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Abstract Using arguments from holography we propose
that the deviation of the cosmological spectral index nS
of scalar fluctuations from unity may be controlled almost
entirely by the critical exponent η of the d = 3 Ising model.

1 Introduction

In this note we demonstrate that the observed deviation from
scale invariance of the Cosmic Microwave Background as
encoded in the spectral index nS of scalar fluctuations, can
be explained by dS/CFT arguments. The set up is a real scalar
φ in de Sitter (dS) space with an “out” observer sitting at its
horizon and looking at the time where modes are exiting.
This can be any time except from the time that defines the
horizon for thermal effects to be observable. The observer
sees a scale invariant thermal state |out〉;βdS where βdS =
1/TdS and with TdS the Gibbons-Hawking temperature of dS
space. The thermal state is connected to the Bunch-Davies
vacuum |in〉 by a Bogolyubov Transformation. The breaking
of scale invariance is realized when T < TdS. The effect of
the breaking on nS can be quantified if a certain eigenvalue
equation is satisfied. The associated eigenvalue appears then
via standard dS/CFT rules in the Callan–Symnazik equation
for the boundary operator that couples to the bulk scalar,
as the critical exponent η of the d = 3 Ising model. The
result is independent of the precise form of the bulk action
and of the details of the breaking mechanism, as long as the
breaking is non-zero and small. Here, we concentrate only
on the boundary where the field theory lives. More details of
the (bulk) construction of the thermal scalar in dS space can
be found in [1].
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2 The spectral index nS from dS/CFT

The crucial observation for this note is that the (|in〉)
|out;βdS〉 vacuum is expected to correspond to a fixed point
in the (UV) IR of the dual field theory. Just outside the IR
fixed point the bulk state is |out;β〉 with β > βdS. On the
boundary, the IR conformal point can be recognized as the
interacting fixed point in the universality class of the d = 3
Euclidean scalar theory with a renormalized Lagrangian

L = 1

2
∂iσ∂iσ − λσ 4. (2.1)

In principle, a mass term should be added too because it cor-
responds to a massive field in the bulk but since the final result
depends very weakly on it, for simplicity we will keep the
field massless.1 In the dS/CFT correspondence [2,3], a real
scalar bulk field φ (with fluactuation modes φ|k|) of dimen-
sion �− in dS space is dual to an operator O of the boundary
CFT of dimension �+. Then bulk and boundary propagators
are related by [4,5] (the subscripts remind of the momentum
conservation δ-function which we omit):

〈φ|k|φ−|k|〉 ∼ 1

〈O|k|O−|k|〉 . (2.2)

The scalar curvature perturbations ζ|k| and the dS scalar field
(of dimension �cl,− = 0) perturbation can be in fact con-
nected as ζ|k| = z(τ )φ|k| [6–8], with the z(τ ) factor deter-
mined by the (conformal time τ ) time-dependent classical
background. As a result, there is a relation between the cor-

1 There is a small price for this. Since there is no massive RG trajec-
tory (in dimensional regularization) that connects the Gaussian with the
Wilson-Fisher fixed point, with a non-zero mass term in the Lagrangian
it would be easier to argue that the system never reaches exact scale
invariance. A small mass could develop in the classicaly massless theory
for example through a generalized version of the Coleman–Weinberg
mechanism.
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relators

〈ζ|k|ζ−|k|〉 ∼ 〈φ|k|φ−|k|〉, (2.3)

which is gauge-invariant [4]. Recall then the definition of the
spectral index using the above identifications:

nS − 1 = ∂

∂ ln |k| ln
(
|k|3〈ζ|k|ζ−|k|〉

)

= ∂

∂ ln |k| ln
(
|k|3〈φ|k|φ−|k|〉

)

= 3 − 1

〈O|k|O−|k|〉
(

∂

∂ ln |k| 〈O|k|O−|k|〉
)

(2.4)

and write the Callan–Symanzik equation for a general 2-point
function in momentum space as
(

∂

∂ ln |k|−βλ

∂

∂λ
+(3 − 2�O)

