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Abstract In this work, we construct a modified version
of the Einstein field equations for a vacuum and spher-
ically symmetric spacetime in terms of the Riemann–
Liouville fractional derivative. The main difference between
our approach and other works is that we ensure that both
the classical differential equations and the classical solu-
tions are exactly recovered in the limit when the frac-
tional parameter is turned off. We assume that the fractional
equations are valid inside and near the horizon radius and
match the classical solution at the horizon. Our approach
resembles the Herrera–Witten strategy (Adv High Energy
Phys 2018:3839103, 2018, https://doi.org/10.1155/2018/
3839103, arXiv:1806.07143 [gr-qc]), where the authors con-
structed an alternative black hole solution by assuming that
inside the horizon the spacetime is hyperbolically symmet-
ric and matches the classical spherically symmetric exterior
solution at one point at the horizon. We obtain that, depend-
ing on the value of the fractional parameter, the solutions can
be interpreted as a regular black hole or a gravastar. As a final
step, we compute the fractional curvature scalars and show
that the solution is regular everywhere inside the horizon.

1 Introduction

It is a well-known fact that in general relativity (GR), sev-
eral solutions of the Einstein field equations undergo curva-
ture singularities. It is widely believed that such singularities
are nonphysical and their mere presence indicates the loss
of validity of the classical theory. Even more, is expected
that quantum gravitational effects become important at this
scale. However, as a final quantum theory of gravitation is
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not consistently constructed, the interest in effective theories
that account for quantum corrections has increased in recent
years.

Among all the paths that can be taken to achieve an effec-
tive theory of gravity with quantum corrections, in this work,
we follow the fractional calculus approach which introduces
non-locality with the aim to remove the classical singulari-
ties of GR and to improve its renormalizability at the quan-
tum level [1]. It is worth noticing that, one of the conse-
quences of the introduction of fractional calculus to reformu-
late the classical GR is that spacetime becomes a non-integer
dimensional entity so that the concepts of time and geome-
try lose their meaning but emerge only in specific regimes
and approximations of the theory [2]. This intriguing feature
is encoded in different approaches [3–7] where it is found
that the dimension of spacetime undergoes a flow: at high
energies/small scales, the effective dimension of spacetime
is two, while at lower energies the dimension runs to four,
leading to classical GR [2].

The change of dimensionality at different scales and its
acquiring of non-integer values are typical of multi-fractals,
so it is customary to describe dimensional flow as a “fractal
property” of spacetime [2]. To be more precise, all seem to
indicate that the application of quantum mechanics to space-
time itself leads, in general, to a fractal geometry [8]. In this
regard, fractional calculus is by far the most obvious tool to
implement anomalous scaling in geometry.

In Ref. [1] there is presented a detailed treatment of frac-
tional calculus in the framework of gravitation. In particular,
the author proposes the classical action based on generic frac-
tional operators and obtains the equations of motions through
a variational principle. It is demonstrated that fractional Ein-
stein equations (FEE) are formally the same as their classical
counterpart, namely, they can be obtained by simply replac-
ing the classical integer derivatives with the corresponding
fractional ones. However, there is an extra “boundary term”
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whose value would depend on the choice of a certain multi-
fractional measure. Nevertheless, is clear that the classical
field equations are recovered in the appropriate limit (see
discussion below about such a limit). It is worth mentioning
that although the treatment in [1] is complete and formal, the
author does not present any particular solution to the system
of equations. Of course, this is not a straightforward step for
two reasons:( i) arriving at the Einstein field equation given a
particular parameterization of the metric requires the use of
a fractional Leibnitz rule which differs from the classical one
by the additions of a combinatory infinite series and (ii) the
non-locality leads to a set of integral–differential equations
which are far from trivial to solve.

Among the first attempts to extract new physics from the
FEE we can name the works by Munkhammar [9] and Vacaru
[10] in astrophysics and Roberts [11] in cosmology. Of par-
ticular interest is the work [11] where the author surpasses
the problem of dealing with the non-trivial Leibnitz rule by
imposing the so-called last step modification (LSM) that con-
sists in to replace the classical derivatives with their fractional
version in the system obtained from a particular parametriza-
tion of the metric. More precisely, in [11] the author replaces
the time derivative appearing in the Friedmann equations
with its fractional counterpart. More recently, the authors in
[12] studied a cosmological model based on the LSM and fit
the fractional derivative parameters to SN Ia data to explain
the current accelerated expansion of the Universe without
the use of a dark energy component. We would like to point
out that the LSM must be interpreted as a route to construct
effective solutions and is not a rigorous way to apply frac-
tional calculus in general relativity. Indeed, as we commented
before, applying the full machinery of fractional calculus in
constructing the Einstein field equations is far from trivial
and will depend on the representation of the fractional deriva-
tive we use. Alternatively, the LSM can be used as a guide to
constructing the appropriate Riemann tensor by following an
inverse problem strategy. In this regard, the problem reduces
to finding the particular conditions that the functions have to
satisfy to simplify both the Leibnitz and the chain rule of the
particular fractional derivative.

