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Abstract In this paper we discuss a well known QCD
result: the steep increase of Green’s function for exchange

of n BFKL Pomerons GnIP (Y ) ∝ exp
(

n2

N2
c
�BFKLY

)
where

Nc is the number of colours ,Y is the rapidity and �BFKL is the
intercept of the BFKL Pomeron. We consider this problem
in the framework of the simple Pomeon models in zero trans-
verse dimensions, which have two advantages :(i) they allow
to take into account all shadowing corrections, including the
summation of the Pomeron loops and (ii) they have the same
as in QCD striking increase of GnIP (Y ). We found that the
strength of shadowing corrections is not enough to stop the
increase of the scattering amplitude with energy in contra-
diction to the unitarity constraints. Hence, our answer to the
question in the title is positive. We believe that we need to
search an approach beyond of the BFKL Pomeron calculus to
treat 1/Nc corrections in Colour Glass Condensate effective
theory.
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1 Introduction

The only candidate for the effective theory of high energy
QCD is Colour Glass Condensate (CGC) approach (see Ref.
[1] for a review). Two main ideas of CGC: the saturation
of the dipole density and the new dimensional scale (Qs),
which increases with energy, have become widely accepted
language for discussing the high energy scattering in QCD.
However the CGC approach suffers several problems. The
most known of them is the power-like behaviour of the
scattering amplitude at large impact parameters [2–5] that
violated the Froissart theorem [6,7]. We have to introduce
non-perturbative corrections at large impact parameters and
the embryonic stage of our understanding of confinement of
quarks and gluons does not allow us to come up with a rea-
sonable theoretical approach to the problem. The second well
known problem is summing of the BFKL Pomeron loops.1

This problem is a technical one, but in spite of intensive
work [8–68] it is still far away from being solved.This situa-
tion makes the problem one of the principle problems, with-
out solving which we cannot consider the dilute–dilute and
dense–dense parton densities collisions. As has been recently
shown [66,67], even the Balitsky–Kovchegov (BK) equation,
that governs the dilute-dense parton density scattering (deep
inelastic scattering (DIS) of electron with proton), has to be
modified due to contributions of Pomeron loops.

In this paper we wish to draw an attention of the reader to a
different problem of the CGC approach. In the CGC approach
the scattering amplitude does not exceed the unitarity limit
due to shadowing corrections. The Balitsky–Kovchegov [48]
non-linear equation, which sums the ‘fan’ diagrams of inter-
acting BFKL Pomerons (see Fig. 1a), generates the ampli-
tude, which tends to unity (the unitary limit) at high energies.
However, it has been shown in Refs. [69–73] that Green’s

1 The abbreviation BFKL Pomeron stands for Balitsky, Fadin, Kuraev
and Lipatov Pomeron.
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Fig. 1 a The ‘fan’ diagrams of the Balitsky–Kovchegov non-linear
equation. The wavy lines denote the BFKL Pomerons. The blob shows
the triple Pomeron vertex. b Is the Green’s function of the exchange of
n BFKL Pomerons

function of the exchange of n BFKL Pomerons does not
increase as exp (n �BFKLY ) where �BFKL is the intercept of the
BFKL Pomeron andY is the rapidity of two colliding dipoles.

It turns out that Green’s function grows as exp
(

n2

N2
c
�BFKLY

)

(Nc is the number of colours) and this increase cannot be
suppressed by the shadowing corrections.2 The Nc suppres-
sion gives rise for the hope that such an increase can manifest
itself only at very high energies, but recently A. Kovner and
M. Li showed that for nucleus-nucleus scattering in the CGC
approach there exist large 1/N 2

c corrections that are larger
than the shadowing suppression.3 In spite of these danger-
ous results for the CGC approach, the references [69–73]
show that these large corrections can be treated in the BFKL
Pomeron calculus if we introduce the vertices of interaction
of four Pomerons (IP + IP → IP + IP).

Bearing this in mind we wish to return to discussion of
these corrections in simple, but exactly solvable, zero dimen-
sional models [38,39,78–92]. In these models we can sum
Pomeron loops and we have the same kind of corrections,
which go under slang name of many particle Regge poles
[74–77]. In the next section we will discuss these corrections
in details. Here we wish to tell that the main goal of this
paper is to find the scattering amplitude taking into account
the IP + IP → IP + IP vertices in the simple zero dimen-
sional models to get experience what we can expect in QCD
in the CGC approach for these disastrous contributions.

