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Abstract We propose a new formulation of f (R) gravity,
dubbed scalarized f (R) gravity, in which the Legendre trans-
form is included as a dynamical term. This leads to a theory
with second-order field equations that describes general rela-
tivity with a self-interacting scalar field, without requiring the
introduction of conformal frames. We demonstrate that the
quadratic version of scalarized f (R) gravity reduces to gen-
eral relativity with a massive scalar field, and we explore its
implications for Friedmann cosmology. Our findings suggest
that scalarized f (R) gravity may lead to simplified descrip-
tions of cosmological applications, while the proposed for-
mulation could offer a new perspective on the relationship
between f (R) gravity and scalar–tensor theories.

1 Introduction

It is well-known that the conformal transformation approach
between Jordan and Einstein frames recasts vacuum mod-
ified gravity, be it scalar–tensor or higher-order, in a use-
ful, reduced-order form as general relativity plus a self-
interacting scalar field with a particular conformal poten-
tial (also true in the case of matter fields present in both
frames with additional matter-scalar field couplings), cf. [1–
12]. By a slightly more complicated but totally equivalent
procedure, one may also first introduce the Legendre trans-
form of higher-order gravity to express higher-order grav-
ity in a scalar–tensor form with the Legendre transform of
the theory regarded as potential term, and then conformally
transformed the resulting scalar–tensor theory to obtain the
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same result as before in the Einstein frame representation of
the original lagrangian [13–16].

In the ensuing decades since the first conformal equiv-
alence results originally appeared, we have learnt that two
conformally related theories can have a number of common
physical properties that arise in a great variety of different
problems in gravity and cosmology (inflation, stability, black
holes, quantum aspects, etc), as can be seen in the vast lit-
erature on this subject (cf. the quoted papers above and refs.
therein), and play a major role in providing models for the
interpretation of recent cosmological observations [17–19].
However, two conformally related metrics satisfying dif-
ferent field equations are generally physically inequivalent
because their rescaling is not constant, in sharp contrast to
them enjoying common physical properties. How can one
reconcile the two?

In this paper, we introduce a procedure, which we call
‘Legendre scalarization’, that has the feature of turning
an f (R) gravity theory into general relativity with a self-
interacting scalar field while keeping the same spacetime
metric. In the next Section, we show that in the resulting
Legendre-scalarized theory, the Legendre transform of the
original theory is combined with the kinetic term of the scalar
field involved in it, to become dynamical terms in a new the-
ory which we study in detail. We show that the scalarized
version of the original higher-order lagrangian (in vacuum
or with matter) describes general relativity with the Legen-
dre scalar field playing the role of a self-interacting scalar
field with potential given by the Legendre transform of the
theory, but in the same metric of the original lagrangian.
In Sect. 3, we apply this procedure to a homogeneous and
isotropic Friedmann universe and study the resulting equa-
tions in the case of a theory with a quadratic lagrangian in the
scalar curvature. In the last Section, we briefly discuss these
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Fig. 1 The Legendre transform W (ψ) of f (R)

results and possible extensions of the mechanism introduced
here.

2 Einstein–Legendre gravity

We start with a smooth f (R) function of the scalar curvature
R and assume that f ′′(R) exists and has constant sign. In the
(R- f (R))-plane, the lagrangian of vacuum general relativity
is the bisector of the first and third quadrants. For the f (R)

curve, let ψ be its slope at a given point, ψ = f ′(R), and
consider the line ψR passing through the origin, cf. Fig. 1.
The difference ψR − f (R) describes the gap between the
line ψR and the curve f (R), and this gap becomes biggest
at the point where we can shift the line ψR to be the tangent
‘supporting’ line to the curve f (R).

The supporting line is expressed by the Legendre (or W-)
transform W (ψ) of f (R) which is defined to be [20], p.64,
[21],

W (ψ) = F(ψ, R(ψ)) = sup
R∈R

{F(ψ, R)} , (1)

where we have set F(ψ, R) = ψR − f (R), and ψ is the
slope ∂ f/∂R of f like before. When R = R(ψ), in practice
this means that R = ( f −1(ψ)), and we get the function
W (ψ) that depends only of ψ , with W (ψ) = F(ψ, R(ψ)).
The function W (ψ) encodes the information contained in
f (R) near the point R where the supremum is attained, and
describes how much we have to shift the line ψR at each
point to become the supporting line of f (R).