In this work, we will apply the LSM technique to con-
struct the fractional version of the Einstein equations in a
vacuum, static, and, spherically symmetric spacetime whose
solution corresponds to the modified Schwarzschild black
hole metric by using the weighted Riemann–Liouville frac-
tional derivative. It is worth mentioning that, our approach
ensures the recovery of both the classical differential equa-
tion in terms of ordinary derivative and the classical solution
which, in this case, corresponds to the Schwarzschild exterior
metric. Besides, our approach resembles the Herrera–Witten
strategy developed in [13], where the authors constructed
an alternative black hole solution by assuming that inside
the horizon the spacetime is hyperbolically symmetric and

matches the classical spherically symmetric exterior solution
at one point at the horizon. The main difference here is that
instead of assuming a change in the symmetry of spacetime,
we consider that inside the horizon the physics is governed
by fractional differential equations.

This work is organized as follows. In the next section,
we introduce the Riemann–Liouville derivative. In Sect. 3
we briefly introduce the Einstein field equations and con-
struct their fractional counterpart in Sect. 4. In the last sec-
tion, we discuss some final issues and conclude the work.
In particular, we provide some comments on the use of the
Riemann–Liouville operator in a broader context and discuss
the shortcomings of other approaches when addressing the
specific problem we tackle in this work.

2 Riemann–Liouville

This section is devoted to defining the Riemann–Liouville
derivative in a rigorous way.

Definition 1 The Riemann–Liouville fractional integral of
order η ∈ R

+ is given by (see [14–17])

(
I η

b−h
)
(x) = 1

�(η)

∫ b

x

h(t)

(t − x)1−η
dt, b > x . (2.1)

We denote by I η

b−(L1) the class of functions h, represented
by the fractional integral (2.1) of a summable function, that
is h = I η

b−ϕ, where ϕ ∈ L1(a, b). A description of this class
of functions is given in [14,17].

Definition 2 Let
(
Dη

b−h
)
(x)denote the fractionalRiemann–

Liouville derivative of order η ∈ R
+ (see [14–17])

(
Dη

b−h
)
(x) =

(
d

dx

)s −1

�(s − η)

∫ b

x

h(t)

(t − x)η−s+1 dt,

s = [η] + 1, b > x, (2.2)

where [η] denotes the integer part of η and � is the gamma
function. When 0 < η < 1, then (2.2) takes the form

(
Dη

b−h
)
(x) = d

dx

−1

�(1 − η)

∫ b

x

h(t)

(t − x)η
dt. (2.3)

Theorem 21 A function h ∈ I η

b−(L1), η > 0, if and only

if, I s−η

b− h ∈ ACs([a, b]), s = [η] + 1 and (I s−η

b− h)(k)(b) =
0, k = 0, . . . , s − 1.

In Theorem 21, ACs([a, b]) denotes the class of func-
tions h, which are continuously differentiable on the segment
[a, b], up to order s − 1 and h(s−1) is absolutely continuous
on [a, b]. Removing the last condition in Theorem 21, we
get a class of functions that admits a summable fractional
derivative.
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Remark 1 We call the identity operators when η = 0. That
is

(
I 0
b−h

)
(x) = h(x) and

(
D0
b−h

)
(x) = h(x)

Definition 3 (see [17]) A function h ∈ L1(a, b) has a
summable fractional derivative

(
Dη

b−h
)
(x) if

(
I s−η

b− h
)

(x) ∈ ACs([a, b]),
where s = [η] + 1.