2 Actually, in Refs. [69–73] the exchange of n-BFKL Pomerons were
considered in the double log approximation, which leads to the anoma-
lous dimension ᾱS

(N2−1)2ω
n4 instead of ᾱS

ω
n2 for the exchange of n BFKL

Pomerons .
3 We thank A, Kovner and M. Li for sharing with us their finding.

2 Setting the problem

Green’s function for one Pomeron in the zero dimensional
model can be viewed as a sum of the contributions:

GIP (Y ) =
∞∑
k=0

(� Y )n

n! = e� Y (1)

Equation 1 sums the ladder diagrams in leading log(1/x)
approximation in which all produced dipoles have a strong
ordering in the fractions of total momentum xi :

1 � x1 � x2 � · · · xi � xi+1 � · · · � xn−1 � xn

(2)

this leads to 1/n! in Eq. (1). The two Pomeron exchange is
shown in Fig. 2a and corresponds to the Feynman diagram
of Fig. 2b in which all dipoles emitted by the ladder 1 are
absorbed by ladder 1’, and all dipoles produced by ladder 2
are absorbed by ladder 2’. These diagrams lead to the Green’s
function of the exchange of two Pomerons: G2IP = G2

IP (Y ).
However, the diagrams in which the dipole, emitted from
ladder 1, will be absorbed by ladder 2’ are not small in the
zero dimensional models. We are going to call these dia-
grams “switch diagrams” , using the terminology suggested
in Refs. [69–73]. Indeed, after first exchange ladder 1 and
2’ will give the Pomeron exchange, leading to the diagram
of Fig. 2d. Since at given rapidity we have two ‘switch’ dia-
grams: dipole emitted between ladders 1 and 2’ and the dipole
emitted between ladders 2 and 1’ we can obtain the vertex
IP + IP → IP + IP , which is equal to 2�.
The diagrams of Fig. 2d can be summed in ω

-representation:

G2 (Y ) =
ε+i∞∫

ε−i∞

dω

2 π i
eω Ỹ G2 (ω) (3)

In this representation

G2 (ω) =
∞∑
k=0

1

ω − 2 �

(
2 �

ω − 2 �

)k

= 1

ω − 4 �
(4)

where 1/ (ω − 2�) is the contribution of the exchange of two
Pomerons (see Fig. 2b). Coming back toY representation one
can see that G2 (Y ) = exp (4 � Y ) instead of G2 (Y ) =
exp (2 � Y ) which is expected for two Pomeron exchange.

Summing the diagrams of Fig. 2e we obtain the Green’s
function for the exchange of n Pomerons: Gn (Y ) =
exp

(
n2�Y

)
. This Green’s function was derived in Refs.

[74–77] for the parton approach to high energy scattering.
In QCD the structure of the corrections remain to be the
same and the only difference is that the ‘switch’ diagrams
as well the intercept of n Pomeron state have the smallness
of the order of 1/N 2

c . Therefore, the IP + IP → IP + IP
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Fig. 2 Summing the switch diagrams for the exchange of two BFKL
Pomerons. a The exchange of two BFKL Pomerons. b The exchange
of two BFKL Pomeron in the zero dimensional model. c The switch
diagram for two ladder exchange in which the produced dipoles from
the Pomeron 1 are absorbed by the Pomeron 2’ and vise versa. d The

sum of all diagrams in the zero dimensional model that contribute in the
Green’s function of the exchange of two Pomerons in t-channel. e The
Green’s function of the exchange of n Pomerons. The wavy lines denote
the exchange of one Pomeron with the Green’s function exp (�Y ). The
IP + IP → IP + IP vertex is denoted by blob and equals to 2�

vertex in QCD is equal to 2
N2
c

�BFKL. leading to Gn (Y ) =
exp

(
n� Y + n(n−1)

N2
c

�Y
)

.

3 The structure of the parton cascade

The useful tool for discussing the structure of the parton
cascade is the generating function, which has the following
form [23,93,94]:

Z (Y, u) =
∑
n

Pn(Y ) un (5)

where Pn(Y ) is the probability to find n dipoles with rapidity
Y . For the scattering of one dipole with the target we have
the following initial and boundary conditions:

initial condition: Z (Y = 0, u) = u;
boundary condition: Z (Y, u = 1) = 1; (6)

The boundary condition follows from Pn(Y ) being probabil-
ities.