)
〈O|k|O−|k|〉 = 0, (2.5)

where �O = �+ = [�O] + �O and βλ ≡ μ ∂λ
∂μ

. These

combine into [13–15]2

nS = 1 − 2�O − βλ

∂

∂λ
ln〈O|k|O−|k|〉, (2.6)

where we have used that [�O] ≡ �cl,+ = 3. We define
the “total” anomalous dimension γO ≡ μ ∂

∂μ
ln zO and we

also have γσ ≡ 1
2μ ∂

∂μ
ln Zσ , the wave function renormal-

ization of σ . In terms of these counterterms, the “oper-
ator” anomalous dimension that shifts [�O] is �O ≡
−μ ∂

∂μ
ln

(
Z−1

σ zO
) ≡ −μ ∂

∂μ
ln (ZO), for an operator that

contains two σ ’s. These definitions imply the relation �O =
−γO + 2γσ .

Now the boundary operator that couples to a ζ|k| of
�cl,− = 0 is O = �, the trace of the Ising energy-
momentum tensor � = δi jTi j , which being associated with
a conserved current, has an exactly vanishing anomalous
dimension: �� ≡ 0.3 This gives the constraint γ� = 2γσ . In
coordinate space we can also write Eq. (2.6) for �, as

nS = 1 + ∂

∂ ln μ
ln〈�(x1)�(x2)〉

= 1 − βλ

∂

∂λ
ln〈�(x1)�(x2)〉. (2.7)

2 The analysis of [13–15] recognizes the scalar tilt in the CMB spectrum
as the anomalous dimension of the boundary operator σ 4. As far as we
can tell, there are two versions of their interpretation. In our notation
they can be expressed to leading order in βλ as either nS = 1−2�σ 4 =
1 − 2 βλ

λ
or as nS = 1 − 2�σ 4 = 1 − 2 ∂βλ

∂λ
. The first implies a vanishing

anomalous dimension and tilt at the fixed point and the second sees it
basically related to the critical exponent ω.
3 The general argument is due to Wilson [9]. To leading order (or
beyond) in the ε-expansion this cancellation can be seen explicitly for
example in [10–12], for Ti j itself. For �, it is realized as a sunset dia-
gram with a σ�σ insertion cancelling a usual sunset. For all other spin
zero operators, since γσ ∼ O(ε2) and γO ∼ O(ε), it is typically taken
�O ∼ −γO to leading order.

Near the IR fixed point the anomalous dimension 2γσ is
known as the critical exponent η and it has a value that
has been computed analytically, among others, in the ε-
expansion and numerically on the lattice. It has the value
η � 0.036 approximately. Now write the Callan–Symanzik
equation in a form where the cancellation of the two con-
tributions to �� = 0 is inserted explicitly and with the two
cancelling terms shared between the two derivatives:
[(

∂

∂ ln μ
+ η

)
+

(
βλ

∂

∂λ
− η

)]
〈�(x1)�(x2)〉 � 0.

(2.8)

It is tempting to assume that just outside the IR conformal
point the deviation from scale invariance can be parametrized
by an RG flow, with the two parentheses in the Callan–
Symanzik equation vanishing separately. Then, the scal-
ing equation that the c�-coupling approximately satisfies is
βλ∂λc� = ηc�, where 〈��〉 = c�/|x |2d . The leading order
solution is

c� ∼
(

16π2 − 3λ

λ

)η

(2.9)

and vanishes on the interacting fixed point, as it should. For
this reason the eigenvalue equation is non-empty only outside
the fixed point. Notice that c� > 0 between the free and
interacting fixed points.

Applying the above eigenvalue to Eq. (2.7) in the vicinity
of this fixed point and using the non-perturbative value of η,
we are lead to an interesting statement:

nS � 1 − η = 0.964. (2.10)

The two main sources of errors in this number are the small
corrections due to the non-zero βλ just outside the fixed point
and any errors in the lattice Monte Carlo measurement of η.