If a function h admits a summable fractional derivative,
then the composition of (2.2) and (2.1) can be written in the
form (see [17, Thm. 2.4])

(
I η

b− Dη

b−h
)
(x) = h(x) −

s−1∑

k=0

(b − x)η−k−1

�(η − k)

×
(
I s−η

b− h
)(s−k−1)

(b),

s = [η] + 1. (2.4)

Ifh ∈ I η

b−(L1), then (2.4) can be reduced to
(
I η

b− Dη

b−h
)
(x) =

f (x). However, Dη

b− I η

b−h(x) = h(x) for both cases. This is a
particular case of a more general property (see [16, (2.114)])

Dη

b−
(
I γ

b−h
) = Dη−γ

b− h, η ≥ γ > 0. (2.5)

The semigroup property for the composition of fractional
derivatives does not hold in general (see [16, Sect. 2.3.6]). In
fact, the property:

Dη

b−
(
Dγ

b−h
) = Dη+γ

b− h, (2.6)

holds whenever

h( j)(b+) = 0, j = 0, 1, . . . , s − 1, (2.7)

and h ∈ ACs−1([a, b]), h(s) ∈ L1(a, b) and s = [γ ] + 1.
In what follows, we will illustrate the implementation

of the Riemann–Liouville fractional derivative with some
examples.

Example 1 If η < 1, A ∈ R and b > x . Then

Dη

b−(x − b)η−1 = 0. (2.8)

In this regard, (x − b)η−1 is a constant in the context of
the Riemann–Liouville fractional derivative.

Example 2 If η < 1, A ∈ R, x > 0, b > x and h(x) =
(x − b)1−2η,

Dη

b−[Ah(x)] = A(−1)2−5η�(2 − 2η)

�(2 − 3η)
(x − b)1−3η, (2.9)

Note that

lim
η→1

Dη

b−[Ah(x)] = 3A

2(x − b)2 , (2.10)

which is proportional to the first derivative as expected. How-
ever, in this work, we insist on recovering the first derivative
exactly so we propose a modification of the operator in virtue
of its linearity [18,19]. In this regard, we define the weighted
Riemann–Liouville derivative as

D
η

q− = q(η)Dη

b− , (2.11)

with

q(η) = A(−1)5η−1�(2 − 3η)

�(2 − 2η)
, (2.12)

such that

lim
η→1

Dq−h(x) = d

dx
(x − b)−1, (2.13)

as required. Even more, the identity map remains unchanged,
namely

lim
η→0

Dq−h(x) = (x − b) (2.14)

Now, by using the weighted derivative we obtain the follow-
ing important results

Dq−(x − b)η−1 = 0 (2.15)

Dq−(x − b)1−2η = −(x − b)1−3η, (2.16)

that we will use in future developments (see Sect. 4). In the
next section, we will review the Einstein field equations for
static and spherically symmetric spacetimes. Then, we will
use the LSM method to write their fractional counterpart by
using the weighted Riemann–Liouville derivative.

3 Einstein field equations: a brief introduction

Let us consider a spherically symmetric space-time with a
line element given in Schwarzschild-like coordinates by,

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin2 θdφ2

)
, (3.1)

where ν and λ are functions of the radial coordinate only.
The metric (3.1) satisfies the Einstein field equations given
by,

Gν
μ = 8πT ν

μ . (3.2)

where

Tμν = (ρ + P⊥)uμuν − P⊥gμν + (Pr − P⊥)sμsν, (3.3)

encodes the matter content with,

uμ = (e−ν/2, 0, 0, 0), (3.4)

the four-velocity of the fluid and sμ is defined as

sμ = (0, e−λ/2, 0, 0), (3.5)
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with the properties sμuμ = 0, sμsμ = −1 (we are assuming
geometric units c = G = 1). The metric (3.1), has to satisfy
the Einstein field equations (3.2), which are given by

ρ = − 1

8π

[
− 1

r2 + e−λ

(
1

r2 − λ′

r

)]
, (3.6)

Pr = − 1

8π

[
1

r2 − e−λ

(
1

r2 + ν′

r

)]
, (3.7)

P⊥ = 1

8π

[
e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

) ]
, (3.8)

where primes denote derivative with respect to r .
In this work, we are interested in the Schwarzschild exte-

rior solution. In this case, Tμν = 0 and the Einstein’s equa-
tions reduce to

r f ′ + f − 1 = 0, (3.9)

with f = eν = e−λ. The solution of the above equation is
given by

f = 1 − 2M

r
(3.10)