We need to write the evolution equation for Z (Y, u) taking
into account two Pomeron vertices: �3IP = � for IP →
IP+ IP and �2IP

2IP = 2 � for IP+ IP → IP+ IP . Fortunately
the equation for Z for such a cascade has been written in Ref.
[93,94] and it takes the form:

∂ Z (Y, u)

∂Y
= −�u(1 − u)

∂ Z (Y, u)

∂u

+ � u(u − 1)
∂2 Z (Y, u)

∂u2 (7)

As has been mentioned that Eq. (7) has been suggested in
Refs. [93,94] , but Eq. (7) has a remarkable difference in
comparison with equations in this reference: the sign in front
of u2∂2/∂ u2 is plus, not minus as in our previous attempts.
In Refs. [93,94] the equations for the generating functional
in QCD are considered and general equations for it are pro-
posed, which take into account two vertices: the decay of one
dipole into two � (1 → 2) and the merging of two dipoles in

−+ − +

(a) (b) c) (d) (e)

Fig. 3 The first Pomeron diagrams in Z (Y, u), which are generated by
Eq. (7). The black circles denote the triple Pomeron vertices, while the
blue one describes the four Pomeron interactions induced by ‘switch’
diagrams

one � (2 → 1). In Eq. (6.50) of this paper the general QCD
equations are simplified for the zero dimensional model and
they have the form:

∂ Z (Y, u)

∂Y
= −� (1 → 2) u(1 − u)

∂ Z (Y, u)

∂u

+ � (2 → 1) u(1 − u)
∂2 Z (Y, u)

∂u2

→ −�u(1 − u)
∂ Z (Y, u)

∂u

+ �u(1 − u)
∂2 Z (Y, u)

∂u2 (8)

The last equation is written for our case without �2IP
2IP =

2�. Two terms u2 ∂ Z(Y,u)
∂u and u ∂2 Z(Y,u)

∂u2 generate the dia-
grams of Fig. 3a, b, respectively. The relative sign in Eq.
(8) of these two terms is correct since they obtain the equal
contributions. The diagrams of Fig. 3c, d stem from the

the terms u ∂ Z(Y,u)
∂u and u2 ∂2 Z(Y,u)

∂u2 . Their contributions are
needed to provide that Z (Y, u = 1) = 1. In our approach we
added the direct four Pomeron interaction with the strength
of 2� (see Fig. 3e), Writing this term in the way to keep
Z (Y, u = 1) = 1 one can see that we obtain Eq. (7), which
differs by the sign of the second term from Eq. (8).

Below we discuss a bit different equation:

123



452 Page 4 of 8 Eur. Phys. J. C (2023) 83 :452

∂ Z
(
Ỹ , u

)

∂Ỹ
= − u(1 − u)

∂ Z
(
Ỹ , u

)

∂u

+ κ u(u − 1)
∂2 Z

(
Ỹ , u

)

∂u2 (9)

where Ỹ = � Y and factor κ = 1/N 2
c takes into account

a suppression for � (2 → 1) = 1/N 2
c in QCD (see Ref.

[93,94]). Comparing Eq. (10) with (7) one can see that κ = 1
for zero dimensional model , which we consider. Introducing
κ in Eq. (10) we wish to study how the correct colour struc-
ture of QCD could influence the behaviour of the scattering
amplitude.

3.1 BFKL cascade

Neglecting �2IP
2IP we obtain the well known equation for the

BFKL cascade.

∂ Z
(
Ỹ , u

)

∂Ỹ
= − u(1 − u)

∂ Z
(
Ỹ , u

)

∂u
(10)

It is instructive to observe that Eq. (10) leads to a non-linear
equation for Z (Y, u) [23,93,94]. Indeed, the general solution
to Eq. (10) is of the form Z(Y, u) = Z(u(Y )); if we substitute
this function into Eq. (10), the derivatives ∂Z/∂Y on the l.h.s.
and r.h.s. of Eq. (10) cancel, and we obtain a differential
equation for the function u(Y ). Using the initial condition of
Eq. (17) we can re-write Eq. (10) in the form:

∂ Z
(
Ỹ , u

)

∂Ỹ
= − Z (Y, u) + Z2 (Y, u) (11)

Note, that the scattering amplitude in our models is equal to
N (Y ) = 1 − Z (Y, 1 − γ ) where γ is the amplitude of
the interaction of the dipole with the target at low energy. For
N (Y ) we have the nonlinear equation:

∂ N
(
Ỹ

)

∂Ỹ
= − N (Y ) + N 2 (Y ) (12)

which is the Balitsky–Kovchegov equation [48] for our sim-
ple models.