In the remaining we give possible justification for the sepa-
rate vanishing of the two terms in the parentheses in Eq. (2.8).
One can give arguments from both the boundary and the bulk
perspectives. On the boundary the argument starts by notic-
ing that the renormalized � is not constructed from the bare
quantity in the traditional way, since Z� = 1. Instead, first σ 4

0
is renormalized and βλ is computed and then the renormal-
ized operator is constructed via � = −βλμ

εσ 4. This leaves
the window to construct an RG flow by� = �0z

−1/2
� . Hitting

both sides with μ∂/∂μ and using the definitions above, gives
(μ∂/∂μ+γ�)〈��〉 = 0. In the bulk, following [13] one con-

siders the late time equation of motion dH
dt = − 1

2

(
dφ
dt

)2
in

Mpl = 1 units (H = da/dt
a and a = eHt is the scale factor)

and the exact form of the 2-point function 〈�|k|�−|k|〉 ∼ |k|3
H2

and relates the time-dependence of H away from the confor-
mal limits with an RG flow on the boundary, by the identifi-
cations μ = aH and λ = φ. The latter identification is not
sufficient however to reproduce our RG flow because it is not
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able to see wave function renormalization. By construction
it is sensitive only to �O, therefore it must be generalized. A
possible identification for that purpose is (τ is the conformal
time with dt = adτ )

λ = φ − 2γσ

βλ

Ht � φ + ln(H |τ |) 2γσ
βλ , (2.11)

that indeed gives
(
βλ∂/∂λ − 2γσ + O(β2

λ)
) 〈��〉 = 0 and

which near the fixed point reduces to the eigenvalue equa-
tion we need. These considerations should not be considered
of course as a proof but as plausibility arguments. A rigor-
ous analysis looks substantially more complicated from both
sides [11,16,17]. In both cases the main obstruction seems
to be the disentanglement of the role of wave function renor-
malization from the renormalization process.

The index in Eq. (2.10) is just one of many that can be
completely fixed by such arguments. In principle also other
critical exponents may be mapped to some cosmological
parameters. Moreover, the value of η fixes more than one
observables. A few such examples are given in [1].

3 Tensor fluctuations

The dual of dS is a non-unitary CFT with negative central
charge and the 2-point function of gravitational waves γμν is
inversely proportional to the central charge of the dual CFT
PT ∼ 〈γ γ 〉 ∼ 1

c�
T

with c�
T ∼ −R2

dS [4] in units MPl = 1.

As we have emphasized, the interesting physics happens just
outside the scale invariant point where the tensor to scalar
ratio r = PT

PS
should be small < O(0.1−0.01) and positive.4

It is possible to realize a positive PT (therefore a positive r )
in the vicinity of a non-unitary conformal point, if the effec-
tive coupling that determines the physical tensor spectrum
is positive away from the fixed point and somewhere before
it reaches the fixed point turns negative. Let us call such a
coupling, function of e ≡ x12 = |x1 − x2|, the C-function
and denote the IR fixed point by �. The necessary condi-
tions are then that C > 0 somewhere outside the fixed point,
Ċ ≡ e dCde < 0 and C� = c�

T .
To justify the existence of such an effective coupling

we remind [4] that the 2-point function of the bound-
ary energy-momentum tensor 〈TμνTρσ 〉 couples to the
(inverse of) bulk 2-point function 〈γμνγρσ 〉 with γμν =∫ d3k

(2π)3

∑
s=± εsμν(k)γ

s
k (t)eix·k and the tensor spectrum is

finally governed by the scalar quantity

PT ∼ 〈γ s
kγ s′

−k〉 = (2π)3 ( dadt )
2

|k|3 δss′ (3.1)

4 The most recent measurement of the tensor to scalar ratio is r < 0.036
using the latest BICEP/Keck data and r < 0.032 adding also the Planck
2020 data [18].

as the tensorial structure carried by the polarization tensor εsμν

gets reduced to a constant factor δss′ that sets the helicities s
and s′ equal. This implies that there is an effective coupling
that one can define, such that

〈TμνTρσ 〉 ≡ Aμνρσ (e)
e2d ∼ C(e)

e2d Fμνρσ , (3.2)

with Fμνρσ a tensor structure independent of e, whose precise
form is irrelevant. Our aim is to define a C(e) with properties
that are compatible with observations.