Therefore for fixed ψ , the Legendre transform W (ψ) of
f (R) is linear and becomes the envelope of f (R), that is the
bundle of all supporting lines of a given f (R) constructed
this way. When the Legendre transformW (ψ)of f (R) exists,
we can write f (R) = ψR − W (ψ), and this is sometimes
used in the literature of modified gravity to express the f (R)

theory as a Brans–Dicke theory with ‘potential’ W (ψ) but
without a kinetic term (this corresponds to zero Brans–Dicke
parameter ω), cf. [13–16].

It follows from (1) that F(ψ, R) ≤ W (ψ), and this leads
to Young’s inequality, ψR ≤ f (R) + W (ψ). For exam-
ple, when f (R) = R2/2, we have W (ψ) = ψ2/2, and
so we find that ψR ≤ R2/2 + ψ2/2. Another basic prop-
erty that follows from the Legendre transform is that the
equations obtained by varying the action associated with
the Lagrangian F(ψ, R) = ψR − f (R) with respect to the
spacetime metric g are equivalent to the lagrangian equations
obtained by varying the action associated with the lagrangian
f (R).

For example, let us take f2(R) = R + εR2, and con-
sider the associated W2(ψ)-action

∫
M W2(ψ) dvg , where

dvg denotes the volume element of the spacetime manifold
M with respect to the metric gμν (in local coordinates xμ,
dvg = √

g dxμ, with g = detgμν). If we vary this action
with respect to the ψ-family of fields {ψ(s) : s ∈ R}, by set-
ting ψ̇ = (∂ψ/∂s)|s=0, with ψ(0) = ψ , it follows that this
fixes ψ = 1, and we get ε = 0 in the expression of f2(R),
that is general relativity (the dvg-variation with respect to ψ

is zero, Ṙ = (∂R/∂ψ)ψ̇ , etc).
This suggests that the general metric (as opposed to the

ψ-) variation of the ‘W -action’,

SW =
∫

M
F(ψ, R) dvg =

∫

M
(ψR − f (R)) dvg, (2)

is somehow related to the Einstein–Hilbert lagrangian. Since,
SW = SBD − S f (R), with SBD = ∫

M ψR dvg the geomet-
ric part of the standard Brans–Dicke action, and S f (R) =∫
M f (R) dvg the standard vacuum f (R) action, we con-

sider the family of metrics {gμν(s) : s ∈ R}, and write ġμν =
(∂gμν/∂s)|s=0, for the metric variation, with gμν(0) = gμν ,
and we find that,

ṠBD =
∫

M
dvg ġ

μν

(

ψ (Rμν − 1

2
gμνR)

−∇μ∇νψ + gμν�ψ
)
, (3)

and,

Ṡ f (R) =
∫

M
dvg ġ

μν

(

f ′(Rμν − 1

2
gμνR) − ∇μ∇ν f

′

+gμν� f ′ − 1

2
gμν( f

′R − f )

)

. (4)

Subtracting the two variations, the higher-order terms as well
as the terms proportional to the product ψ Gμν , G being the
Einstein tensor, all cancel with each other leaving only the
term,

ṠW = 1

2

∫

M
dvg ġ

μν W (ψ). (5)
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We therefore introduce the higher-order ‘Einstein–Legendre’
(‘EL’) action,

SEL =
∫

M
LEL dvg, LEL = R + F + X + Lmat, (6)

where X = (∂ψ)2/2 is the kinetic term of the scalar field
ψ = f ′(R), Lmat the matter lagrangian, and the F-term is
equal to F(ψ, R) as in Eq. (2). Using the result (5), it follows
that the metric variation of the EL action (6), ṠEL = 0, leads
to the field equations,

Gμν = Tμν(ψ) + Tμν(mat), (7)

that is to the Einstein equations with the scalar field ψ =
f ′(R) coupled minimally to the matter tensor Tμν(mat), and
having stress tensor Tμν(ψ) with self-interacting potential
equal to,

V (ψ) = W (ψ)/2. (8)

This result means that when passing to its ‘EL represen-
tation’ (6), the original f (R) theory acquires a particularly
simple form given by the second-order field equations (7) and
obtained without any use of conformal frames. In this sense,
we say that the original f (R) theory has been ‘scalarized’.
In this way, we obtain second-order field equations through
a reduction mechanism which avoids well-known issues that
arise when using the Palatini method [22–25].