The solution to Eq. (11), which satisfies the initial and
boundary conditions of Eq. (17) has the following form:

Z (Y, u) = u e−� Y

1 + u
(
e−� Y − 1

) (13)

One can see that at large values of Y Z → 0 (N → 1).
In other words, the nonlinear corrections, which stem from
triple Pomeron interactions , suppress the increase of the
scattering amplitude (N ∝ e� Y ) and lead to the scattering
amplitude which reaches the unitarity bound. We call this
phenomenon the saturation of parton densities.

3.2 Asymptotic solution

The general solution to Eq. (10) has been found in Ref. [88].
However, before applying the developed technique to this
particular equation we wish to see a qualitative changes in
the behaviour of Z at large values of Y that stems from a
different sign of �2IP

2IP than in previous attempts to develop a
similar cascade.

For this purpose we are going to find the asymptotic solu-
tion at large Y from the following equation:

∂ Z asymp
(
Ỹ , u

)

∂u
+ κ

∂2 Z asymp
(
Ỹ , u

)

∂u2 = 0 (14)

It has an obvious solution

Z asymp (u) = 1 − e− u
κ

1 − e− 1
κ

, (15)

which satisfies the boundary condition: Z asymp (u = 1) =
1 and Z asymp (u) ∝ u at u � 1. To find, how the solution
approaches the asymptotic one, we are looking for the solu-
tion in the form: Z (Y, u) =(

1 − e− u
κ
−φ(Y,u)

)
/
(

1 − e− 1
κ

)
, assuming that φ′′

uu and

φ′2
u are small. The equation for φ takes the form:

φ′
Ỹ

(
Ỹ , u

)
= u (1 − u) φ′

u

(
Ỹ , u

)
(16)

with the initial condition at Y=0:

φ
(
Ỹ = 0, u

)
=

(
1

C
− 1

κ

)
u(1 − u) with

C = 1

1 − exp (1/κ)
(17)

which corresponds to Z (Y = 0, u) = u and Z
(Y = 0, u = 1) = 1. A general solution to Eq. (16) has the
form:

φ (Y, u) = �

(
Ỹ + ln

u

1 − u

)
(18)

where the arbitrary function � has to be found from the initial
conditions of Eq. (17).

Finally, the solution takes the form:

Z (Y, u) = 1

1 − e−1/κ

×
(

1 − exp

(
−u

κ
−

(
(1 − exp (−1/κ)) − 1

κ

)

× u(1 − u) eỸ

(1 − u + ueỸ )2

) )
(19)

Figure 4 shows that this solution approaches the unitarity
limit, giving a hope that the shadowing corrections could sup-
press the increase of the Green’s function of the n-Pomerons

in t-channel. However, this figure shows that Z
(
Ỹ , u

)
< 0
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Fig. 4 Graphic form of the
solution of Eq. (19). a κ = 1. b
κ = 1/8. � = 0.2
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in the limited range of u, where this solution violates the uni-
tarity constraints. Hence, we need to find exact solution for
the final conclusions.

3.3 Exact solution

Fortunately, the general solution to Eq. (10) has been found in
Ref. [88]. We discuss this solution here, repeating all steps of
Ref. [88] and paying special attention to the sign in the r.h.s.
of Eq. (10). First, we consider Z (Y, u) in ω representation:

Z (Y, u) =
ε+i∞∫

ε−i∞

dω

2 π i
eω Ỹ z (ω, u) (20)

For z (ω, u) Eq. (10) takes the form:

ω z (ω, u) = −u(1 − u)
(∂ z (ω, u)

∂ u
+ κ

∂2 z (ω, u)

∂ u2

)

(21)

Plugging z (ω, u) = exp
(− u

2κ

)
z̃ (ω, u) in Eq. (21) we

obtain:

4 κ ω z̃ (ω, u) = −u(1 − u)
(

− z̃ (ω, u)

+ 4κ2 z̃′′uu (ω, u)
)

(22)