We start from the tensor structure of the most general
reducible 2-point function, invariant under the symmetry
eμ → −eμ [19]:

〈TμνTρσ 〉 = c1

e2d+4 eμeνeρeσ + c2

e2d+2

(
eμeνδρσ +eρeσ δμν

)

+ c3

e2d+2

(
eμeρδνσ + eνeρδμσ + eμeσ δνρ + eνeσ δμρ

)

+ c4

e2d δμνδρσ + c5

e2d

(
δμρδνσ + δνρδμσ

)
, (3.3)

which defines the tensor Aμνρσ (e) in Eq. (3.2). We have to
construct the 2-point functions of the irreducible representa-
tions in the decomposition Tμν = Tμν + �

δμν

d with Tμν the
traceless part.

• The trace correlator is then

〈��〉 ≡ c�

e2d = δμνδρσ 〈TμνTρσ 〉. (3.4)

• The mixed correlator is

〈�Tρσ 〉 ≡ cM
e2d hρσ = 〈�Tρσ 〉 − 〈��〉δρσ

d

= δμν〈TμνTρσ 〉 − 〈��〉δρσ

d
.

(3.5)

Indeed, δρσ 〈�Tρσ 〉 = 〈��〉 − 〈��〉 δρσ δρσ

d = 〈��〉 −
〈��〉 = 0 as it should, since Tρσ is traceless. Also,

δρσ 〈�Tρσ 〉 = 0 ⇒ cM
e2d δρσ hρσ = 0 ⇒ Tr{h} = 0,

(3.6)

with

hμν = δμν

d
− eμeν

e2 . (3.7)

• The 2-point function of the traceless representation is

〈TμνTρσ 〉 ≡ Aμνρσ

e2d = 〈TμνTρσ 〉 − cM
e2d hμν

δρσ

d

− cM
e2d hρσ

δμν

d
− c�

e2d

δμν

d

δρσ

d
. (3.8)
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It is easy to check that δμν〈TμνTρσ 〉 = δρσ 〈TμνTρσ 〉 = 0.
The Aμνρσ here should not be confused with the Aμνρσ

of Eq. (3.2) which is the tensor structure of the reducible
2-point function.

Substituting Eq. (3.3) into Eqs. (3.4), (3.5) and (3.8), we get

c� = c1 + 2dc2 + 4c3 + d2c4 + 2dc5

cM = −(c1 + dc2 + 4c3) (3.9)

and

Aμνρσ = 1

d2 (c1 + 4c3 − 2dc5)δμνδρσ

+c5(δμρδνσ + δνρδμσ )

+c3

e2

(
eμeρδνσ + eνeρδμσ

+eμeσ δνρ + eνeσ δμρ

)

+c1

e4 eμeνeρeσ

− 1

de2 (c1 + 4c3)
(
eμeνδρσ + eρeσ δμν

)
.

(3.10)

Writing the tensorial structure at the fixed point [20] as

Iμνρσ = − 2

d
δμνδρσ + (δμρδνσ + δνρδμσ )

− 2

e2

(
eμeρδνσ + eνeρδμσ + eμeσ δνρ + eνeσ δμρ

)

+ 8

e4 eμeνeρeσ (3.11)

and comparing with Eq. (3.10), yields the boundary condi-
tions via c�

T Iμνρσ = A�
μνρσ :

c�
1 = 8c�

T , c�
2 = 0, c�

3 = −2c�
T ,

c�
4 = − 2

d
c�
T , c�

5 = c�
T (3.12)

The conservation equations

∂μ〈TμνTρσ 〉 = 0 (3.13)

should be solved with these boundary conditions. The result
in d = 3 is that the conservation equations are satisfied if

ċ1 + ċ2 + 2ċ3 − 4c1 − 8c2 − 16c3 = 0

ċ3 + ċ5 + c2 − 3c3 − 6c5 = 0

ċ2 + ċ4 − 4c2 + 2c3 − 6c4 = 0. (3.14)

