∝ √

ρ,
ρ being the medium mass density. An appreciable devia-
tion of k0 from ωφ is predicted only in the case of ultra-
relativistic beam vB � 1. For this sort of beam, however, the

size of ωi is strongly suppressed by the factor
(
1 − v2

B

) 7
6 ,

as clearly displayed in (55). Hence, if we want to look at
a value of the critical wavenumber in principle measurable
with available technologies, like interferometers and pulsar-
timing arrays, avoiding the case of ultra-relativistic beams
for which ωi � 0, we have to consider material media char-
acterized by the highest values of mass density. Unfortu-
nately, by considering the typical dark matter densities in
a system like the Milky Way galaxy, the proper frequency
ωφ result is far too small. To give an example, by taking
the average value of dark matter density measured in the
solar system as reported in [43], i.e. ρ = 0.36 GeV cm−3, we
obtain a proper frequency ωφ ≈ 10−15 Hz, which is some-
thing like five orders of magnitude smaller than the smallest
frequency measurable with pulsar-timing arrays [44]. How-
ever, one of the most robust hypotheses on the dark matter
distribution in the proximity of the galactic center is that
the latter is well described by a highly peaked, cuspy profile
[45–47]. In addition to this, it has to be considered that a
Kerr supermassive black hole is capable of hugely enhanc-
ing the dark matter density in a region of size L = 50 rS
around itself, rS being the Schwarzschild radius of the black
hole. Indeed, as shown in [48], a rotating black hole com-
patible with the one probably hosted in the center of our
galaxy [49] is able to raise the dark matter density in its
proximity up to a value of about ρ = 1018 GeV cm−3. In
such an extremely dense environment, we calculate a proper
frequency ωφ = 7 · 10−7 Hz. Then, by assuming ζ � 1 so
that γ ≈ 1 and a beam velocity vB = 0.66, we obtain a
critical wavenumber k0 = 1.4 · 10−6 Hz. We note that the
frequency associated to k0, i.e. ω0 = vBk0 = 0.9 · 10−6 Hz,
falls well inside the range of frequencies to which pulsar-
timing arrays are sensitive [50,51]. Now plugging these num-
bers into Eq. (55) yields an imaginary part of the frequency

ωi = η
1
3 3.6 · 10−7 Hz. We can give a rough estimate of the

total time of interaction between the beam and the Lang-
muir modes by dividing the length of the system L by the
phase velocity relative to the critical wavenumber k0, which
is clearly equal to the beam velocity vB . By taking the black
hole mass as 4 · 106 solar masses, we calculate a total time
of interaction ΔT = 3 · 103 s. Then, computing the prod-
uct between ωi and ΔT , we obtain an amplification factor

Γ = η
1
3 10−3. Defining Ain and A f in = eΓ Ain as the ampli-

tude of the scalar waves before and after the interaction with
the gravitational plasma, we calculate a relative amplification

A f in − Ain

Ain
= η

1
3 10−3. (64)

Now let us spend a few words on the nature of the beam. As
shown in [52], Kerr black holes are able to generate highly
collimated dark matter beams thanks to the Penrose process.
The density contrast with respect to the environment on scales
smaller than the parsec is expected to be roughly η = 10−3.
Then, we obtain a relative amplification

A f in − Ain

Ain
= 10−4. (65)

This value of relative amplification seems rather small to
be measured with pulsar-timing arrays, given the typical
strains inside the sensitivity curves of these instruments [44].
Nonetheless, it has to be noted that we provided our esti-
mate by considering the scenario offered by the supermas-
sive black hole hosted in the Milky Way galactic center. An
analogous calculation could be carried out by looking at the
case of a supermassive black hole with mass of billions or
tens of billions solar masses, lying in the typical mass inter-
val of black holes located in active galactic nuclei [53]. For
such massive central objects, the predicted amplification fac-
tor would result even larger given the typical density values
expected in their vicinity.

8 Concluding remarks

We analyzed the gravitational version of the well-known pro-
cess of the beam–plasma instability, starting from the results
obtained in [18] regarding the Landau damping effect in the
same context. The gravitational mode which is taken as the
subject of the interaction with fast flowing particles is the
scalar mode of a Horndeski theory of gravity. This linear
perturbation was thought of here as the gravitational Lang-
muir wave living in the background plasma, modeled via its
dielectric function, derived in [18].

Following the standard methodology introduced in [11],
we pursued an analytical treatment by assuming a null-
temperature beam morphology, well described by a Dirac
delta function, searching for those points in the plane (k, ω)

which simultaneously satisfy the two conditions ω = kvB
and εP (ω, k) = 0, where εP is the gravitational dielectric
function. This double constraint provided a critical value of
the wavenumber k0, which had a crucial role in the charac-
terization of the instability. Then the obtained results were
validated and extended via a numerical treatment employing
a trapezoidal beam velocity distribution.
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The main value of our study is in outlining the pres-
ence of a beam–plasma instability in the gravitational sector,
described by a nonzero growth rate of the scalar Horndeski
mode, i.e. a region of wavenumbers around k0 for which
ωi (k) > 0 strictly holds. Particularly, the maximum of the
instability is located in the proximity of the critical wavenum-
ber k0 discussed above for sufficiently cold beam distribu-
tions. We observed a shift from this value when the beam
temperature is increased, i.e. for larger spread of the velocity
distribution.

We also argued the existence of a threshold for the phase
velocity of the wave in the plasma in the long-wavelength
limit, corresponding to c/

√
3 in the case of vanishing mass of

the scalar mode. Such a feature is extremely important from a
phenomenological point of view, since the limits on the mode
mass recently derived from gravitational wave observations
as well as other methods [30–35], do not rule out the pos-
sibility of an efficient energy transfer from the fast particles
to the longitudinal scalar perturbation. Moreover, we found
that when the phase velocity approaches the speed of light,
the growth rate tends to zero, since the plasma particle pop-
ulation is rarefied, due to the natural cutoff at superluminal
velocities given by the Jüttner distribution used to model the
background configuration.

The relevance of our analysis, from the perspective of
future accurate detection of the linear gravitational modes, is
that if a Horndeski longitudinal scalar mode is really present
in nature, then it could be searched with much greater proba-
bility of success in those conditions in which it is enhanced by
the interaction with a fast particle population. More specif-
ically, within bounded gravitational systems, here dubbed
gravitational plasmas, Langmuir modes exist, and they are
not significantly suppressed by the Landau damping effect, as
discussed in [18]. These modes can be unstable with respect
to the interaction with a fast massive particle beam of external
origin, leading to the growth of the amplitude up to a satura-
tion value, fixed by the nonlinear dynamics of the system. In
this respect, the important issue of discussing the nonlinear
beam–plasma interaction for a Horndeski mode, extending
to the gravitational sector the results in [12,13], remains an
open problem.
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