Introducing z̃ (ω, u) = u(1 − u)G (ω, u) = 1−v2

4 G (ω, v)

with 1 − 2u = v, we can rewrite Eq. (22) in the following
form:

4 κ ωG (ω, u) = u(1 − u)G (ω, u)

− 4κ2 (u(1 − u)G (ω, u))′′uu
=

(
u(1 − u) + 8κ2

)
G (ω, u)

+ 8 κ2(2u − 1)G′
u (ω, u) − 4κ2u(1 − u)G′′

uu (ω, u)

(23)

Using v we have

(1 − v2)G′′
vv (ω, v) − 4 v G′

v (ω, v)

+
{

− 2 + 1

κ
ω − 1 − v2

4 κ2

}
G (ω, v) = 0 (24)

Table 1 First five eigenvalues ωn of ωn = κ λ1
n

ω κ 1 2 3 4 5

ωn 8 (Nc = 3) 1.636 1.766 2.616 3.579 4.8

ωn 1 (Nc = 1) 2.2 6.14 12.133 20.113 30.128

In Ref. [88] it is noted, that functions G (ω, u) are intimately
related to prolate spheroidal wave functions Sn,m (c, v) =
(1−v2)

m
2 G (c, v) [95–97], which satisfy the following equa-

tion:

d

dv

(
(1 − v2)

d Sn,m (c, v)

d v

)

+
(

λmn − c2 v2 − m

1 − v2

)
Sn,m (c, v) = 0 (25)

with n and m being integer numbers.
For functions G (c, v) Eq. (25) takes the form:

(1 − v2)G′′
vv (c, v) − 2(m + 1)v G′

v (c, v)

+
{
λmn − c2 v2 − m(m + 1)

}
G (c, v) = 0 (26)

Comparing Eqs. (24) and (26) we obtain that

m = 1; c2 = − 1

4 κ2 ; ωn = κ λ1
n + 1

4 κ
; (27)

Hence, the set of the eigenfunctions for the generating func-
tion Z (ω, u) has the form:

Zn (v) =
√

1 − v2 e− 1−v
4 κ Sn,1

(
i

2 κ
, v

)
(28)

Going back to rapidity representation, one can see that

Zn (Y, v) = eωn Ỹ
√

1 − v2 e− 1−v
4 κ Sn,1

(
i

2 κ
, v

)

= eκλ1
n Ỹ

√
1 − v2 e− 1−v

4 κ Sn,1

(
i

2 κ
, v

)
(29)

Therefore, one can see that each eigenfunction increases
as function of Ỹ (see Table 1 for the values of ωn).

Generally speaking the generating function is equal to
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Z (Y, v) = Z asymp (u)

+
∞∑
n=1

Cne
ωn Ỹ

√
1 − v2 e− 1−v

4 κ Sn,1

(
i

2 κ
, v

)

(30)

where

Cn =
∫ 1

−1
dv

(
Z (Y = 0, u)

−Z asymp (u)

)
e

1−v
4 κ√

1 − v2

Sn,1
( i

2 κ
, v

)

||Sn,1
( i

2 κ
, v

) || (31)

with

||Sn,1

(
i

2 κ
, v

)
|| =

∫ 1

−1
dv |Sn,1

(
i

2 κ
, v

)
|2

= 2 n (n + 1)

2 n + 1
(32)

Z asymp (u) is the solution to Eq. (14) which correponds to
the minimal value of ω = 0. It is convenient to choose it in
the following form:

Z asymp (u) = 1 − e− u
κ

1 − e− 1
κ

(33)

This solution gives Z asymp (u = 1) = 1 and
Z asymp (u = 0) = 0. Hence the difference Z (Y = 0, u) −
Z asymp (u) satisfies the following boundary condition:

Z (Y = 0, u = 0) − Z asymp (u = 0) = 0;
Z (Y = 0, su = 1) − Z asymp (u = 1) = 0; (34)

This difference can be expanded in the series of Eq. (30)
since functions Sn,1

( i
2 κ

, v
)

satisfy the boundary conditions
of Eq. (34) being equal to zero at v = ±14

From Eq. (30) we conclude that Z (Y, u) increases with
energy (rapidity Y). In other words even in the simple case
of the initial condition of Eq. (17), which corresponds to the
deep inelastic scattering the shadowing corrections failed to
stop the increase of the scattering amplitude.