Unlike in d = 2 these equations show no obvious preference
for a particular C-function. In our case however we have the
constraint of the eigenvalue equation that c� satisfies, written
in terms of the e d

de derivative as ċ� = −ηc�, which forces
the couplings of the five independent tensor structures to
satisfy individually the same eigenvalue equation ċi = −ηci ,
i = 1, . . . , 5. This causes the system of differential equations
Eq. (3.14) to collapse into an algebraic system that can be

solved for three of the couplings in terms of the other two.
The solution determines in particular that cM

c�
= 6+η

2(3+η)
. Note

that the general solution to the eigenvalue equation in position
space is

ci (e) = c�
i

[
e
e�

]−η

. (3.15)

Now we can define the C-function as the most general form
that can be constructed from the five couplings5

C =
∑
i

(ai ci + bi c
�
i ). (3.16)

Substituting Eqs. (3.12) and (3.15) this can be written as

C =
(
a

[
e
e�

]−η

+ b

)
c�
T , (3.17)

with a = 8a1−2a3− 2
3a4+a5 and b = 8b1−2b3− 2

3b4+b5.
Two of the conditions that we need are

C� = c�
T −→ a + b = 1

Ċ < 0 −→ a < 0 (3.18)

and the third, C > 0, is satisfied as long as for a given e

a < ac ≡ 1

1 −
[
e
e�

]−η
. (3.19)

The flow towards the IR is: eUV → eIR ≡ e� and ac → −∞.
We see that for any value of a for which the inequality is
initially satisfied, at some point C turns negative. This means
of course thatbmust be non-zero and positive. We summarize
the situation in an RG flow picture:

To compute the actual form of C , therefore of PT , is
beyond the scope of this letter. This would require a demand-
ing calculation from both the field theory and the dS sides.

5 The solution Eq. (3.15) is valid when c�
i �= 0, otherwise the eigenvalue

equation is singular. This means that when c� = 0 (in our case for c�,
cM and c2) the eigenvalue equation should be regularized by either
introducing a small cut-off c�

ε << 1 or by using the Callan–Symnazic
equation as in Eq. (2.9). Note also that since both cM and c� contain
c2 in their decompositions in terms of the ci , the singular behaviour is
balanced.

123



Eur. Phys. J. C (2023) 83 :431 Page 5 of 5 431

From the field theory side the computation of the “renor-
malized” 〈TμνTρσ 〉 correlator starts from the 2-loop order
in the ε-expansion and it involves the finite parts of the con-
tributing diagrams since �T = 0. Such a calculation has not
been done to our knowledge. From the bulk point of view, a
simultaneous computation of PS and PT needs a knowledge
of some sort of time-dependent classical background. Such a
classical background could be either an effective background
originating from the late time behaviour of our scalar field
or a new classical field on the top of φ, with the profile of
an inflaton. What we have only demonstrated here is that, in
principle, it is possible to have a non-unitary CFT as the dual
field theory and still observe a positive r -index.

Regarding the term “Ising Cosmology” that we introduced
here, one could argue that in addition to the fact that the
dual of dS is a non-unitary CFT, it should be some large N
theory. The Ising model is unitary and of N = 1 (in the
O(N ) critical model sense) thus the anomalous dimension
η used here one could claim, can not be relevant. As far as
the large N issue is concerned, it is a fact that the anomalous
dimension of the basic field is actually the same for any N
that has been measured on the lattice or computed in the large
N expansion or by conformal bootstrap. That is, η � 0.036 is
pretty much an N -independent number [12]. Now the large
N model is unitary and let us assume that it is dual to a
system in AdS space. But the analytic continuation of this
AdS theory is the dS-scalar system that we are dealing with
here [4]. This means -in one sentence- that the physical state
we discuss here which becomes dual to a non-unitary CFT
in the scale invariant limit is related via analytic continuation
to an AdS theory whose dual in the scale invariant limit is
a large N unitary CFT with a critical exponent η that is N -
independent. This argument we believe justifies the use of
the Ising critical exponent η, even though strictly speaking
the characterization Ising may be an oversimplification.
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