Note that this metric is “ singular” at r = 2M and r = 0.
As it is well known, r = 2M defines the location of the
event horizon of the black hole and the singularity is asso-
ciated with an inadequate choice of the local chart. How-
ever, r = 0 is a physical singularity in the sense that cannot
be removed with any choice of coordinates. In this regard,
sometimes is claimed that the appearance of such a singu-
larity is a signal that the theory is not valid as r → 0 and
that should be replaced by a suitable model. For example,
given the strength of the gravitational field on and inside the
horizon, it is thought that physics should be described by
a quantum model of gravity. Nevertheless, as the problem
of the quantization of gravity is far from being solved, some
authors propose regular models supported by non-linear elec-
trodynamics sources (not vacuum) (for an incomplete list,
see [20–31]). More recently, it has been claim that, as we
cannot define global static observers in the Schwarzschild
background, the region 0 < r < 2M must be covered with
a hyperbolic chart and, as a consequence, the singularity at
r = 0 disappear [13]. In this work, we propose that, instead
of changing the symmetry inside the black hole, the singu-
larity can be removed by writing Eintein’s field equations in
terms of fractional derivatives operators. It is worth mention-
ing that the fractional derivative introduces non-locality to the
problem. Of course, this is not the first time that non-locality
is introduced in order to construct a UV completed theory.
Nevertheless, we will assume non–locality only inside the
BH by replacing the differential operators with fractional
derivatives.

4 A simple application: Schwarzschild exterior solution

Let ds2 = − f dt2 + f −1dr2 + r2d�2, be the metric of
a vacuum, static, spherically symmetric and asymptotically
flat space-time. Let x = r/rH be a dimensionless variable
with rH the horizon radius, so Eqs. (3.9) and (3.10) read

x
d f

dx
+ f − 1 = 0, (4.1)

f = 1 − 1

x
. (4.2)

At this point, let us implement the LSM technique and define
the following maps from classical to fractional variables

1 → (x − b)1−η (4.3)

x → (x − b)η (4.4)
d f

dx
→ D

η

q− f̃ , (4.5)

with f̃ the “fractional” function and b a dimensionless con-
stant such that

lim
η→1

b = 0. (4.6)

Using (4.3)–(4.5), Eq. (4.1) can be written as

(x − b)ηDη

q− f̃ + f̃ − (x − b)η−1 = 0, (4.7)

which corresponds to the LSM version of Eq. (4.1). At this
point, some comments are in order. First, it should be empha-
sized that Eq. (4.7) is valid in the interval 0 < x < 1 (inside
the horizon, namely 0 < r < 2M). Second, a solution of
(4.7) is a vacuum solution of the fractional Einstein equa-
tions in the framework of the LSM. In this regard, spacetime
is vacuum everywhere. Finally, note that Eq. (4.1) is recov-
ered when η → 1.

It can be readily shown that the solution of Eq. (4.7) is
given by

f̃ = (x − b)η−1 − g(x − b)1−2η, g ∈ R (4.8)

which can be verified by using (2.15) and (2.16). Further-
more, we are assuming

lim
η→1

g = 1. (4.9)

It is worth noticing that (4.8) reduces to (4.2), when η → 1,
so the solution reduces to the classical one as expected. In
order to ensure the matching of the metric at r = rH (x = 1),
we demand that f̃ (x = 1) = 0, from where

b = 1 − g
1

3η−2 . (4.10)

Although g is arbitrary, in this work we shall define

g = (2 − η)3η−2, (4.11)
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Fig. 1 f̃ as a function of x for α = 0.5 (orange line), α = 0.6 (brown
line), α = 0.7 (blue line) and α = 0.75 (red line). The black line
corresponds to the classical solution, f , which is valid for x > 1

from where b = η − 1 < 0. At this point, some comments
are in order. First, note that the metric is regular at x = 0.
Second, it is worth noticing that

f̃ > 0, if α < 2/3, (4.12)

f̃ < 0, if α > 2/3, (4.13)

f̃ = 0, if α = 2/3. (4.14)

In this regard, the solution mimics a “gravastar” [32–37] for
α < 2/3 and a “regular” black hole for α > 2/3 as shown
in Fig. 1. Interestingly, in contrast to most of the gravastars
and regular black holes in literature, our model corresponds
to a vacuum solution.