3 Legendre-scalarized cosmology

In this Section, we treat homogeneous and isotropic cosmol-
ogy for the quadratic theory f (R) = R + εR2 in the EL
representation. The potential (8) reads,

V (ψ) = 1

8ε
(ψ − 1)2, (9)

and therefore introducing the new scalar field

χ = 1

2
(ψ − 1), (10)

the potential becomes that of a massive scalar field with an
ε-dependent mass,

V (χ) = 1

2
m2χ2, m2 = 1

ε
. (11)

Hence, the R + εR2 theory in the EL representation is
described as a massive scalar field χ in general relativity,
thus simplifying the overall problem.

For an FRW universe filled with a perfect fluid with
pressure p and fluid density ρ, setting H = ȧ/a, and
ρ = χ̇2/2+V (χ), p = χ̇2/2−V (χ) for the massive scalar
field (11), the Einstein equations (7) are (a dot represents

‘d/dt’ below),

χ̈ + 3H χ̇ + m2χ = 0, (12)

Ḣ + H2 = 1

6
m2χ2 − 1

3
χ̇2, (13)

H2 + k

a2 = 1

6

(
χ̇2 + m2χ2

)
. (14)

Following [26,27], we transform the problem in the dimen-
sionless variables,

x = 1√
6

χ, y = 1√
6m

χ ′, z = H√
m

, τ = √
mt. (15)

The first two equations give the three-dimensional system (a
prime is ‘d/dτ ’ below),

x ′ = y (16)

y′ = −mx − 3yz (17)

z′ = mx2 − 2my2 − z2, (18)

while the constraint becomes,

x2 + y2 − z2 = km−2a−2. (19)

From Eq. (11) it follows that for ε > 0 we have the standard
positive mass scalar field, whereas the case ε < 0 is the case
of ‘tachyonic instability’.

We start from the massless case, which following [27]
can be studied by putting x = 0 in the evolution equations
(16)–(18), to get the two-dimensional system,

y′ = −3yz (20)

z′ = −2my2 − z2. (21)

For the mass value m2 = ±1, the corresponding phase
portraits are shown in Fig. 2. The first quadrant of the por-
trait of Fig. 2a faithfully reproduces the behaviour found in
[27] (cf. their Fig. 2), but here we consider also contracting
and recollapsing universes (lower half space) as well as their
‘mirrors’ (left half space), all these have identical behaviour
that of an isotropic stiff fluid. The z-axis represents Milne
universes becoming more and more empty and tending to
flat space (at the origin), while those below the bisectors
expand until they hit on the z = 0 axis after which they are
contracting.

The phase diagram (b) of Fig. 2 shows the behaviour of the
orbits for the case of tachyonic instability, that is the case of
negative mass-squared. We further rescale the system (16)–
(18) using the linear transformation,

x̄ = mx, ȳ = my, z̄ = 1

m
z, (22)

which leads to the equivalent system,

x̄ ′ = ȳ (23)

ȳ′ = −mx̄ − 3ȳ z̄ (24)
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Fig. 2 The massless case for
specific mass values. The left
diagram describes the orbits for
positive scalar field mass,
whereas on the right we have the
orbit structure for tachyonic
instability

z̄′ = x̄2 − 2

m2 ȳ
2 − m2 z̄2, (25)

which incidentally implies that one cannot really remove the
m-dependence completely from the system. Then like before
we set x̄ = 0 to obtain,