3.4 Energy growth from the general structure of equation.

In this section we demonstrate that the energy increase actu-
ally stems from the general structure of Eq. (10). Indeed,
Eq. (21) can be rewritten in the form of the Sturm–Liouville
equation:

s(u) ω Z (ω, u) + d

d u

(
p(u)Z ′

u (ω, u)

)
=0 with

s(u) = κ

u(1 − u)
e
u
κ and p(u) = e

u
κ (35)

4 We wish to refer to Refs. [88,98] for more detailed analysis of solu-
tions since Eq. (10) belong to this class.

The Sturm–Liouville equation has the following general
features [88,98]:

1. Equation 35 has infinite set of eigenvalues ωm = λn . λn
monotonically increases with n with λn → ∞ at large n.
In our case of Eq. (35) all λn > 0. The least value of λn
is λ0 = 0 which corresponds the asymptotic solution of
Eq. (15).

2. The multiplicity of each eigenvalue is equal to 1.
3. The eigenfunctions Zn(u) are orthogonal

∫ 1

0
du s(u) Zn(u) Zm(u) = 0 for n 	= n (36)

4. For large n

λn = π2 n2

δ2 with δ =
∫ 1

0
du

√
s(u)

p(u)
(37)

5. For our equation

δ = √
κ

∫ 1

0

du√
u(1 − u)

= √
κ π (38)

giving

λn = n2/κ (39)

Having Eq. (39) we can conclude, that the generating func-

tion Zn

(
Ỹ , u

)
increases with Y . This feature is based on the

general features of the Sturm–Liouville equation and can be
stated without finding the exact solution. Since the class of
Sturm–Lioville equations is much wider than our particu-
lar equation (see Eq. (10)), we believe that more complicate
equations in the case of QCD will still have these property,

4 Conclusions

The main question, that we have answered in this paper,
whether the shadowing correction can stop the steep increase
of Green’s function for the exchange of the n BFKL

Pomerons: GnIP (Y ) ∝ exp
(

n2

N2
c
�BFKLY

)
. In this paper we

considering the simple Pomeron calculus in zero transverse
dimension. This approach has two great advantages: (i) it
takes into account all shadowing corrections including the
summation of the Pomeron loops and (ii) it has the same
as in QCD striking increase of GnIP (Y ). Solving exactly
the evolution equation we demonstrate that the shadowing
corrections cannot stop the increase of scattering amplitude
which violates the unitarity constraints. Hence, our answer
to the question in the title is positive.
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However, another phenomenon could considerably
increase the shadowing corrections: the saturation effects
inside the parton cascade. In the zero dimensional Pomeron
calculus such corrections have been included in UTM model
[38,39,84,91,92].5 On one hand, we have demonstrated in
Ref. [92] the scattering amplitude for this model in spite of
saturation in the parton cascade coincides with the BFKL cas-
cades at high energies. On the other hand, we need to include
�2IP

2IP in this model. It has not been done and we consider this
as a next problem to be solved. If we think about the theo-
retical realization of the parton model (see for example Refs.
[99,100]), we do not expect that the unitarity would be vio-
lated. Therefore, we need to understand why this theoretical
approach cannot be reduced to Eq. (7) at high energies.

The violation of unitarity stems from the vertex �2IP
2IP > 0

, which also appears in QCD (see Refs. [69–73] ) with the
same sign. In Ref. [101] has been demonstrated that gener-
alization of Balitsky–Kovchegov non-linear equation in the
CGC approach, which takes into account the 1/Nc correc-
tions, but without treating the ‘switch’ diagrams of Refs.
[69–73] , do not change drastically the scattering amplitude.
In my opinion CGC approach could describe the ‘switch’
diagrams. However, including them in CGC approach we
will loose the connection with the Pomeron calculus. We do
not believe that the technical complications, coming with the
QCD analysis, could provide the stronger shadowing than in
the simple zero dimensional models. However, we are aware
that we have no idea how to sum Pomeron loops in QCD and
how they influence the strength of the shadowing corrections.
On the other hand, we need to consider a possibility to go
out of the Pomeron calculus to treat the high energy ampli-
tude in CGC and consider CGC approach or/and the effective
Lagrangian of Refs. [102,103] without reducing them to the
Pomeron calculus.

Concluding, we believe that CGC approach correctly
describes the high energy interaction at Nc → ∞ and we
do not have a clue how the shadowing correction could sup-
press the growth of the scattering amplitude in 1/Nc order.
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