It is worth mentioning that, although the metric seems
regular everywhere, the computation of the scalars is com-
pulsory, which, in accordance with our analysis, must be
obtained by using the fractional derivatives. The fractional
derivative version of the curvature scalars can be written after
using the transformations (4.3)–(4.5) together with

x−n → x1−(n+1)η, (4.15)

xn → (x − b)n−1+η, (4.16)

d2 f

dx2 → D
η

q−(D
η

q− f̃ ), (4.17)

with n ≥ 1. By doing so, we arrive at

R̃ = 2x3η−1
b

(
gx1−2η

b + xη−1
b − 1

)
− 2gx1−4η

b , (4.18)

R̃icc = 2x−3
b

(
2g2xη+4

b − 2g2x5
b + x7η

b ,

+x5η+2
b − 2x6η+1

b

)
(4.19)

K̃ = 4x5η−1
b

(
g2x3−5η

b + g2x5−7η
b +

(
xη−1
b − gx1−2η

b

)2

−2
(
xη−1
b − gx1−2η

b

)
+ 1

)
, (4.20)

where R̃, R̃icc and K̃ stands the fractional Ricci, Ricci
squared, and Kretshmann scalars respectively, and xb =
x − b. Note that the scalars are regular whenever b > 1.

5 Final comments and conclusion

In this work, we implemented fractional calculus in the
framework of the Riemann–Liuville derivative to construct
a static and spherically symmetric ultracompact object that
mimics both regular black holes and gravastars. In contrast
to what is found in the literature, our model corresponds
to a vacuum solution. Indeed, the metric is the well-known
Schwazschild exterior solution outside the horizon and a frac-
tional metric inside the horizon, and both match at the event
horizon radius. The interior fractional metric can be thought
of as an effective solution that regularizes the singularity
appearing in r = 0 in the classical theory by taking non-local
effects into account. Even more, given the strength of the
gravitational field near and inside the horizon, we could con-
jecture that the introduction of fractional calculus accounts
for quantum effects through non-locality.

It is worth mentioning that during the development of this
work we considered using other derivatives such as Caputo
or Riemann Liouville on the semi-real axis, but we decided
to discard them for the following reasons:

1. In the case of Caputo, the original equation of the clas-
sical case was not recovered when η → 1. Formally
we could recover it under the restriction η < 1/2. The
main reason is that the Caputo derivative demands that
the function be input differentiable, unlike the Riemann
Liouville derivative. This can be seen in the definition of
the fractional Caputo derivative of order η ∈ R, η > 0:

(cDη

a−h
)
(x) =

[
1

�(1 − η)

∫ x

a

f ′(t)
(x − t)η

dt

]

where f ′(t) = d f
dt .

2. In the case of Riemann Liouville on the semi-real axis,
there are no “constants” that can be defined. More pre-
cisely, there is not any object whose Riemann–Lioville
derivative is zero.

3. In terms of the original non-weighted Riemann–Lioville
derivative, the differential equation should read

− (x − b)η

(−1)2−5η

∣
∣∣
�(2 − 3η)

�(2 − 2η)

∣
∣∣Dη

b+ f̃ + f̃ − (x − b)η−1 = 0.

Note that, when η → 1 the classical Eq. (3.9) is recov-
ered. However, the solution of this equation is still (4.8)
but for �(2−3η)

�(2−2η)
> 0, obtaining a solution for a set of

reduced values of α and not for the entire interval.
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Before concluding this work, we would like to draw atten-
tion to the following points. First, the Riemann–Liouville
derivative presents certain challenges that could make its
implementation in constructing a non-local gravity theory
more difficult. For instance, constants in the regular deriva-
tive are not constants in the Riemann–Liouville derivative,
which poses a problem when deriving the Einstein field
equations. To be more specific, in the static and spherically
symmetric case, most of the components of the Christof-
fel symbols vanish due to the radial dependence of both the
temporal and radial components of the metric. Naturally, if
we take the derivative with respect to time when construct-
ing the Christoffel symbols, the result is zero. However, the
Riemann–Liouville derivative of such a function with respect
to time is non-zero, which is problematic in the context of
static solutions. This issue can be addressed by imposing con-
straints that ensure these components become zero at the end
of the computation. Another possibility could be the imple-
mentation of the Hilfer derivative, which is a combination
of both the Caputo and Riemann–Liouville derivatives, and
could potentially solve this problem. Second, we would like
to emphasize that our results here must be interpreted as an
effective application of the full machinery of fractional cal-
culus. Indeed, we could use them to apply an inverse problem
strategy to constructing the Riemann tensor which leads to
the fractional Einstein Eq. (4.7). Of course, it is clear that
such an inverse problem will lead to very specific constraints
that the function f̃ has to satisfy in order to simplify both
the Leibnitz and the chain rule of the fractional derivative.
However, we leave this and other issues to a future work.
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