ȳ′ = −3ȳ z̄ (26)

z̄′ = − 2

m2 ȳ
2 − m2 z̄2, (27)

leading to the phase portrait of Fig. 2b. These orbits repre-
sent runaway universes evolving from infinite contraction to
infinite expansion avoiding flat space. When k = 0 the situa-
tion simplifies because from Eq. (19) the constraint becomes
z2 = x2 + y2. This means that the motion takes place on the
surface of a cone with vertex at the origin. Setting m = 1,
the first two equations (16), (17) become

x ′ = y (28)

y′ = −x − 3y
√
x2 + y2, (29)

while using these two equations,

z′ = −3y2, (30)

so that z continuously decreases to zero. It is not difficult to
see that the function g(x, y) = (x2 + y2)/2 is a Liapunov
function of the system. (For other cosmological applications
of this technique, see [28].) This implies that the state at the
origin is globally asymptotically stable in this case.

Passing to polar coordinates (r = z, θ), Eqs. (28), (29)
become,

r ′ = −3r2 sin2 θ, (31)

θ ′ = −1 − 3r sin θ cos θ, (32)

for the motion on the cone. We then observe that for r > 0,
r ′ < 0, which implies that orbits spiral inwards, making the
origin a stable focus. This dynamics is captured in Fig. 3,

Fig. 3 Motion on the cone for a massive scalar field (ε > 0)

to be compared with Fig. 1a of Ref. [26]. The results are
qualitative the same.

These results allow for a comment with regard to inflation
in the R + εR2 theory, in its present Legendre-scalarized
version (7) with the scalar field potential given by (11). For
the system (31), (32), the center manifold in this case was
calculated by Rendall and reads ([29], Sec. 6),

u′ = 1

3
u3 + O4, (33)

where u = 1−ρ, ρ = r/(1+r) (cf. also [27], Eq. (3.24) for
an analogous result). Since τ = √

mt in our variables, this
implies that z ≡ H/

√
m ∼ t , and so we find that

a(t) ∼ em
2t2 , (34)

with m = 1/
√

ε from Eq. (11). Now it follows from general
theorems (cf. [30] and refs. therein) that the center manifold
for the system (16)–(19) in the flat case (k = 0) and for any
m near m = 1, differs from that of the flat case with m = 1
(that is from (33)) only by transcendentally small terms, and
so we do not need to calculate the former anew. Therefore we
have shown that inflation proceeds as usual in the Legendre
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scalarized version of the theory since the result (34) is valid
for it as it did for the original R + εR2 version of the theory,
cf. [31–34].

4 Discussion

The Einstein–Legendre approach introduced and studied in
this paper recasts f (R) theory in the form ‘general relativ-
ity plus a self-interacting scalar field’ without introducing
frames and conformal transformations, but staying with the
same metric and Legendre-scalarizing the action. This avoids
a number of shortcomings of the standard conformal equiv-
alence such as the physicality issue, and the problem of the
presence of nonminimal couplings of the field ψ to mat-
ter which arise when one passes to a conformally related
frame, while at the same time reduces the equations to second
order. The present approach is also simpler in that polynomial
potentials (instead of exponential ones) result without confor-
mal transformations, compare e.g., the case of the quadratic
theory potential (11) studied here to the polynomial potential
that arises in the classic result of Whitt [2]. The developments
of Sect. 3 of this paper hopefully highlight this point more
clearly.

One may extend the Legendre scalarization reasoning
advanced presently to other interesting choices of modified
gravity. For example, for a theory of the form f (R, Ric2) ≡
f (x, y), we may set φ = ḟ = ∂ f/∂x, ψ = f ′ = ∂ f/∂y,
and the Legendre transform in this case will be, W :
(φ,ψ, f (x, y)) 	→ (φ,ψ,W (φ,ψ)), where, W (φ,ψ) =
φx + ψy − f (x, y). In this case Legendre scalarization
will be realized in the form of the following Einstein–Ricci–
Legendre lagrangian, R+W +Xφ +Xψ +Lmat, and we may
further proceed as above. Other interesting terms of higher-
order may be scalarized by using higher-dimensional Legen-
dre transforms.
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